It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
new file mode 100644
index 0000000..22c6e6b
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -0,0 +1,4749 @@
+//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Nate Begeman and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
+// both before and after the DAG is legalized.
+//
+// FIXME: Missing folds
+// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
+//  a sequence of multiplies, shifts, and adds.  This should be controlled by
+//  some kind of hint from the target that int div is expensive.
+// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
+//
+// FIXME: select C, pow2, pow2 -> something smart
+// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
+// FIXME: Dead stores -> nuke
+// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
+// FIXME: mul (x, const) -> shifts + adds
+// FIXME: undef values
+// FIXME: divide by zero is currently left unfolded.  do we want to turn this
+//        into an undef?
+// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
+// 
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dagcombine"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NodesCombined   , "Number of dag nodes combined");
+STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
+STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
+
+namespace {
+#ifndef NDEBUG
+  static cl::opt<bool>
+    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
+                    cl::desc("Pop up a window to show dags before the first "
+                             "dag combine pass"));
+  static cl::opt<bool>
+    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
+                    cl::desc("Pop up a window to show dags before the second "
+                             "dag combine pass"));
+#else
+  static const bool ViewDAGCombine1 = false;
+  static const bool ViewDAGCombine2 = false;
+#endif
+  
+  static cl::opt<bool>
+    CombinerAA("combiner-alias-analysis", cl::Hidden,
+               cl::desc("Turn on alias analysis during testing"));
+
+  static cl::opt<bool>
+    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
+               cl::desc("Include global information in alias analysis"));
+
+//------------------------------ DAGCombiner ---------------------------------//
+
+  class VISIBILITY_HIDDEN DAGCombiner {
+    SelectionDAG &DAG;
+    TargetLowering &TLI;
+    bool AfterLegalize;
+
+    // Worklist of all of the nodes that need to be simplified.
+    std::vector<SDNode*> WorkList;
+
+    // AA - Used for DAG load/store alias analysis.
+    AliasAnalysis &AA;
+
+    /// AddUsersToWorkList - When an instruction is simplified, add all users of
+    /// the instruction to the work lists because they might get more simplified
+    /// now.
+    ///
+    void AddUsersToWorkList(SDNode *N) {
+      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+           UI != UE; ++UI)
+        AddToWorkList(*UI);
+    }
+
+    /// removeFromWorkList - remove all instances of N from the worklist.
+    ///
+    void removeFromWorkList(SDNode *N) {
+      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
+                     WorkList.end());
+    }
+    
+  public:
+    /// AddToWorkList - Add to the work list making sure it's instance is at the
+    /// the back (next to be processed.)
+    void AddToWorkList(SDNode *N) {
+      removeFromWorkList(N);
+      WorkList.push_back(N);
+    }
+
+    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
+                        bool AddTo = true) {
+      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
+      ++NodesCombined;
+      DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
+      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
+      DOUT << " and " << NumTo-1 << " other values\n";
+      std::vector<SDNode*> NowDead;
+      DAG.ReplaceAllUsesWith(N, To, &NowDead);
+      
+      if (AddTo) {
+        // Push the new nodes and any users onto the worklist
+        for (unsigned i = 0, e = NumTo; i != e; ++i) {
+          AddToWorkList(To[i].Val);
+          AddUsersToWorkList(To[i].Val);
+        }
+      }
+      
+      // Nodes can be reintroduced into the worklist.  Make sure we do not
+      // process a node that has been replaced.
+      removeFromWorkList(N);
+      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+        removeFromWorkList(NowDead[i]);
+      
+      // Finally, since the node is now dead, remove it from the graph.
+      DAG.DeleteNode(N);
+      return SDOperand(N, 0);
+    }
+    
+    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
+      return CombineTo(N, &Res, 1, AddTo);
+    }
+    
+    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
+                        bool AddTo = true) {
+      SDOperand To[] = { Res0, Res1 };
+      return CombineTo(N, To, 2, AddTo);
+    }
+  private:    
+    
+    /// SimplifyDemandedBits - Check the specified integer node value to see if
+    /// it can be simplified or if things it uses can be simplified by bit
+    /// propagation.  If so, return true.
+    bool SimplifyDemandedBits(SDOperand Op) {
+      TargetLowering::TargetLoweringOpt TLO(DAG);
+      uint64_t KnownZero, KnownOne;
+      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
+      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
+        return false;
+
+      // Revisit the node.
+      AddToWorkList(Op.Val);
+      
+      // Replace the old value with the new one.
+      ++NodesCombined;
+      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
+      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
+      DOUT << '\n';
+
+      std::vector<SDNode*> NowDead;
+      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
+      
+      // Push the new node and any (possibly new) users onto the worklist.
+      AddToWorkList(TLO.New.Val);
+      AddUsersToWorkList(TLO.New.Val);
+      
+      // Nodes can end up on the worklist more than once.  Make sure we do
+      // not process a node that has been replaced.
+      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+        removeFromWorkList(NowDead[i]);
+      
+      // Finally, if the node is now dead, remove it from the graph.  The node
+      // may not be dead if the replacement process recursively simplified to
+      // something else needing this node.
+      if (TLO.Old.Val->use_empty()) {
+        removeFromWorkList(TLO.Old.Val);
+        
+        // If the operands of this node are only used by the node, they will now
+        // be dead.  Make sure to visit them first to delete dead nodes early.
+        for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
+          if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
+            AddToWorkList(TLO.Old.Val->getOperand(i).Val);
+        
+        DAG.DeleteNode(TLO.Old.Val);
+      }
+      return true;
+    }
+
+    bool CombineToPreIndexedLoadStore(SDNode *N);
+    bool CombineToPostIndexedLoadStore(SDNode *N);
+    
+    
+    /// visit - call the node-specific routine that knows how to fold each
+    /// particular type of node.
+    SDOperand visit(SDNode *N);
+
+    // Visitation implementation - Implement dag node combining for different
+    // node types.  The semantics are as follows:
+    // Return Value:
+    //   SDOperand.Val == 0   - No change was made
+    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
+    //   otherwise            - N should be replaced by the returned Operand.
+    //
+    SDOperand visitTokenFactor(SDNode *N);
+    SDOperand visitADD(SDNode *N);
+    SDOperand visitSUB(SDNode *N);
+    SDOperand visitADDC(SDNode *N);
+    SDOperand visitADDE(SDNode *N);
+    SDOperand visitMUL(SDNode *N);
+    SDOperand visitSDIV(SDNode *N);
+    SDOperand visitUDIV(SDNode *N);
+    SDOperand visitSREM(SDNode *N);
+    SDOperand visitUREM(SDNode *N);
+    SDOperand visitMULHU(SDNode *N);
+    SDOperand visitMULHS(SDNode *N);
+    SDOperand visitAND(SDNode *N);
+    SDOperand visitOR(SDNode *N);
+    SDOperand visitXOR(SDNode *N);
+    SDOperand SimplifyVBinOp(SDNode *N);
+    SDOperand visitSHL(SDNode *N);
+    SDOperand visitSRA(SDNode *N);
+    SDOperand visitSRL(SDNode *N);
+    SDOperand visitCTLZ(SDNode *N);
+    SDOperand visitCTTZ(SDNode *N);
+    SDOperand visitCTPOP(SDNode *N);
+    SDOperand visitSELECT(SDNode *N);
+    SDOperand visitSELECT_CC(SDNode *N);
+    SDOperand visitSETCC(SDNode *N);
+    SDOperand visitSIGN_EXTEND(SDNode *N);
+    SDOperand visitZERO_EXTEND(SDNode *N);
+    SDOperand visitANY_EXTEND(SDNode *N);
+    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
+    SDOperand visitTRUNCATE(SDNode *N);
+    SDOperand visitBIT_CONVERT(SDNode *N);
+    SDOperand visitFADD(SDNode *N);
+    SDOperand visitFSUB(SDNode *N);
+    SDOperand visitFMUL(SDNode *N);
+    SDOperand visitFDIV(SDNode *N);
+    SDOperand visitFREM(SDNode *N);
+    SDOperand visitFCOPYSIGN(SDNode *N);
+    SDOperand visitSINT_TO_FP(SDNode *N);
+    SDOperand visitUINT_TO_FP(SDNode *N);
+    SDOperand visitFP_TO_SINT(SDNode *N);
+    SDOperand visitFP_TO_UINT(SDNode *N);
+    SDOperand visitFP_ROUND(SDNode *N);
+    SDOperand visitFP_ROUND_INREG(SDNode *N);
+    SDOperand visitFP_EXTEND(SDNode *N);
+    SDOperand visitFNEG(SDNode *N);
+    SDOperand visitFABS(SDNode *N);
+    SDOperand visitBRCOND(SDNode *N);
+    SDOperand visitBR_CC(SDNode *N);
+    SDOperand visitLOAD(SDNode *N);
+    SDOperand visitSTORE(SDNode *N);
+    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
+    SDOperand visitBUILD_VECTOR(SDNode *N);
+    SDOperand visitCONCAT_VECTORS(SDNode *N);
+    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
+
+    SDOperand XformToShuffleWithZero(SDNode *N);
+    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
+    
+    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
+    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
+    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
+    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, 
+                               SDOperand N3, ISD::CondCode CC, 
+                               bool NotExtCompare = false);
+    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
+                            ISD::CondCode Cond, bool foldBooleans = true);
+    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
+    SDOperand BuildSDIV(SDNode *N);
+    SDOperand BuildUDIV(SDNode *N);
+    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
+    SDOperand ReduceLoadWidth(SDNode *N);
+    
+    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+    /// looking for aliasing nodes and adding them to the Aliases vector.
+    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
+                          SmallVector<SDOperand, 8> &Aliases);
+
+    /// isAlias - Return true if there is any possibility that the two addresses
+    /// overlap.
+    bool isAlias(SDOperand Ptr1, int64_t Size1,
+                 const Value *SrcValue1, int SrcValueOffset1,
+                 SDOperand Ptr2, int64_t Size2,
+                 const Value *SrcValue2, int SrcValueOffset2);
+                 
+    /// FindAliasInfo - Extracts the relevant alias information from the memory
+    /// node.  Returns true if the operand was a load.
+    bool FindAliasInfo(SDNode *N,
+                       SDOperand &Ptr, int64_t &Size,
+                       const Value *&SrcValue, int &SrcValueOffset);
+                       
+    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
+    /// looking for a better chain (aliasing node.)
+    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
+    
+public:
+    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
+      : DAG(D),
+        TLI(D.getTargetLoweringInfo()),
+        AfterLegalize(false),
+        AA(A) {}
+    
+    /// Run - runs the dag combiner on all nodes in the work list
+    void Run(bool RunningAfterLegalize); 
+  };
+}
+
+//===----------------------------------------------------------------------===//
+//  TargetLowering::DAGCombinerInfo implementation
+//===----------------------------------------------------------------------===//
+
+void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
+  ((DAGCombiner*)DC)->AddToWorkList(N);
+}
+
+SDOperand TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
+  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
+}
+
+SDOperand TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDOperand Res) {
+  return ((DAGCombiner*)DC)->CombineTo(N, Res);
+}
+
+
+SDOperand TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
+  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+/// isNegatibleForFree - Return 1 if we can compute the negated form of the
+/// specified expression for the same cost as the expression itself, or 2 if we
+/// can compute the negated form more cheaply than the expression itself.
+static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
+  // fneg is removable even if it has multiple uses.
+  if (Op.getOpcode() == ISD::FNEG) return 2;
+  
+  // Don't allow anything with multiple uses.
+  if (!Op.hasOneUse()) return 0;
+  
+  // Don't recurse exponentially.
+  if (Depth > 6) return 0;
+  
+  switch (Op.getOpcode()) {
+  default: return false;
+  case ISD::ConstantFP:
+    return 1;
+  case ISD::FADD:
+    // FIXME: determine better conditions for this xform.
+    if (!UnsafeFPMath) return 0;
+    
+    // -(A+B) -> -A - B
+    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
+      return V;
+    // -(A+B) -> -B - A
+    return isNegatibleForFree(Op.getOperand(1), Depth+1);
+  case ISD::FSUB:
+    // We can't turn -(A-B) into B-A when we honor signed zeros. 
+    if (!UnsafeFPMath) return 0;
+    
+    // -(A-B) -> B-A
+    return 1;
+    
+  case ISD::FMUL:
+  case ISD::FDIV:
+    if (HonorSignDependentRoundingFPMath()) return 0;
+    
+    // -(X*Y) -> (-X * Y) or (X*-Y)
+    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
+      return V;
+      
+    return isNegatibleForFree(Op.getOperand(1), Depth+1);
+    
+  case ISD::FP_EXTEND:
+  case ISD::FP_ROUND:
+  case ISD::FSIN:
+    return isNegatibleForFree(Op.getOperand(0), Depth+1);
+  }
+}
+
+/// GetNegatedExpression - If isNegatibleForFree returns true, this function
+/// returns the newly negated expression.
+static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
+                                      unsigned Depth = 0) {
+  // fneg is removable even if it has multiple uses.
+  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
+  
+  // Don't allow anything with multiple uses.
+  assert(Op.hasOneUse() && "Unknown reuse!");
+  
+  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
+  switch (Op.getOpcode()) {
+  default: assert(0 && "Unknown code");
+  case ISD::ConstantFP:
+    return DAG.getConstantFP(-cast<ConstantFPSDNode>(Op)->getValue(),
+                             Op.getValueType());
+  case ISD::FADD:
+    // FIXME: determine better conditions for this xform.
+    assert(UnsafeFPMath);
+    
+    // -(A+B) -> -A - B
+    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
+      return DAG.getNode(ISD::FSUB, Op.getValueType(),
+                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
+                         Op.getOperand(1));
+    // -(A+B) -> -B - A
+    return DAG.getNode(ISD::FSUB, Op.getValueType(),
+                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
+                       Op.getOperand(0));
+  case ISD::FSUB:
+    // We can't turn -(A-B) into B-A when we honor signed zeros. 
+    assert(UnsafeFPMath);
+
+    // -(0-B) -> B
+    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
+      if (N0CFP->getValue() == 0.0)
+        return Op.getOperand(1);
+    
+    // -(A-B) -> B-A
+    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
+                       Op.getOperand(0));
+    
+  case ISD::FMUL:
+  case ISD::FDIV:
+    assert(!HonorSignDependentRoundingFPMath());
+    
+    // -(X*Y) -> -X * Y
+    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
+      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
+                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
+                         Op.getOperand(1));
+      
+    // -(X*Y) -> X * -Y
+    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
+                       Op.getOperand(0),
+                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
+    
+  case ISD::FP_EXTEND:
+  case ISD::FP_ROUND:
+  case ISD::FSIN:
+    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
+                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
+  }
+}
+
+
+// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
+// that selects between the values 1 and 0, making it equivalent to a setcc.
+// Also, set the incoming LHS, RHS, and CC references to the appropriate 
+// nodes based on the type of node we are checking.  This simplifies life a
+// bit for the callers.
