It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..369493f
--- /dev/null
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,692 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "liveintervals"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "VirtRegMap.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(numIntervals, "Number of original intervals");
+STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
+STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
+
+char LiveIntervals::ID = 0;
+namespace {
+  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
+}
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.addPreserved<LiveVariables>();
+  AU.addRequired<LiveVariables>();
+  AU.addPreservedID(PHIEliminationID);
+  AU.addRequiredID(PHIEliminationID);
+  AU.addRequiredID(TwoAddressInstructionPassID);
+  AU.addRequired<LoopInfo>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory() {
+  mi2iMap_.clear();
+  i2miMap_.clear();
+  r2iMap_.clear();
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+  mf_ = &fn;
+  tm_ = &fn.getTarget();
+  mri_ = tm_->getRegisterInfo();
+  tii_ = tm_->getInstrInfo();
+  lv_ = &getAnalysis<LiveVariables>();
+  allocatableRegs_ = mri_->getAllocatableSet(fn);
+
+  // Number MachineInstrs and MachineBasicBlocks.
+  // Initialize MBB indexes to a sentinal.
+  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
+  
+  unsigned MIIndex = 0;
+  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
+       MBB != E; ++MBB) {
+    // Set the MBB2IdxMap entry for this MBB.
+    MBB2IdxMap[MBB->getNumber()] = MIIndex;
+
+    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+         I != E; ++I) {
+      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
+      assert(inserted && "multiple MachineInstr -> index mappings");
+      i2miMap_.push_back(I);
+      MIIndex += InstrSlots::NUM;
+    }
+  }
+
+  computeIntervals();
+
+  numIntervals += getNumIntervals();
+
+  DOUT << "********** INTERVALS **********\n";
+  for (iterator I = begin(), E = end(); I != E; ++I) {
+    I->second.print(DOUT, mri_);
+    DOUT << "\n";
+  }
+
+  numIntervalsAfter += getNumIntervals();
+  DEBUG(dump());
+  return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(std::ostream &O, const Module* ) const {
+  O << "********** INTERVALS **********\n";
+  for (const_iterator I = begin(), E = end(); I != E; ++I) {
+    I->second.print(DOUT, mri_);
+    DOUT << "\n";
+  }
+
+  O << "********** MACHINEINSTRS **********\n";
+  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+       mbbi != mbbe; ++mbbi) {
+    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
+    for (MachineBasicBlock::iterator mii = mbbi->begin(),
+           mie = mbbi->end(); mii != mie; ++mii) {
+      O << getInstructionIndex(mii) << '\t' << *mii;
+    }
+  }
+}
+
+// Not called?
+/// CreateNewLiveInterval - Create a new live interval with the given live
+/// ranges. The new live interval will have an infinite spill weight.
+LiveInterval&
+LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
+                                     const std::vector<LiveRange> &LRs) {
+  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
+
+  // Create a new virtual register for the spill interval.
+  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
+
+  // Replace the old virtual registers in the machine operands with the shiny
+  // new one.
+  for (std::vector<LiveRange>::const_iterator
+         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
+    unsigned Index = getBaseIndex(I->start);
+    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
+
+    for (; Index != End; Index += InstrSlots::NUM) {
+      // Skip deleted instructions
+      while (Index != End && !getInstructionFromIndex(Index))
+        Index += InstrSlots::NUM;
+
+      if (Index == End) break;
+
+      MachineInstr *MI = getInstructionFromIndex(Index);
+
+      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
+        MachineOperand &MOp = MI->getOperand(J);
+        if (MOp.isRegister() && MOp.getReg() == LI->reg)
+          MOp.setReg(NewVReg);
+      }
+    }
+  }
+
+  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
+
+  // The spill weight is now infinity as it cannot be spilled again
+  NewLI.weight = float(HUGE_VAL);
+
+  for (std::vector<LiveRange>::const_iterator
+         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
+    DOUT << "  Adding live range " << *I << " to new interval\n";
+    NewLI.addRange(*I);
+  }
+            
+  DOUT << "Created new live interval " << NewLI << "\n";
+  return NewLI;
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
+  // since this is called after the analysis is done we don't know if
+  // LiveVariables is available
+  lv_ = getAnalysisToUpdate<LiveVariables>();
+
+  std::vector<LiveInterval*> added;
+
+  assert(li.weight != HUGE_VALF &&
+         "attempt to spill already spilled interval!");
+
+  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
+  li.print(DOUT, mri_);
+  DOUT << '\n';
+
+  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
+
+  for (LiveInterval::Ranges::const_iterator
+         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
+    unsigned index = getBaseIndex(i->start);
+    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
+    for (; index != end; index += InstrSlots::NUM) {
+      // skip deleted instructions
+      while (index != end && !getInstructionFromIndex(index))
+        index += InstrSlots::NUM;
+      if (index == end) break;
+
+      MachineInstr *MI = getInstructionFromIndex(index);
+
+    RestartInstruction:
+      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+        MachineOperand& mop = MI->getOperand(i);
+        if (mop.isRegister() && mop.getReg() == li.reg) {
+          MachineInstr *fmi = li.remat ? NULL
+            : mri_->foldMemoryOperand(MI, i, slot);
+          if (fmi) {
+            // Attempt to fold the memory reference into the instruction.  If we
+            // can do this, we don't need to insert spill code.
