It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
new file mode 100644
index 0000000..62854f7
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
@@ -0,0 +1,1156 @@
+//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by James M. Laskey and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a simple two pass scheduler. The first pass attempts to push
+// backward any lengthy instructions and critical paths. The second pass packs
+// instructions into semi-optimal time slots.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "pre-RA-sched"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+using namespace llvm;
+
+namespace {
+
+static RegisterScheduler
+ bfsDAGScheduler("none", " No scheduling: breadth first sequencing",
+ createBFS_DAGScheduler);
+static RegisterScheduler
+ simpleDAGScheduler("simple",
+ " Simple two pass scheduling: minimize critical path "
+ "and maximize processor utilization",
+ createSimpleDAGScheduler);
+static RegisterScheduler
+ noitinDAGScheduler("simple-noitin",
+ " Simple two pass scheduling: Same as simple "
+ "except using generic latency",
+ createNoItinsDAGScheduler);
+
+class NodeInfo;
+typedef NodeInfo *NodeInfoPtr;
+typedef std::vector<NodeInfoPtr> NIVector;
+typedef std::vector<NodeInfoPtr>::iterator NIIterator;
+
+//===--------------------------------------------------------------------===//
+///
+/// Node group - This struct is used to manage flagged node groups.
+///
+class NodeGroup {
+public:
+ NodeGroup *Next;
+private:
+ NIVector Members; // Group member nodes
+ NodeInfo *Dominator; // Node with highest latency
+ unsigned Latency; // Total latency of the group
+ int Pending; // Number of visits pending before
+ // adding to order
+
+public:
+ // Ctor.
+ NodeGroup() : Next(NULL), Dominator(NULL), Pending(0) {}
+
+ // Accessors
+ inline void setDominator(NodeInfo *D) { Dominator = D; }
+ inline NodeInfo *getTop() { return Members.front(); }
+ inline NodeInfo *getBottom() { return Members.back(); }
+ inline NodeInfo *getDominator() { return Dominator; }
+ inline void setLatency(unsigned L) { Latency = L; }
+ inline unsigned getLatency() { return Latency; }
+ inline int getPending() const { return Pending; }
+ inline void setPending(int P) { Pending = P; }
+ inline int addPending(int I) { return Pending += I; }
+
+ // Pass thru
+ inline bool group_empty() { return Members.empty(); }
+ inline NIIterator group_begin() { return Members.begin(); }
+ inline NIIterator group_end() { return Members.end(); }
+ inline void group_push_back(const NodeInfoPtr &NI) {
+ Members.push_back(NI);
+ }
+ inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
+ return Members.insert(Pos, NI);
+ }
+ inline void group_insert(NIIterator Pos, NIIterator First,
+ NIIterator Last) {
+ Members.insert(Pos, First, Last);
+ }
+
+ static void Add(NodeInfo *D, NodeInfo *U);
+};
+
+//===--------------------------------------------------------------------===//
+///
+/// NodeInfo - This struct tracks information used to schedule the a node.
+///
+class NodeInfo {
+private:
+ int Pending; // Number of visits pending before
+ // adding to order
+public:
+ SDNode *Node; // DAG node
+ InstrStage *StageBegin; // First stage in itinerary
+ InstrStage *StageEnd; // Last+1 stage in itinerary
+ unsigned Latency; // Total cycles to complete instr
+ bool IsCall : 1; // Is function call
+ bool IsLoad : 1; // Is memory load
+ bool IsStore : 1; // Is memory store
+ unsigned Slot; // Node's time slot
+ NodeGroup *Group; // Grouping information
+#ifndef NDEBUG
+ unsigned Preorder; // Index before scheduling
+#endif
+
+ // Ctor.
+ NodeInfo(SDNode *N = NULL)
+ : Pending(0)
+ , Node(N)
+ , StageBegin(NULL)
+ , StageEnd(NULL)
+ , Latency(0)
+ , IsCall(false)
+ , Slot(0)
+ , Group(NULL)
+#ifndef NDEBUG
+ , Preorder(0)
+#endif
+ {}
+
+ // Accessors
+ inline bool isInGroup() const {
+ assert(!Group || !Group->group_empty() && "Group with no members");
+ return Group != NULL;
+ }
+ inline bool isGroupDominator() const {
+ return isInGroup() && Group->getDominator() == this;
+ }
+ inline int getPending() const {
+ return Group ? Group->getPending() : Pending;
+ }
+ inline void setPending(int P) {
+ if (Group) Group->setPending(P);
+ else Pending = P;
+ }
+ inline int addPending(int I) {
+ if (Group) return Group->addPending(I);
+ else return Pending += I;
+ }
+};
+
+//===--------------------------------------------------------------------===//
+///
+/// NodeGroupIterator - Iterates over all the nodes indicated by the node
+/// info. If the node is in a group then iterate over the members of the
+/// group, otherwise just the node info.