+static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
+                              SDOperand &CC) {
+  if (N.getOpcode() == ISD::SETCC) {
+    LHS = N.getOperand(0);
+    RHS = N.getOperand(1);
+    CC  = N.getOperand(2);
+    return true;
+  }
+  if (N.getOpcode() == ISD::SELECT_CC && 
+      N.getOperand(2).getOpcode() == ISD::Constant &&
+      N.getOperand(3).getOpcode() == ISD::Constant &&
+      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
+      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
+    LHS = N.getOperand(0);
+    RHS = N.getOperand(1);
+    CC  = N.getOperand(4);
+    return true;
+  }
+  return false;
+}
+
+// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
+// one use.  If this is true, it allows the users to invert the operation for
+// free when it is profitable to do so.
+static bool isOneUseSetCC(SDOperand N) {
+  SDOperand N0, N1, N2;
+  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
+    return true;
+  return false;
+}
+
+SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
+  MVT::ValueType VT = N0.getValueType();
+  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
+  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
+  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
+    if (isa<ConstantSDNode>(N1)) {
+      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
+      AddToWorkList(OpNode.Val);
+      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
+    } else if (N0.hasOneUse()) {
+      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
+      AddToWorkList(OpNode.Val);
+      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
+    }
+  }
+  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
+  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
+  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
+    if (isa<ConstantSDNode>(N0)) {
+      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
+      AddToWorkList(OpNode.Val);
+      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
+    } else if (N1.hasOneUse()) {
+      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
+      AddToWorkList(OpNode.Val);
+      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
+    }
+  }
+  return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+//  Main DAG Combiner implementation
+//===----------------------------------------------------------------------===//
+
+void DAGCombiner::Run(bool RunningAfterLegalize) {
+  // set the instance variable, so that the various visit routines may use it.
+  AfterLegalize = RunningAfterLegalize;
+
+  // Add all the dag nodes to the worklist.
+  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+       E = DAG.allnodes_end(); I != E; ++I)
+    WorkList.push_back(I);
+  
+  // Create a dummy node (which is not added to allnodes), that adds a reference
+  // to the root node, preventing it from being deleted, and tracking any
+  // changes of the root.
+  HandleSDNode Dummy(DAG.getRoot());
+  
+  // The root of the dag may dangle to deleted nodes until the dag combiner is
+  // done.  Set it to null to avoid confusion.
+  DAG.setRoot(SDOperand());
+  
+  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
+  TargetLowering::DAGCombinerInfo 
+    DagCombineInfo(DAG, !RunningAfterLegalize, false, this);
+
+  // while the worklist isn't empty, inspect the node on the end of it and
+  // try and combine it.
+  while (!WorkList.empty()) {
+    SDNode *N = WorkList.back();
+    WorkList.pop_back();
+    
+    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
+    // N is deleted from the DAG, since they too may now be dead or may have a
+    // reduced number of uses, allowing other xforms.
+    if (N->use_empty() && N != &Dummy) {
+      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+        AddToWorkList(N->getOperand(i).Val);
+      
+      DAG.DeleteNode(N);
+      continue;
+    }
+    
+    SDOperand RV = visit(N);
+    
+    // If nothing happened, try a target-specific DAG combine.
+    if (RV.Val == 0) {
+      assert(N->getOpcode() != ISD::DELETED_NODE &&
+             "Node was deleted but visit returned NULL!");
+      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
+          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
+        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
+    }
+    
+    if (RV.Val) {
+      ++NodesCombined;
+      // If we get back the same node we passed in, rather than a new node or
+      // zero, we know that the node must have defined multiple values and
+      // CombineTo was used.  Since CombineTo takes care of the worklist 
+      // mechanics for us, we have no work to do in this case.
+      if (RV.Val != N) {
+        assert(N->getOpcode() != ISD::DELETED_NODE &&
+               RV.Val->getOpcode() != ISD::DELETED_NODE &&
+               "Node was deleted but visit returned new node!");
+
+        DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
+        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
+        DOUT << '\n';
+        std::vector<SDNode*> NowDead;
+        if (N->getNumValues() == RV.Val->getNumValues())
+          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
+        else {
+          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
+          SDOperand OpV = RV;
+          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
+        }
+          
+        // Push the new node and any users onto the worklist
+        AddToWorkList(RV.Val);
+        AddUsersToWorkList(RV.Val);
+          
+        // Nodes can be reintroduced into the worklist.  Make sure we do not
+        // process a node that has been replaced.
+        removeFromWorkList(N);
+        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+          removeFromWorkList(NowDead[i]);
+        
+        // Finally, since the node is now dead, remove it from the graph.
+        DAG.DeleteNode(N);
+      }
+    }
+  }
+  
+  // If the root changed (e.g. it was a dead load, update the root).
+  DAG.setRoot(Dummy.getValue());
+}
+
+SDOperand DAGCombiner::visit(SDNode *N) {
+  switch(N->getOpcode()) {
+  default: break;
+  case ISD::TokenFactor:        return visitTokenFactor(N);
+  case ISD::ADD:                return visitADD(N);
+  case ISD::SUB:                return visitSUB(N);
+  case ISD::ADDC:               return visitADDC(N);
+  case ISD::ADDE:               return visitADDE(N);
+  case ISD::MUL:                return visitMUL(N);
+  case ISD::SDIV:               return visitSDIV(N);
+  case ISD::UDIV:               return visitUDIV(N);
+  case ISD::SREM:               return visitSREM(N);
+  case ISD::UREM:               return visitUREM(N);
+  case ISD::MULHU:              return visitMULHU(N);
+  case ISD::MULHS:              return visitMULHS(N);
+  case ISD::AND:                return visitAND(N);
+  case ISD::OR:                 return visitOR(N);
+  case ISD::XOR:                return visitXOR(N);
+  case ISD::SHL:                return visitSHL(N);
+  case ISD::SRA:                return visitSRA(N);
+  case ISD::SRL:                return visitSRL(N);
+  case ISD::CTLZ:               return visitCTLZ(N);
+  case ISD::CTTZ:               return visitCTTZ(N);
+  case ISD::CTPOP:              return visitCTPOP(N);
+  case ISD::SELECT:             return visitSELECT(N);
+  case ISD::SELECT_CC:          return visitSELECT_CC(N);
+  case ISD::SETCC:              return visitSETCC(N);
+  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
+  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
+  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
+  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
+  case ISD::TRUNCATE:           return visitTRUNCATE(N);
+  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
+  case ISD::FADD:               return visitFADD(N);
+  case ISD::FSUB:               return visitFSUB(N);
+  case ISD::FMUL:               return visitFMUL(N);
+  case ISD::FDIV:               return visitFDIV(N);
+  case ISD::FREM:               return visitFREM(N);
+  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
+  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
+  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
+  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
+  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
+  case ISD::FP_ROUND:           return visitFP_ROUND(N);
+  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
+  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
+  case ISD::FNEG:               return visitFNEG(N);
+  case ISD::FABS:               return visitFABS(N);
+  case ISD::BRCOND:             return visitBRCOND(N);
+  case ISD::BR_CC:              return visitBR_CC(N);
+  case ISD::LOAD:               return visitLOAD(N);
+  case ISD::STORE:              return visitSTORE(N);
+  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
+  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
+  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
+  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
+  }
+  return SDOperand();
+}
+
+/// getInputChainForNode - Given a node, return its input chain if it has one,
+/// otherwise return a null sd operand.
+static SDOperand getInputChainForNode(SDNode *N) {
+  if (unsigned NumOps = N->getNumOperands()) {
+    if (N->getOperand(0).getValueType() == MVT::Other)
+      return N->getOperand(0);
+    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
+      return N->getOperand(NumOps-1);
+    for (unsigned i = 1; i < NumOps-1; ++i)
+      if (N->getOperand(i).getValueType() == MVT::Other)
+        return N->getOperand(i);
+  }
+  return SDOperand(0, 0);
+}
+
+SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
+  // If N has two operands, where one has an input chain equal to the other,
+  // the 'other' chain is redundant.
+  if (N->getNumOperands() == 2) {
+    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
+      return N->getOperand(0);
+    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
+      return N->getOperand(1);
+  }
+  
+  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
+  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
+  SmallPtrSet<SDNode*, 16> SeenOps; 
+  bool Changed = false;             // If we should replace this token factor.
+  
+  // Start out with this token factor.
+  TFs.push_back(N);
+  
+  // Iterate through token factors.  The TFs grows when new token factors are
+  // encountered.
+  for (unsigned i = 0; i < TFs.size(); ++i) {
+    SDNode *TF = TFs[i];
+    
+    // Check each of the operands.
+    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
+      SDOperand Op = TF->getOperand(i);
+      
+      switch (Op.getOpcode()) {
+      case ISD::EntryToken:
+        // Entry tokens don't need to be added to the list. They are
+        // rededundant.
+        Changed = true;
+        break;
+        
+      case ISD::TokenFactor:
+        if ((CombinerAA || Op.hasOneUse()) &&
+            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
+          // Queue up for processing.
+          TFs.push_back(Op.Val);
+          // Clean up in case the token factor is removed.
+          AddToWorkList(Op.Val);
+          Changed = true;
+          break;
+        }
+        // Fall thru
+        
+      default:
+        // Only add if it isn't already in the list.
+        if (SeenOps.insert(Op.Val))
+          Ops.push_back(Op);
+        else
+          Changed = true;
+        break;
+      }
+    }
+  }
+
+  SDOperand Result;
+
+  // If we've change things around then replace token factor.
+  if (Changed) {
+    if (Ops.size() == 0) {
+      // The entry token is the only possible outcome.
+      Result = DAG.getEntryNode();
+    } else {
+      // New and improved token factor.
+      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
+    }
+    
+    // Don't add users to work list.
+    return CombineTo(N, Result, false);
+  }
+  
+  return Result;
+}
+
+static
+SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
+  MVT::ValueType VT = N0.getValueType();
+  SDOperand N00 = N0.getOperand(0);
+  SDOperand N01 = N0.getOperand(1);
+  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
+  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
+      isa<ConstantSDNode>(N00.getOperand(1))) {
+    N0 = DAG.getNode(ISD::ADD, VT,
+                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
+                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
+    return DAG.getNode(ISD::ADD, VT, N0, N1);
+  }
+  return SDOperand();
+}
+
+static
+SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
+                              SelectionDAG &DAG) {
+  MVT::ValueType VT = N->getValueType(0);
+  unsigned Opc = N->getOpcode();
+  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
+  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
+  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
+  ISD::CondCode CC = ISD::SETCC_INVALID;
+  if (isSlctCC)
+    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
+  else {
+    SDOperand CCOp = Slct.getOperand(0);
+    if (CCOp.getOpcode() == ISD::SETCC)
+      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
+  }
+
+  bool DoXform = false;
+  bool InvCC = false;
+  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
+          "Bad input!");
+  if (LHS.getOpcode() == ISD::Constant &&
+      cast<ConstantSDNode>(LHS)->isNullValue())
+    DoXform = true;
+  else if (CC != ISD::SETCC_INVALID &&
+           RHS.getOpcode() == ISD::Constant &&
+           cast<ConstantSDNode>(RHS)->isNullValue()) {
+    std::swap(LHS, RHS);
+    bool isInt = MVT::isInteger(isSlctCC ? Slct.getOperand(0).getValueType()
+                                : Slct.getOperand(0).getOperand(0).getValueType());
+    CC = ISD::getSetCCInverse(CC, isInt);
+    DoXform = true;
+    InvCC = true;
+  }
+
+  if (DoXform) {
+    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
+    if (isSlctCC)
+      return DAG.getSelectCC(OtherOp, Result,
+                             Slct.getOperand(0), Slct.getOperand(1), CC);
+    SDOperand CCOp = Slct.getOperand(0);
+    if (InvCC)
+      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
+                          CCOp.getOperand(1), CC);
+    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
+  }
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitADD(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (add x, undef) -> undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+  // fold (add c1, c2) -> c1+c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::ADD, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::ADD, VT, N1, N0);
+  // fold (add x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold ((c1-A)+c2) -> (c1+c2)-A
+  if (N1C && N0.getOpcode() == ISD::SUB)
+    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
+      return DAG.getNode(ISD::SUB, VT,
+                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
+                         N0.getOperand(1));
+  // reassociate add
+  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
+  if (RADD.Val != 0)
+    return RADD;
+  // fold ((0-A) + B) -> B-A
+  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
+      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
+    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
+  // fold (A + (0-B)) -> A-B
+  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
+      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
+    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
+  // fold (A+(B-A)) -> B
+  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
+    return N1.getOperand(0);
+
+  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  
+  // fold (a+b) -> (a|b) iff a and b share no bits.
+  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
+    uint64_t LHSZero, LHSOne;
+    uint64_t RHSZero, RHSOne;
+    uint64_t Mask = MVT::getIntVTBitMask(VT);
+    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
+    if (LHSZero) {
+      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
+      
+      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
+          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
+        return DAG.getNode(ISD::OR, VT, N0, N1);
+    }
+  }
+
+  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
+  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
+    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
+    if (Result.Val) return Result;
+  }
+  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
+    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
+    if (Result.Val) return Result;
+  }
+
+  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
+    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
+    if (Result.Val) return Result;
+  }
+  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
+    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
+    if (Result.Val) return Result;
+  }
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitADDC(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  
+  // If the flag result is dead, turn this into an ADD.
+  if (N->hasNUsesOfValue(0, 1))
+    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
+                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
+  
+  // canonicalize constant to RHS.
+  if (N0C && !N1C) {
+    SDOperand Ops[] = { N1, N0 };
+    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
+  }
+  
+  // fold (addc x, 0) -> x + no carry out
+  if (N1C && N1C->isNullValue())
+    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
+  
+  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
+  uint64_t LHSZero, LHSOne;
+  uint64_t RHSZero, RHSOne;
+  uint64_t Mask = MVT::getIntVTBitMask(VT);
+  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
+  if (LHSZero) {
+    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
+    
+    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
+        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
+      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
+                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitADDE(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand CarryIn = N->getOperand(2);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  //MVT::ValueType VT = N0.getValueType();
+  
+  // canonicalize constant to RHS
+  if (N0C && !N1C) {
+    SDOperand Ops[] = { N1, N0, CarryIn };
+    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
+  }
+  
+  // fold (adde x, y, false) -> (addc x, y)
+  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
+    SDOperand Ops[] = { N1, N0 };
+    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
+  }
+  
+  return SDOperand();
+}
+
+
+
+SDOperand DAGCombiner::visitSUB(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+  MVT::ValueType VT = N0.getValueType();
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (sub x, x) -> 0
+  if (N0 == N1)
+    return DAG.getConstant(0, N->getValueType(0));
+  // fold (sub c1, c2) -> c1-c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::SUB, VT, N0, N1);
+  // fold (sub x, c) -> (add x, -c)
+  if (N1C)
+    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
+  // fold (A+B)-A -> B
+  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
+    return N0.getOperand(1);
+  // fold (A+B)-B -> A
+  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
+    return N0.getOperand(0);
+  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
+    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
+    if (Result.Val) return Result;
+  }
+  // If either operand of a sub is undef, the result is undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitMUL(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (mul x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // fold (mul c1, c2) -> c1*c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::MUL, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::MUL, VT, N1, N0);
+  // fold (mul x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mul x, -1) -> 0-x
+  if (N1C && N1C->isAllOnesValue())
+    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
+  // fold (mul x, (1 << c)) -> x << c
+  if (N1C && isPowerOf2_64(N1C->getValue()))
+    return DAG.getNode(ISD::SHL, VT, N0,
+                       DAG.getConstant(Log2_64(N1C->getValue()),
+                                       TLI.getShiftAmountTy()));
+  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
+  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
+    // FIXME: If the input is something that is easily negated (e.g. a 
+    // single-use add), we should put the negate there.