+            if (lv_)
+              lv_->instructionChanged(MI, fmi);
+            MachineBasicBlock &MBB = *MI->getParent();
+            vrm.virtFolded(li.reg, MI, i, fmi);
+            mi2iMap_.erase(MI);
+            i2miMap_[index/InstrSlots::NUM] = fmi;
+            mi2iMap_[fmi] = index;
+            MI = MBB.insert(MBB.erase(MI), fmi);
+            ++numFolded;
+            // Folding the load/store can completely change the instruction in
+            // unpredictable ways, rescan it from the beginning.
+            goto RestartInstruction;
+          } else {
+            // Create a new virtual register for the spill interval.
+            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
+            
+            // Scan all of the operands of this instruction rewriting operands
+            // to use NewVReg instead of li.reg as appropriate.  We do this for
+            // two reasons:
+            //
+            //   1. If the instr reads the same spilled vreg multiple times, we
+            //      want to reuse the NewVReg.
+            //   2. If the instr is a two-addr instruction, we are required to
+            //      keep the src/dst regs pinned.
+            //
+            // Keep track of whether we replace a use and/or def so that we can
+            // create the spill interval with the appropriate range. 
+            mop.setReg(NewVReg);
+            
+            bool HasUse = mop.isUse();
+            bool HasDef = mop.isDef();
+            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
+              if (MI->getOperand(j).isReg() &&
+                  MI->getOperand(j).getReg() == li.reg) {
+                MI->getOperand(j).setReg(NewVReg);
+                HasUse |= MI->getOperand(j).isUse();
+                HasDef |= MI->getOperand(j).isDef();
+              }
+            }
+
+            // create a new register for this spill
+            vrm.grow();
+            if (li.remat)
+              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
+            vrm.assignVirt2StackSlot(NewVReg, slot);
+            LiveInterval &nI = getOrCreateInterval(NewVReg);
+            nI.remat = li.remat;
+            assert(nI.empty());
+
+            // the spill weight is now infinity as it
+            // cannot be spilled again
+            nI.weight = HUGE_VALF;
+
+            if (HasUse) {
+              LiveRange LR(getLoadIndex(index), getUseIndex(index),
+                           nI.getNextValue(~0U, 0));
+              DOUT << " +" << LR;
+              nI.addRange(LR);
+            }
+            if (HasDef) {
+              LiveRange LR(getDefIndex(index), getStoreIndex(index),
+                           nI.getNextValue(~0U, 0));
+              DOUT << " +" << LR;
+              nI.addRange(LR);
+            }
+            
+            added.push_back(&nI);
+
+            // update live variables if it is available
+            if (lv_)
+              lv_->addVirtualRegisterKilled(NewVReg, MI);
+            
+            DOUT << "\t\t\t\tadded new interval: ";
+            nI.print(DOUT, mri_);
+            DOUT << '\n';
+          }
+        }
+      }
+    }
+  }
+
+  return added;
+}
+
+void LiveIntervals::printRegName(unsigned reg) const {
+  if (MRegisterInfo::isPhysicalRegister(reg))
+    cerr << mri_->getName(reg);
+  else
+    cerr << "%reg" << reg;
+}
+
+/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
+/// two addr elimination.
