It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000..bbddb95
--- /dev/null
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,809 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetData.h"
+#include <math.h>
+using namespace llvm;
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals , "Number of global vars initialized");
+
+ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
+ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
+
+ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
+ LazyCompilationDisabled = false;
+ Modules.push_back(P);
+ assert(P && "ModuleProvider is null?");
+}
+
+ExecutionEngine::ExecutionEngine(Module *M) {
+ LazyCompilationDisabled = false;
+ assert(M && "Module is null?");
+ Modules.push_back(new ExistingModuleProvider(M));
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ clearAllGlobalMappings();
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ delete Modules[i];
+}
+
+/// FindFunctionNamed - Search all of the active modules to find the one that
+/// defines FnName. This is very slow operation and shouldn't be used for
+/// general code.
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Function *F = Modules[i]->getModule()->getFunction(FnName))
+ return F;
+ }
+ return 0;
+}
+
+
+/// addGlobalMapping - Tell the execution engine that the specified global is
+/// at the specified location. This is used internally as functions are JIT'd
+/// and as global variables are laid out in memory. It can and should also be
+/// used by clients of the EE that want to have an LLVM global overlay
+/// existing data in memory.
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ void *&CurVal = state.getGlobalAddressMap(locked)[GV];
+ assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too
+ if (!state.getGlobalAddressReverseMap(locked).empty()) {
+ const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+}
+
+/// clearAllGlobalMappings - Clear all global mappings and start over again
+/// use in dynamic compilation scenarios when you want to move globals
+void ExecutionEngine::clearAllGlobalMappings() {
+ MutexGuard locked(lock);
+
+ state.getGlobalAddressMap(locked).clear();
+ state.getGlobalAddressReverseMap(locked).clear();
+}
+
+/// updateGlobalMapping - Replace an existing mapping for GV with a new
+/// address. This updates both maps as required. If "Addr" is null, the
+/// entry for the global is removed from the mappings.
+void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ // Deleting from the mapping?
+ if (Addr == 0) {
+ state.getGlobalAddressMap(locked).erase(GV);
+ if (!state.getGlobalAddressReverseMap(locked).empty())
+ state.getGlobalAddressReverseMap(locked).erase(Addr);
+ return;
+ }
+
+ void *&CurVal = state.getGlobalAddressMap(locked)[GV];
+ if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
+ state.getGlobalAddressReverseMap(locked).erase(CurVal);
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too
+ if (!state.getGlobalAddressReverseMap(locked).empty()) {
+ const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+}
+
+/// getPointerToGlobalIfAvailable - This returns the address of the specified
+/// global value if it is has already been codegen'd, otherwise it returns null.
+///
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+
+ std::map<const GlobalValue*, void*>::iterator I =
+ state.getGlobalAddressMap(locked).find(GV);
+ return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
+}
+
+/// getGlobalValueAtAddress - Return the LLVM global value object that starts
+/// at the specified address.
+///
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (state.getGlobalAddressReverseMap(locked).empty()) {
+ for (std::map<const GlobalValue*, void *>::iterator
+ I = state.getGlobalAddressMap(locked).begin(),
+ E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
+ state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
+ I->first));
+ }
+
+ std::map<void *, const GlobalValue*>::iterator I =
+ state.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+// CreateArgv - Turn a vector of strings into a nice argv style array of
+// pointers to null terminated strings.
+//
+static void *CreateArgv(ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ unsigned PtrSize = EE->getTargetData()->getPointerSize();
+ char *Result = new char[(InputArgv.size()+1)*PtrSize];
+
+ DOUT << "ARGV = " << (void*)Result << "\n";
+ const Type *SBytePtr = PointerType::get(Type::Int8Ty);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ char *Dest = new char[Size];
+ DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ Dest[Size-1] = 0;
+
+ // Endian safe: Result[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
+ SBytePtr);
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(0),
+ (GenericValue*)(Result+InputArgv.size()*PtrSize),
+ SBytePtr);
+ return Result;
+}
+
+
+/// runStaticConstructorsDestructors - This method is used to execute all of
+/// the static constructors or destructors for a program, depending on the
+/// value of isDtors.
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+ const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+
+ // Execute global ctors/dtors for each module in the program.
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
+
+ // Should be an array of '{ int, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) continue;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (ConstantStruct *CS =
+ dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
+ if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ break; // Found a null terminator, exit.
