It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
new file mode 100644
index 0000000..1b7b436
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -0,0 +1,1753 @@
+//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+/// InitLibcallNames - Set default libcall names.
+///
+static void InitLibcallNames(const char **Names) {
+  Names[RTLIB::SHL_I32] = "__ashlsi3";
+  Names[RTLIB::SHL_I64] = "__ashldi3";
+  Names[RTLIB::SRL_I32] = "__lshrsi3";
+  Names[RTLIB::SRL_I64] = "__lshrdi3";
+  Names[RTLIB::SRA_I32] = "__ashrsi3";
+  Names[RTLIB::SRA_I64] = "__ashrdi3";
+  Names[RTLIB::MUL_I32] = "__mulsi3";
+  Names[RTLIB::MUL_I64] = "__muldi3";
+  Names[RTLIB::SDIV_I32] = "__divsi3";
+  Names[RTLIB::SDIV_I64] = "__divdi3";
+  Names[RTLIB::UDIV_I32] = "__udivsi3";
+  Names[RTLIB::UDIV_I64] = "__udivdi3";
+  Names[RTLIB::SREM_I32] = "__modsi3";
+  Names[RTLIB::SREM_I64] = "__moddi3";
+  Names[RTLIB::UREM_I32] = "__umodsi3";
+  Names[RTLIB::UREM_I64] = "__umoddi3";
+  Names[RTLIB::NEG_I32] = "__negsi2";
+  Names[RTLIB::NEG_I64] = "__negdi2";
+  Names[RTLIB::ADD_F32] = "__addsf3";
+  Names[RTLIB::ADD_F64] = "__adddf3";
+  Names[RTLIB::SUB_F32] = "__subsf3";
+  Names[RTLIB::SUB_F64] = "__subdf3";
+  Names[RTLIB::MUL_F32] = "__mulsf3";
+  Names[RTLIB::MUL_F64] = "__muldf3";
+  Names[RTLIB::DIV_F32] = "__divsf3";
+  Names[RTLIB::DIV_F64] = "__divdf3";
+  Names[RTLIB::REM_F32] = "fmodf";
+  Names[RTLIB::REM_F64] = "fmod";
+  Names[RTLIB::NEG_F32] = "__negsf2";
+  Names[RTLIB::NEG_F64] = "__negdf2";
+  Names[RTLIB::POWI_F32] = "__powisf2";
+  Names[RTLIB::POWI_F64] = "__powidf2";
+  Names[RTLIB::SQRT_F32] = "sqrtf";
+  Names[RTLIB::SQRT_F64] = "sqrt";
+  Names[RTLIB::SIN_F32] = "sinf";
+  Names[RTLIB::SIN_F64] = "sin";
+  Names[RTLIB::COS_F32] = "cosf";
+  Names[RTLIB::COS_F64] = "cos";
+  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
+  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
+  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
+  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
+  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
+  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
+  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
+  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
+  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
+  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
+  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
+  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
+  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
+  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
+  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
+  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
+  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
+  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
+  Names[RTLIB::OEQ_F32] = "__eqsf2";
+  Names[RTLIB::OEQ_F64] = "__eqdf2";
+  Names[RTLIB::UNE_F32] = "__nesf2";
+  Names[RTLIB::UNE_F64] = "__nedf2";
+  Names[RTLIB::OGE_F32] = "__gesf2";
+  Names[RTLIB::OGE_F64] = "__gedf2";
+  Names[RTLIB::OLT_F32] = "__ltsf2";
+  Names[RTLIB::OLT_F64] = "__ltdf2";
+  Names[RTLIB::OLE_F32] = "__lesf2";
+  Names[RTLIB::OLE_F64] = "__ledf2";
+  Names[RTLIB::OGT_F32] = "__gtsf2";
+  Names[RTLIB::OGT_F64] = "__gtdf2";
+  Names[RTLIB::UO_F32] = "__unordsf2";
+  Names[RTLIB::UO_F64] = "__unorddf2";
+  Names[RTLIB::O_F32] = "__unordsf2";
+  Names[RTLIB::O_F64] = "__unorddf2";
+}
+
+/// InitCmpLibcallCCs - Set default comparison libcall CC.
+///
+static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
+  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
+  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
+  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
+  CCs[RTLIB::UNE_F32] = ISD::SETNE;
+  CCs[RTLIB::UNE_F64] = ISD::SETNE;
+  CCs[RTLIB::OGE_F32] = ISD::SETGE;
+  CCs[RTLIB::OGE_F64] = ISD::SETGE;
+  CCs[RTLIB::OLT_F32] = ISD::SETLT;
+  CCs[RTLIB::OLT_F64] = ISD::SETLT;
+  CCs[RTLIB::OLE_F32] = ISD::SETLE;
+  CCs[RTLIB::OLE_F64] = ISD::SETLE;
+  CCs[RTLIB::OGT_F32] = ISD::SETGT;
+  CCs[RTLIB::OGT_F64] = ISD::SETGT;
+  CCs[RTLIB::UO_F32] = ISD::SETNE;
+  CCs[RTLIB::UO_F64] = ISD::SETNE;
+  CCs[RTLIB::O_F32] = ISD::SETEQ;
+  CCs[RTLIB::O_F64] = ISD::SETEQ;
+}
+
+TargetLowering::TargetLowering(TargetMachine &tm)
+  : TM(tm), TD(TM.getTargetData()) {
+  assert(ISD::BUILTIN_OP_END <= 156 &&
+         "Fixed size array in TargetLowering is not large enough!");
+  // All operations default to being supported.
+  memset(OpActions, 0, sizeof(OpActions));
+  memset(LoadXActions, 0, sizeof(LoadXActions));
+  memset(&StoreXActions, 0, sizeof(StoreXActions));
+  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
+
+  // Set all indexed load / store to expand.
+  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+    for (unsigned IM = (unsigned)ISD::PRE_INC;
+         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
+      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
+      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
+    }
+  }
+
+  IsLittleEndian = TD->isLittleEndian();
+  UsesGlobalOffsetTable = false;
+  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
+  ShiftAmtHandling = Undefined;
+  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
+  memset(TargetDAGCombineArray, 0, 
+         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
+  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
+  allowUnalignedMemoryAccesses = false;
+  UseUnderscoreSetJmp = false;
+  UseUnderscoreLongJmp = false;
+  SelectIsExpensive = false;
+  IntDivIsCheap = false;
+  Pow2DivIsCheap = false;
+  StackPointerRegisterToSaveRestore = 0;
+  ExceptionPointerRegister = 0;
+  ExceptionSelectorRegister = 0;
+  SchedPreferenceInfo = SchedulingForLatency;
+  JumpBufSize = 0;
+  JumpBufAlignment = 0;
+  IfCvtBlockSizeLimit = 2;
+
+  InitLibcallNames(LibcallRoutineNames);
+  InitCmpLibcallCCs(CmpLibcallCCs);
+}
+
+TargetLowering::~TargetLowering() {}
+
+/// computeRegisterProperties - Once all of the register classes are added,
+/// this allows us to compute derived properties we expose.