+///
+class NodeGroupIterator {
+private:
+ NodeInfo *NI; // Node info
+ NIIterator NGI; // Node group iterator
+ NIIterator NGE; // Node group iterator end
+
+public:
+ // Ctor.
+ NodeGroupIterator(NodeInfo *N) : NI(N) {
+ // If the node is in a group then set up the group iterator. Otherwise
+ // the group iterators will trip first time out.
+ if (N->isInGroup()) {
+ // get Group
+ NodeGroup *Group = NI->Group;
+ NGI = Group->group_begin();
+ NGE = Group->group_end();
+ // Prevent this node from being used (will be in members list
+ NI = NULL;
+ }
+ }
+
+ /// next - Return the next node info, otherwise NULL.
+ ///
+ NodeInfo *next() {
+ // If members list
+ if (NGI != NGE) return *NGI++;
+ // Use node as the result (may be NULL)
+ NodeInfo *Result = NI;
+ // Only use once
+ NI = NULL;
+ // Return node or NULL
+ return Result;
+ }
+};
+//===--------------------------------------------------------------------===//
+
+
+//===--------------------------------------------------------------------===//
+///
+/// NodeGroupOpIterator - Iterates over all the operands of a node. If the
+/// node is a member of a group, this iterates over all the operands of all
+/// the members of the group.
+///
+class NodeGroupOpIterator {
+private:
+ NodeInfo *NI; // Node containing operands
+ NodeGroupIterator GI; // Node group iterator
+ SDNode::op_iterator OI; // Operand iterator
+ SDNode::op_iterator OE; // Operand iterator end
+
+ /// CheckNode - Test if node has more operands. If not get the next node
+ /// skipping over nodes that have no operands.
+ void CheckNode() {
+ // Only if operands are exhausted first
+ while (OI == OE) {
+ // Get next node info
+ NodeInfo *NI = GI.next();
+ // Exit if nodes are exhausted
+ if (!NI) return;
+ // Get node itself
+ SDNode *Node = NI->Node;
+ // Set up the operand iterators
+ OI = Node->op_begin();
+ OE = Node->op_end();
+ }
+ }
+
+public:
+ // Ctor.
+ NodeGroupOpIterator(NodeInfo *N)
+ : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
+
+ /// isEnd - Returns true when not more operands are available.
+ ///
+ inline bool isEnd() { CheckNode(); return OI == OE; }
+
+ /// next - Returns the next available operand.
+ ///
+ inline SDOperand next() {
+ assert(OI != OE &&
+ "Not checking for end of NodeGroupOpIterator correctly");
+ return *OI++;
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+///
+/// BitsIterator - Provides iteration through individual bits in a bit vector.
+///
+template<class T>
+class BitsIterator {
+private:
+ T Bits; // Bits left to iterate through
+
+public:
+ /// Ctor.
+ BitsIterator(T Initial) : Bits(Initial) {}
+
+ /// Next - Returns the next bit set or zero if exhausted.
+ inline T Next() {
+ // Get the rightmost bit set
+ T Result = Bits & -Bits;
+ // Remove from rest
+ Bits &= ~Result;
+ // Return single bit or zero
+ return Result;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// ResourceTally - Manages the use of resources over time intervals. Each
+/// item (slot) in the tally vector represents the resources used at a given
+/// moment. A bit set to 1 indicates that a resource is in use, otherwise
+/// available. An assumption is made that the tally is large enough to schedule
+/// all current instructions (asserts otherwise.)
+///
+template<class T>
+class ResourceTally {
+private:
+ std::vector<T> Tally; // Resources used per slot
+ typedef typename std::vector<T>::iterator Iter;
+ // Tally iterator
+
+ /// SlotsAvailable - Returns true if all units are available.