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+ if (Function *F = dyn_cast<Function>(FP)) {
+ // Execute the ctor/dtor function!
+ runFunction(F, std::vector<GenericValue>());
+ }
+ }
+ }
+}
+
+/// runFunctionAsMain - This is a helper function which wraps runFunction to
+/// handle the common task of starting up main with the specified argc, argv,
+/// and envp parameters.
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = APInt(32, argv.size());
+
+ // Check main() type
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ const FunctionType *FTy = Fn->getFunctionType();
+ const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty));
+ switch (NumArgs) {
+ case 3:
+ if (FTy->getParamType(2) != PPInt8Ty) {
+ cerr << "Invalid type for third argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 2:
+ if (FTy->getParamType(1) != PPInt8Ty) {
+ cerr << "Invalid type for second argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 1:
+ if (FTy->getParamType(0) != Type::Int32Ty) {
+ cerr << "Invalid type for first argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 0:
+ if (FTy->getReturnType() != Type::Int32Ty &&
+ FTy->getReturnType() != Type::VoidTy) {
+ cerr << "Invalid return type of main() supplied\n";
+ abort();
+ }
+ break;
+ default:
+ cerr << "Invalid number of arguments of main() supplied\n";
+ abort();
+ }
+
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
+ assert(((char **)GVTOP(GVArgs[1]))[0] &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.push_back(envp[i]);
+ GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
+ }
+ }
+ }
+ return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+/// If possible, create a JIT, unless the caller specifically requests an
+/// Interpreter or there's an error. If even an Interpreter cannot be created,
+/// NULL is returned.
+///
+ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
+ bool ForceInterpreter,
+ std::string *ErrorStr) {
+ ExecutionEngine *EE = 0;
+
+ // Unless the interpreter was explicitly selected, try making a JIT.
+ if (!ForceInterpreter && JITCtor)
+ EE = JITCtor(MP, ErrorStr);
+
+ // If we can't make a JIT, make an interpreter instead.
+ if (EE == 0 && InterpCtor)
+ EE = InterpCtor(MP, ErrorStr);
+
+ if (EE) {
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ try {
+ sys::DynamicLibrary::LoadLibraryPermanently(0);
+ } catch (...) {
+ }
+ }
+
+ return EE;
+}
+
+/// getPointerToGlobal - This returns the address of the specified global
+/// value. This may involve code generation if it's a function.
+///
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ void *p = state.getGlobalAddressMap(locked)[GV];
+ if (p)
+ return p;
+
+ // Global variable might have been added since interpreter started.
+ if (GlobalVariable *GVar =
+ const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+ EmitGlobalVariable(GVar);
+ else
+ assert(0 && "Global hasn't had an address allocated yet!");
+ return state.getGlobalAddressMap(locked)[GV];
+}
+
+/// This function converts a Constant* into a GenericValue. The interesting
+/// part is if C is a ConstantExpr.
+/// @brief Get a GenericValue for a Constnat*
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ // If its undefined, return the garbage.