+    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
+                       DAG.getNode(ISD::SHL, VT, N0,
+                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
+                                            TLI.getShiftAmountTy())));
+  }
+
+  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
+  if (N1C && N0.getOpcode() == ISD::SHL && 
+      isa<ConstantSDNode>(N0.getOperand(1))) {
+    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
+    AddToWorkList(C3.Val);
+    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
+  }
+  
+  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
+  // use.
+  {
+    SDOperand Sh(0,0), Y(0,0);
+    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
+    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
+        N0.Val->hasOneUse()) {
+      Sh = N0; Y = N1;
+    } else if (N1.getOpcode() == ISD::SHL && 
+               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
+      Sh = N1; Y = N0;
+    }
+    if (Sh.Val) {
+      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
+      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
+    }
+  }
+  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
+  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && 
+      isa<ConstantSDNode>(N0.getOperand(1))) {
+    return DAG.getNode(ISD::ADD, VT, 
+                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
+                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
+  }
+  
+  // reassociate mul
+  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
+  if (RMUL.Val != 0)
+    return RMUL;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSDIV(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (sdiv c1, c2) -> c1/c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.getNode(ISD::SDIV, VT, N0, N1);
+  // fold (sdiv X, 1) -> X
+  if (N1C && N1C->getSignExtended() == 1LL)
+    return N0;
+  // fold (sdiv X, -1) -> 0-X
+  if (N1C && N1C->isAllOnesValue())
+    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
+  // If we know the sign bits of both operands are zero, strength reduce to a
+  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
+  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
+  if (DAG.MaskedValueIsZero(N1, SignBit) &&
+      DAG.MaskedValueIsZero(N0, SignBit))
+    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
+  // fold (sdiv X, pow2) -> simple ops after legalize
+  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
+      (isPowerOf2_64(N1C->getSignExtended()) || 
+       isPowerOf2_64(-N1C->getSignExtended()))) {
+    // If dividing by powers of two is cheap, then don't perform the following
+    // fold.
+    if (TLI.isPow2DivCheap())
+      return SDOperand();
+    int64_t pow2 = N1C->getSignExtended();
+    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
+    unsigned lg2 = Log2_64(abs2);
+    // Splat the sign bit into the register
+    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
+                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
+                                                TLI.getShiftAmountTy()));
+    AddToWorkList(SGN.Val);
+    // Add (N0 < 0) ? abs2 - 1 : 0;
+    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
+                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
+                                                TLI.getShiftAmountTy()));
+    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
+    AddToWorkList(SRL.Val);
+    AddToWorkList(ADD.Val);    // Divide by pow2
+    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
+                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
+    // If we're dividing by a positive value, we're done.  Otherwise, we must
+    // negate the result.
+    if (pow2 > 0)
+      return SRA;
+    AddToWorkList(SRA.Val);
+    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
+  }
+  // if integer divide is expensive and we satisfy the requirements, emit an
+  // alternate sequence.
+  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && 
+      !TLI.isIntDivCheap()) {
+    SDOperand Op = BuildSDIV(N);
+    if (Op.Val) return Op;
+  }
+
+  // undef / X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X / undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitUDIV(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (udiv c1, c2) -> c1/c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.getNode(ISD::UDIV, VT, N0, N1);
+  // fold (udiv x, (1 << c)) -> x >>u c
+  if (N1C && isPowerOf2_64(N1C->getValue()))
+    return DAG.getNode(ISD::SRL, VT, N0, 
+                       DAG.getConstant(Log2_64(N1C->getValue()),
+                                       TLI.getShiftAmountTy()));
+  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
+  if (N1.getOpcode() == ISD::SHL) {
+    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
+      if (isPowerOf2_64(SHC->getValue())) {
+        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
+        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
+                                    DAG.getConstant(Log2_64(SHC->getValue()),
+                                                    ADDVT));
+        AddToWorkList(Add.Val);
+        return DAG.getNode(ISD::SRL, VT, N0, Add);
+      }
+    }
+  }
+  // fold (udiv x, c) -> alternate
+  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
+    SDOperand Op = BuildUDIV(N);
+    if (Op.Val) return Op;
+  }
+
+  // undef / X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X / undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSREM(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (srem c1, c2) -> c1%c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.getNode(ISD::SREM, VT, N0, N1);
+  // If we know the sign bits of both operands are zero, strength reduce to a
+  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
+  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
+  if (DAG.MaskedValueIsZero(N1, SignBit) &&
+      DAG.MaskedValueIsZero(N0, SignBit))
+    return DAG.getNode(ISD::UREM, VT, N0, N1);
+  
+  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
+  // the remainder operation.
+  if (N1C && !N1C->isNullValue()) {
+    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
+    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
+    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
+    AddToWorkList(Div.Val);
+    AddToWorkList(Mul.Val);
+    return Sub;
+  }
+  
+  // undef % X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X % undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitUREM(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (urem c1, c2) -> c1%c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.getNode(ISD::UREM, VT, N0, N1);
+  // fold (urem x, pow2) -> (and x, pow2-1)
+  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
+    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
+  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
+  if (N1.getOpcode() == ISD::SHL) {
+    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
+      if (isPowerOf2_64(SHC->getValue())) {
+        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
+        AddToWorkList(Add.Val);
+        return DAG.getNode(ISD::AND, VT, N0, Add);
+      }
+    }
+  }
+  
+  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
+  // the remainder operation.
+  if (N1C && !N1C->isNullValue()) {
+    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
+    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
+    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
+    AddToWorkList(Div.Val);
+    AddToWorkList(Mul.Val);
+    return Sub;
+  }
+  
+  // undef % X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X % undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitMULHS(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (mulhs x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mulhs x, 1) -> (sra x, size(x)-1)
+  if (N1C && N1C->getValue() == 1)
+    return DAG.getNode(ISD::SRA, N0.getValueType(), N0, 
+                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
+                                       TLI.getShiftAmountTy()));
+  // fold (mulhs x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitMULHU(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (mulhu x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mulhu x, 1) -> 0
+  if (N1C && N1C->getValue() == 1)
+    return DAG.getConstant(0, N0.getValueType());
+  // fold (mulhu x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+
+  return SDOperand();
+}
+
+/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
+/// two operands of the same opcode, try to simplify it.
+SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
+  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
+  MVT::ValueType VT = N0.getValueType();
+  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
+  
+  // For each of OP in AND/OR/XOR:
+  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
+  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
+  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
+  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
+  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
+       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
+      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
+    SDOperand ORNode = DAG.getNode(N->getOpcode(), 
+                                   N0.getOperand(0).getValueType(),
+                                   N0.getOperand(0), N1.getOperand(0));
+    AddToWorkList(ORNode.Val);
+    return DAG.getNode(N0.getOpcode(), VT, ORNode);
+  }
+  
+  // For each of OP in SHL/SRL/SRA/AND...
+  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
+  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
+  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
+  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
+       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
+      N0.getOperand(1) == N1.getOperand(1)) {
+    SDOperand ORNode = DAG.getNode(N->getOpcode(),
+                                   N0.getOperand(0).getValueType(),
+                                   N0.getOperand(0), N1.getOperand(0));
+    AddToWorkList(ORNode.Val);
+    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitAND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand LL, LR, RL, RR, CC0, CC1;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N1.getValueType();
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (and x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // fold (and c1, c2) -> c1&c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::AND, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::AND, VT, N1, N0);
+  // fold (and x, -1) -> x
+  if (N1C && N1C->isAllOnesValue())
+    return N0;
+  // if (and x, c) is known to be zero, return 0
+  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
+    return DAG.getConstant(0, VT);
+  // reassociate and
+  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
+  if (RAND.Val != 0)
+    return RAND;
+  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
+  if (N1C && N0.getOpcode() == ISD::OR)
+    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
+        return N1;
+  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
+  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
+    if (DAG.MaskedValueIsZero(N0.getOperand(0),
+                              ~N1C->getValue() & InMask)) {
+      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
+                                   N0.getOperand(0));
+      
+      // Replace uses of the AND with uses of the Zero extend node.
+      CombineTo(N, Zext);
+      
+      // We actually want to replace all uses of the any_extend with the
+      // zero_extend, to avoid duplicating things.  This will later cause this
+      // AND to be folded.
+      CombineTo(N0.Val, Zext);
+      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
+  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+    
+    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
+        MVT::isInteger(LL.getValueType())) {
+      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
+      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
+        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.Val);
+        return DAG.getSetCC(VT, ORNode, LR, Op1);
+      }
+      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
+        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
+        AddToWorkList(ANDNode.Val);
+        return DAG.getSetCC(VT, ANDNode, LR, Op1);
+      }
+      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
+        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.Val);
+        return DAG.getSetCC(VT, ORNode, LR, Op1);
+      }
+    }
+    // canonicalize equivalent to ll == rl
+    if (LL == RR && LR == RL) {
+      Op1 = ISD::getSetCCSwappedOperands(Op1);
+      std::swap(RL, RR);
+    }
+    if (LL == RL && LR == RR) {
+      bool isInteger = MVT::isInteger(LL.getValueType());
+      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
+      if (Result != ISD::SETCC_INVALID)
+        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
+    }
+  }
+
+  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.Val) return Tmp;
+  }
+  
+  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
+  // fold (and (sra)) -> (and (srl)) when possible.
+  if (!MVT::isVector(VT) &&
+      SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  // fold (zext_inreg (extload x)) -> (zextload x)
+  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType EVT = LN0->getLoadedVT();
+    // If we zero all the possible extended bits, then we can turn this into
+    // a zextload if we are running before legalize or the operation is legal.
+    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
+        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
+      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
+                                         LN0->getBasePtr(), LN0->getSrcValue(),
+                                         LN0->getSrcValueOffset(), EVT,
+                                         LN0->isVolatile(), 
+                                         LN0->getAlignment());
+      AddToWorkList(N);
+      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
+      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
+  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
+      N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType EVT = LN0->getLoadedVT();
+    // If we zero all the possible extended bits, then we can turn this into
+    // a zextload if we are running before legalize or the operation is legal.
+    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
+        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
+      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
+                                         LN0->getBasePtr(), LN0->getSrcValue(),
+                                         LN0->getSrcValueOffset(), EVT,
+                                         LN0->isVolatile(), 
+                                         LN0->getAlignment());
+      AddToWorkList(N);
+      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
+      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  
+  // fold (and (load x), 255) -> (zextload x, i8)
+  // fold (and (extload x, i16), 255) -> (zextload x, i8)
+  if (N1C && N0.getOpcode() == ISD::LOAD) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
+        LN0->getAddressingMode() == ISD::UNINDEXED &&
+        N0.hasOneUse()) {
+      MVT::ValueType EVT, LoadedVT;
+      if (N1C->getValue() == 255)
+        EVT = MVT::i8;
+      else if (N1C->getValue() == 65535)
+        EVT = MVT::i16;
+      else if (N1C->getValue() == ~0U)
+        EVT = MVT::i32;
+      else
+        EVT = MVT::Other;
+    
+      LoadedVT = LN0->getLoadedVT();
+      if (EVT != MVT::Other && LoadedVT > EVT &&
+          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
+        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
+        // For big endian targets, we need to add an offset to the pointer to
+        // load the correct bytes.  For little endian systems, we merely need to
+        // read fewer bytes from the same pointer.
+        unsigned PtrOff =
+          (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
+        SDOperand NewPtr = LN0->getBasePtr();
+        if (!TLI.isLittleEndian())
+          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
+                               DAG.getConstant(PtrOff, PtrType));
+        AddToWorkList(NewPtr.Val);
+        SDOperand Load =
+          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
+                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
+                         LN0->isVolatile(), LN0->getAlignment());
+        AddToWorkList(N);
+        CombineTo(N0.Val, Load, Load.getValue(1));
+        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+      }
+    }
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitOR(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand LL, LR, RL, RR, CC0, CC1;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N1.getValueType();
+  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (or x, undef) -> -1
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(~0ULL, VT);
+  // fold (or c1, c2) -> c1|c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::OR, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::OR, VT, N1, N0);
+  // fold (or x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold (or x, -1) -> -1
+  if (N1C && N1C->isAllOnesValue())
+    return N1;
+  // fold (or x, c) -> c iff (x & ~c) == 0
+  if (N1C && 
+      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
+    return N1;
+  // reassociate or
+  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
+  if (ROR.Val != 0)
+    return ROR;
+  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
+  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
+             isa<ConstantSDNode>(N0.getOperand(1))) {
+    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
+    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
+                                                 N1),
+                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
+  }
+  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
+  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+    
+    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
+        MVT::isInteger(LL.getValueType())) {
+      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
+      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
+      if (cast<ConstantSDNode>(LR)->getValue() == 0 && 
+          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
+        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.Val);
+        return DAG.getSetCC(VT, ORNode, LR, Op1);
+      }
+      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
+      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && 
+          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
+        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
+        AddToWorkList(ANDNode.Val);
+        return DAG.getSetCC(VT, ANDNode, LR, Op1);
+      }
+    }
+    // canonicalize equivalent to ll == rl
+    if (LL == RR && LR == RL) {
+      Op1 = ISD::getSetCCSwappedOperands(Op1);
+      std::swap(RL, RR);
+    }
+    if (LL == RL && LR == RR) {
+      bool isInteger = MVT::isInteger(LL.getValueType());
+      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
+      if (Result != ISD::SETCC_INVALID)
+        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
+    }
+  }
+  
+  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.Val) return Tmp;
+  }
+  
+  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
+  if (N0.getOpcode() == ISD::AND &&
+      N1.getOpcode() == ISD::AND &&
+      N0.getOperand(1).getOpcode() == ISD::Constant &&
+      N1.getOperand(1).getOpcode() == ISD::Constant &&
+      // Don't increase # computations.
+      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
+    // We can only do this xform if we know that bits from X that are set in C2
+    // but not in C1 are already zero.  Likewise for Y.
+    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
+    
+    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
+        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
+      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
+      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
+    }
+  }
+  
+  
+  // See if this is some rotate idiom.
+  if (SDNode *Rot = MatchRotate(N0, N1))
+    return SDOperand(Rot, 0);
+
+  return SDOperand();
+}
+
+
+/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
+static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
+  if (Op.getOpcode() == ISD::AND) {
+    if (isa<ConstantSDNode>(Op.getOperand(1))) {
+      Mask = Op.getOperand(1);
+      Op = Op.getOperand(0);
+    } else {
+      return false;
+    }
+  }
+  
+  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
+    Shift = Op;
+    return true;
+  }
+  return false;  
+}
+
+
+// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
+// idioms for rotate, and if the target supports rotation instructions, generate
+// a rot[lr].
+SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
+  // Must be a legal type.  Expanded an promoted things won't work with rotates.
+  MVT::ValueType VT = LHS.getValueType();
+  if (!TLI.isTypeLegal(VT)) return 0;
+
+  // The target must have at least one rotate flavor.
+  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
+  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
+  if (!HasROTL && !HasROTR) return 0;
+  
+  // Match "(X shl/srl V1) & V2" where V2 may not be present.
+  SDOperand LHSShift;   // The shift.
+  SDOperand LHSMask;    // AND value if any.
+  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
+    return 0; // Not part of a rotate.
+
+  SDOperand RHSShift;   // The shift.
+  SDOperand RHSMask;    // AND value if any.
+  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
+    return 0; // Not part of a rotate.
+  
+  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
+    return 0;   // Not shifting the same value.
+
+  if (LHSShift.getOpcode() == RHSShift.getOpcode())
+    return 0;   // Shifts must disagree.
+    
+  // Canonicalize shl to left side in a shl/srl pair.
+  if (RHSShift.getOpcode() == ISD::SHL) {
+    std::swap(LHS, RHS);
+    std::swap(LHSShift, RHSShift);
+    std::swap(LHSMask , RHSMask );
+  }
+
+  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
+  SDOperand LHSShiftArg = LHSShift.getOperand(0);
+  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
+  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
+
+  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
+  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
+  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
+      RHSShiftAmt.getOpcode() == ISD::Constant) {
+    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
+    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
+    if ((LShVal + RShVal) != OpSizeInBits)
+      return 0;
+
+    SDOperand Rot;
+    if (HasROTL)
+      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
+    else
+      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
+    
+    // If there is an AND of either shifted operand, apply it to the result.
+    if (LHSMask.Val || RHSMask.Val) {
+      uint64_t Mask = MVT::getIntVTBitMask(VT);
+      
+      if (LHSMask.Val) {
+        uint64_t RHSBits = (1ULL << LShVal)-1;
+        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
+      }
+      if (RHSMask.Val) {
+        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
+        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
+      }
+        
+      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
+    }
+    
+    return Rot.Val;
+  }
+  
+  // If there is a mask here, and we have a variable shift, we can't be sure
+  // that we're masking out the right stuff.
+  if (LHSMask.Val || RHSMask.Val)
+    return 0;
+  
+  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
+  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
+  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
+      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
+    if (ConstantSDNode *SUBC = 
+          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
+      if (SUBC->getValue() == OpSizeInBits)
+        if (HasROTL)
+          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
+        else
+          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
+    }
+  }
+  
+  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
+  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
+  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
+      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
+    if (ConstantSDNode *SUBC = 
+          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
+      if (SUBC->getValue() == OpSizeInBits)
+        if (HasROTL)
+          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
+        else
+          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
+    }
+  }
+
+  // Look for sign/zext/any-extended cases:
+  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
+       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
+       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
+      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
+       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
+       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
+    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
+    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
+    if (RExtOp0.getOpcode() == ISD::SUB &&
+        RExtOp0.getOperand(1) == LExtOp0) {
+      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+      //   (rotr x, y)
+      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+      //   (rotl x, (sub 32, y))
+      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
+        if (SUBC->getValue() == OpSizeInBits) {
+          if (HasROTL)
+            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
+          else
+            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
+        }
+      }
+    } else if (LExtOp0.getOpcode() == ISD::SUB &&
+               RExtOp0 == LExtOp0.getOperand(1)) {
+      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> 
+      //   (rotl x, y)
+      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
+      //   (rotr x, (sub 32, y))
+      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
+        if (SUBC->getValue() == OpSizeInBits) {
+          if (HasROTL)
+            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
+          else
+            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
+        }
+      }
+    }
+  }
+  
+  return 0;
+}
+
+
+SDOperand DAGCombiner::visitXOR(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand LHS, RHS, CC;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (xor x, undef) -> undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+  // fold (xor c1, c2) -> c1^c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::XOR, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::XOR, VT, N1, N0);
+  // fold (xor x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // reassociate xor
+  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
+  if (RXOR.Val != 0)
+    return RXOR;
+  // fold !(x cc y) -> (x !cc y)
+  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
+    bool isInt = MVT::isInteger(LHS.getValueType());
+    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+                                               isInt);
+    if (N0.getOpcode() == ISD::SETCC)
+      return DAG.getSetCC(VT, LHS, RHS, NotCC);
+    if (N0.getOpcode() == ISD::SELECT_CC)
+      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
+    assert(0 && "Unhandled SetCC Equivalent!");
+    abort();
+  }
+  // fold !(x or y) -> (!x and !y) iff x or y are setcc
+  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
+      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
+      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
+      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
+      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
+      return DAG.getNode(NewOpcode, VT, LHS, RHS);
+    }
+  }
+  // fold !(x or y) -> (!x and !y) iff x or y are constants
+  if (N1C && N1C->isAllOnesValue() && 
+      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
+      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
+      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
+      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
+      return DAG.getNode(NewOpcode, VT, LHS, RHS);
+    }
+  }
+  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
+  if (N1C && N0.getOpcode() == ISD::XOR) {
+    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
+    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+    if (N00C)
+      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
+                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
+    if (N01C)
+      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
+                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
+  }
+  // fold (xor x, x) -> 0
+  if (N0 == N1) {
+    if (!MVT::isVector(VT)) {
+      return DAG.getConstant(0, VT);
+    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
+      // Produce a vector of zeros.
+      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
+      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
+      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+    }
+  }
+  
+  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.Val) return Tmp;
+  }
+  
+  // Simplify the expression using non-local knowledge.
+  if (!MVT::isVector(VT) &&
+      SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSHL(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
+  
+  // fold (shl c1, c2) -> c1<<c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::SHL, VT, N0, N1);
+  // fold (shl 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (shl x, c >= size(x)) -> undef
+  if (N1C && N1C->getValue() >= OpSizeInBits)
+    return DAG.getNode(ISD::UNDEF, VT);
+  // fold (shl x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // if (shl x, c) is known to be zero, return 0
+  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
+    return DAG.getConstant(0, VT);
+  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
+  if (N1C && N0.getOpcode() == ISD::SHL && 
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    uint64_t c2 = N1C->getValue();
+    if (c1 + c2 > OpSizeInBits)
+      return DAG.getConstant(0, VT);
+    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), 
+                       DAG.getConstant(c1 + c2, N1.getValueType()));
+  }
+  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
+  //                               (srl (and x, -1 << c1), c1-c2)
+  if (N1C && N0.getOpcode() == ISD::SRL && 
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    uint64_t c2 = N1C->getValue();
+    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
+                                 DAG.getConstant(~0ULL << c1, VT));
+    if (c2 > c1)
+      return DAG.getNode(ISD::SHL, VT, Mask, 
+                         DAG.getConstant(c2-c1, N1.getValueType()));
+    else
+      return DAG.getNode(ISD::SRL, VT, Mask, 
+                         DAG.getConstant(c1-c2, N1.getValueType()));
+  }
+  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
+  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
+    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
+                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSRA(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  
+  // fold (sra c1, c2) -> c1>>c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::SRA, VT, N0, N1);
+  // fold (sra 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (sra -1, x) -> -1
+  if (N0C && N0C->isAllOnesValue())
+    return N0;
+  // fold (sra x, c >= size(x)) -> undef
+  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
+    return DAG.getNode(ISD::UNDEF, VT);
+  // fold (sra x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
+  // sext_inreg.
+  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
+    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
+    MVT::ValueType EVT;
+    switch (LowBits) {
+    default: EVT = MVT::Other; break;
+    case  1: EVT = MVT::i1;    break;
+    case  8: EVT = MVT::i8;    break;
+    case 16: EVT = MVT::i16;   break;
+    case 32: EVT = MVT::i32;   break;
+    }
+    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
+      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
+                         DAG.getValueType(EVT));
+  }
+  
+  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
+  if (N1C && N0.getOpcode() == ISD::SRA) {
+    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+      unsigned Sum = N1C->getValue() + C1->getValue();
+      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
+      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
+                         DAG.getConstant(Sum, N1C->getValueType(0)));
+    }
+  }
+  
+  // Simplify, based on bits shifted out of the LHS. 
+  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  
+  
+  // If the sign bit is known to be zero, switch this to a SRL.
+  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
+    return DAG.getNode(ISD::SRL, VT, N0, N1);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSRL(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  MVT::ValueType VT = N0.getValueType();
+  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
+  
+  // fold (srl c1, c2) -> c1 >>u c2
+  if (N0C && N1C)
+    return DAG.getNode(ISD::SRL, VT, N0, N1);
+  // fold (srl 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (srl x, c >= size(x)) -> undef
+  if (N1C && N1C->getValue() >= OpSizeInBits)
+    return DAG.getNode(ISD::UNDEF, VT);
+  // fold (srl x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // if (srl x, c) is known to be zero, return 0
+  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
+    return DAG.getConstant(0, VT);
+  
+  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
+  if (N1C && N0.getOpcode() == ISD::SRL && 
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    uint64_t c2 = N1C->getValue();
+    if (c1 + c2 > OpSizeInBits)
+      return DAG.getConstant(0, VT);
+    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), 
+                       DAG.getConstant(c1 + c2, N1.getValueType()));
+  }
+  
+  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
+  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+    // Shifting in all undef bits?
+    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
+    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
+      return DAG.getNode(ISD::UNDEF, VT);
+
+    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
+    AddToWorkList(SmallShift.Val);
+    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
+  }
+  
+  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
+  // bit, which is unmodified by sra.
+  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
+    if (N0.getOpcode() == ISD::SRA)
+      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
+  }
+  
+  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
+  if (N1C && N0.getOpcode() == ISD::CTLZ && 
+      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
+    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
+    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
+    
+    // If any of the input bits are KnownOne, then the input couldn't be all
+    // zeros, thus the result of the srl will always be zero.
+    if (KnownOne) return DAG.getConstant(0, VT);
+    
+    // If all of the bits input the to ctlz node are known to be zero, then
+    // the result of the ctlz is "32" and the result of the shift is one.
+    uint64_t UnknownBits = ~KnownZero & Mask;
+    if (UnknownBits == 0) return DAG.getConstant(1, VT);
+    
+    // Otherwise, check to see if there is exactly one bit input to the ctlz.
+    if ((UnknownBits & (UnknownBits-1)) == 0) {
+      // Okay, we know that only that the single bit specified by UnknownBits
+      // could be set on input to the CTLZ node.  If this bit is set, the SRL
+      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
+      // to an SRL,XOR pair, which is likely to simplify more.
+      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
+      SDOperand Op = N0.getOperand(0);
+      if (ShAmt) {
+        Op = DAG.getNode(ISD::SRL, VT, Op,
+                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
+        AddToWorkList(Op.Val);
+      }
+      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
+    }
+  }
+  
+  // fold operands of srl based on knowledge that the low bits are not
+  // demanded.
+  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold (ctlz c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTLZ, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (cttz c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTTZ, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (ctpop c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTPOP, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSELECT(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand N2 = N->getOperand(2);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold select C, X, X -> X
+  if (N1 == N2)
+    return N1;
+  // fold select true, X, Y -> X
+  if (N0C && !N0C->isNullValue())
+    return N1;
+  // fold select false, X, Y -> Y
+  if (N0C && N0C->isNullValue())
+    return N2;
+  // fold select C, 1, X -> C | X
+  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
+    return DAG.getNode(ISD::OR, VT, N0, N2);
+  // fold select C, 0, X -> ~C & X
+  // FIXME: this should check for C type == X type, not i1?
+  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
+    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
+    AddToWorkList(XORNode.Val);
+    return DAG.getNode(ISD::AND, VT, XORNode, N2);
+  }
+  // fold select C, X, 1 -> ~C | X
+  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
+    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
+    AddToWorkList(XORNode.Val);
+    return DAG.getNode(ISD::OR, VT, XORNode, N1);
+  }
+  // fold select C, X, 0 -> C & X
+  // FIXME: this should check for C type == X type, not i1?
+  if (MVT::i1 == VT && N2C && N2C->isNullValue())
+    return DAG.getNode(ISD::AND, VT, N0, N1);
+  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
+  if (MVT::i1 == VT && N0 == N1)
+    return DAG.getNode(ISD::OR, VT, N0, N2);
+  // fold X ? Y : X --> X ? Y : 0 --> X & Y
+  if (MVT::i1 == VT && N0 == N2)
+    return DAG.getNode(ISD::AND, VT, N0, N1);
+  
+  // If we can fold this based on the true/false value, do so.
+  if (SimplifySelectOps(N, N1, N2))
+    return SDOperand(N, 0);  // Don't revisit N.
+  
+  // fold selects based on a setcc into other things, such as min/max/abs
+  if (N0.getOpcode() == ISD::SETCC)
+    // FIXME:
+    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
+    // having to say they don't support SELECT_CC on every type the DAG knows
+    // about, since there is no way to mark an opcode illegal at all value types
+    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
+      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
+                         N1, N2, N0.getOperand(2));
+    else
+      return SimplifySelect(N0, N1, N2);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand N2 = N->getOperand(2);
+  SDOperand N3 = N->getOperand(3);
+  SDOperand N4 = N->getOperand(4);
+  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
+  
+  // fold select_cc lhs, rhs, x, x, cc -> x
+  if (N2 == N3)
+    return N2;
+  
+  // Determine if the condition we're dealing with is constant
+  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
+  if (SCC.Val) AddToWorkList(SCC.Val);
+
+  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
+    if (SCCC->getValue())
+      return N2;    // cond always true -> true val
+    else
+      return N3;    // cond always false -> false val
+  }
+  
+  // Fold to a simpler select_cc
+  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
+    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(), 
+                       SCC.getOperand(0), SCC.getOperand(1), N2, N3, 
+                       SCC.getOperand(2));
+  
+  // If we can fold this based on the true/false value, do so.
+  if (SimplifySelectOps(N, N2, N3))
+    return SDOperand(N, 0);  // Don't revisit N.
+  
+  // fold select_cc into other things, such as min/max/abs
+  return SimplifySelectCC(N0, N1, N2, N3, CC);
+}
+
+SDOperand DAGCombiner::visitSETCC(SDNode *N) {
+  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
+                       cast<CondCodeSDNode>(N->getOperand(2))->get());
+}
+
+SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold (sext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
+  
+  // fold (sext (sext x)) -> (sext x)
+  // fold (sext (aext x)) -> (sext x)
+  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
+  
+  // fold (sext (truncate (load x))) -> (sext (smaller load x))
+  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
+    if (NarrowLoad.Val) {
+      if (NarrowLoad.Val != N0.Val)
+        CombineTo(N0.Val, NarrowLoad);
+      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
+    }
+  }
+
+  // See if the value being truncated is already sign extended.  If so, just
+  // eliminate the trunc/sext pair.