+void TargetLowering::computeRegisterProperties() {
+  assert(MVT::LAST_VALUETYPE <= 32 &&
+         "Too many value types for ValueTypeActions to hold!");
+
+  // Everything defaults to needing one register.
+  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+    NumRegistersForVT[i] = 1;
+    RegisterTypeForVT[i] = TransformToType[i] = i;
+  }
+  // ...except isVoid, which doesn't need any registers.
+  NumRegistersForVT[MVT::isVoid] = 0;
+
+  // Find the largest integer register class.
+  unsigned LargestIntReg = MVT::i128;
+  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
+    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
+
+  // Every integer value type larger than this largest register takes twice as
+  // many registers to represent as the previous ValueType.
+  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
+       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
+    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
+    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
+    TransformToType[ExpandedReg] = ExpandedReg - 1;
+    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
+  }
+
+  // Inspect all of the ValueType's smaller than the largest integer
+  // register to see which ones need promotion.
+  MVT::ValueType LegalIntReg = LargestIntReg;
+  for (MVT::ValueType IntReg = LargestIntReg - 1;
+       IntReg >= MVT::i1; --IntReg) {
+    if (isTypeLegal(IntReg)) {
+      LegalIntReg = IntReg;
+    } else {
+      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
+      ValueTypeActions.setTypeAction(IntReg, Promote);
+    }
+  }
+
+  // Decide how to handle f64. If the target does not have native f64 support,
+  // expand it to i64 and we will be generating soft float library calls.
+  if (!isTypeLegal(MVT::f64)) {
+    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
+    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
+    TransformToType[MVT::f64] = MVT::i64;
+    ValueTypeActions.setTypeAction(MVT::f64, Expand);
+  }
+
+  // Decide how to handle f32. If the target does not have native support for
+  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
+  if (!isTypeLegal(MVT::f32)) {
+    if (isTypeLegal(MVT::f64)) {
+      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
+      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
+      TransformToType[MVT::f32] = MVT::f64;
+      ValueTypeActions.setTypeAction(MVT::f32, Promote);
+    } else {
+      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
+      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
+      TransformToType[MVT::f32] = MVT::i32;
+      ValueTypeActions.setTypeAction(MVT::f32, Expand);
+    }
+  }
+  
+  // Loop over all of the vector value types to see which need transformations.
+  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
+       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+    if (!isTypeLegal(i)) {
+      MVT::ValueType IntermediateVT, RegisterVT;
+      unsigned NumIntermediates;
+      NumRegistersForVT[i] =
+        getVectorTypeBreakdown(i,
+                               IntermediateVT, NumIntermediates,
+                               RegisterVT);
+      RegisterTypeForVT[i] = RegisterVT;
+      TransformToType[i] = MVT::Other; // this isn't actually used
+      ValueTypeActions.setTypeAction(i, Expand);
+    }
+  }
+}
+
+const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
+  return NULL;
+}
+
+/// getVectorTypeBreakdown - Vector types are broken down into some number of
+/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
+/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
+///
+/// This method returns the number of registers needed, and the VT for each
+/// register.  It also returns the VT and quantity of the intermediate values
+/// before they are promoted/expanded.
+///
+unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT, 
+                                                MVT::ValueType &IntermediateVT,
+                                                unsigned &NumIntermediates,
+                                      MVT::ValueType &RegisterVT) const {
+  // Figure out the right, legal destination reg to copy into.
+  unsigned NumElts = MVT::getVectorNumElements(VT);
+  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
+  
+  unsigned NumVectorRegs = 1;
+  
+  // Divide the input until we get to a supported size.  This will always
+  // end with a scalar if the target doesn't support vectors.
+  while (NumElts > 1 &&
+         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
+    NumElts >>= 1;
+    NumVectorRegs <<= 1;
+  }
+
+  NumIntermediates = NumVectorRegs;
+  
+  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
+  if (!isTypeLegal(NewVT))
+    NewVT = EltTy;
+  IntermediateVT = NewVT;
+
+  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
+  RegisterVT = DestVT;
+  if (DestVT < NewVT) {
+    // Value is expanded, e.g. i64 -> i16.
+    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
+  } else {
+    // Otherwise, promotion or legal types use the same number of registers as
+    // the vector decimated to the appropriate level.
+    return NumVectorRegs;
+  }
+  
+  return 1;
+}
+
+//===----------------------------------------------------------------------===//
+//  Optimization Methods
+//===----------------------------------------------------------------------===//
+
+/// ShrinkDemandedConstant - Check to see if the specified operand of the 
+/// specified instruction is a constant integer.  If so, check to see if there
+/// are any bits set in the constant that are not demanded.  If so, shrink the
+/// constant and return true.
+bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, 
+                                                            uint64_t Demanded) {
+  // FIXME: ISD::SELECT, ISD::SELECT_CC
+  switch(Op.getOpcode()) {
+  default: break;
+  case ISD::AND:
+  case ISD::OR:
+  case ISD::XOR:
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
+      if ((~Demanded & C->getValue()) != 0) {
+        MVT::ValueType VT = Op.getValueType();
+        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
+                                    DAG.getConstant(Demanded & C->getValue(), 
+                                                    VT));
+        return CombineTo(Op, New);
+      }
+    break;
+  }
+  return false;
+}
+
+/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
+/// DemandedMask bits of the result of Op are ever used downstream.  If we can
+/// use this information to simplify Op, create a new simplified DAG node and
+/// return true, returning the original and new nodes in Old and New. Otherwise,
+/// analyze the expression and return a mask of KnownOne and KnownZero bits for
+/// the expression (used to simplify the caller).  The KnownZero/One bits may
+/// only be accurate for those bits in the DemandedMask.
+bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
+                                          uint64_t &KnownZero,
+                                          uint64_t &KnownOne,
+                                          TargetLoweringOpt &TLO,
+                                          unsigned Depth) const {
+  KnownZero = KnownOne = 0;   // Don't know anything.
+
+  // The masks are not wide enough to represent this type!  Should use APInt.
+  if (Op.getValueType() == MVT::i128)
+    return false;
+  
+  // Other users may use these bits.
+  if (!Op.Val->hasOneUse()) { 
+    if (Depth != 0) {
+      // If not at the root, Just compute the KnownZero/KnownOne bits to 
+      // simplify things downstream.