+static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
+                                const TargetInstrInfo *TII) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO1 = MI->getOperand(i);
+    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
+      for (unsigned j = i+1; j < e; ++j) {
+        MachineOperand &MO2 = MI->getOperand(j);
+        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
+            MI->getInstrDescriptor()->
+            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
+          return true;
+      }
+    }
+  }
+  return false;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+                                             MachineBasicBlock::iterator mi,
+                                             unsigned MIIdx,
+                                             LiveInterval &interval) {
+  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
+  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+
+  // Virtual registers may be defined multiple times (due to phi
+  // elimination and 2-addr elimination).  Much of what we do only has to be
+  // done once for the vreg.  We use an empty interval to detect the first
+  // time we see a vreg.
+  if (interval.empty()) {
+    // Remember if the definition can be rematerialized. All load's from fixed
+    // stack slots are re-materializable. The target may permit other
+    // instructions to be re-materialized as well.
+    int FrameIdx = 0;
+    if (vi.DefInst &&
+        (tii_->isTriviallyReMaterializable(vi.DefInst) ||
+         (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
+          mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
+      interval.remat = vi.DefInst;
+
+    // Get the Idx of the defining instructions.
+    unsigned defIndex = getDefIndex(MIIdx);
+
+    unsigned ValNum;
+    unsigned SrcReg, DstReg;
+    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
+      ValNum = interval.getNextValue(~0U, 0);
+    else
+      ValNum = interval.getNextValue(defIndex, SrcReg);
+    
+    assert(ValNum == 0 && "First value in interval is not 0?");
+    ValNum = 0;  // Clue in the optimizer.
+
+    // Loop over all of the blocks that the vreg is defined in.  There are
+    // two cases we have to handle here.  The most common case is a vreg
+    // whose lifetime is contained within a basic block.  In this case there
+    // will be a single kill, in MBB, which comes after the definition.
+    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+      // FIXME: what about dead vars?
+      unsigned killIdx;
+      if (vi.Kills[0] != mi)
+        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
+      else
+        killIdx = defIndex+1;
+
+      // If the kill happens after the definition, we have an intra-block
+      // live range.
+      if (killIdx > defIndex) {
+        assert(vi.AliveBlocks.none() &&
+               "Shouldn't be alive across any blocks!");
+        LiveRange LR(defIndex, killIdx, ValNum);
+        interval.addRange(LR);
+        DOUT << " +" << LR << "\n";
+        return;
+      }
+    }
+
+    // The other case we handle is when a virtual register lives to the end
+    // of the defining block, potentially live across some blocks, then is
+    // live into some number of blocks, but gets killed.  Start by adding a
+    // range that goes from this definition to the end of the defining block.
+    LiveRange NewLR(defIndex,
+                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
+                    ValNum);
+    DOUT << " +" << NewLR;
+    interval.addRange(NewLR);
+
+    // Iterate over all of the blocks that the variable is completely
+    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+    // live interval.
+    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
+      if (vi.AliveBlocks[i]) {
+        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
+        if (!MBB->empty()) {
+          LiveRange LR(getMBBStartIdx(i),
+                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
+                       ValNum);
+          interval.addRange(LR);
+          DOUT << " +" << LR;
+        }
+      }
+    }
+
+    // Finally, this virtual register is live from the start of any killing
+    // block to the 'use' slot of the killing instruction.
+    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+      MachineInstr *Kill = vi.Kills[i];
+      LiveRange LR(getMBBStartIdx(Kill->getParent()),
+                   getUseIndex(getInstructionIndex(Kill))+1,
+                   ValNum);
+      interval.addRange(LR);
+      DOUT << " +" << LR;
+    }
+
+  } else {
+    // Can no longer safely assume definition is rematerializable.
+    interval.remat = NULL;
+
+    // If this is the second time we see a virtual register definition, it
+    // must be due to phi elimination or two addr elimination.  If this is
+    // the result of two address elimination, then the vreg is one of the
+    // def-and-use register operand.