+ if (isa<UndefValue>(C))
+ return GenericValue();
+
+ // If the value is a ConstantExpr
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ Constant *Op0 = CE->getOperand(0);
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // Compute the index
+ GenericValue Result = getConstantValue(Op0);
+ SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
+ uint64_t Offset =
+ TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
+
+ char* tmp = (char*) Result.PointerVal;
+ Result = PTOGV(tmp + Offset);
+ return Result;
+ }
+ case Instruction::Trunc: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.trunc(BitWidth);
+ return GV;
+ }
+ case Instruction::ZExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.zext(BitWidth);
+ return GV;
+ }
+ case Instruction::SExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.sext(BitWidth);
+ return GV;
+ }
+ case Instruction::FPTrunc: {
+ GenericValue GV = getConstantValue(Op0);
+ GV.FloatVal = float(GV.DoubleVal);
+ return GV;
+ }
+ case Instruction::FPExt:{
+ GenericValue GV = getConstantValue(Op0);
+ GV.DoubleVal = double(GV.FloatVal);
+ return GV;
+ }
+ case Instruction::UIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType() == Type::FloatTy)
+ GV.FloatVal = float(GV.IntVal.roundToDouble());
+ else
+ GV.DoubleVal = GV.IntVal.roundToDouble();
+ return GV;
+ }
+ case Instruction::SIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType() == Type::FloatTy)
+ GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+ else
+ GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+ return GV;
+ }
+ case Instruction::FPToUI: // double->APInt conversion handles sign
+ case Instruction::FPToSI: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ if (Op0->getType() == Type::FloatTy)
+ GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+ else
+ GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+ return GV;
+ }
+ case Instruction::PtrToInt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getPointerSizeInBits();
+ GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+ return GV;
+ }
+ case Instruction::IntToPtr: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getPointerSizeInBits();
+ if (PtrWidth != GV.IntVal.getBitWidth())
+ GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+ assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+ GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+ return GV;
+ }
+ case Instruction::BitCast: {
+ GenericValue GV = getConstantValue(Op0);
+ const Type* DestTy = CE->getType();
+ switch (Op0->getType()->getTypeID()) {
+ default: assert(0 && "Invalid bitcast operand");
+ case Type::IntegerTyID:
+ assert(DestTy->isFloatingPoint() && "invalid bitcast");
+ if (DestTy == Type::FloatTy)
+ GV.FloatVal = GV.IntVal.bitsToFloat();
+ else if (DestTy == Type::DoubleTy)
+ GV.DoubleVal = GV.IntVal.bitsToDouble();
+ break;
+ case Type::FloatTyID:
+ assert(DestTy == Type::Int32Ty && "Invalid bitcast");
+ GV.IntVal.floatToBits(GV.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ assert(DestTy == Type::Int64Ty && "Invalid bitcast");
+ GV.IntVal.doubleToBits(GV.DoubleVal);
+ break;
+ case Type::PointerTyID:
+ assert(isa<PointerType>(DestTy) && "Invalid bitcast");
+ break; // getConstantValue(Op0) above already converted it
+ }
+ return GV;
+ }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ GenericValue LHS = getConstantValue(Op0);
+ GenericValue RHS = getConstantValue(CE->getOperand(1));
+ GenericValue GV;
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: assert(0 && "Bad add type!"); abort();
+ case Type::IntegerTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid integer opcode");
+ case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+ case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+ case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+ case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+ case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+ case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+ case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+ case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+ case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+ case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+ }
+ break;
+ case Type::FloatTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid float opcode"); abort();
+ case Instruction::Add:
+ GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+ case Instruction::Sub:
+ GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+ case Instruction::Mul:
+ GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+ case Instruction::FDiv:
+ GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+ case Instruction::FRem:
+ GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
+ }
+ break;
+ case Type::DoubleTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid double opcode"); abort();
+ case Instruction::Add:
+ GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+ case Instruction::Sub:
+ GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+ case Instruction::Mul:
+ GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+ case Instruction::FDiv:
+ GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+ case Instruction::FRem:
+ GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+ }
+ break;
+ }
+ return GV;
+ }
+ default:
+ break;
+ }
+ cerr << "ConstantExpr not handled: " << *CE << "\n";
+ abort();
+ }
+
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ Result.FloatVal = (float)cast<ConstantFP>(C)->getValue();
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue();
+ break;
+ case Type::IntegerTyID:
+ Result.IntVal = cast<ConstantInt>(C)->getValue();
+ break;
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = 0;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else
+ assert(0 && "Unknown constant pointer type!");
+ break;
+ default:
+ cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
+ abort();
+ }
+ return Result;
+}
+
+/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
+/// is the address of the memory at which to store Val, cast to GenericValue *.
+/// It is not a pointer to a GenericValue containing the address at which to
+/// store Val.