+      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+      return false;
+    }
+    // If this is the root being simplified, allow it to have multiple uses,
+    // just set the DemandedMask to all bits.
+    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
+  } else if (DemandedMask == 0) {   
+    // Not demanding any bits from Op.
+    if (Op.getOpcode() != ISD::UNDEF)
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
+    return false;
+  } else if (Depth == 6) {        // Limit search depth.
+    return false;
+  }
+
+  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
+  switch (Op.getOpcode()) {
+  case ISD::Constant:
+    // We know all of the bits for a constant!
+    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
+    KnownZero = ~KnownOne & DemandedMask;
+    return false;   // Don't fall through, will infinitely loop.
+  case ISD::AND:
+    // If the RHS is a constant, check to see if the LHS would be zero without
+    // using the bits from the RHS.  Below, we use knowledge about the RHS to
+    // simplify the LHS, here we're using information from the LHS to simplify
+    // the RHS.
+    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      uint64_t LHSZero, LHSOne;
+      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
+                                LHSZero, LHSOne, Depth+1);
+      // If the LHS already has zeros where RHSC does, this and is dead.
+      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
+        return TLO.CombineTo(Op, Op.getOperand(0));
+      // If any of the set bits in the RHS are known zero on the LHS, shrink
+      // the constant.
+      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
+        return true;
+    }
+    
+    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
+                             KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
+                             KnownZero2, KnownOne2, TLO, Depth+1))
+      return true;
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
+      
+    // If all of the demanded bits are known one on one side, return the other.
+    // These bits cannot contribute to the result of the 'and'.
+    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
+      return TLO.CombineTo(Op, Op.getOperand(0));
+    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
+      return TLO.CombineTo(Op, Op.getOperand(1));
+    // If all of the demanded bits in the inputs are known zeros, return zero.
+    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
+      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
+    // If the RHS is a constant, see if we can simplify it.
+    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
+      return true;
+      
+    // Output known-1 bits are only known if set in both the LHS & RHS.
+    KnownOne &= KnownOne2;
+    // Output known-0 are known to be clear if zero in either the LHS | RHS.
+    KnownZero |= KnownZero2;
+    break;
+  case ISD::OR:
+    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
+                             KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, 
+                             KnownZero2, KnownOne2, TLO, Depth+1))
+      return true;
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
+    
+    // If all of the demanded bits are known zero on one side, return the other.
+    // These bits cannot contribute to the result of the 'or'.
+    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
+      return TLO.CombineTo(Op, Op.getOperand(0));
+    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
+      return TLO.CombineTo(Op, Op.getOperand(1));
+    // If all of the potentially set bits on one side are known to be set on
+    // the other side, just use the 'other' side.
+    if ((DemandedMask & (~KnownZero) & KnownOne2) == 
+        (DemandedMask & (~KnownZero)))
+      return TLO.CombineTo(Op, Op.getOperand(0));
+    if ((DemandedMask & (~KnownZero2) & KnownOne) == 
+        (DemandedMask & (~KnownZero2)))
+      return TLO.CombineTo(Op, Op.getOperand(1));
+    // If the RHS is a constant, see if we can simplify it.
+    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
+      return true;
+          
+    // Output known-0 bits are only known if clear in both the LHS & RHS.
+    KnownZero &= KnownZero2;
+    // Output known-1 are known to be set if set in either the LHS | RHS.
+    KnownOne |= KnownOne2;
+    break;
+  case ISD::XOR:
+    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
+                             KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
+                             KnownOne2, TLO, Depth+1))
+      return true;
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
+    
+    // If all of the demanded bits are known zero on one side, return the other.
+    // These bits cannot contribute to the result of the 'xor'.
+    if ((DemandedMask & KnownZero) == DemandedMask)
+      return TLO.CombineTo(Op, Op.getOperand(0));
+    if ((DemandedMask & KnownZero2) == DemandedMask)
+      return TLO.CombineTo(Op, Op.getOperand(1));
+      
+    // If all of the unknown bits are known to be zero on one side or the other
+    // (but not both) turn this into an *inclusive* or.
+    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
+                                               Op.getOperand(0),
+                                               Op.getOperand(1)));
+    
+    // Output known-0 bits are known if clear or set in both the LHS & RHS.
+    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+    // Output known-1 are known to be set if set in only one of the LHS, RHS.
+    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+    
+    // If all of the demanded bits on one side are known, and all of the set
+    // bits on that side are also known to be set on the other side, turn this
+    // into an AND, as we know the bits will be cleared.
+    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
+      if ((KnownOne & KnownOne2) == KnownOne) {
+        MVT::ValueType VT = Op.getValueType();
+        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
+                                                 ANDC));
+      }
+    }
+    
+    // If the RHS is a constant, see if we can simplify it.
+    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
+    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
+      return true;
+    
+    KnownZero = KnownZeroOut;
+    KnownOne  = KnownOneOut;
+    break;
+  case ISD::SETCC:
+    // If we know the result of a setcc has the top bits zero, use this info.
+    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
+      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
+    break;
+  case ISD::SELECT:
+    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, 
+                             KnownOne, TLO, Depth+1))
+      return true;
+    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
+                             KnownOne2, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
+    
+    // If the operands are constants, see if we can simplify them.
+    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
+      return true;
+    
+    // Only known if known in both the LHS and RHS.
+    KnownOne &= KnownOne2;
+    KnownZero &= KnownZero2;
+    break;
+  case ISD::SELECT_CC:
+    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, 
+                             KnownOne, TLO, Depth+1))
+      return true;
+    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
+                             KnownOne2, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
+    
+    // If the operands are constants, see if we can simplify them.
+    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
+      return true;
+      
+    // Only known if known in both the LHS and RHS.
+    KnownOne &= KnownOne2;
+    KnownZero &= KnownZero2;
+    break;
+  case ISD::SHL:
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned ShAmt = SA->getValue();
+      SDOperand InOp = Op.getOperand(0);
+
+      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
+      // single shift.  We can do this if the bottom bits (which are shifted
+      // out) are never demanded.
+      if (InOp.getOpcode() == ISD::SRL &&
+          isa<ConstantSDNode>(InOp.getOperand(1))) {
+        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
+          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
+          unsigned Opc = ISD::SHL;
+          int Diff = ShAmt-C1;
+          if (Diff < 0) {
+            Diff = -Diff;
+            Opc = ISD::SRL;
+          }          
+          
+          SDOperand NewSA = 
+            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+          MVT::ValueType VT = Op.getValueType();
+          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
+                                                   InOp.getOperand(0), NewSA));
+        }
+      }      
+      
+      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
+                               KnownZero, KnownOne, TLO, Depth+1))
+        return true;
+      KnownZero <<= SA->getValue();
+      KnownOne  <<= SA->getValue();
+      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
+    }
+    break;
+  case ISD::SRL:
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      MVT::ValueType VT = Op.getValueType();
+      unsigned ShAmt = SA->getValue();
+      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+      unsigned VTSize = MVT::getSizeInBits(VT);
+      SDOperand InOp = Op.getOperand(0);
+      
+      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
+      // single shift.  We can do this if the top bits (which are shifted out)
+      // are never demanded.