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDOperand Op = N0.getOperand(0);
+    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
+    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
+    unsigned DestBits = MVT::getSizeInBits(VT);
+    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
+    
+    if (OpBits == DestBits) {
+      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
+      // bits, it is already ready.
+      if (NumSignBits > DestBits-MidBits)
+        return Op;
+    } else if (OpBits < DestBits) {
+      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
+      // bits, just sext from i32.
+      if (NumSignBits > OpBits-MidBits)
+        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
+    } else {
+      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
+      // bits, just truncate to i32.
+      if (NumSignBits > OpBits-MidBits)
+        return DAG.getNode(ISD::TRUNCATE, VT, Op);
+    }
+    
+    // fold (sext (truncate x)) -> (sextinreg x).
+    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
+                                               N0.getValueType())) {
+      if (Op.getValueType() < VT)
+        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
+      else if (Op.getValueType() > VT)
+        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
+      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
+                         DAG.getValueType(N0.getValueType()));
+    }
+  }
+  
+  // fold (sext (load x)) -> (sext (truncate (sextload x)))
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(), 
+                                       LN0->isVolatile(),
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+
+  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
+  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
+  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
+      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType EVT = LN0->getLoadedVT();
+    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
+      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
+                                         LN0->getBasePtr(), LN0->getSrcValue(),
+                                         LN0->getSrcValueOffset(), EVT,
+                                         LN0->isVolatile(), 
+                                         LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+                ExtLoad.getValue(1));
+      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  
+  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
+  if (N0.getOpcode() == ISD::SETCC) {
+    SDOperand SCC = 
+      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
+                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.Val) return SCC;
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold (zext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
+  // fold (zext (zext x)) -> (zext x)
+  // fold (zext (aext x)) -> (zext x)
+  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
+
+  // fold (zext (truncate (load x))) -> (zext (smaller load x))
+  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
+    if (NarrowLoad.Val) {
+      if (NarrowLoad.Val != N0.Val)
+        CombineTo(N0.Val, NarrowLoad);
+      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
+    }
+  }
+
+  // fold (zext (truncate x)) -> (and x, mask)
+  if (N0.getOpcode() == ISD::TRUNCATE &&
+      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
+    SDOperand Op = N0.getOperand(0);
+    if (Op.getValueType() < VT) {
+      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
+    } else if (Op.getValueType() > VT) {
+      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
+    }
+    return DAG.getZeroExtendInReg(Op, N0.getValueType());
+  }
+  
+  // fold (zext (and (trunc x), cst)) -> (and x, cst).
+  if (N0.getOpcode() == ISD::AND &&
+      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    SDOperand X = N0.getOperand(0).getOperand(0);
+    if (X.getValueType() < VT) {
+      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
+    } else if (X.getValueType() > VT) {
+      X = DAG.getNode(ISD::TRUNCATE, VT, X);
+    }
+    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
+  }
+  
+  // fold (zext (load x)) -> (zext (truncate (zextload x)))
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+
+  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
+  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
+  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
+      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType EVT = LN0->getLoadedVT();
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), EVT,
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  
+  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+  if (N0.getOpcode() == ISD::SETCC) {
+    SDOperand SCC = 
+      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
+                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.Val) return SCC;
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (aext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
+  // fold (aext (aext x)) -> (aext x)
+  // fold (aext (zext x)) -> (zext x)
+  // fold (aext (sext x)) -> (sext x)
+  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
+      N0.getOpcode() == ISD::ZERO_EXTEND ||
+      N0.getOpcode() == ISD::SIGN_EXTEND)
+    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
+  
+  // fold (aext (truncate (load x))) -> (aext (smaller load x))
+  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
+    if (NarrowLoad.Val) {
+      if (NarrowLoad.Val != N0.Val)
+        CombineTo(N0.Val, NarrowLoad);
+      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
+    }
+  }
+
+  // fold (aext (truncate x))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDOperand TruncOp = N0.getOperand(0);
+    if (TruncOp.getValueType() == VT)
+      return TruncOp; // x iff x size == zext size.
+    if (TruncOp.getValueType() > VT)
+      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
+    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
+  }
+  
+  // fold (aext (and (trunc x), cst)) -> (and x, cst).
+  if (N0.getOpcode() == ISD::AND &&
+      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    SDOperand X = N0.getOperand(0).getOperand(0);
+    if (X.getValueType() < VT) {
+      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
+    } else if (X.getValueType() > VT) {
+      X = DAG.getNode(ISD::TRUNCATE, VT, X);
+    }
+    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
+  }
+  
+  // fold (aext (load x)) -> (aext (truncate (extload x)))
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  
+  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
+  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
+  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
+  if (N0.getOpcode() == ISD::LOAD &&
+      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
+      N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType EVT = LN0->getLoadedVT();
+    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
+                                       LN0->getChain(), LN0->getBasePtr(),
+                                       LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), EVT,
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  
+  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+  if (N0.getOpcode() == ISD::SETCC) {
+    SDOperand SCC = 
+      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
+                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.Val)
+      return SCC;
+  }
+  
+  return SDOperand();
+}
+
+/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
+/// bits and then truncated to a narrower type and where N is a multiple
+/// of number of bits of the narrower type, transform it to a narrower load
+/// from address + N / num of bits of new type. If the result is to be
+/// extended, also fold the extension to form a extending load.
+SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
+  unsigned Opc = N->getOpcode();
+  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+  MVT::ValueType EVT = N->getValueType(0);
+
+  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
+  // extended to VT.
+  if (Opc == ISD::SIGN_EXTEND_INREG) {
+    ExtType = ISD::SEXTLOAD;
+    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
+      return SDOperand();
+  }
+
+  unsigned EVTBits = MVT::getSizeInBits(EVT);
+  unsigned ShAmt = 0;
+  bool CombineSRL =  false;
+  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
+    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+      ShAmt = N01->getValue();
+      // Is the shift amount a multiple of size of VT?
+      if ((ShAmt & (EVTBits-1)) == 0) {
+        N0 = N0.getOperand(0);
+        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
+          return SDOperand();
+        CombineSRL = true;
+      }
+    }
+  }
+
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
+      // zero extended form: by shrinking the load, we lose track of the fact
+      // that it is already zero extended.
+      // FIXME: This should be reevaluated.
+      VT != MVT::i1) {
+    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
+           "Cannot truncate to larger type!");
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
+    // For big endian targets, we need to adjust the offset to the pointer to
+    // load the correct bytes.
+    if (!TLI.isLittleEndian())
+      ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
+    uint64_t PtrOff =  ShAmt / 8;
+    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
+                                   DAG.getConstant(PtrOff, PtrType));
+    AddToWorkList(NewPtr.Val);
+    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
+      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
+                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                    LN0->isVolatile(), LN0->getAlignment())
+      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
+                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
+                       LN0->isVolatile(), LN0->getAlignment());
+    AddToWorkList(N);
+    if (CombineSRL) {
+      std::vector<SDNode*> NowDead;
+      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), NowDead);
+      CombineTo(N->getOperand(0).Val, Load);
+    } else
+      CombineTo(N0.Val, Load, Load.getValue(1));
+    if (ShAmt) {
+      if (Opc == ISD::SIGN_EXTEND_INREG)
+        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
+      else
+        return DAG.getNode(Opc, VT, Load);
+    }
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+
+  return SDOperand();
+}
+
+
+SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  MVT::ValueType VT = N->getValueType(0);
+  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
+  unsigned EVTBits = MVT::getSizeInBits(EVT);
+  
+  // fold (sext_in_reg c1) -> c1
+  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
+    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
+  
+  // If the input is already sign extended, just drop the extension.
+  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
+    return N0;
+  
+  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
+  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
+    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
+  }
+
+  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
+  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
+    return DAG.getZeroExtendInReg(N0, EVT);
+  
+  // fold operands of sext_in_reg based on knowledge that the top bits are not
+  // demanded.
+  if (SimplifyDemandedBits(SDOperand(N, 0)))
+    return SDOperand(N, 0);
+  
+  // fold (sext_in_reg (load x)) -> (smaller sextload x)
+  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
+  SDOperand NarrowLoad = ReduceLoadWidth(N);
+  if (NarrowLoad.Val)
+    return NarrowLoad;
+
+  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
+  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
+  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
+  if (N0.getOpcode() == ISD::SRL) {
+    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
+        // We can turn this into an SRA iff the input to the SRL is already sign
+        // extended enough.
+        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
+        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
+          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
+      }
+  }
+
+  // fold (sext_inreg (extload x)) -> (sextload x)
+  if (ISD::isEXTLoad(N0.Val) && 
+      ISD::isUNINDEXEDLoad(N0.Val) &&
+      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
+      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), EVT,
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
+  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
+      N0.hasOneUse() &&
+      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
+      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), EVT,
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // noop truncate
+  if (N0.getValueType() == N->getValueType(0))
+    return N0;
+  // fold (truncate c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::TRUNCATE, VT, N0);
+  // fold (truncate (truncate x)) -> (truncate x)
+  if (N0.getOpcode() == ISD::TRUNCATE)
+    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
+  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
+  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
+      N0.getOpcode() == ISD::ANY_EXTEND) {
+    if (N0.getOperand(0).getValueType() < VT)
+      // if the source is smaller than the dest, we still need an extend
+      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
+    else if (N0.getOperand(0).getValueType() > VT)
+      // if the source is larger than the dest, than we just need the truncate
+      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
+    else
+      // if the source and dest are the same type, we can drop both the extend
+      // and the truncate
+      return N0.getOperand(0);
+  }
+
+  // fold (truncate (load x)) -> (smaller load x)
+  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
+  return ReduceLoadWidth(N);
+}
+
+SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
+  // Only do this before legalize, since afterward the target may be depending
+  // on the bitconvert.
+  // First check to see if this is all constant.
+  if (!AfterLegalize &&
+      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
+      MVT::isVector(VT)) {
+    bool isSimple = true;
+    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
+      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
+          N0.getOperand(i).getOpcode() != ISD::Constant &&
+          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
+        isSimple = false; 
+        break;
+      }
+        
+    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
+    assert(!MVT::isVector(DestEltVT) &&
+           "Element type of vector ValueType must not be vector!");
+    if (isSimple) {
+      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
+    }
+  }
+  
+  // If the input is a constant, let getNode() fold it.
+  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
+    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
+    if (Res.Val != N) return Res;
+  }
+  
+  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
+    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
+
+  // fold (conv (load x)) -> (load (conv*)x)
+  // If the resultant load doesn't need a  higher alignment than the original!
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      ISD::isUNINDEXEDLoad(N0.Val) &&
+      TLI.isOperationLegal(ISD::LOAD, VT)) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    unsigned Align = TLI.getTargetMachine().getTargetData()->
+      getABITypeAlignment(MVT::getTypeForValueType(VT));
+    unsigned OrigAlign = LN0->getAlignment();
+    if (Align <= OrigAlign) {
+      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
+                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                                   LN0->isVolatile(), Align);
+      AddToWorkList(N);
+      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
+                Load.getValue(1));
+      return Load;
+    }
+  }
+  
+  return SDOperand();
+}
+
+/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
+/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the 
+/// destination element value type.
+SDOperand DAGCombiner::
+ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
+  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
+  
+  // If this is already the right type, we're done.
+  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
+  
+  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
+  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
+  
+  // If this is a conversion of N elements of one type to N elements of another
+  // type, convert each element.  This handles FP<->INT cases.
+  if (SrcBitSize == DstBitSize) {
+    SmallVector<SDOperand, 8> Ops;
+    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
+      AddToWorkList(Ops.back().Val);
+    }
+    MVT::ValueType VT =
+      MVT::getVectorType(DstEltVT,
+                         MVT::getVectorNumElements(BV->getValueType(0)));
+    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+  }
+  
+  // Otherwise, we're growing or shrinking the elements.  To avoid having to
+  // handle annoying details of growing/shrinking FP values, we convert them to
+  // int first.
+  if (MVT::isFloatingPoint(SrcEltVT)) {
+    // Convert the input float vector to a int vector where the elements are the
+    // same sizes.
+    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
+    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
+    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
+    SrcEltVT = IntVT;
+  }
+  
+  // Now we know the input is an integer vector.  If the output is a FP type,
+  // convert to integer first, then to FP of the right size.
+  if (MVT::isFloatingPoint(DstEltVT)) {
+    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
+    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
+    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
+    
+    // Next, convert to FP elements of the same size.
+    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
+  }
+  
+  // Okay, we know the src/dst types are both integers of differing types.
+  // Handling growing first.
+  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
+  if (SrcBitSize < DstBitSize) {
+    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
+    
+    SmallVector<SDOperand, 8> Ops;
+    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
+         i += NumInputsPerOutput) {
+      bool isLE = TLI.isLittleEndian();
+      uint64_t NewBits = 0;
+      bool EltIsUndef = true;
+      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
+        // Shift the previously computed bits over.
+        NewBits <<= SrcBitSize;
+        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
+        if (Op.getOpcode() == ISD::UNDEF) continue;
+        EltIsUndef = false;
+        
+        NewBits |= cast<ConstantSDNode>(Op)->getValue();
+      }
+      
+      if (EltIsUndef)
+        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
+      else
+        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
+    }
+
+    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
+                                           Ops.size());
+    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+  }
+  
+  // Finally, this must be the case where we are shrinking elements: each input
+  // turns into multiple outputs.
+  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
+  SmallVector<SDOperand, 8> Ops;
+  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
+      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
+        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
+      continue;
+    }
+    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
+
+    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
+      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
+      OpVal >>= DstBitSize;
+      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
+    }
+
+    // For big endian targets, swap the order of the pieces of each element.
+    if (!TLI.isLittleEndian())
+      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
+  }
+  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
+  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+}
+
+
+
+SDOperand DAGCombiner::visitFADD(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (fadd c1, c2) -> c1+c2
+  if (N0CFP && N1CFP)
+    return DAG.getNode(ISD::FADD, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0CFP && !N1CFP)
+    return DAG.getNode(ISD::FADD, VT, N1, N0);
+  // fold (A + (-B)) -> A-B
+  if (isNegatibleForFree(N1) == 2)
+    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
+  // fold ((-A) + B) -> B-A
+  if (isNegatibleForFree(N0) == 2)
+    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
+  
+  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
+  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
+      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
+    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
+                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFSUB(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (fsub c1, c2) -> c1-c2
+  if (N0CFP && N1CFP)
+    return DAG.getNode(ISD::FSUB, VT, N0, N1);
+  // fold (0-B) -> -B
+  if (UnsafeFPMath && N0CFP && N0CFP->getValue() == 0.0) {
+    if (isNegatibleForFree(N1))
+      return GetNegatedExpression(N1, DAG);
+    return DAG.getNode(ISD::FNEG, VT, N1);
+  }
+  // fold (A-(-B)) -> A+B
+  if (isNegatibleForFree(N1))
+    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFMUL(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (fmul c1, c2) -> c1*c2
+  if (N0CFP && N1CFP)
+    return DAG.getNode(ISD::FMUL, VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0CFP && !N1CFP)
+    return DAG.getNode(ISD::FMUL, VT, N1, N0);
+  // fold (fmul X, 2.0) -> (fadd X, X)
+  if (N1CFP && N1CFP->isExactlyValue(+2.0))
+    return DAG.getNode(ISD::FADD, VT, N0, N0);
+  // fold (fmul X, -1.0) -> (fneg X)
+  if (N1CFP && N1CFP->isExactlyValue(-1.0))
+    return DAG.getNode(ISD::FNEG, VT, N0);
+  
+  // -X * -Y -> X*Y
+  if (char LHSNeg = isNegatibleForFree(N0)) {
+    if (char RHSNeg = isNegatibleForFree(N1)) {
+      // Both can be negated for free, check to see if at least one is cheaper
+      // negated.