+///
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
+ const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
+ GenericValue TmpVal = Val;
+ if (BitWidth <= 8)
+ *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
+ else if (BitWidth <= 16) {
+ *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
+ } else if (BitWidth <= 32) {
+ *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
+ } else if (BitWidth <= 64) {
+ *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
+ } else {
+ uint64_t *Dest = (uint64_t*)Ptr;
+ const uint64_t *Src = Val.IntVal.getRawData();
+ for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
+ Dest[i] = Src[i];
+ }
+ break;
+ }
+ case Type::FloatTyID:
+ *((float*)Ptr) = Val.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ *((double*)Ptr) = Val.DoubleVal;
+ break;
+ case Type::PointerTyID:
+ *((PointerTy*)Ptr) = Val.PointerVal;
+ break;
+ default:
+ cerr << "Cannot store value of type " << *Ty << "!\n";
+ }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+ GenericValue *Ptr,
+ const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
+ if (BitWidth <= 8)
+ Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
+ else if (BitWidth <= 16) {
+ Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
+ } else if (BitWidth <= 32) {
+ Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
+ } else if (BitWidth <= 64) {
+ Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
+ } else
+ Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr);
+ break;
+ }
+ case Type::FloatTyID:
+ Result.FloatVal = *((float*)Ptr);
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = *((double*)Ptr);
+ break;
+ case Type::PointerTyID:
+ Result.PointerVal = *((PointerTy*)Ptr);
+ break;
+ default:
+ cerr << "Cannot load value of type " << *Ty << "!\n";
+ abort();
+ }
+}
+
+// InitializeMemory - Recursive function to apply a Constant value into the
+// specified memory location...
+//
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ if (isa<UndefValue>(Init)) {
+ return;
+ } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+ unsigned ElementSize =
+ getTargetData()->getTypeSize(CP->getType()->getElementType());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ } else if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ } else if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
+ return;
+ }
+
+ switch (Init->getType()->getTypeID()) {
+ case Type::ArrayTyID: {
+ const ConstantArray *CPA = cast<ConstantArray>(Init);
+ unsigned ElementSize =
+ getTargetData()->getTypeSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ case Type::StructTyID: {
+ const ConstantStruct *CPS = cast<ConstantStruct>(Init);
+ const StructLayout *SL =
+ getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+ return;
+ }
+
+ default:
+ cerr << "Bad Type: " << *Init->getType() << "\n";
+ assert(0 && "Unknown constant type to initialize memory with!");
+ }
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+///
+void ExecutionEngine::emitGlobals() {
+ const TargetData *TD = getTargetData();
+
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them. If there is more than one module, do a prepass over globals
+ // to figure out how the different modules should link together.
+ //
+ std::map<std::pair<std::string, const Type*>,
+ const GlobalValue*> LinkedGlobalsMap;
+
+ if (Modules.size() != 1) {
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m]->getModule();
+ for (Module::const_global_iterator I = M.global_begin(),
+ E = M.global_end(); I != E; ++I) {
+ const GlobalValue *GV = I;
+ if (GV->hasInternalLinkage() || GV->isDeclaration() ||
+ GV->hasAppendingLinkage() || !GV->hasName())
+ continue;// Ignore external globals and globals with internal linkage.
+
+ const GlobalValue *&GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+
+ // If this is the first time we've seen this global, it is the canonical
+ // version.
+ if (!GVEntry) {
+ GVEntry = GV;
+ continue;
+ }
+
+ // If the existing global is strong, never replace it.
+ if (GVEntry->hasExternalLinkage() ||
+ GVEntry->hasDLLImportLinkage() ||
+ GVEntry->hasDLLExportLinkage())
+ continue;
+
+ // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+ // symbol.
+ if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+ GVEntry = GV;
+ }
+ }
+ }
+
+ std::vector<const GlobalValue*> NonCanonicalGlobals;
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m]->getModule();
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ // In the multi-module case, see what this global maps to.
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
+ // If something else is the canonical global, ignore this one.
+ if (GVEntry != &*I) {
+ NonCanonicalGlobals.push_back(I);
+ continue;
+ }
+ }
+ }
+
+ if (!I->isDeclaration()) {
+ // Get the type of the global.
+ const Type *Ty = I->getType()->getElementType();
+
+ // Allocate some memory for it!
+ unsigned Size = TD->getTypeSize(Ty);
+ addGlobalMapping(I, new char[Size]);
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr =
+ sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
+ addGlobalMapping(I, SymAddr);
+ else {
+ cerr << "Could not resolve external global address: "
+ << I->getName() << "\n";
+ abort();
+ }
+ }
+ }
+
+ // If there are multiple modules, map the non-canonical globals to their
+ // canonical location.
+ if (!NonCanonicalGlobals.empty()) {
+ for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+ const GlobalValue *GV = NonCanonicalGlobals[i];
+ const GlobalValue *CGV =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+ void *Ptr = getPointerToGlobalIfAvailable(CGV);
+ assert(Ptr && "Canonical global wasn't codegen'd!");
+ addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all
+ // and initialize their contents.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
+ if (GVEntry != &*I) // Not the canonical variable.