+      if (InOp.getOpcode() == ISD::SHL &&
+          isa<ConstantSDNode>(InOp.getOperand(1))) {
+        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
+          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
+          unsigned Opc = ISD::SRL;
+          int Diff = ShAmt-C1;
+          if (Diff < 0) {
+            Diff = -Diff;
+            Opc = ISD::SHL;
+          }          
+          
+          SDOperand NewSA =
+            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
+                                                   InOp.getOperand(0), NewSA));
+        }
+      }      
+      
+      // Compute the new bits that are at the top now.
+      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
+                               KnownZero, KnownOne, TLO, Depth+1))
+        return true;
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+      KnownZero &= TypeMask;
+      KnownOne  &= TypeMask;
+      KnownZero >>= ShAmt;
+      KnownOne  >>= ShAmt;
+
+      uint64_t HighBits = (1ULL << ShAmt)-1;
+      HighBits <<= VTSize - ShAmt;
+      KnownZero |= HighBits;  // High bits known zero.
+    }
+    break;
+  case ISD::SRA:
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      MVT::ValueType VT = Op.getValueType();
+      unsigned ShAmt = SA->getValue();
+      
+      // Compute the new bits that are at the top now.
+      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
+      
+      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
+
+      // If any of the demanded bits are produced by the sign extension, we also
+      // demand the input sign bit.
+      uint64_t HighBits = (1ULL << ShAmt)-1;
+      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
+      if (HighBits & DemandedMask)
+        InDemandedMask |= MVT::getIntVTSignBit(VT);
+      
+      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
+                               KnownZero, KnownOne, TLO, Depth+1))
+        return true;
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+      KnownZero &= TypeMask;
+      KnownOne  &= TypeMask;
+      KnownZero >>= ShAmt;
+      KnownOne  >>= ShAmt;
+      
+      // Handle the sign bits.
+      uint64_t SignBit = MVT::getIntVTSignBit(VT);
+      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
+      
+      // If the input sign bit is known to be zero, or if none of the top bits
+      // are demanded, turn this into an unsigned shift right.
+      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
+                                                 Op.getOperand(1)));
+      } else if (KnownOne & SignBit) { // New bits are known one.
+        KnownOne |= HighBits;
+      }
+    }
+    break;
+  case ISD::SIGN_EXTEND_INREG: {
+    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+
+    // Sign extension.  Compute the demanded bits in the result that are not 
+    // present in the input.
+    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
+    
+    // If none of the extended bits are demanded, eliminate the sextinreg.
+    if (NewBits == 0)
+      return TLO.CombineTo(Op, Op.getOperand(0));
+
+    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
+    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
+    
+    // Since the sign extended bits are demanded, we know that the sign
+    // bit is demanded.
+    InputDemandedBits |= InSignBit;
+
+    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+
+    // If the sign bit of the input is known set or clear, then we know the
+    // top bits of the result.
+    
+    // If the input sign bit is known zero, convert this into a zero extension.
+    if (KnownZero & InSignBit)
+      return TLO.CombineTo(Op, 
+                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
+    
+    if (KnownOne & InSignBit) {    // Input sign bit known set
+      KnownOne |= NewBits;
+      KnownZero &= ~NewBits;
+    } else {                       // Input sign bit unknown
+      KnownZero &= ~NewBits;
+      KnownOne &= ~NewBits;
+    }
+    break;
+  }
+  case ISD::CTTZ:
+  case ISD::CTLZ:
+  case ISD::CTPOP: {
+    MVT::ValueType VT = Op.getValueType();
+    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
+    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
+    KnownOne  = 0;
+    break;
+  }
+  case ISD::LOAD: {
+    if (ISD::isZEXTLoad(Op.Val)) {
+      LoadSDNode *LD = cast<LoadSDNode>(Op);
+      MVT::ValueType VT = LD->getLoadedVT();
+      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
+    }
+    break;
+  }
+  case ISD::ZERO_EXTEND: {
+    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
+    
+    // If none of the top bits are demanded, convert this into an any_extend.
+    uint64_t NewBits = (~InMask) & DemandedMask;
+    if (NewBits == 0)
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, 
+                                               Op.getValueType(), 
+                                               Op.getOperand(0)));
+    
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    KnownZero |= NewBits;
+    break;
+  }
+  case ISD::SIGN_EXTEND: {
+    MVT::ValueType InVT = Op.getOperand(0).getValueType();
+    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
+    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
+    uint64_t NewBits   = (~InMask) & DemandedMask;
+    
+    // If none of the top bits are demanded, convert this into an any_extend.
+    if (NewBits == 0)
+      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
+                                           Op.getOperand(0)));
+    
+    // Since some of the sign extended bits are demanded, we know that the sign
+    // bit is demanded.
+    uint64_t InDemandedBits = DemandedMask & InMask;
+    InDemandedBits |= InSignBit;
+    
+    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
+                             KnownOne, TLO, Depth+1))
+      return true;
+    
+    // If the sign bit is known zero, convert this to a zero extend.
+    if (KnownZero & InSignBit)
+      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, 
+                                               Op.getValueType(), 
+                                               Op.getOperand(0)));
+    
+    // If the sign bit is known one, the top bits match.
+    if (KnownOne & InSignBit) {
+      KnownOne  |= NewBits;
+      KnownZero &= ~NewBits;
+    } else {   // Otherwise, top bits aren't known.
+      KnownOne  &= ~NewBits;
+      KnownZero &= ~NewBits;
+    }
+    break;
+  }
+  case ISD::ANY_EXTEND: {
+    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    break;
+  }
+  case ISD::TRUNCATE: {
+    // Simplify the input, using demanded bit information, and compute the known
+    // zero/one bits live out.
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    
+    // If the input is only used by this truncate, see if we can shrink it based
+    // on the known demanded bits.
+    if (Op.getOperand(0).Val->hasOneUse()) {
+      SDOperand In = Op.getOperand(0);
+      switch (In.getOpcode()) {
+      default: break;
+      case ISD::SRL:
+        // Shrink SRL by a constant if none of the high bits shifted in are
+        // demanded.
+        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
+          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
+          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
+          HighBits >>= ShAmt->getValue();
+          
+          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
+              (DemandedMask & HighBits) == 0) {
+            // None of the shifted in bits are needed.  Add a truncate of the
+            // shift input, then shift it.