+    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
+      // If this is a two-address definition, then we have already processed
+      // the live range.  The only problem is that we didn't realize there
+      // are actually two values in the live interval.  Because of this we
+      // need to take the LiveRegion that defines this register and split it
+      // into two values.
+      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
+      unsigned RedefIndex = getDefIndex(MIIdx);
+
+      // Delete the initial value, which should be short and continuous,
+      // because the 2-addr copy must be in the same MBB as the redef.
+      interval.removeRange(DefIndex, RedefIndex);
+
+      // Two-address vregs should always only be redefined once.  This means
+      // that at this point, there should be exactly one value number in it.
+      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
+
+      // The new value number (#1) is defined by the instruction we claimed
+      // defined value #0.
+      unsigned ValNo = interval.getNextValue(0, 0);
+      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
+      
+      // Value#0 is now defined by the 2-addr instruction.
+      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
+      
+      // Add the new live interval which replaces the range for the input copy.
+      LiveRange LR(DefIndex, RedefIndex, ValNo);
+      DOUT << " replace range with " << LR;
+      interval.addRange(LR);
+
+      // If this redefinition is dead, we need to add a dummy unit live
+      // range covering the def slot.
+      if (lv_->RegisterDefIsDead(mi, interval.reg))
+        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
+
+      DOUT << " RESULT: ";
+      interval.print(DOUT, mri_);
+
+    } else {
+      // Otherwise, this must be because of phi elimination.  If this is the
+      // first redefinition of the vreg that we have seen, go back and change
+      // the live range in the PHI block to be a different value number.
+      if (interval.containsOneValue()) {
+        assert(vi.Kills.size() == 1 &&
+               "PHI elimination vreg should have one kill, the PHI itself!");
+
+        // Remove the old range that we now know has an incorrect number.
+        MachineInstr *Killer = vi.Kills[0];
+        unsigned Start = getMBBStartIdx(Killer->getParent());
+        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
+        DOUT << " Removing [" << Start << "," << End << "] from: ";
+        interval.print(DOUT, mri_); DOUT << "\n";
+        interval.removeRange(Start, End);
+        DOUT << " RESULT: "; interval.print(DOUT, mri_);
+
+        // Replace the interval with one of a NEW value number.  Note that this
+        // value number isn't actually defined by an instruction, weird huh? :)
+        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
+        DOUT << " replace range with " << LR;
+        interval.addRange(LR);
+        DOUT << " RESULT: "; interval.print(DOUT, mri_);
+      }
+
+      // In the case of PHI elimination, each variable definition is only
+      // live until the end of the block.  We've already taken care of the
+      // rest of the live range.
+      unsigned defIndex = getDefIndex(MIIdx);
+      
+      unsigned ValNum;
+      unsigned SrcReg, DstReg;
+      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
+        ValNum = interval.getNextValue(~0U, 0);
+      else
+        ValNum = interval.getNextValue(defIndex, SrcReg);
+      
+      LiveRange LR(defIndex,
+                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
+      interval.addRange(LR);
+      DOUT << " +" << LR;
+    }
+  }
+
+  DOUT << '\n';
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
+                                              MachineBasicBlock::iterator mi,
+                                              unsigned MIIdx,
+                                              LiveInterval &interval,
+                                              unsigned SrcReg) {
+  // A physical register cannot be live across basic block, so its
+  // lifetime must end somewhere in its defining basic block.
+  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
+
+  unsigned baseIndex = MIIdx;
+  unsigned start = getDefIndex(baseIndex);
+  unsigned end = start;
+
+  // If it is not used after definition, it is considered dead at
+  // the instruction defining it. Hence its interval is:
+  // [defSlot(def), defSlot(def)+1)
+  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
+    DOUT << " dead";
+    end = getDefIndex(start) + 1;
+    goto exit;
+  }
+
+  // If it is not dead on definition, it must be killed by a
+  // subsequent instruction. Hence its interval is:
+  // [defSlot(def), useSlot(kill)+1)
+  while (++mi != MBB->end()) {
+    baseIndex += InstrSlots::NUM;
+    if (lv_->KillsRegister(mi, interval.reg)) {
+      DOUT << " killed";
+      end = getUseIndex(baseIndex) + 1;
+      goto exit;
+    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
+      // Another instruction redefines the register before it is ever read.