+ continue;
+ }
+ EmitGlobalVariable(I);
+ }
+ }
+ }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+ DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
+
+ const Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
+ if (GA == 0) {
+ // If it's not already specified, allocate memory for the global.
+ GA = new char[GVSize];
+ addGlobalMapping(GV, GA);
+ }
+
+ InitializeMemory(GV->getInitializer(), GA);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
new file mode 100644
index 0000000..281f774
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -0,0 +1,1374 @@
+//===-- Execution.cpp - Implement code to simulate the program ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the actual instruction interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "interpreter"
+#include "Interpreter.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
+static Interpreter *TheEE = 0;
+
+//===----------------------------------------------------------------------===//
+// Various Helper Functions
+//===----------------------------------------------------------------------===//
+
+static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
+ // Determine if the value is signed or not
+ bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
+ // If its signed, extend the sign bits
+ if (isSigned)
+ Val |= ~ITy->getBitMask();
+ return Val;
+}
+
+static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
+ SF.Values[V] = Val;
+}
+
+void Interpreter::initializeExecutionEngine() {
+ TheEE = this;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
+ break
+
+#define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
+ case Type::IntegerTyID: { \
+ Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
+ break; \
+ }
+
+
+static void executeAddInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_BINOP1(+, Ty);
+ IMPLEMENT_BINARY_OPERATOR(+, Float);
+ IMPLEMENT_BINARY_OPERATOR(+, Double);
+ default:
+ cerr << "Unhandled type for Add instruction: " << *Ty << "\n";
+ abort();
+ }
+}
+
+static void executeSubInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_BINOP1(-, Ty);
+ IMPLEMENT_BINARY_OPERATOR(-, Float);
+ IMPLEMENT_BINARY_OPERATOR(-, Double);
+ default:
+ cerr << "Unhandled type for Sub instruction: " << *Ty << "\n";
+ abort();
+ }
+}
+
+static void executeMulInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_BINOP1(*, Ty);
+ IMPLEMENT_BINARY_OPERATOR(*, Float);
+ IMPLEMENT_BINARY_OPERATOR(*, Double);
+ default:
+ cerr << "Unhandled type for Mul instruction: " << *Ty << "\n";
+ abort();
+ }
+}
+
+static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(/, Float);
+ IMPLEMENT_BINARY_OPERATOR(/, Double);
+ default:
+ cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+ abort();
+ }
+}
+
+static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::FloatTyID:
+ Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
+ break;
+ default:
+ cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ abort();
+ }
+}
+
+#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
+ case Type::IntegerTyID: \
+ Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
+ break;
+
+// Handle pointers specially because they must be compared with only as much
+// width as the host has. We _do not_ want to be comparing 64 bit values when
+// running on a 32-bit target, otherwise the upper 32 bits might mess up
+// comparisons if they contain garbage.
+#define IMPLEMENT_POINTER_ICMP(OP) \
+ case Type::PointerTyID: \
+ Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
+ (void*)(intptr_t)Src2.PointerVal); \
+ break;
+
+static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(eq,Ty);
+ IMPLEMENT_POINTER_ICMP(==);
+ default:
+ cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ne,Ty);
+ IMPLEMENT_POINTER_ICMP(!=);
+ default:
+ cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ult,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(slt,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ugt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sgt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ule,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sle,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(uge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+void Interpreter::visitICmpInst(ICmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
+ default:
+ cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
+ abort();
+ }
+
+ SetValue(&I, R, SF);
+}
+
+#define IMPLEMENT_FCMP(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
+ break
+
+static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(==, Float);
+ IMPLEMENT_FCMP(==, Double);
+ default:
+ cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(!=, Float);
+ IMPLEMENT_FCMP(!=, Double);
+
+ default:
+ cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<=, Float);
+ IMPLEMENT_FCMP(<=, Double);
+ default:
+ cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>=, Float);
+ IMPLEMENT_FCMP(>=, Double);
+ default:
+ cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<, Float);
+ IMPLEMENT_FCMP(<, Double);
+ default:
+ cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>, Float);
+ IMPLEMENT_FCMP(>, Double);
+ default:
+ cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+#define IMPLEMENT_UNORDERED(TY, X,Y) \
+ if (TY == Type::FloatTy) \
+ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ } \
+ else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ }
+
+
+static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OEQ(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_ONE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OLE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OGE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OLT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OGT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ if (Ty == Type::FloatTy)
+ Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
+ Src2.FloatVal == Src2.FloatVal));
+ else
+ Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
+ Src2.DoubleVal == Src2.DoubleVal));
+ return Dest;
+}
+
+static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ if (Ty == Type::FloatTy)
+ Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
+ Src2.FloatVal != Src2.FloatVal));
+ else
+ Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
+ Src2.DoubleVal != Src2.DoubleVal));
+ return Dest;
+}
+
+void Interpreter::visitFCmpInst(FCmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
+ case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
+ case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
+ default:
+ cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ abort();
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
+ GenericValue Result;
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
+ case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_FALSE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, false);
+ return Result;
+ }
+ case FCmpInst::FCMP_TRUE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, true);
+ return Result;
+ }
+ default:
+ cerr << "Unhandled Cmp predicate\n";
+ abort();
+ }
+}
+
+void Interpreter::visitBinaryOperator(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getOpcode()) {
+ case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break;
+ case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break;
+ case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break;
+ case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+ case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+ case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+ case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+ case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
+ case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
+ case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+ default:
+ cerr << "Don't know how to handle this binary operator!\n-->" << I;
+ abort();
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+ GenericValue Src3) {
+ return Src1.IntVal == 0 ? Src3 : Src2;
+}
+
+void Interpreter::visitSelectInst(SelectInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue R = executeSelectInst(Src1, Src2, Src3);
+ SetValue(&I, R, SF);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Terminator Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::exitCalled(GenericValue GV) {
+ // runAtExitHandlers() assumes there are no stack frames, but
+ // if exit() was called, then it had a stack frame. Blow away
+ // the stack before interpreting atexit handlers.
+ ECStack.clear ();
+ runAtExitHandlers ();
+ exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
+}
+
+/// Pop the last stack frame off of ECStack and then copy the result
+/// back into the result variable if we are not returning void. The
+/// result variable may be the ExitValue, or the Value of the calling
+/// CallInst if there was a previous stack frame. This method may
+/// invalidate any ECStack iterators you have. This method also takes
+/// care of switching to the normal destination BB, if we are returning
+/// from an invoke.
+///
+void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
+ GenericValue Result) {
+ // Pop the current stack frame.
+ ECStack.pop_back();
+
+ if (ECStack.empty()) { // Finished main. Put result into exit code...
+ if (RetTy && RetTy->isInteger()) { // Nonvoid return type?
+ ExitValue = Result; // Capture the exit value of the program
+ } else {
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ }
+ } else {
+ // If we have a previous stack frame, and we have a previous call,
+ // fill in the return value...
+ ExecutionContext &CallingSF = ECStack.back();
+ if (Instruction *I = CallingSF.Caller.getInstruction()) {
+ if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
+ SetValue(I, Result, CallingSF);
+ if (InvokeInst *II = dyn_cast<InvokeInst> (I))
+ SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
+ CallingSF.Caller = CallSite(); // We returned from the call...
+ }
+ }
+}
+
+void Interpreter::visitReturnInst(ReturnInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *RetTy = Type::VoidTy;
+ GenericValue Result;
+
+ // Save away the return value... (if we are not 'ret void')
+ if (I.getNumOperands()) {
+ RetTy = I.getReturnValue()->getType();
+ Result = getOperandValue(I.getReturnValue(), SF);
+ }
+
+ popStackAndReturnValueToCaller(RetTy, Result);
+}
+
+void Interpreter::visitUnwindInst(UnwindInst &I) {
+ // Unwind stack
+ Instruction *Inst;
+ do {
+ ECStack.pop_back ();
+ if (ECStack.empty ())
+ abort ();
+ Inst = ECStack.back ().Caller.getInstruction ();
+ } while (!(Inst && isa<InvokeInst> (Inst)));
+
+ // Return from invoke
+ ExecutionContext &InvokingSF = ECStack.back ();
+ InvokingSF.Caller = CallSite ();
+
+ // Go to exceptional destination BB of invoke instruction
+ SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
+}
+
+void Interpreter::visitUnreachableInst(UnreachableInst &I) {
+ cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
+ abort();
+}
+
+void Interpreter::visitBranchInst(BranchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ BasicBlock *Dest;
+
+ Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
+ if (!I.isUnconditional()) {
+ Value *Cond = I.getCondition();
+ if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
+ Dest = I.getSuccessor(1);
+ }
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitSwitchInst(SwitchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
+ const Type *ElTy = I.getOperand(0)->getType();
+
+ // Check to see if any of the cases match...