+            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, 
+                                                 Op.getValueType(), 
+                                                 In.getOperand(0));
+            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
+                                                   NewTrunc, In.getOperand(1)));
+          }
+        }
+        break;
+      }
+    }
+    
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
+    KnownZero &= OutMask;
+    KnownOne &= OutMask;
+    break;
+  }
+  case ISD::AssertZext: {
+    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+    uint64_t InMask = MVT::getIntVTBitMask(VT);
+    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
+                             KnownZero, KnownOne, TLO, Depth+1))
+      return true;
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    KnownZero |= ~InMask & DemandedMask;
+    break;
+  }
+  case ISD::ADD:
+  case ISD::SUB:
+  case ISD::INTRINSIC_WO_CHAIN:
+  case ISD::INTRINSIC_W_CHAIN:
+  case ISD::INTRINSIC_VOID:
+    // Just use ComputeMaskedBits to compute output bits.
+    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+    break;
+  }
+  
+  // If we know the value of all of the demanded bits, return this as a
+  // constant.
+  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
+    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
+  
+  return false;
+}
+
+/// computeMaskedBitsForTargetNode - Determine which of the bits specified 
+/// in Mask are known to be either zero or one and return them in the 
+/// KnownZero/KnownOne bitsets.
+void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 
+                                                    uint64_t Mask,
+                                                    uint64_t &KnownZero, 
+                                                    uint64_t &KnownOne,
+                                                    const SelectionDAG &DAG,
+                                                    unsigned Depth) const {
+  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+         "Should use MaskedValueIsZero if you don't know whether Op"
+         " is a target node!");
+  KnownZero = 0;
+  KnownOne = 0;
+}
+
+/// ComputeNumSignBitsForTargetNode - This method can be implemented by
+/// targets that want to expose additional information about sign bits to the
+/// DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
+                                                         unsigned Depth) const {
+  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+         "Should use ComputeNumSignBits if you don't know whether Op"
+         " is a target node!");
+  return 1;
+}
+
+
+/// SimplifySetCC - Try to simplify a setcc built with the specified operands 
+/// and cc. If it is unable to simplify it, return a null SDOperand.
+SDOperand
+TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
+                              ISD::CondCode Cond, bool foldBooleans,
+                              DAGCombinerInfo &DCI) const {
+  SelectionDAG &DAG = DCI.DAG;
+
+  // These setcc operations always fold.
+  switch (Cond) {
+  default: break;
+  case ISD::SETFALSE:
+  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
+  case ISD::SETTRUE:
+  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
+  }
+
+  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
+    uint64_t C1 = N1C->getValue();
+    if (isa<ConstantSDNode>(N0.Val)) {
+      return DAG.FoldSetCC(VT, N0, N1, Cond);
+    } else {
+      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+      // equality comparison, then we're just comparing whether X itself is
+      // zero.
+      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
+          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+          N0.getOperand(1).getOpcode() == ISD::Constant) {
+        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
+          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+            // (srl (ctlz x), 5) == 0  -> X != 0
+            // (srl (ctlz x), 5) != 1  -> X != 0
+            Cond = ISD::SETNE;
+          } else {
+            // (srl (ctlz x), 5) != 0  -> X == 0
+            // (srl (ctlz x), 5) == 1  -> X == 0
+            Cond = ISD::SETEQ;
+          }
+          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
+          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
+                              Zero, Cond);
+        }
+      }
+      
+      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
+
+        // If the comparison constant has bits in the upper part, the
+        // zero-extended value could never match.
+        if (C1 & (~0ULL << InSize)) {
+          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
+          switch (Cond) {
+          case ISD::SETUGT:
+          case ISD::SETUGE:
+          case ISD::SETEQ: return DAG.getConstant(0, VT);
+          case ISD::SETULT:
+          case ISD::SETULE:
+          case ISD::SETNE: return DAG.getConstant(1, VT);
+          case ISD::SETGT:
+          case ISD::SETGE:
+            // True if the sign bit of C1 is set.
+            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
+          case ISD::SETLT:
+          case ISD::SETLE:
+            // True if the sign bit of C1 isn't set.
+            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
+          default:
+            break;
+          }
+        }
+
+        // Otherwise, we can perform the comparison with the low bits.
+        switch (Cond) {
+        case ISD::SETEQ:
+        case ISD::SETNE:
+        case ISD::SETUGT:
+        case ISD::SETUGE:
+        case ISD::SETULT:
+        case ISD::SETULE:
+          return DAG.getSetCC(VT, N0.getOperand(0),
+                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
+                          Cond);
+        default:
+          break;   // todo, be more careful with signed comparisons
+        }
+      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
+        MVT::ValueType ExtDstTy = N0.getValueType();
+        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
+
+        // If the extended part has any inconsistent bits, it cannot ever
+        // compare equal.  In other words, they have to be all ones or all
+        // zeros.
+        uint64_t ExtBits =
+          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
+        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
+          return DAG.getConstant(Cond == ISD::SETNE, VT);
+        
+        SDOperand ZextOp;
+        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
+        if (Op0Ty == ExtSrcTy) {
+          ZextOp = N0.getOperand(0);
+        } else {
+          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
+          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
+                               DAG.getConstant(Imm, Op0Ty));
+        }
+        if (!DCI.isCalledByLegalizer())
+          DCI.AddToWorklist(ZextOp.Val);
+        // Otherwise, make this a use of a zext.
+        return DAG.getSetCC(VT, ZextOp, 
+                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), 
+                                            ExtDstTy),
+                            Cond);
+      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
+                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+        
+        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
+        if (N0.getOpcode() == ISD::SETCC) {
+          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
+          if (TrueWhenTrue)
+            return N0;
+          
+          // Invert the condition.
+          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+          CC = ISD::getSetCCInverse(CC, 
+                               MVT::isInteger(N0.getOperand(0).getValueType()));
+          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
+        }
+        
+        if ((N0.getOpcode() == ISD::XOR ||
+             (N0.getOpcode() == ISD::AND && 
+              N0.getOperand(0).getOpcode() == ISD::XOR &&
+              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+            isa<ConstantSDNode>(N0.getOperand(1)) &&
+            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
+          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
+          // can only do this if the top bits are known zero.
+          if (DAG.MaskedValueIsZero(N0,
+                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
+            // Okay, get the un-inverted input value.