+ ///
+ bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
+ unsigned &Resource) {
+ assert(N && "Must check availability with N != 0");
+ // Determine end of interval
+ Iter End = Begin + N;
+ assert(End <= Tally.end() && "Tally is not large enough for schedule");
+
+ // Iterate thru each resource
+ BitsIterator<T> Resources(ResourceSet & ~*Begin);
+ while (unsigned Res = Resources.Next()) {
+ // Check if resource is available for next N slots
+ Iter Interval = End;
+ do {
+ Interval--;
+ if (*Interval & Res) break;
+ } while (Interval != Begin);
+
+ // If available for N
+ if (Interval == Begin) {
+ // Success
+ Resource = Res;
+ return true;
+ }
+ }
+
+ // No luck
+ Resource = 0;
+ return false;
+ }
+
+ /// RetrySlot - Finds a good candidate slot to retry search.
+ Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
+ assert(N && "Must check availability with N != 0");
+ // Determine end of interval
+ Iter End = Begin + N;
+ assert(End <= Tally.end() && "Tally is not large enough for schedule");
+
+ while (Begin != End--) {
+ // Clear units in use
+ ResourceSet &= ~*End;
+ // If no units left then we should go no further
+ if (!ResourceSet) return End + 1;
+ }
+ // Made it all the way through
+ return Begin;
+ }
+
+ /// FindAndReserveStages - Return true if the stages can be completed. If
+ /// so mark as busy.
+ bool FindAndReserveStages(Iter Begin,
+ InstrStage *Stage, InstrStage *StageEnd) {
+ // If at last stage then we're done
+ if (Stage == StageEnd) return true;
+ // Get number of cycles for current stage
+ unsigned N = Stage->Cycles;
+ // Check to see if N slots are available, if not fail
+ unsigned Resource;
+ if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
+ // Check to see if remaining stages are available, if not fail
+ if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
+ // Reserve resource
+ Reserve(Begin, N, Resource);
+ // Success
+ return true;
+ }
+
+ /// Reserve - Mark busy (set) the specified N slots.
+ void Reserve(Iter Begin, unsigned N, unsigned Resource) {
+ // Determine end of interval
+ Iter End = Begin + N;
+ assert(End <= Tally.end() && "Tally is not large enough for schedule");
+
+ // Set resource bit in each slot
+ for (; Begin < End; Begin++)
+ *Begin |= Resource;
+ }
+
+ /// FindSlots - Starting from Begin, locate consecutive slots where all stages
+ /// can be completed. Returns the address of first slot.
+ Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
+ // Track position
+ Iter Cursor = Begin;
+
+ // Try all possible slots forward
+ while (true) {
+ // Try at cursor, if successful return position.
+ if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
+ // Locate a better position
+ Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
+ }
+ }
+
+public:
+ /// Initialize - Resize and zero the tally to the specified number of time
+ /// slots.
+ inline void Initialize(unsigned N) {
+ Tally.assign(N, 0); // Initialize tally to all zeros.
+ }
+
+ // FindAndReserve - Locate an ideal slot for the specified stages and mark
+ // as busy.
+ unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
+ InstrStage *StageEnd) {
+ // Where to begin
+ Iter Begin = Tally.begin() + Slot;
+ // Find a free slot
+ Iter Where = FindSlots(Begin, StageBegin, StageEnd);
+ // Distance is slot number
+ unsigned Final = Where - Tally.begin();
+ return Final;
+ }
+
+};
+
+//===----------------------------------------------------------------------===//
+///
+/// ScheduleDAGSimple - Simple two pass scheduler.
+///
+class VISIBILITY_HIDDEN ScheduleDAGSimple : public ScheduleDAG {
+private:
+ bool NoSched; // Just do a BFS schedule, nothing fancy
+ bool NoItins; // Don't use itineraries?
+ ResourceTally<unsigned> Tally; // Resource usage tally
+ unsigned NSlots; // Total latency
+ static const unsigned NotFound = ~0U; // Search marker
+
+ unsigned NodeCount; // Number of nodes in DAG
+ std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
+ bool HasGroups; // True if there are any groups
+ NodeInfo *Info; // Info for nodes being scheduled
+ NIVector Ordering; // Emit ordering of nodes
+ NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups
+
+public:
+
+ // Ctor.
+ ScheduleDAGSimple(bool noSched, bool noItins, SelectionDAG &dag,
+ MachineBasicBlock *bb, const TargetMachine &tm)
+ : ScheduleDAG(dag, bb, tm), NoSched(noSched), NoItins(noItins), NSlots(0),
+ NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) {
+ assert(&TII && "Target doesn't provide instr info?");
+ assert(&MRI && "Target doesn't provide register info?");
+ }
+
+ virtual ~ScheduleDAGSimple() {
+ if (Info)
+ delete[] Info;
+
+ NodeGroup *NG = HeadNG;
+ while (NG) {
+ NodeGroup *NextSU = NG->Next;
+ delete NG;
+ NG = NextSU;
+ }
+ }
+
+ void Schedule();
+
+ /// getNI - Returns the node info for the specified node.