+      if (LHSNeg == 2 || RHSNeg == 2)
+        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
+                           GetNegatedExpression(N1, DAG));
+    }
+  }
+  
+  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
+  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
+      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
+    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
+                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFDIV(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold vector ops
+  if (MVT::isVector(VT)) {
+    SDOperand FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.Val) return FoldedVOp;
+  }
+  
+  // fold (fdiv c1, c2) -> c1/c2
+  if (N0CFP && N1CFP)
+    return DAG.getNode(ISD::FDIV, VT, N0, N1);
+  
+  
+  // -X / -Y -> X*Y
+  if (char LHSNeg = isNegatibleForFree(N0)) {
+    if (char RHSNeg = isNegatibleForFree(N1)) {
+      // Both can be negated for free, check to see if at least one is cheaper
+      // negated.
+      if (LHSNeg == 2 || RHSNeg == 2)
+        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
+                           GetNegatedExpression(N1, DAG));
+    }
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFREM(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold (frem c1, c2) -> fmod(c1,c2)
+  if (N0CFP && N1CFP)
+    return DAG.getNode(ISD::FREM, VT, N0, N1);
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  MVT::ValueType VT = N->getValueType(0);
+
+  if (N0CFP && N1CFP)  // Constant fold
+    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
+  
+  if (N1CFP) {
+    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
+    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
+    union {
+      double d;
+      int64_t i;
+    } u;
+    u.d = N1CFP->getValue();
+    if (u.i >= 0)
+      return DAG.getNode(ISD::FABS, VT, N0);
+    else
+      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
+  }
+  
+  // copysign(fabs(x), y) -> copysign(x, y)
+  // copysign(fneg(x), y) -> copysign(x, y)
+  // copysign(copysign(x,z), y) -> copysign(x, y)
+  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
+      N0.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
+
+  // copysign(x, abs(y)) -> abs(x)
+  if (N1.getOpcode() == ISD::FABS)
+    return DAG.getNode(ISD::FABS, VT, N0);
+  
+  // copysign(x, copysign(y,z)) -> copysign(x, z)
+  if (N1.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
+  
+  // copysign(x, fp_extend(y)) -> copysign(x, y)
+  // copysign(x, fp_round(y)) -> copysign(x, y)
+  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
+    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
+  
+  return SDOperand();
+}
+
+
+
+SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (sint_to_fp c1) -> c1fp
+  if (N0C)
+    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+
+  // fold (uint_to_fp c1) -> c1fp
+  if (N0C)
+    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (fp_to_sint c1fp) -> c1
+  if (N0CFP)
+    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (fp_to_uint c1fp) -> c1
+  if (N0CFP)
+    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (fp_round c1fp) -> c1fp
+  if (N0CFP)
+    return DAG.getNode(ISD::FP_ROUND, VT, N0);
+  
+  // fold (fp_round (fp_extend x)) -> x
+  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
+    return N0.getOperand(0);
+  
+  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
+  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
+    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
+    AddToWorkList(Tmp.Val);
+    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  MVT::ValueType VT = N->getValueType(0);
+  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  
+  // fold (fp_round_inreg c1fp) -> c1fp
+  if (N0CFP) {
+    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
+    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
+  }
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (fp_extend c1fp) -> c1fp
+  if (N0CFP)
+    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
+  
+  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
+  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
+      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), 
+                                       LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFNEG(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+
+  if (isNegatibleForFree(N0))
+    return GetNegatedExpression(N0, DAG);
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitFABS(SDNode *N) {
+  SDOperand N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // fold (fabs c1) -> fabs(c1)
+  if (N0CFP)
+    return DAG.getNode(ISD::FABS, VT, N0);
+  // fold (fabs (fabs x)) -> (fabs x)
+  if (N0.getOpcode() == ISD::FABS)
+    return N->getOperand(0);
+  // fold (fabs (fneg x)) -> (fabs x)
+  // fold (fabs (fcopysign x, y)) -> (fabs x)
+  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
+  SDOperand Chain = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  SDOperand N2 = N->getOperand(2);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  
+  // never taken branch, fold to chain
+  if (N1C && N1C->isNullValue())
+    return Chain;
+  // unconditional branch
+  if (N1C && N1C->getValue() == 1)
+    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
+  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
+  // on the target.
+  if (N1.getOpcode() == ISD::SETCC && 
+      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
+    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
+                       N1.getOperand(0), N1.getOperand(1), N2);
+  }
+  return SDOperand();
+}
+
+// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
+//
+SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
+  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
+  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
+  
+  // Use SimplifySetCC  to simplify SETCC's.
+  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
+  if (Simp.Val) AddToWorkList(Simp.Val);
+
+  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
+
+  // fold br_cc true, dest -> br dest (unconditional branch)
+  if (SCCC && SCCC->getValue())
+    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
+                       N->getOperand(4));
+  // fold br_cc false, dest -> unconditional fall through
+  if (SCCC && SCCC->isNullValue())
+    return N->getOperand(0);
+
+  // fold to a simpler setcc
+  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
+    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), 
+                       Simp.getOperand(2), Simp.getOperand(0),
+                       Simp.getOperand(1), N->getOperand(4));
+  return SDOperand();
+}
+
+
+/// CombineToPreIndexedLoadStore - Try turning a load / store and a
+/// pre-indexed load / store when the base pointer is a add or subtract
+/// and it has other uses besides the load / store. After the
+/// transformation, the new indexed load / store has effectively folded
+/// the add / subtract in and all of its other uses are redirected to the
+/// new load / store.
+bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
+  if (!AfterLegalize)
+    return false;
+
+  bool isLoad = true;
+  SDOperand Ptr;
+  MVT::ValueType VT;
+  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
+    if (LD->getAddressingMode() != ISD::UNINDEXED)
+      return false;
+    VT = LD->getLoadedVT();
+    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
+        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
+      return false;
+    Ptr = LD->getBasePtr();
+  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
+    if (ST->getAddressingMode() != ISD::UNINDEXED)
+      return false;
+    VT = ST->getStoredVT();
+    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
+        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
+      return false;
+    Ptr = ST->getBasePtr();
+    isLoad = false;
+  } else
+    return false;
+
+  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
+  // out.  There is no reason to make this a preinc/predec.
+  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
+      Ptr.Val->hasOneUse())
+    return false;
+
+  // Ask the target to do addressing mode selection.
+  SDOperand BasePtr;
+  SDOperand Offset;
+  ISD::MemIndexedMode AM = ISD::UNINDEXED;
+  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
+    return false;
+  // Don't create a indexed load / store with zero offset.
+  if (isa<ConstantSDNode>(Offset) &&
+      cast<ConstantSDNode>(Offset)->getValue() == 0)
+    return false;
+  
+  // Try turning it into a pre-indexed load / store except when:
+  // 1) The new base ptr is a frame index.
+  // 2) If N is a store and the new base ptr is either the same as or is a
+  //    predecessor of the value being stored.
+  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
+  //    that would create a cycle.
+  // 4) All uses are load / store ops that use it as old base ptr.
+
+  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
+  // (plus the implicit offset) to a register to preinc anyway.
+  if (isa<FrameIndexSDNode>(BasePtr))
+    return false;
+  
+  // Check #2.
+  if (!isLoad) {
+    SDOperand Val = cast<StoreSDNode>(N)->getValue();
+    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
+      return false;
+  }
+
+  // Now check for #3 and #4.
+  bool RealUse = false;
+  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
+         E = Ptr.Val->use_end(); I != E; ++I) {
+    SDNode *Use = *I;
+    if (Use == N)
+      continue;
+    if (Use->isPredecessor(N))
+      return false;
+
+    if (!((Use->getOpcode() == ISD::LOAD &&
+           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
+          (Use->getOpcode() == ISD::STORE) &&
+          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
+      RealUse = true;
+  }
+  if (!RealUse)
+    return false;
+
+  SDOperand Result;
+  if (isLoad)
+    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
+  else
+    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
+  ++PreIndexedNodes;
+  ++NodesCombined;
+  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
+  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
+  DOUT << '\n';
+  std::vector<SDNode*> NowDead;
+  if (isLoad) {
+    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
+                                  NowDead);
+    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
+                                  NowDead);
+  } else {
+    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
+                                  NowDead);
+  }
+
+  // Nodes can end up on the worklist more than once.  Make sure we do
+  // not process a node that has been replaced.
+  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+    removeFromWorkList(NowDead[i]);
+  // Finally, since the node is now dead, remove it from the graph.
+  DAG.DeleteNode(N);
+
+  // Replace the uses of Ptr with uses of the updated base value.
+  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
+                                NowDead);
+  removeFromWorkList(Ptr.Val);
+  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+    removeFromWorkList(NowDead[i]);
+  DAG.DeleteNode(Ptr.Val);
+
+  return true;
+}
+
+/// CombineToPostIndexedLoadStore - Try combine a load / store with a
+/// add / sub of the base pointer node into a post-indexed load / store.
+/// The transformation folded the add / subtract into the new indexed
+/// load / store effectively and all of its uses are redirected to the
+/// new load / store.
+bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
+  if (!AfterLegalize)
+    return false;
+
+  bool isLoad = true;
+  SDOperand Ptr;
+  MVT::ValueType VT;
+  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
+    if (LD->getAddressingMode() != ISD::UNINDEXED)
+      return false;
+    VT = LD->getLoadedVT();
+    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
+        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
+      return false;
+    Ptr = LD->getBasePtr();
+  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
+    if (ST->getAddressingMode() != ISD::UNINDEXED)
+      return false;
+    VT = ST->getStoredVT();
+    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
+        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
+      return false;
+    Ptr = ST->getBasePtr();
+    isLoad = false;
+  } else
+    return false;
+
+  if (Ptr.Val->hasOneUse())
+    return false;
+  
+  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
+         E = Ptr.Val->use_end(); I != E; ++I) {
+    SDNode *Op = *I;
+    if (Op == N ||
+        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
+      continue;
+
+    SDOperand BasePtr;
+    SDOperand Offset;
+    ISD::MemIndexedMode AM = ISD::UNINDEXED;
+    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
+      if (Ptr == Offset)
+        std::swap(BasePtr, Offset);
+      if (Ptr != BasePtr)
+        continue;
+      // Don't create a indexed load / store with zero offset.
+      if (isa<ConstantSDNode>(Offset) &&
+          cast<ConstantSDNode>(Offset)->getValue() == 0)
+        continue;
+
+      // Try turning it into a post-indexed load / store except when
+      // 1) All uses are load / store ops that use it as base ptr.
+      // 2) Op must be independent of N, i.e. Op is neither a predecessor
+      //    nor a successor of N. Otherwise, if Op is folded that would
+      //    create a cycle.
+
+      // Check for #1.
+      bool TryNext = false;
+      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
+             EE = BasePtr.Val->use_end(); II != EE; ++II) {
+        SDNode *Use = *II;
+        if (Use == Ptr.Val)
+          continue;
+
+        // If all the uses are load / store addresses, then don't do the
+        // transformation.
+        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
+          bool RealUse = false;
+          for (SDNode::use_iterator III = Use->use_begin(),
+                 EEE = Use->use_end(); III != EEE; ++III) {
+            SDNode *UseUse = *III;
+            if (!((UseUse->getOpcode() == ISD::LOAD &&
+                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
+                  (UseUse->getOpcode() == ISD::STORE) &&
+                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
+              RealUse = true;
+          }
+
+          if (!RealUse) {
+            TryNext = true;
+            break;
+          }
+        }
+      }
+      if (TryNext)
+        continue;
+
+      // Check for #2
+      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
+        SDOperand Result = isLoad
+          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
+          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
+        ++PostIndexedNodes;
+        ++NodesCombined;
+        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
+        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
+        DOUT << '\n';
+        std::vector<SDNode*> NowDead;
+        if (isLoad) {
+          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
+                                        NowDead);
+          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
+                                        NowDead);
+        } else {
+          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
+                                        NowDead);
+        }
+
+        // Nodes can end up on the worklist more than once.  Make sure we do
+        // not process a node that has been replaced.
+        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+          removeFromWorkList(NowDead[i]);
+        // Finally, since the node is now dead, remove it from the graph.
+        DAG.DeleteNode(N);
+
+        // Replace the uses of Use with uses of the updated base value.
+        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
+                                      Result.getValue(isLoad ? 1 : 0),
+                                      NowDead);
+        removeFromWorkList(Op);
+        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
+          removeFromWorkList(NowDead[i]);
+        DAG.DeleteNode(Op);
+
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+
+SDOperand DAGCombiner::visitLOAD(SDNode *N) {
+  LoadSDNode *LD  = cast<LoadSDNode>(N);
+  SDOperand Chain = LD->getChain();
+  SDOperand Ptr   = LD->getBasePtr();
+
+  // If load is not volatile and there are no uses of the loaded value (and
+  // the updated indexed value in case of indexed loads), change uses of the
+  // chain value into uses of the chain input (i.e. delete the dead load).
+  if (!LD->isVolatile()) {
+    if (N->getValueType(1) == MVT::Other) {
+      // Unindexed loads.
+      if (N->hasNUsesOfValue(0, 0))
+        return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
+    } else {
+      // Indexed loads.
+      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
+      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
+        SDOperand Undef0 = DAG.getNode(ISD::UNDEF, N->getValueType(0));
+        SDOperand Undef1 = DAG.getNode(ISD::UNDEF, N->getValueType(1));
+        SDOperand To[] = { Undef0, Undef1, Chain };
+        return CombineTo(N, To, 3);
+      }
+    }
+  }
+  
+  // If this load is directly stored, replace the load value with the stored
+  // value.
+  // TODO: Handle store large -> read small portion.
+  // TODO: Handle TRUNCSTORE/LOADEXT
+  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
+    if (ISD::isNON_TRUNCStore(Chain.Val)) {
+      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
+      if (PrevST->getBasePtr() == Ptr &&
+          PrevST->getValue().getValueType() == N->getValueType(0))
+      return CombineTo(N, Chain.getOperand(1), Chain);
+    }
+  }
+    
+  if (CombinerAA) {
+    // Walk up chain skipping non-aliasing memory nodes.
+    SDOperand BetterChain = FindBetterChain(N, Chain);
+    
+    // If there is a better chain.