+            SDOperand Val;
+            if (N0.getOpcode() == ISD::XOR)
+              Val = N0.getOperand(0);
+            else {
+              assert(N0.getOpcode() == ISD::AND && 
+                     N0.getOperand(0).getOpcode() == ISD::XOR);
+              // ((X^1)&1)^1 -> X & 1
+              Val = DAG.getNode(ISD::AND, N0.getValueType(),
+                                N0.getOperand(0).getOperand(0),
+                                N0.getOperand(1));
+            }
+            return DAG.getSetCC(VT, Val, N1,
+                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+          }
+        }
+      }
+      
+      uint64_t MinVal, MaxVal;
+      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
+      if (ISD::isSignedIntSetCC(Cond)) {
+        MinVal = 1ULL << (OperandBitSize-1);
+        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
+          MaxVal = ~0ULL >> (65-OperandBitSize);
+        else
+          MaxVal = 0;
+      } else {
+        MinVal = 0;
+        MaxVal = ~0ULL >> (64-OperandBitSize);
+      }
+
+      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
+        --C1;                                          // X >= C0 --> X > (C0-1)
+        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
+                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+      }
+
+      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
+        ++C1;                                          // X <= C0 --> X < (C0+1)
+        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
+                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+      }
+
+      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
+        return DAG.getConstant(0, VT);      // X < MIN --> false
+      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
+        return DAG.getConstant(1, VT);      // X >= MIN --> true
+      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
+        return DAG.getConstant(0, VT);      // X > MAX --> false
+      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
+        return DAG.getConstant(1, VT);      // X <= MAX --> true
+
+      // Canonicalize setgt X, Min --> setne X, Min
+      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
+        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
+      // Canonicalize setlt X, Max --> setne X, Max
+      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
+        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
+
+      // If we have setult X, 1, turn it into seteq X, 0
+      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
+        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
+                        ISD::SETEQ);
+      // If we have setugt X, Max-1, turn it into seteq X, Max
+      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
+        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
+                        ISD::SETEQ);
+
+      // If we have "setcc X, C0", check to see if we can shrink the immediate
+      // by changing cc.
+
+      // SETUGT X, SINTMAX  -> SETLT X, 0
+      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
+          C1 == (~0ULL >> (65-OperandBitSize)))
+        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
+                            ISD::SETLT);
+
+      // FIXME: Implement the rest of these.
+
+      // Fold bit comparisons when we can.
+      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
+        if (ConstantSDNode *AndRHS =
+                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
+            // Perform the xform if the AND RHS is a single bit.
+            if (isPowerOf2_64(AndRHS->getValue())) {
+              return DAG.getNode(ISD::SRL, VT, N0,
+                             DAG.getConstant(Log2_64(AndRHS->getValue()),
+                                             getShiftAmountTy()));
+            }
+          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
+            // (X & 8) == 8  -->  (X & 8) >> 3
+            // Perform the xform if C1 is a single bit.
+            if (isPowerOf2_64(C1)) {
+              return DAG.getNode(ISD::SRL, VT, N0,
+                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
+            }
+          }
+        }
+    }
+  } else if (isa<ConstantSDNode>(N0.Val)) {
+      // Ensure that the constant occurs on the RHS.
+    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
+  }
+
+  if (isa<ConstantFPSDNode>(N0.Val)) {
+    // Constant fold or commute setcc.
+    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);    
+    if (O.Val) return O;
+  }
+
+  if (N0 == N1) {
+    // We can always fold X == X for integer setcc's.
+    if (MVT::isInteger(N0.getValueType()))
+      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+    unsigned UOF = ISD::getUnorderedFlavor(Cond);
+    if (UOF == 2)   // FP operators that are undefined on NaNs.
+      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
+      return DAG.getConstant(UOF, VT);
+    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
+    // if it is not already.
+    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
+    if (NewCond != Cond)
+      return DAG.getSetCC(VT, N0, N1, NewCond);
+  }
+
+  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+      MVT::isInteger(N0.getValueType())) {
+    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
+        N0.getOpcode() == ISD::XOR) {
+      // Simplify (X+Y) == (X+Z) -->  Y == Z
+      if (N0.getOpcode() == N1.getOpcode()) {
+        if (N0.getOperand(0) == N1.getOperand(0))
+          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
+        if (N0.getOperand(1) == N1.getOperand(1))
+          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
+        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
+          // If X op Y == Y op X, try other combinations.
+          if (N0.getOperand(0) == N1.getOperand(1))
+            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
+          if (N0.getOperand(1) == N1.getOperand(0))
+            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
+        }
+      }
+      
+      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
+        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+          // Turn (X+C1) == C2 --> X == C2-C1
+          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
+            return DAG.getSetCC(VT, N0.getOperand(0),
+                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
+                                N0.getValueType()), Cond);
+          }
+          
+          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
+          if (N0.getOpcode() == ISD::XOR)
+            // If we know that all of the inverted bits are zero, don't bother
+            // performing the inversion.
+            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
+              return DAG.getSetCC(VT, N0.getOperand(0),
+                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
+                                              N0.getValueType()), Cond);
+        }
+        
+        // Turn (C1-X) == C2 --> X == C1-C2
+        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
+          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
+            return DAG.getSetCC(VT, N0.getOperand(1),
+                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
+                                             N0.getValueType()), Cond);
+          }
+        }          
+      }
+
+      // Simplify (X+Z) == X -->  Z == 0
+      if (N0.getOperand(0) == N1)
+        return DAG.getSetCC(VT, N0.getOperand(1),
+                        DAG.getConstant(0, N0.getValueType()), Cond);
+      if (N0.getOperand(1) == N1) {
+        if (DAG.isCommutativeBinOp(N0.getOpcode()))
+          return DAG.getSetCC(VT, N0.getOperand(0),
+                          DAG.getConstant(0, N0.getValueType()), Cond);
+        else if (N0.Val->hasOneUse()) {
+          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
+          // (Z-X) == X  --> Z == X<<1
+          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
+                                     N1, 
+                                     DAG.getConstant(1, getShiftAmountTy()));
+          if (!DCI.isCalledByLegalizer())
+            DCI.AddToWorklist(SH.Val);
+          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
+        }
+      }
+    }
+
+    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
+        N1.getOpcode() == ISD::XOR) {
+      // Simplify  X == (X+Z) -->  Z == 0
+      if (N1.getOperand(0) == N0) {
+        return DAG.getSetCC(VT, N1.getOperand(1),
+                        DAG.getConstant(0, N1.getValueType()), Cond);
+      } else if (N1.getOperand(1) == N0) {
+        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
+          return DAG.getSetCC(VT, N1.getOperand(0),
+                          DAG.getConstant(0, N1.getValueType()), Cond);
+        } else if (N1.Val->hasOneUse()) {
+          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
+          // X == (Z-X)  --> X<<1 == Z
+          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, 
+                                     DAG.getConstant(1, getShiftAmountTy()));
+          if (!DCI.isCalledByLegalizer())
+            DCI.AddToWorklist(SH.Val);
+          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
+        }
+      }
+    }
+  }
+
+  // Fold away ALL boolean setcc's.