+ ///
+ NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
+
+private:
+ static bool isDefiner(NodeInfo *A, NodeInfo *B);
+ void IncludeNode(NodeInfo *NI);
+ void VisitAll();
+ void GatherSchedulingInfo();
+ void FakeGroupDominators();
+ bool isStrongDependency(NodeInfo *A, NodeInfo *B);
+ bool isWeakDependency(NodeInfo *A, NodeInfo *B);
+ void ScheduleBackward();
+ void ScheduleForward();
+
+ void AddToGroup(NodeInfo *D, NodeInfo *U);
+ /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
+ ///
+ void PrepareNodeInfo();
+
+ /// IdentifyGroups - Put flagged nodes into groups.
+ ///
+ void IdentifyGroups();
+
+ /// print - Print ordering to specified output stream.
+ ///
+ void print(std::ostream &O) const;
+ void print(std::ostream *O) const { if (O) print(*O); }
+
+ void dump(const char *tag) const;
+
+ virtual void dump() const;
+
+ /// EmitAll - Emit all nodes in schedule sorted order.
+ ///
+ void EmitAll();
+
+ /// printNI - Print node info.
+ ///
+ void printNI(std::ostream &O, NodeInfo *NI) const;
+ void printNI(std::ostream *O, NodeInfo *NI) const { if (O) printNI(*O, NI); }
+
+ /// printChanges - Hilight changes in order caused by scheduling.
+ ///
+ void printChanges(unsigned Index) const;
+};
+
+//===----------------------------------------------------------------------===//
+/// Special case itineraries.
+///
+enum {
+ CallLatency = 40, // To push calls back in time
+
+ RSInteger = 0xC0000000, // Two integer units
+ RSFloat = 0x30000000, // Two float units
+ RSLoadStore = 0x0C000000, // Two load store units
+ RSBranch = 0x02000000 // One branch unit
+};
+static InstrStage LoadStage = { 5, RSLoadStore };
+static InstrStage StoreStage = { 2, RSLoadStore };
+static InstrStage IntStage = { 2, RSInteger };
+static InstrStage FloatStage = { 3, RSFloat };
+//===----------------------------------------------------------------------===//
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+
+/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
+///
+void ScheduleDAGSimple::PrepareNodeInfo() {
+ // Allocate node information
+ Info = new NodeInfo[NodeCount];
+
+ unsigned i = 0;
+ for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+ E = DAG.allnodes_end(); I != E; ++I, ++i) {
+ // Fast reference to node schedule info
+ NodeInfo* NI = &Info[i];
+ // Set up map
+ Map[I] = NI;
+ // Set node
+ NI->Node = I;
+ // Set pending visit count
+ NI->setPending(I->use_size());
+ }
+}
+
+/// IdentifyGroups - Put flagged nodes into groups.
+///
+void ScheduleDAGSimple::IdentifyGroups() {
+ for (unsigned i = 0, N = NodeCount; i < N; i++) {
+ NodeInfo* NI = &Info[i];
+ SDNode *Node = NI->Node;
+
+ // For each operand (in reverse to only look at flags)
+ for (unsigned N = Node->getNumOperands(); 0 < N--;) {
+ // Get operand
+ SDOperand Op = Node->getOperand(N);
+ // No more flags to walk
+ if (Op.getValueType() != MVT::Flag) break;
+ // Add to node group
+ AddToGroup(getNI(Op.Val), NI);
+ // Let everyone else know
+ HasGroups = true;
+ }
+ }
+}
+
+/// CountInternalUses - Returns the number of edges between the two nodes.
+///
+static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
+ unsigned N = 0;
+ for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
+ SDOperand Op = U->Node->getOperand(M);
+ if (Op.Val == D->Node) N++;
+ }
+
+ return N;
+}
+
+//===----------------------------------------------------------------------===//
+/// Add - Adds a definer and user pair to a node group.