+    if (Chain != BetterChain) {
+      SDOperand ReplLoad;
+
+      // Replace the chain to void dependency.
+      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
+        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
+                              LD->getSrcValue(), LD->getSrcValueOffset(),
+                              LD->isVolatile(), LD->getAlignment());
+      } else {
+        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
+                                  LD->getValueType(0),
+                                  BetterChain, Ptr, LD->getSrcValue(),
+                                  LD->getSrcValueOffset(),
+                                  LD->getLoadedVT(),
+                                  LD->isVolatile(), 
+                                  LD->getAlignment());
+      }
+
+      // Create token factor to keep old chain connected.
+      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                                    Chain, ReplLoad.getValue(1));
+      
+      // Replace uses with load result and token factor. Don't add users
+      // to work list.
+      return CombineTo(N, ReplLoad.getValue(0), Token, false);
+    }
+  }
+
+  // Try transforming N to an indexed load.
+  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+    return SDOperand(N, 0);
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitSTORE(SDNode *N) {
+  StoreSDNode *ST  = cast<StoreSDNode>(N);
+  SDOperand Chain = ST->getChain();
+  SDOperand Value = ST->getValue();
+  SDOperand Ptr   = ST->getBasePtr();
+  
+  // If this is a store of a bit convert, store the input value if the
+  // resultant store does not need a higher alignment than the original.
+  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
+      ST->getAddressingMode() == ISD::UNINDEXED) {
+    unsigned Align = ST->getAlignment();
+    MVT::ValueType SVT = Value.getOperand(0).getValueType();
+    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
+      getABITypeAlignment(MVT::getTypeForValueType(SVT));
+    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
+      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
+                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
+  }
+  
+  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
+  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
+    if (Value.getOpcode() != ISD::TargetConstantFP) {
+      SDOperand Tmp;
+      switch (CFP->getValueType(0)) {
+      default: assert(0 && "Unknown FP type");
+      case MVT::f32:
+        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
+          Tmp = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
+          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
+                              ST->getSrcValueOffset(), ST->isVolatile(),
+                              ST->getAlignment());
+        }
+        break;
+      case MVT::f64:
+        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
+          Tmp = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
+          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
+                              ST->getSrcValueOffset(), ST->isVolatile(),
+                              ST->getAlignment());
+        } else if (TLI.isTypeLegal(MVT::i32)) {
+          // Many FP stores are not make apparent until after legalize, e.g. for
+          // argument passing.  Since this is so common, custom legalize the
+          // 64-bit integer store into two 32-bit stores.
+          uint64_t Val = DoubleToBits(CFP->getValue());
+          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
+          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
+          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
+
+          int SVOffset = ST->getSrcValueOffset();
+          unsigned Alignment = ST->getAlignment();
+          bool isVolatile = ST->isVolatile();
+
+          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
+                                       ST->getSrcValueOffset(),
+                                       isVolatile, ST->getAlignment());
+          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
+                            DAG.getConstant(4, Ptr.getValueType()));
+          SVOffset += 4;
+          if (Alignment > 4)
+            Alignment = 4;
+          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
+                                       SVOffset, isVolatile, Alignment);
+          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
+        }
+        break;
+      }
+    }
+  }
+
+  if (CombinerAA) { 
+    // Walk up chain skipping non-aliasing memory nodes.
+    SDOperand BetterChain = FindBetterChain(N, Chain);
+    
+    // If there is a better chain.
+    if (Chain != BetterChain) {
+      // Replace the chain to avoid dependency.
+      SDOperand ReplStore;
+      if (ST->isTruncatingStore()) {
+        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
+          ST->getSrcValue(), ST->getSrcValueOffset(), ST->getStoredVT(),
+          ST->isVolatile(), ST->getAlignment());
+      } else {
+        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
+          ST->getSrcValue(), ST->getSrcValueOffset(),
+          ST->isVolatile(), ST->getAlignment());
+      }
+      
+      // Create token to keep both nodes around.
+      SDOperand Token =
+        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
+        
+      // Don't add users to work list.
+      return CombineTo(N, Token, false);
+    }
+  }
+  
+  // Try transforming N to an indexed store.
+  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+    return SDOperand(N, 0);
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
+  SDOperand InVec = N->getOperand(0);
+  SDOperand InVal = N->getOperand(1);
+  SDOperand EltNo = N->getOperand(2);
+  
+  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
+  // vector with the inserted element.
+  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
+    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
+    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
+    if (Elt < Ops.size())
+      Ops[Elt] = InVal;
+    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
+                       &Ops[0], Ops.size());
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
+  unsigned NumInScalars = N->getNumOperands();
+  MVT::ValueType VT = N->getValueType(0);
+  unsigned NumElts = MVT::getVectorNumElements(VT);
+  MVT::ValueType EltType = MVT::getVectorElementType(VT);
+
+  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
+  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
+  // at most two distinct vectors, turn this into a shuffle node.
+  SDOperand VecIn1, VecIn2;
+  for (unsigned i = 0; i != NumInScalars; ++i) {
+    // Ignore undef inputs.
+    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+    
+    // If this input is something other than a EXTRACT_VECTOR_ELT with a
+    // constant index, bail out.
+    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
+      VecIn1 = VecIn2 = SDOperand(0, 0);
+      break;
+    }
+    
+    // If the input vector type disagrees with the result of the build_vector,
+    // we can't make a shuffle.
+    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
+    if (ExtractedFromVec.getValueType() != VT) {
+      VecIn1 = VecIn2 = SDOperand(0, 0);
+      break;
+    }
+    
+    // Otherwise, remember this.  We allow up to two distinct input vectors.
+    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
+      continue;
+    
+    if (VecIn1.Val == 0) {
+      VecIn1 = ExtractedFromVec;
+    } else if (VecIn2.Val == 0) {
+      VecIn2 = ExtractedFromVec;
+    } else {
+      // Too many inputs.
+      VecIn1 = VecIn2 = SDOperand(0, 0);
+      break;
+    }
+  }
+  
+  // If everything is good, we can make a shuffle operation.
+  if (VecIn1.Val) {
+    SmallVector<SDOperand, 8> BuildVecIndices;
+    for (unsigned i = 0; i != NumInScalars; ++i) {
+      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
+        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
+        continue;
+      }
+      
+      SDOperand Extract = N->getOperand(i);
+      
+      // If extracting from the first vector, just use the index directly.
+      if (Extract.getOperand(0) == VecIn1) {
+        BuildVecIndices.push_back(Extract.getOperand(1));
+        continue;
+      }
+
+      // Otherwise, use InIdx + VecSize
+      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
+      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
+                                                TLI.getPointerTy()));
+    }
+    
+    // Add count and size info.
+    MVT::ValueType BuildVecVT =
+      MVT::getVectorType(TLI.getPointerTy(), NumElts);
+    
+    // Return the new VECTOR_SHUFFLE node.
+    SDOperand Ops[5];
+    Ops[0] = VecIn1;
+    if (VecIn2.Val) {
+      Ops[1] = VecIn2;
+    } else {
+      // Use an undef build_vector as input for the second operand.
+      std::vector<SDOperand> UnOps(NumInScalars,
+                                   DAG.getNode(ISD::UNDEF, 
+                                               EltType));
+      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
+                           &UnOps[0], UnOps.size());
+      AddToWorkList(Ops[1].Val);
+    }
+    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
+                         &BuildVecIndices[0], BuildVecIndices.size());
+    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
+  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
+  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
+  // inputs come from at most two distinct vectors, turn this into a shuffle
+  // node.
+
+  // If we only have one input vector, we don't need to do any concatenation.
+  if (N->getNumOperands() == 1) {
+    return N->getOperand(0);
+  }
+
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
+  SDOperand ShufMask = N->getOperand(2);
+  unsigned NumElts = ShufMask.getNumOperands();
+
+  // If the shuffle mask is an identity operation on the LHS, return the LHS.
+  bool isIdentity = true;
+  for (unsigned i = 0; i != NumElts; ++i) {
+    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
+        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
+      isIdentity = false;
+      break;
+    }
+  }
+  if (isIdentity) return N->getOperand(0);
+
+  // If the shuffle mask is an identity operation on the RHS, return the RHS.
+  isIdentity = true;
+  for (unsigned i = 0; i != NumElts; ++i) {
+    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
+        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
+      isIdentity = false;
+      break;
+    }
+  }
+  if (isIdentity) return N->getOperand(1);
+
+  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
+  // needed at all.
+  bool isUnary = true;
+  bool isSplat = true;
+  int VecNum = -1;
+  unsigned BaseIdx = 0;
+  for (unsigned i = 0; i != NumElts; ++i)
+    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
+      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
+      int V = (Idx < NumElts) ? 0 : 1;
+      if (VecNum == -1) {
+        VecNum = V;
+        BaseIdx = Idx;
+      } else {
+        if (BaseIdx != Idx)
+          isSplat = false;
+        if (VecNum != V) {
+          isUnary = false;
+          break;
+        }
+      }
+    }
+
+  SDOperand N0 = N->getOperand(0);
+  SDOperand N1 = N->getOperand(1);
+  // Normalize unary shuffle so the RHS is undef.
+  if (isUnary && VecNum == 1)
+    std::swap(N0, N1);
+
+  // If it is a splat, check if the argument vector is a build_vector with
+  // all scalar elements the same.
+  if (isSplat) {
+    SDNode *V = N0.Val;
+
+    // If this is a bit convert that changes the element type of the vector but
+    // not the number of vector elements, look through it.  Be careful not to
+    // look though conversions that change things like v4f32 to v2f64.
+    if (V->getOpcode() == ISD::BIT_CONVERT) {
+      SDOperand ConvInput = V->getOperand(0);
+      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
+        V = ConvInput.Val;
+    }
+
+    if (V->getOpcode() == ISD::BUILD_VECTOR) {
+      unsigned NumElems = V->getNumOperands();
+      if (NumElems > BaseIdx) {
+        SDOperand Base;
+        bool AllSame = true;
+        for (unsigned i = 0; i != NumElems; ++i) {
+          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
+            Base = V->getOperand(i);
+            break;
+          }
+        }
+        // Splat of <u, u, u, u>, return <u, u, u, u>
+        if (!Base.Val)
+          return N0;
+        for (unsigned i = 0; i != NumElems; ++i) {
+          if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
+              V->getOperand(i) != Base) {
+            AllSame = false;
+            break;
+          }
+        }
+        // Splat of <x, x, x, x>, return <x, x, x, x>
+        if (AllSame)
+          return N0;
+      }
+    }
+  }
+
+  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
+  // into an undef.
+  if (isUnary || N0 == N1) {
+    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
+    // first operand.
+    SmallVector<SDOperand, 8> MappedOps;
+    for (unsigned i = 0; i != NumElts; ++i) {
+      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
+          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
+        MappedOps.push_back(ShufMask.getOperand(i));
+      } else {
+        unsigned NewIdx = 
+          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
+        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
+      }
+    }
+    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
+                           &MappedOps[0], MappedOps.size());
+    AddToWorkList(ShufMask.Val);
+    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
+                       N0,
+                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
+                       ShufMask);
+  }
+ 
+  return SDOperand();
+}
+
+/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
+/// an AND to a vector_shuffle with the destination vector and a zero vector.
+/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
+///      vector_shuffle V, Zero, <0, 4, 2, 4>
+SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
+  SDOperand LHS = N->getOperand(0);
+  SDOperand RHS = N->getOperand(1);
+  if (N->getOpcode() == ISD::AND) {
+    if (RHS.getOpcode() == ISD::BIT_CONVERT)
+      RHS = RHS.getOperand(0);
+    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
+      std::vector<SDOperand> IdxOps;
+      unsigned NumOps = RHS.getNumOperands();
+      unsigned NumElts = NumOps;
+      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
+      for (unsigned i = 0; i != NumElts; ++i) {
+        SDOperand Elt = RHS.getOperand(i);
+        if (!isa<ConstantSDNode>(Elt))
+          return SDOperand();
+        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
+          IdxOps.push_back(DAG.getConstant(i, EVT));
+        else if (cast<ConstantSDNode>(Elt)->isNullValue())
+          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
+        else
+          return SDOperand();
+      }
+
+      // Let's see if the target supports this vector_shuffle.
+      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
+        return SDOperand();
+
+      // Return the new VECTOR_SHUFFLE node.
+      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
+      std::vector<SDOperand> Ops;
+      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
+      Ops.push_back(LHS);
+      AddToWorkList(LHS.Val);
+      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
+      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
+                                &ZeroOps[0], ZeroOps.size()));
+      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
+                                &IdxOps[0], IdxOps.size()));
+      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
+                                     &Ops[0], Ops.size());
+      if (VT != LHS.getValueType()) {
+        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
+      }
+      return Result;
+    }
+  }
+  return SDOperand();
+}
+
+/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
+SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
+  // After legalize, the target may be depending on adds and other
+  // binary ops to provide legal ways to construct constants or other
+  // things. Simplifying them may result in a loss of legality.
+  if (AfterLegalize) return SDOperand();
+
+  MVT::ValueType VT = N->getValueType(0);
+  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
+
+  MVT::ValueType EltType = MVT::getVectorElementType(VT);
+  SDOperand LHS = N->getOperand(0);
+  SDOperand RHS = N->getOperand(1);
+  SDOperand Shuffle = XformToShuffleWithZero(N);
+  if (Shuffle.Val) return Shuffle;
+
+  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
+  // this operation.
+  if (LHS.getOpcode() == ISD::BUILD_VECTOR && 
+      RHS.getOpcode() == ISD::BUILD_VECTOR) {
+    SmallVector<SDOperand, 8> Ops;
+    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
+      SDOperand LHSOp = LHS.getOperand(i);
+      SDOperand RHSOp = RHS.getOperand(i);
+      // If these two elements can't be folded, bail out.
+      if ((LHSOp.getOpcode() != ISD::UNDEF &&
+           LHSOp.getOpcode() != ISD::Constant &&
+           LHSOp.getOpcode() != ISD::ConstantFP) ||
+          (RHSOp.getOpcode() != ISD::UNDEF &&
+           RHSOp.getOpcode() != ISD::Constant &&
+           RHSOp.getOpcode() != ISD::ConstantFP))
+        break;
+      // Can't fold divide by zero.
+      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
+          N->getOpcode() == ISD::FDIV) {
+        if ((RHSOp.getOpcode() == ISD::Constant &&
+             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
+            (RHSOp.getOpcode() == ISD::ConstantFP &&
+             !cast<ConstantFPSDNode>(RHSOp.Val)->getValue()))
+          break;
+      }
+      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
+      AddToWorkList(Ops.back().Val);
+      assert((Ops.back().getOpcode() == ISD::UNDEF ||
+              Ops.back().getOpcode() == ISD::Constant ||
+              Ops.back().getOpcode() == ISD::ConstantFP) &&
+             "Scalar binop didn't fold!");
+    }
+    
+    if (Ops.size() == LHS.getNumOperands()) {
+      MVT::ValueType VT = LHS.getValueType();
+      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+    }
+  }
+  
+  return SDOperand();
+}
+
+SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
+  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
+  
+  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
+                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
+  // If we got a simplified select_cc node back from SimplifySelectCC, then
+  // break it down into a new SETCC node, and a new SELECT node, and then return
+  // the SELECT node, since we were called with a SELECT node.