+  SDOperand Temp;
+  if (N0.getValueType() == MVT::i1 && foldBooleans) {
+    switch (Cond) {
+    default: assert(0 && "Unknown integer setcc!");
+    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
+      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
+      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
+      if (!DCI.isCalledByLegalizer())
+        DCI.AddToWorklist(Temp.Val);
+      break;
+    case ISD::SETNE:  // X != Y   -->  (X^Y)
+      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
+      break;
+    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
+    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
+      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
+      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
+      if (!DCI.isCalledByLegalizer())
+        DCI.AddToWorklist(Temp.Val);
+      break;
+    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
+    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
+      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
+      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
+      if (!DCI.isCalledByLegalizer())
+        DCI.AddToWorklist(Temp.Val);
+      break;
+    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
+    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
+      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
+      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
+      if (!DCI.isCalledByLegalizer())
+        DCI.AddToWorklist(Temp.Val);
+      break;
+    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
+    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
+      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
+      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
+      break;
+    }
+    if (VT != MVT::i1) {
+      if (!DCI.isCalledByLegalizer())
+        DCI.AddToWorklist(N0.Val);
+      // FIXME: If running after legalize, we probably can't do this.
+      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
+    }
+    return N0;
+  }
+
+  // Could not fold it.
+  return SDOperand();
+}
+
+SDOperand TargetLowering::
+PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
+  // Default implementation: no optimization.
+  return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+//  Inline Assembler Implementation Methods
+//===----------------------------------------------------------------------===//
+
+TargetLowering::ConstraintType
+TargetLowering::getConstraintType(const std::string &Constraint) const {
+  // FIXME: lots more standard ones to handle.
+  if (Constraint.size() == 1) {
+    switch (Constraint[0]) {
+    default: break;
+    case 'r': return C_RegisterClass;
+    case 'm':    // memory
+    case 'o':    // offsetable
+    case 'V':    // not offsetable
+      return C_Memory;
+    case 'i':    // Simple Integer or Relocatable Constant
+    case 'n':    // Simple Integer
+    case 's':    // Relocatable Constant
+    case 'X':    // Allow ANY value.
+    case 'I':    // Target registers.
+    case 'J':
+    case 'K':
+    case 'L':
+    case 'M':
+    case 'N':
+    case 'O':
+    case 'P':
+      return C_Other;
+    }
+  }
+  
+  if (Constraint.size() > 1 && Constraint[0] == '{' && 
+      Constraint[Constraint.size()-1] == '}')
+    return C_Register;
+  return C_Unknown;
+}
+
+/// isOperandValidForConstraint - Return the specified operand (possibly
+/// modified) if the specified SDOperand is valid for the specified target
+/// constraint letter, otherwise return null.
+SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
+                                                      char ConstraintLetter,
+                                                      SelectionDAG &DAG) {
+  switch (ConstraintLetter) {
+  default: break;
+  case 'i':    // Simple Integer or Relocatable Constant
+  case 'n':    // Simple Integer
+  case 's':    // Relocatable Constant
+  case 'X': {  // Allows any operand.
+    // These operands are interested in values of the form (GV+C), where C may
+    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
+    // is possible and fine if either GV or C are missing.
+    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
+    
+    // If we have "(add GV, C)", pull out GV/C
+    if (Op.getOpcode() == ISD::ADD) {
+      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
+      if (C == 0 || GA == 0) {
+        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
+      }
+      if (C == 0 || GA == 0)
+        C = 0, GA = 0;
+    }
+    
+    // If we find a valid operand, map to the TargetXXX version so that the
+    // value itself doesn't get selected.
+    if (GA) {   // Either &GV   or   &GV+C
+      if (ConstraintLetter != 'n') {
+        int64_t Offs = GA->getOffset();
+        if (C) Offs += C->getValue();
+        return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
+                                          Offs);
+      }
+    }
+    if (C) {   // just C, no GV.
+      // Simple constants are not allowed for 's'.
+      if (ConstraintLetter != 's')
+        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
+    }
+    break;
+  }
+  }
+  return SDOperand(0,0);
+}
+
+std::vector<unsigned> TargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+                                  MVT::ValueType VT) const {
+  return std::vector<unsigned>();
+}
+
+
+std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+                             MVT::ValueType VT) const {
+  if (Constraint[0] != '{')
+    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
+  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
+
+  // Remove the braces from around the name.
+  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
+
+  // Figure out which register class contains this reg.
+  const MRegisterInfo *RI = TM.getRegisterInfo();
+  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
+       E = RI->regclass_end(); RCI != E; ++RCI) {
+    const TargetRegisterClass *RC = *RCI;
+    
+    // If none of the the value types for this register class are valid, we 
+    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
+    bool isLegal = false;
+    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+         I != E; ++I) {
+      if (isTypeLegal(*I)) {
+        isLegal = true;
+        break;
+      }
+    }
+    
+    if (!isLegal) continue;
+    
+    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
+         I != E; ++I) {
+      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
+        return std::make_pair(*I, RC);
+    }
+  }
+  
+  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
+}
+
+//===----------------------------------------------------------------------===//
+//  Loop Strength Reduction hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
+                                           const Type *Ty) const {
+  // The default implementation of this implements a conservative RISCy, r+r and
+  // r+i addr mode.
+
+  // Allows a sign-extended 16-bit immediate field.
+  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+    return false;
+  
+  // No global is ever allowed as a base.
+  if (AM.BaseGV)
+    return false;
+  
+  // Only support r+r, 
+  switch (AM.Scale) {
+  case 0:  // "r+i" or just "i", depending on HasBaseReg.
+    break;
+  case 1:
+    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
+      return false;
+    // Otherwise we have r+r or r+i.
+    break;
+  case 2:
+    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
+      return false;
+    // Allow 2*r as r+r.