+///
+void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) {
+ // Get current groups
+ NodeGroup *DGroup = D->Group;
+ NodeGroup *UGroup = U->Group;
+ // If both are members of groups
+ if (DGroup && UGroup) {
+ // There may have been another edge connecting
+ if (DGroup == UGroup) return;
+ // Add the pending users count
+ DGroup->addPending(UGroup->getPending());
+ // For each member of the users group
+ NodeGroupIterator UNGI(U);
+ while (NodeInfo *UNI = UNGI.next() ) {
+ // Change the group
+ UNI->Group = DGroup;
+ // For each member of the definers group
+ NodeGroupIterator DNGI(D);
+ while (NodeInfo *DNI = DNGI.next() ) {
+ // Remove internal edges
+ DGroup->addPending(-CountInternalUses(DNI, UNI));
+ }
+ }
+ // Merge the two lists
+ DGroup->group_insert(DGroup->group_end(),
+ UGroup->group_begin(), UGroup->group_end());
+ } else if (DGroup) {
+ // Make user member of definers group
+ U->Group = DGroup;
+ // Add users uses to definers group pending
+ DGroup->addPending(U->Node->use_size());
+ // For each member of the definers group
+ NodeGroupIterator DNGI(D);
+ while (NodeInfo *DNI = DNGI.next() ) {
+ // Remove internal edges
+ DGroup->addPending(-CountInternalUses(DNI, U));
+ }
+ DGroup->group_push_back(U);
+ } else if (UGroup) {
+ // Make definer member of users group
+ D->Group = UGroup;
+ // Add definers uses to users group pending
+ UGroup->addPending(D->Node->use_size());
+ // For each member of the users group
+ NodeGroupIterator UNGI(U);
+ while (NodeInfo *UNI = UNGI.next() ) {
+ // Remove internal edges
+ UGroup->addPending(-CountInternalUses(D, UNI));
+ }
+ UGroup->group_insert(UGroup->group_begin(), D);
+ } else {
+ D->Group = U->Group = DGroup = new NodeGroup();
+ DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
+ CountInternalUses(D, U));
+ DGroup->group_push_back(D);
+ DGroup->group_push_back(U);
+
+ if (HeadNG == NULL)
+ HeadNG = DGroup;
+ if (TailNG != NULL)
+ TailNG->Next = DGroup;
+ TailNG = DGroup;
+ }
+}
+
+
+/// print - Print ordering to specified output stream.
+///
+void ScheduleDAGSimple::print(std::ostream &O) const {
+#ifndef NDEBUG
+ O << "Ordering\n";
+ for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+ NodeInfo *NI = Ordering[i];
+ printNI(O, NI);
+ O << "\n";
+ if (NI->isGroupDominator()) {
+ NodeGroup *Group = NI->Group;
+ for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+ NII != E; NII++) {
+ O << " ";
+ printNI(O, *NII);
+ O << "\n";
+ }
+ }
+ }
+#endif
+}
+
+void ScheduleDAGSimple::dump(const char *tag) const {
+ cerr << tag; dump();
+}
+
+void ScheduleDAGSimple::dump() const {
+ print(cerr);
+}
+
+
+/// EmitAll - Emit all nodes in schedule sorted order.
+///
+void ScheduleDAGSimple::EmitAll() {
+ // If this is the first basic block in the function, and if it has live ins
+ // that need to be copied into vregs, emit the copies into the top of the
+ // block before emitting the code for the block.
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
+ for (MachineFunction::livein_iterator LI = MF.livein_begin(),
+ E = MF.livein_end(); LI != E; ++LI)
+ if (LI->second)
+ MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
+ LI->first, RegMap->getRegClass(LI->second));
+ }
+
+ DenseMap<SDOperand, unsigned> VRBaseMap;
+
+ // For each node in the ordering
+ for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+ // Get the scheduling info
+ NodeInfo *NI = Ordering[i];
+ if (NI->isInGroup()) {
+ NodeGroupIterator NGI(Ordering[i]);
+ while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
+ } else {
+ EmitNode(NI->Node, VRBaseMap);
+ }
+ }
+}
+
+/// isFlagDefiner - Returns true if the node defines a flag result.
+static bool isFlagDefiner(SDNode *A) {
+ unsigned N = A->getNumValues();
+ return N && A->getValueType(N - 1) == MVT::Flag;
+}
+
+/// isFlagUser - Returns true if the node uses a flag result.
+///
+static bool isFlagUser(SDNode *A) {
+ unsigned N = A->getNumOperands();
+ return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
+}
+
+/// printNI - Print node info.
+///
+void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const {
+#ifndef NDEBUG
+ SDNode *Node = NI->Node;
+ O << " "
+ << std::hex << Node << std::dec
+ << ", Lat=" << NI->Latency
+ << ", Slot=" << NI->Slot
+ << ", ARITY=(" << Node->getNumOperands() << ","
+ << Node->getNumValues() << ")"
+ << " " << Node->getOperationName(&DAG);
+ if (isFlagDefiner(Node)) O << "<#";
+ if (isFlagUser(Node)) O << ">#";
+#endif
+}
+
+/// printChanges - Hilight changes in order caused by scheduling.