+      // Then the register is essentially dead at the instruction that defines
+      // it. Hence its interval is:
+      // [defSlot(def), defSlot(def)+1)
+      DOUT << " dead";
+      end = getDefIndex(start) + 1;
+      goto exit;
+    }
+  }
+  
+  // The only case we should have a dead physreg here without a killing or
+  // instruction where we know it's dead is if it is live-in to the function
+  // and never used.
+  assert(!SrcReg && "physreg was not killed in defining block!");
+  end = getDefIndex(start) + 1;  // It's dead.
+
+exit:
+  assert(start < end && "did not find end of interval?");
+
+  // Already exists? Extend old live interval.
+  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
+  unsigned Id = (OldLR != interval.end())
+    ? OldLR->ValId
+    : interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg);
+  LiveRange LR(start, end, Id);
+  interval.addRange(LR);
+  DOUT << " +" << LR << '\n';
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+                                      MachineBasicBlock::iterator MI,
+                                      unsigned MIIdx,
+                                      unsigned reg) {
+  if (MRegisterInfo::isVirtualRegister(reg))
+    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
+  else if (allocatableRegs_[reg]) {
+    unsigned SrcReg, DstReg;
+    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
+      SrcReg = 0;
+    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
+    // Def of a register also defines its sub-registers.
+    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
+      // Avoid processing some defs more than once.
+      if (!MI->findRegisterDefOperand(*AS))
+        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
+  }
+}
+
+void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
+                                         unsigned MIIdx,
+                                         LiveInterval &interval, bool isAlias) {
+  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
+
+  // Look for kills, if it reaches a def before it's killed, then it shouldn't
+  // be considered a livein.
+  MachineBasicBlock::iterator mi = MBB->begin();
+  unsigned baseIndex = MIIdx;
+  unsigned start = baseIndex;
+  unsigned end = start;
+  while (mi != MBB->end()) {
+    if (lv_->KillsRegister(mi, interval.reg)) {
+      DOUT << " killed";
+      end = getUseIndex(baseIndex) + 1;
+      goto exit;
+    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
+      // Another instruction redefines the register before it is ever read.
+      // Then the register is essentially dead at the instruction that defines
+      // it. Hence its interval is:
+      // [defSlot(def), defSlot(def)+1)
+      DOUT << " dead";
+      end = getDefIndex(start) + 1;
+      goto exit;
+    }
+
+    baseIndex += InstrSlots::NUM;
+    ++mi;
+  }
+
+exit:
+  // Live-in register might not be used at all.
+  if (end == MIIdx) {
+    if (isAlias) {
+      DOUT << " dead";
+      end = getDefIndex(MIIdx) + 1;
+    } else {
+      DOUT << " live through";
+      end = baseIndex;
+    }
+  }
+
+  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
+  DOUT << " +" << LR << '\n';
+  interval.addRange(LR);
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() {
+  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
+       << "********** Function: "
+       << ((Value*)mf_->getFunction())->getName() << '\n';
+  // Track the index of the current machine instr.
+  unsigned MIIndex = 0;
+  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+       MBBI != E; ++MBBI) {
+    MachineBasicBlock *MBB = MBBI;
+    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
+
+    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+
+    if (MBB->livein_begin() != MBB->livein_end()) {
+      // Create intervals for live-ins to this BB first.
+      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
+             LE = MBB->livein_end(); LI != LE; ++LI) {
+        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
+        // Multiple live-ins can alias the same register.
+        for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
+          if (!hasInterval(*AS))
+            handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
+                                 true);
+      }
+    }
+    
+    for (; MI != miEnd; ++MI) {
+      DOUT << MIIndex << "\t" << *MI;
+
+      // Handle defs.
+      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+        MachineOperand &MO = MI->getOperand(i);
+        // handle register defs - build intervals
+        if (MO.isRegister() && MO.getReg() && MO.isDef())
+          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
+      }
+      
+      MIIndex += InstrSlots::NUM;
+    }
+  }
+}
+
+LiveInterval LiveIntervals::createInterval(unsigned reg) {
+  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
+                       HUGE_VALF : 0.0F;
+  return LiveInterval(reg, Weight);
+}