+    break;
+  }
+  
+  return true;
+}
+
+// Magic for divide replacement
+
+struct ms {
+  int64_t m;  // magic number
+  int64_t s;  // shift amount
+};
+
+struct mu {
+  uint64_t m; // magic number
+  int64_t a;  // add indicator
+  int64_t s;  // shift amount
+};
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic32(int32_t d) {
+  int32_t p;
+  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
+  const uint32_t two31 = 0x80000000U;
+  struct ms mag;
+  
+  ad = abs(d);
+  t = two31 + ((uint32_t)d >> 31);
+  anc = t - 1 - t%ad;   // absolute value of nc
+  p = 31;               // initialize p
+  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
+  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
+  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
+  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
+  do {
+    p = p + 1;
+    q1 = 2*q1;        // update q1 = 2p/abs(nc)
+    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
+    if (r1 >= anc) {  // must be unsigned comparison
+      q1 = q1 + 1;
+      r1 = r1 - anc;
+    }
+    q2 = 2*q2;        // update q2 = 2p/abs(d)
+    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
+    if (r2 >= ad) {   // must be unsigned comparison
+      q2 = q2 + 1;
+      r2 = r2 - ad;
+    }
+    delta = ad - r2;
+  } while (q1 < delta || (q1 == delta && r1 == 0));
+  
+  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
+  if (d < 0) mag.m = -mag.m; // resulting magic number
+  mag.s = p - 32;            // resulting shift
+  return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
+static mu magicu32(uint32_t d) {
+  int32_t p;
+  uint32_t nc, delta, q1, r1, q2, r2;
+  struct mu magu;
+  magu.a = 0;               // initialize "add" indicator
+  nc = - 1 - (-d)%d;
+  p = 31;                   // initialize p
+  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
+  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
+  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
+  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
+  do {
+    p = p + 1;
+    if (r1 >= nc - r1 ) {
+      q1 = 2*q1 + 1;  // update q1
+      r1 = 2*r1 - nc; // update r1
+    }
+    else {
+      q1 = 2*q1; // update q1
+      r1 = 2*r1; // update r1
+    }
+    if (r2 + 1 >= d - r2) {
+      if (q2 >= 0x7FFFFFFF) magu.a = 1;
+      q2 = 2*q2 + 1;     // update q2
+      r2 = 2*r2 + 1 - d; // update r2
+    }
+    else {
+      if (q2 >= 0x80000000) magu.a = 1;
+      q2 = 2*q2;     // update q2
+      r2 = 2*r2 + 1; // update r2
+    }
+    delta = d - 1 - r2;
+  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
+  magu.m = q2 + 1; // resulting magic number
+  magu.s = p - 32;  // resulting shift
+  return magu;
+}
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic64(int64_t d) {
+  int64_t p;
+  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
+  const uint64_t two63 = 9223372036854775808ULL; // 2^63
+  struct ms mag;
+  
+  ad = d >= 0 ? d : -d;
+  t = two63 + ((uint64_t)d >> 63);
+  anc = t - 1 - t%ad;   // absolute value of nc
+  p = 63;               // initialize p
+  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
+  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
+  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
+  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
+  do {
+    p = p + 1;
+    q1 = 2*q1;        // update q1 = 2p/abs(nc)
+    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
+    if (r1 >= anc) {  // must be unsigned comparison
+      q1 = q1 + 1;
+      r1 = r1 - anc;
+    }
+    q2 = 2*q2;        // update q2 = 2p/abs(d)
+    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
+    if (r2 >= ad) {   // must be unsigned comparison
+      q2 = q2 + 1;
+      r2 = r2 - ad;
+    }
+    delta = ad - r2;
+  } while (q1 < delta || (q1 == delta && r1 == 0));
+  
+  mag.m = q2 + 1;
+  if (d < 0) mag.m = -mag.m; // resulting magic number
+  mag.s = p - 64;            // resulting shift
+  return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
+static mu magicu64(uint64_t d)
+{
+  int64_t p;
+  uint64_t nc, delta, q1, r1, q2, r2;
+  struct mu magu;
+  magu.a = 0;               // initialize "add" indicator
+  nc = - 1 - (-d)%d;
+  p = 63;                   // initialize p
+  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
+  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
+  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
+  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
+  do {
+    p = p + 1;
+    if (r1 >= nc - r1 ) {
+      q1 = 2*q1 + 1;  // update q1
+      r1 = 2*r1 - nc; // update r1
+    }
+    else {
+      q1 = 2*q1; // update q1
+      r1 = 2*r1; // update r1
+    }
+    if (r2 + 1 >= d - r2) {
+      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
+      q2 = 2*q2 + 1;     // update q2
+      r2 = 2*r2 + 1 - d; // update r2
+    }
+    else {
+      if (q2 >= 0x8000000000000000ull) magu.a = 1;
+      q2 = 2*q2;     // update q2
+      r2 = 2*r2 + 1; // update r2
+    }
+    delta = d - 1 - r2;
+  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
+  magu.m = q2 + 1; // resulting magic number
+  magu.s = p - 64;  // resulting shift
+  return magu;
+}
+
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
+                                    std::vector<SDNode*>* Created) const {
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // Check to see if we can do this.
+  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
+    return SDOperand();       // BuildSDIV only operates on i32 or i64
+  if (!isOperationLegal(ISD::MULHS, VT))
+    return SDOperand();       // Make sure the target supports MULHS.
+  
+  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
+  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
+  
+  // Multiply the numerator (operand 0) by the magic value
+  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
+                            DAG.getConstant(magics.m, VT));
+  // If d > 0 and m < 0, add the numerator
+  if (d > 0 && magics.m < 0) { 
+    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // If d < 0 and m > 0, subtract the numerator.
+  if (d < 0 && magics.m > 0) {
+    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // Shift right algebraic if shift value is nonzero
+  if (magics.s > 0) {
+    Q = DAG.getNode(ISD::SRA, VT, Q, 
+                    DAG.getConstant(magics.s, getShiftAmountTy()));
+    if (Created)
+      Created->push_back(Q.Val);
+  }
+  // Extract the sign bit and add it to the quotient
+  SDOperand T =
+    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
+                                                 getShiftAmountTy()));
+  if (Created)
+    Created->push_back(T.Val);
+  return DAG.getNode(ISD::ADD, VT, Q, T);
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
+                                    std::vector<SDNode*>* Created) const {
+  MVT::ValueType VT = N->getValueType(0);
+  
+  // Check to see if we can do this.
+  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
+    return SDOperand();       // BuildUDIV only operates on i32 or i64
+  if (!isOperationLegal(ISD::MULHU, VT))
+    return SDOperand();       // Make sure the target supports MULHU.
+  
+  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
+  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
+  
+  // Multiply the numerator (operand 0) by the magic value
+  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
+                            DAG.getConstant(magics.m, VT));
+  if (Created)
+    Created->push_back(Q.Val);
+
+  if (magics.a == 0) {
+    return DAG.getNode(ISD::SRL, VT, Q, 
+                       DAG.getConstant(magics.s, getShiftAmountTy()));
+  } else {
+    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
+    if (Created)
+      Created->push_back(NPQ.Val);
+    NPQ = DAG.getNode(ISD::SRL, VT, NPQ, 
+                      DAG.getConstant(1, getShiftAmountTy()));
+    if (Created)
+      Created->push_back(NPQ.Val);
+    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
+    if (Created)
+      Created->push_back(NPQ.Val);
+    return DAG.getNode(ISD::SRL, VT, NPQ, 
+                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
+  }
+}