+///
+void ScheduleDAGSimple::printChanges(unsigned Index) const {
+#ifndef NDEBUG
+ // Get the ordered node count
+ unsigned N = Ordering.size();
+ // Determine if any changes
+ unsigned i = 0;
+ for (; i < N; i++) {
+ NodeInfo *NI = Ordering[i];
+ if (NI->Preorder != i) break;
+ }
+
+ if (i < N) {
+ cerr << Index << ". New Ordering\n";
+
+ for (i = 0; i < N; i++) {
+ NodeInfo *NI = Ordering[i];
+ cerr << " " << NI->Preorder << ". ";
+ printNI(cerr, NI);
+ cerr << "\n";
+ if (NI->isGroupDominator()) {
+ NodeGroup *Group = NI->Group;
+ for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+ NII != E; NII++) {
+ cerr << " ";
+ printNI(cerr, *NII);
+ cerr << "\n";
+ }
+ }
+ }
+ } else {
+ cerr << Index << ". No Changes\n";
+ }
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+/// isDefiner - Return true if node A is a definer for B.
+///
+bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
+ // While there are A nodes
+ NodeGroupIterator NII(A);
+ while (NodeInfo *NI = NII.next()) {
+ // Extract node
+ SDNode *Node = NI->Node;
+ // While there operands in nodes of B
+ NodeGroupOpIterator NGOI(B);
+ while (!NGOI.isEnd()) {
+ SDOperand Op = NGOI.next();
+ // If node from A defines a node in B
+ if (Node == Op.Val) return true;
+ }
+ }
+ return false;
+}
+
+/// IncludeNode - Add node to NodeInfo vector.
+///
+void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
+ // Get node
+ SDNode *Node = NI->Node;
+ // Ignore entry node
+ if (Node->getOpcode() == ISD::EntryToken) return;
+ // Check current count for node
+ int Count = NI->getPending();
+ // If the node is already in list
+ if (Count < 0) return;
+ // Decrement count to indicate a visit
+ Count--;
+ // If count has gone to zero then add node to list
+ if (!Count) {
+ // Add node
+ if (NI->isInGroup()) {
+ Ordering.push_back(NI->Group->getDominator());
+ } else {
+ Ordering.push_back(NI);
+ }
+ // indicate node has been added
+ Count--;
+ }
+ // Mark as visited with new count
+ NI->setPending(Count);
+}
+
+/// GatherSchedulingInfo - Get latency and resource information about each node.
+///
+void ScheduleDAGSimple::GatherSchedulingInfo() {
+ // Get instruction itineraries for the target
+ const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
+
+ // For each node
+ for (unsigned i = 0, N = NodeCount; i < N; i++) {
+ // Get node info
+ NodeInfo* NI = &Info[i];
+ SDNode *Node = NI->Node;
+
+ // If there are itineraries and it is a machine instruction
+ if (InstrItins.isEmpty() || NoItins) {
+ // If machine opcode
+ if (Node->isTargetOpcode()) {
+ // Get return type to guess which processing unit
+ MVT::ValueType VT = Node->getValueType(0);
+ // Get machine opcode
+ MachineOpCode TOpc = Node->getTargetOpcode();
+ NI->IsCall = TII->isCall(TOpc);
+ NI->IsLoad = TII->isLoad(TOpc);
+ NI->IsStore = TII->isStore(TOpc);
+
+ if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
+ else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
+ else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
+ else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
+ if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
+ }
+ } else if (Node->isTargetOpcode()) {
+ // get machine opcode
+ MachineOpCode TOpc = Node->getTargetOpcode();
+ // Check to see if it is a call
+ NI->IsCall = TII->isCall(TOpc);
+ // Get itinerary stages for instruction
+ unsigned II = TII->getSchedClass(TOpc);
+ NI->StageBegin = InstrItins.begin(II);
+ NI->StageEnd = InstrItins.end(II);
+ }
+
+ // One slot for the instruction itself
+ NI->Latency = 1;
+
+ // Add long latency for a call to push it back in time
+ if (NI->IsCall) NI->Latency += CallLatency;
+
+ // Sum up all the latencies
+ for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
+ Stage != E; Stage++) {
+ NI->Latency += Stage->Cycles;
+ }
+
+ // Sum up all the latencies for max tally size
+ NSlots += NI->Latency;
+ }
+
+ // Unify metrics if in a group
+ if (HasGroups) {
+ for (unsigned i = 0, N = NodeCount; i < N; i++) {
+ NodeInfo* NI = &Info[i];
+
+ if (NI->isInGroup()) {
+ NodeGroup *Group = NI->Group;
+
+ if (!Group->getDominator()) {
+ NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
+ NodeInfo *Dominator = *NGI;
+ unsigned Latency = 0;
+
+ for (NGI++; NGI != NGE; NGI++) {
+ NodeInfo* NGNI = *NGI;
+ Latency += NGNI->Latency;
+ if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
+ }
+
+ Dominator->Latency = Latency;
+ Group->setDominator(Dominator);
+ }
+ }
+ }
+ }
+}
+
+/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
+/// Note that the ordering in the Nodes vector is reversed.