+  if (SCC.Val) {
+    // Check to see if we got a select_cc back (to turn into setcc/select).
+    // Otherwise, just return whatever node we got back, like fabs.
+    if (SCC.getOpcode() == ISD::SELECT_CC) {
+      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
+                                    SCC.getOperand(0), SCC.getOperand(1), 
+                                    SCC.getOperand(4));
+      AddToWorkList(SETCC.Val);
+      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
+                         SCC.getOperand(3), SETCC);
+    }
+    return SCC;
+  }
+  return SDOperand();
+}
+
+/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
+/// are the two values being selected between, see if we can simplify the
+/// select.  Callers of this should assume that TheSelect is deleted if this
+/// returns true.  As such, they should return the appropriate thing (e.g. the
+/// node) back to the top-level of the DAG combiner loop to avoid it being
+/// looked at.
+///
+bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, 
+                                    SDOperand RHS) {
+  
+  // If this is a select from two identical things, try to pull the operation
+  // through the select.
+  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
+    // If this is a load and the token chain is identical, replace the select
+    // of two loads with a load through a select of the address to load from.
+    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
+    // constants have been dropped into the constant pool.
+    if (LHS.getOpcode() == ISD::LOAD &&
+        // Token chains must be identical.
+        LHS.getOperand(0) == RHS.getOperand(0)) {
+      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
+      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
+
+      // If this is an EXTLOAD, the VT's must match.
+      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
+        // FIXME: this conflates two src values, discarding one.  This is not
+        // the right thing to do, but nothing uses srcvalues now.  When they do,
+        // turn SrcValue into a list of locations.
+        SDOperand Addr;
+        if (TheSelect->getOpcode() == ISD::SELECT) {
+          // Check that the condition doesn't reach either load.  If so, folding
+          // this will induce a cycle into the DAG.
+          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
+              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
+            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
+                               TheSelect->getOperand(0), LLD->getBasePtr(),
+                               RLD->getBasePtr());
+          }
+        } else {
+          // Check that the condition doesn't reach either load.  If so, folding
+          // this will induce a cycle into the DAG.
+          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
+              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
+              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
+              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
+            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
+                             TheSelect->getOperand(0),
+                             TheSelect->getOperand(1), 
+                             LLD->getBasePtr(), RLD->getBasePtr(),
+                             TheSelect->getOperand(4));
+          }
+        }
+        
+        if (Addr.Val) {
+          SDOperand Load;
+          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
+            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
+                               Addr,LLD->getSrcValue(), 
+                               LLD->getSrcValueOffset(),
+                               LLD->isVolatile(), 
+                               LLD->getAlignment());
+          else {
+            Load = DAG.getExtLoad(LLD->getExtensionType(),
+                                  TheSelect->getValueType(0),
+                                  LLD->getChain(), Addr, LLD->getSrcValue(),
+                                  LLD->getSrcValueOffset(),
+                                  LLD->getLoadedVT(),
+                                  LLD->isVolatile(), 
+                                  LLD->getAlignment());
+          }
+          // Users of the select now use the result of the load.
+          CombineTo(TheSelect, Load);
+        
+          // Users of the old loads now use the new load's chain.  We know the
+          // old-load value is dead now.
+          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
+          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
+          return true;
+        }
+      }
+    }
+  }
+  
+  return false;
+}
+
+SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, 
+                                        SDOperand N2, SDOperand N3,
+                                        ISD::CondCode CC, bool NotExtCompare) {
+  
+  MVT::ValueType VT = N2.getValueType();
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
+  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
+
+  // Determine if the condition we're dealing with is constant
+  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
+  if (SCC.Val) AddToWorkList(SCC.Val);
+  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
+
+  // fold select_cc true, x, y -> x
+  if (SCCC && SCCC->getValue())
+    return N2;
+  // fold select_cc false, x, y -> y
+  if (SCCC && SCCC->getValue() == 0)
+    return N3;
+  
+  // Check to see if we can simplify the select into an fabs node
+  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
+    // Allow either -0.0 or 0.0
+    if (CFP->getValue() == 0.0) {
+      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
+      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
+          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
+          N2 == N3.getOperand(0))
+        return DAG.getNode(ISD::FABS, VT, N0);
+      
+      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
+      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
+          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
+          N2.getOperand(0) == N3)
+        return DAG.getNode(ISD::FABS, VT, N3);
+    }
+  }
+  
+  // Check to see if we can perform the "gzip trick", transforming
+  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
+  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
+      MVT::isInteger(N0.getValueType()) && 
+      MVT::isInteger(N2.getValueType()) && 
+      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
+       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
+    MVT::ValueType XType = N0.getValueType();
+    MVT::ValueType AType = N2.getValueType();
+    if (XType >= AType) {
+      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
+      // single-bit constant.
+      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
+        unsigned ShCtV = Log2_64(N2C->getValue());
+        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
+        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
+        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
+        AddToWorkList(Shift.Val);
+        if (XType > AType) {
+          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
+          AddToWorkList(Shift.Val);
+        }
+        return DAG.getNode(ISD::AND, AType, Shift, N2);
+      }
+      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
+                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
+                                                    TLI.getShiftAmountTy()));
+      AddToWorkList(Shift.Val);
+      if (XType > AType) {
+        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
+        AddToWorkList(Shift.Val);
+      }
+      return DAG.getNode(ISD::AND, AType, Shift, N2);
+    }
+  }
+  
+  // fold select C, 16, 0 -> shl C, 4
+  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
+      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
+    
+    // If the caller doesn't want us to simplify this into a zext of a compare,
+    // don't do it.
+    if (NotExtCompare && N2C->getValue() == 1)
+      return SDOperand();
+    
+    // Get a SetCC of the condition
+    // FIXME: Should probably make sure that setcc is legal if we ever have a
+    // target where it isn't.
+    SDOperand Temp, SCC;
+    // cast from setcc result type to select result type
+    if (AfterLegalize) {
+      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
+      if (N2.getValueType() < SCC.getValueType())
+        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
+      else
+        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
+    } else {
+      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
+      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
+    }
+    AddToWorkList(SCC.Val);
+    AddToWorkList(Temp.Val);
+    
+    if (N2C->getValue() == 1)
+      return Temp;
+    // shl setcc result by log2 n2c
+    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
+                       DAG.getConstant(Log2_64(N2C->getValue()),
+                                       TLI.getShiftAmountTy()));
+  }
+    
+  // Check to see if this is the equivalent of setcc
+  // FIXME: Turn all of these into setcc if setcc if setcc is legal
+  // otherwise, go ahead with the folds.
+  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
+    MVT::ValueType XType = N0.getValueType();
+    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
+      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
+      if (Res.getValueType() != VT)
+        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
+      return Res;
+    }
+    
+    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
+    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && 
+        TLI.isOperationLegal(ISD::CTLZ, XType)) {
+      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
+      return DAG.getNode(ISD::SRL, XType, Ctlz, 
+                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
+                                         TLI.getShiftAmountTy()));
+    }
+    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
+    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { 
+      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
+                                    N0);
+      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, 
+                                    DAG.getConstant(~0ULL, XType));
+      return DAG.getNode(ISD::SRL, XType, 
+                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
+                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
+                                         TLI.getShiftAmountTy()));
+    }
+    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
+    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
+      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
+                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
+                                                   TLI.getShiftAmountTy()));
+      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
+    }
+  }
+  
+  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
+  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
+      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
+      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
+    MVT::ValueType XType = N0.getValueType();
+    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
+                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
+                                                  TLI.getShiftAmountTy()));
+    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
+    AddToWorkList(Shift.Val);
+    AddToWorkList(Add.Val);
+    return DAG.getNode(ISD::XOR, XType, Add, Shift);
+  }
+  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
+  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
+      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
+    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
+      MVT::ValueType XType = N0.getValueType();
+      if (SubC->isNullValue() && MVT::isInteger(XType)) {
+        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
+                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
+                                                      TLI.getShiftAmountTy()));
+        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
+        AddToWorkList(Shift.Val);
+        AddToWorkList(Add.Val);
+        return DAG.getNode(ISD::XOR, XType, Add, Shift);
+      }
+    }
+  }
+  
+  return SDOperand();
+}
+
+/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
+SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
+                                     SDOperand N1, ISD::CondCode Cond,
+                                     bool foldBooleans) {
+  TargetLowering::DAGCombinerInfo 
+    DagCombineInfo(DAG, !AfterLegalize, false, this);
+  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
+}
+
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
+  std::vector<SDNode*> Built;
+  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
+
+  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
+       ii != ee; ++ii)
+    AddToWorkList(*ii);
+  return S;
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
+  std::vector<SDNode*> Built;
+  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
+
+  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
+       ii != ee; ++ii)
+    AddToWorkList(*ii);
+  return S;
+}
+
+/// FindBaseOffset - Return true if base is known not to alias with anything
+/// but itself.  Provides base object and offset as results.
+static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
+  // Assume it is a primitive operation.
+  Base = Ptr; Offset = 0;
+  
+  // If it's an adding a simple constant then integrate the offset.
+  if (Base.getOpcode() == ISD::ADD) {
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
+      Base = Base.getOperand(0);
+      Offset += C->getValue();
+    }
+  }
+  
+  // If it's any of the following then it can't alias with anything but itself.
+  return isa<FrameIndexSDNode>(Base) ||
+         isa<ConstantPoolSDNode>(Base) ||
+         isa<GlobalAddressSDNode>(Base);
+}
+
+/// isAlias - Return true if there is any possibility that the two addresses
+/// overlap.
+bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
+                          const Value *SrcValue1, int SrcValueOffset1,
+                          SDOperand Ptr2, int64_t Size2,
+                          const Value *SrcValue2, int SrcValueOffset2)
+{
+  // If they are the same then they must be aliases.
+  if (Ptr1 == Ptr2) return true;
+  
+  // Gather base node and offset information.
+  SDOperand Base1, Base2;
+  int64_t Offset1, Offset2;
+  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
+  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
+  
+  // If they have a same base address then...
+  if (Base1 == Base2) {
+    // Check to see if the addresses overlap.
+    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
+  }
+  
+  // If we know both bases then they can't alias.
+  if (KnownBase1 && KnownBase2) return false;
+
+  if (CombinerGlobalAA) {
+    // Use alias analysis information.
+    int Overlap1 = Size1 + SrcValueOffset1 + Offset1;
+    int Overlap2 = Size2 + SrcValueOffset2 + Offset2;
+    AliasAnalysis::AliasResult AAResult = 
+                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
+    if (AAResult == AliasAnalysis::NoAlias)
+      return false;
+  }
+
+  // Otherwise we have to assume they alias.
+  return true;
+}
+
+/// FindAliasInfo - Extracts the relevant alias information from the memory
+/// node.  Returns true if the operand was a load.
+bool DAGCombiner::FindAliasInfo(SDNode *N,
+                        SDOperand &Ptr, int64_t &Size,
+                        const Value *&SrcValue, int &SrcValueOffset) {
+  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+    Ptr = LD->getBasePtr();
+    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
+    SrcValue = LD->getSrcValue();
+    SrcValueOffset = LD->getSrcValueOffset();
+    return true;
+  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+    Ptr = ST->getBasePtr();
+    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
+    SrcValue = ST->getSrcValue();
+    SrcValueOffset = ST->getSrcValueOffset();
+  } else {
+    assert(0 && "FindAliasInfo expected a memory operand");
+  }
+  
+  return false;
+}
+
+/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+/// looking for aliasing nodes and adding them to the Aliases vector.
+void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
+                                   SmallVector<SDOperand, 8> &Aliases) {
+  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
+  std::set<SDNode *> Visited;           // Visited node set.
+  
+  // Get alias information for node.
+  SDOperand Ptr;
+  int64_t Size;
+  const Value *SrcValue;
+  int SrcValueOffset;
+  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
+
+  // Starting off.
+  Chains.push_back(OriginalChain);
+  
+  // Look at each chain and determine if it is an alias.  If so, add it to the
+  // aliases list.  If not, then continue up the chain looking for the next
+  // candidate.  
+  while (!Chains.empty()) {
+    SDOperand Chain = Chains.back();
+    Chains.pop_back();
+    
+     // Don't bother if we've been before.
+    if (Visited.find(Chain.Val) != Visited.end()) continue;
+    Visited.insert(Chain.Val);
+  
+    switch (Chain.getOpcode()) {
+    case ISD::EntryToken:
+      // Entry token is ideal chain operand, but handled in FindBetterChain.
+      break;
+      
+    case ISD::LOAD:
+    case ISD::STORE: {
+      // Get alias information for Chain.
+      SDOperand OpPtr;
+      int64_t OpSize;
+      const Value *OpSrcValue;
+      int OpSrcValueOffset;
+      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
+                                    OpSrcValue, OpSrcValueOffset);
+      
+      // If chain is alias then stop here.
+      if (!(IsLoad && IsOpLoad) &&
+          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
+                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
+        Aliases.push_back(Chain);
+      } else {
+        // Look further up the chain.
+        Chains.push_back(Chain.getOperand(0));      
+        // Clean up old chain.
+        AddToWorkList(Chain.Val);
+      }
+      break;
+    }
+    
+    case ISD::TokenFactor:
+      // We have to check each of the operands of the token factor, so we queue
+      // then up.  Adding the  operands to the queue (stack) in reverse order
+      // maintains the original order and increases the likelihood that getNode
+      // will find a matching token factor (CSE.)
+      for (unsigned n = Chain.getNumOperands(); n;)
+        Chains.push_back(Chain.getOperand(--n));
+      // Eliminate the token factor if we can.
+      AddToWorkList(Chain.Val);
+      break;
+      
+    default:
+      // For all other instructions we will just have to take what we can get.
+      Aliases.push_back(Chain);
+      break;
+    }
+  }
+}
+
+/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
+/// for a better chain (aliasing node.)
+SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
+  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
+  
+  // Accumulate all the aliases to this node.
+  GatherAllAliases(N, OldChain, Aliases);
+  
+  if (Aliases.size() == 0) {
+    // If no operands then chain to entry token.
+    return DAG.getEntryNode();
+  } else if (Aliases.size() == 1) {
+    // If a single operand then chain to it.  We don't need to revisit it.
+    return Aliases[0];
+  }
+
+  // Construct a custom tailored token factor.
+  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                                   &Aliases[0], Aliases.size());
+
+  // Make sure the old chain gets cleaned up.
+  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
+  
+  return NewChain;
+}
+
+// SelectionDAG::Combine - This is the entry point for the file.
+//
+void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
+  if (!RunningAfterLegalize && ViewDAGCombine1)
+    viewGraph();
+  if (RunningAfterLegalize && ViewDAGCombine2)
+    viewGraph();
+  /// run - This is the main entry point to this class.
+  ///
+  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
+}