+void ScheduleDAGSimple::VisitAll() {
+ // Add first element to list
+ NodeInfo *NI = getNI(DAG.getRoot().Val);
+ if (NI->isInGroup()) {
+ Ordering.push_back(NI->Group->getDominator());
+ } else {
+ Ordering.push_back(NI);
+ }
+
+ // Iterate through all nodes that have been added
+ for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
+ // Visit all operands
+ NodeGroupOpIterator NGI(Ordering[i]);
+ while (!NGI.isEnd()) {
+ // Get next operand
+ SDOperand Op = NGI.next();
+ // Get node
+ SDNode *Node = Op.Val;
+ // Ignore passive nodes
+ if (isPassiveNode(Node)) continue;
+ // Check out node
+ IncludeNode(getNI(Node));
+ }
+ }
+
+ // Add entry node last (IncludeNode filters entry nodes)
+ if (DAG.getEntryNode().Val != DAG.getRoot().Val)
+ Ordering.push_back(getNI(DAG.getEntryNode().Val));
+
+ // Reverse the order
+ std::reverse(Ordering.begin(), Ordering.end());
+}
+
+/// FakeGroupDominators - Set dominators for non-scheduling.
+///
+void ScheduleDAGSimple::FakeGroupDominators() {
+ for (unsigned i = 0, N = NodeCount; i < N; i++) {
+ NodeInfo* NI = &Info[i];
+
+ if (NI->isInGroup()) {
+ NodeGroup *Group = NI->Group;
+
+ if (!Group->getDominator()) {
+ Group->setDominator(NI);
+ }
+ }
+ }
+}
+
+/// isStrongDependency - Return true if node A has results used by node B.
+/// I.E., B must wait for latency of A.
+bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
+ // If A defines for B then it's a strong dependency or
+ // if a load follows a store (may be dependent but why take a chance.)
+ return isDefiner(A, B) || (A->IsStore && B->IsLoad);
+}
+
+/// isWeakDependency Return true if node A produces a result that will
+/// conflict with operands of B. It is assumed that we have called
+/// isStrongDependency prior.
+bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
+ // TODO check for conflicting real registers and aliases
+#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
+ return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
+#else
+ return A->Node->getOpcode() == ISD::EntryToken;
+#endif
+}
+
+/// ScheduleBackward - Schedule instructions so that any long latency
+/// instructions and the critical path get pushed back in time. Time is run in
+/// reverse to allow code reuse of the Tally and eliminate the overhead of
+/// biasing every slot indices against NSlots.
+void ScheduleDAGSimple::ScheduleBackward() {
+ // Size and clear the resource tally
+ Tally.Initialize(NSlots);
+ // Get number of nodes to schedule
+ unsigned N = Ordering.size();
+
+ // For each node being scheduled
+ for (unsigned i = N; 0 < i--;) {
+ NodeInfo *NI = Ordering[i];
+ // Track insertion
+ unsigned Slot = NotFound;
+
+ // Compare against those previously scheduled nodes
+ unsigned j = i + 1;
+ for (; j < N; j++) {
+ // Get following instruction
+ NodeInfo *Other = Ordering[j];
+
+ // Check dependency against previously inserted nodes
+ if (isStrongDependency(NI, Other)) {
+ Slot = Other->Slot + Other->Latency;
+ break;
+ } else if (isWeakDependency(NI, Other)) {
+ Slot = Other->Slot;
+ break;
+ }
+ }
+
+ // If independent of others (or first entry)
+ if (Slot == NotFound) Slot = 0;
+
+#if 0 // FIXME - measure later
+ // Find a slot where the needed resources are available
+ if (NI->StageBegin != NI->StageEnd)
+ Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+#endif
+
+ // Set node slot
+ NI->Slot = Slot;
+
+ // Insert sort based on slot
+ j = i + 1;
+ for (; j < N; j++) {
+ // Get following instruction
+ NodeInfo *Other = Ordering[j];
+ // Should we look further (remember slots are in reverse time)
+ if (Slot >= Other->Slot) break;
+ // Shuffle other into ordering
+ Ordering[j - 1] = Other;
+ }
+ // Insert node in proper slot
+ if (j != i + 1) Ordering[j - 1] = NI;
+ }
+}
+
+/// ScheduleForward - Schedule instructions to maximize packing.
+///
+void ScheduleDAGSimple::ScheduleForward() {
+ // Size and clear the resource tally
+ Tally.Initialize(NSlots);
+ // Get number of nodes to schedule
+ unsigned N = Ordering.size();
+
+ // For each node being scheduled
+ for (unsigned i = 0; i < N; i++) {
+ NodeInfo *NI = Ordering[i];
+ // Track insertion
+ unsigned Slot = NotFound;
+
+ // Compare against those previously scheduled nodes
+ unsigned j = i;
+ for (; 0 < j--;) {
+ // Get following instruction
+ NodeInfo *Other = Ordering[j];
+
+ // Check dependency against previously inserted nodes
+ if (isStrongDependency(Other, NI)) {
+ Slot = Other->Slot + Other->Latency;
+ break;
+ } else if (Other->IsCall || isWeakDependency(Other, NI)) {
+ Slot = Other->Slot;
+ break;
+ }
+ }
+
+ // If independent of others (or first entry)
+ if (Slot == NotFound) Slot = 0;
+
+ // Find a slot where the needed resources are available
+ if (NI->StageBegin != NI->StageEnd)
+ Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+
+ // Set node slot
+ NI->Slot = Slot;
+
+ // Insert sort based on slot
+ j = i;
+ for (; 0 < j--;) {
+ // Get prior instruction
+ NodeInfo *Other = Ordering[j];
+ // Should we look further
+ if (Slot >= Other->Slot) break;
+ // Shuffle other into ordering
+ Ordering[j + 1] = Other;
+ }
+ // Insert node in proper slot
+ if (j != i) Ordering[j + 1] = NI;
+ }
+}
+
+/// Schedule - Order nodes according to selected style.
+///
+void ScheduleDAGSimple::Schedule() {
+ // Number the nodes
+ NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
+
+ // Set up minimum info for scheduling
+ PrepareNodeInfo();
+ // Construct node groups for flagged nodes
+ IdentifyGroups();
+
+ // Test to see if scheduling should occur
+ bool ShouldSchedule = NodeCount > 3 && !NoSched;
+ // Don't waste time if is only entry and return
+ if (ShouldSchedule) {
+ // Get latency and resource requirements
+ GatherSchedulingInfo();
+ } else if (HasGroups) {
+ // Make sure all the groups have dominators
+ FakeGroupDominators();
+ }
+
+ // Breadth first walk of DAG
+ VisitAll();
+
+#ifndef NDEBUG
+ static unsigned Count = 0;
+ Count++;
+ for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+ NodeInfo *NI = Ordering[i];
+ NI->Preorder = i;
+ }
+#endif
+
+ // Don't waste time if is only entry and return
+ if (ShouldSchedule) {
+ // Push back long instructions and critical path
+ ScheduleBackward();
+
+ // Pack instructions to maximize resource utilization
+ ScheduleForward();
+ }
+
+ DEBUG(printChanges(Count));
+
+ // Emit in scheduled order
+ EmitAll();
+}
+
+
+/// createSimpleDAGScheduler - This creates a simple two pass instruction
+/// scheduler using instruction itinerary.
+llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAGISel *IS,
+ SelectionDAG *DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGSimple(false, false, *DAG, BB, DAG->getTarget());
+}
+
+/// createNoItinsDAGScheduler - This creates a simple two pass instruction
+/// scheduler without using instruction itinerary.
+llvm::ScheduleDAG* llvm::createNoItinsDAGScheduler(SelectionDAGISel *IS,
+ SelectionDAG *DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGSimple(false, true, *DAG, BB, DAG->getTarget());
+}
+
+/// createBFS_DAGScheduler - This creates a simple breadth first instruction
+/// scheduler.
+llvm::ScheduleDAG* llvm::createBFS_DAGScheduler(SelectionDAGISel *IS,
+ SelectionDAG *DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGSimple(true, false, *DAG, BB, DAG->getTarget());
+}