+ BasicBlock *Dest = 0;
+ for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
+ if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
+ .IntVal != 0) {
+ Dest = cast<BasicBlock>(I.getOperand(i+1));
+ break;
+ }
+
+ if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
+// This function handles the actual updating of block and instruction iterators
+// as well as execution of all of the PHI nodes in the destination block.
+//
+// This method does this because all of the PHI nodes must be executed
+// atomically, reading their inputs before any of the results are updated. Not
+// doing this can cause problems if the PHI nodes depend on other PHI nodes for
+// their inputs. If the input PHI node is updated before it is read, incorrect
+// results can happen. Thus we use a two phase approach.
+//
+void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
+ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
+ SF.CurBB = Dest; // Update CurBB to branch destination
+ SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
+
+ if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
+
+ // Loop over all of the PHI nodes in the current block, reading their inputs.
+ std::vector<GenericValue> ResultValues;
+
+ for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
+ // Search for the value corresponding to this previous bb...
+ int i = PN->getBasicBlockIndex(PrevBB);
+ assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
+ Value *IncomingValue = PN->getIncomingValue(i);
+
+ // Save the incoming value for this PHI node...
+ ResultValues.push_back(getOperandValue(IncomingValue, SF));
+ }
+
+ // Now loop over all of the PHI nodes setting their values...
+ SF.CurInst = SF.CurBB->begin();
+ for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
+ PHINode *PN = cast<PHINode>(SF.CurInst);
+ SetValue(PN, ResultValues[i], SF);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitAllocationInst(AllocationInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ const Type *Ty = I.getType()->getElementType(); // Type to be allocated
+
+ // Get the number of elements being allocated by the array...
+ unsigned NumElements =
+ getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
+
+ unsigned TypeSize = (size_t)TD.getTypeSize(Ty);
+
+ unsigned MemToAlloc = NumElements * TypeSize;
+
+ // Allocate enough memory to hold the type...
+ void *Memory = malloc(MemToAlloc);
+
+ DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
+ << NumElements << " (Total: " << MemToAlloc << ") at "
+ << uintptr_t(Memory) << '\n';
+
+ GenericValue Result = PTOGV(Memory);
+ assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
+ SetValue(&I, Result, SF);
+
+ if (I.getOpcode() == Instruction::Alloca)
+ ECStack.back().Allocas.add(Memory);
+}
+
+void Interpreter::visitFreeInst(FreeInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
+ GenericValue Value = getOperandValue(I.getOperand(0), SF);
+ // TODO: Check to make sure memory is allocated
+ free(GVTOP(Value)); // Free memory
+}
+
+// getElementOffset - The workhorse for getelementptr.
+//
+GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E,
+ ExecutionContext &SF) {
+ assert(isa<PointerType>(Ptr->getType()) &&
+ "Cannot getElementOffset of a nonpointer type!");
+
+ uint64_t Total = 0;
+
+ for (; I != E; ++I) {
+ if (const StructType *STy = dyn_cast<StructType>(*I)) {
+ const StructLayout *SLO = TD.getStructLayout(STy);
+
+ const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
+ unsigned Index = unsigned(CPU->getZExtValue());
+
+ Total += SLO->getElementOffset(Index);
+ } else {
+ const SequentialType *ST = cast<SequentialType>(*I);
+ // Get the index number for the array... which must be long type...
+ GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
+
+ int64_t Idx;
+ unsigned BitWidth =
+ cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
+ if (BitWidth == 32)
+ Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
+ else if (BitWidth == 64)
+ Idx = (int64_t)IdxGV.IntVal.getZExtValue();
+ else
+ assert(0 && "Invalid index type for getelementptr");
+ Total += TD.getTypeSize(ST->getElementType())*Idx;
+ }
+ }
+
+ GenericValue Result;
+ Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
+ DOUT << "GEP Index " << Total << " bytes.\n";
+ return Result;
+}
+
+void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
+ gep_type_begin(I), gep_type_end(I), SF), SF);
+}
+
+void Interpreter::visitLoadInst(LoadInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
+ GenericValue Result;
+ LoadValueFromMemory(Result, Ptr, I.getType());
+ SetValue(&I, Result, SF);
+}
+
+void Interpreter::visitStoreInst(StoreInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Val = getOperandValue(I.getOperand(0), SF);
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
+ I.getOperand(0)->getType());
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitCallSite(CallSite CS) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Check to see if this is an intrinsic function call...
+ Function *F = CS.getCalledFunction();
+ if (F && F->isDeclaration ())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ break;
+ case Intrinsic::vastart: { // va_start
+ GenericValue ArgIndex;
+ ArgIndex.UIntPairVal.first = ECStack.size() - 1;
+ ArgIndex.UIntPairVal.second = 0;
+ SetValue(CS.getInstruction(), ArgIndex, SF);
+ return;
+ }
+ case Intrinsic::vaend: // va_end is a noop for the interpreter
+ return;
+ case Intrinsic::vacopy: // va_copy: dest = src
+ SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
+ return;
+ default:
+ // If it is an unknown intrinsic function, use the intrinsic lowering
+ // class to transform it into hopefully tasty LLVM code.
+ //
+ BasicBlock::iterator me(CS.getInstruction());
+ BasicBlock *Parent = CS.getInstruction()->getParent();
+ bool atBegin(Parent->begin() == me);
+ if (!atBegin)
+ --me;
+ IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
+
+ // Restore the CurInst pointer to the first instruction newly inserted, if
+ // any.
+ if (atBegin) {
+ SF.CurInst = Parent->begin();
+ } else {
+ SF.CurInst = me;
+ ++SF.CurInst;
+ }
+ return;
+ }
+
+
+ SF.Caller = CS;
+ std::vector<GenericValue> ArgVals;
+ const unsigned NumArgs = SF.Caller.arg_size();
+ ArgVals.reserve(NumArgs);
+ uint16_t pNum = 1;
+ for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
+ e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
+ Value *V = *i;
+ ArgVals.push_back(getOperandValue(V, SF));
+ if (F) {
+ // Promote all integral types whose size is < sizeof(i32) into i32.
+ // We do this by zero or sign extending the value as appropriate
+ // according to the parameter attributes
+ const Type *Ty = V->getType();
+ if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32))
+ if (const ParamAttrsList *PA = F->getParamAttrs())
+ if (PA->paramHasAttr(pNum, ParamAttr::ZExt))
+ ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
+ else if (PA->paramHasAttr(pNum, ParamAttr::SExt))
+ ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
+ }
+ }
+
+ // To handle indirect calls, we must get the pointer value from the argument
+ // and treat it as a function pointer.
+ GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
+ callFunction((Function*)GVTOP(SRC), ArgVals);
+}
+
+void Interpreter::visitShl(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitLShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitAShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
+ SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ const IntegerType *SITy = cast<IntegerType>(SrcTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ unsigned SBitWidth = SITy->getBitWidth();
+ assert(SBitWidth > DBitWidth && "Invalid truncate");
+ Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ const IntegerType *SITy = cast<IntegerType>(SrcTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ unsigned SBitWidth = SITy->getBitWidth();
+ assert(SBitWidth < DBitWidth && "Invalid sign extend");
+ Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ const IntegerType *SITy = cast<IntegerType>(SrcTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ unsigned SBitWidth = SITy->getBitWidth();
+ assert(SBitWidth < DBitWidth && "Invalid sign extend");
+ Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy &&
+ "Invalid FPTrunc instruction");
+ Dest.FloatVal = (float) Src.DoubleVal;
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy &&
+ "Invalid FPTrunc instruction");
+ Dest.DoubleVal = (double) Src.FloatVal;
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+ else
+ Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ return Dest;
+}
+
+GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+ else
+ Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+ return Dest;
+
+}
+
+GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(isa<PointerType>(SrcTy) && "Invalid PtrToInt instruction");
+
+ Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
+ return Dest;
+}
+
+GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
+
+ uint32_t PtrSize = TD.getPointerSizeInBits();
+ if (PtrSize != Src.IntVal.getBitWidth())
+ Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
+
+ Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
+ return Dest;
+}
+
+GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF) {
+
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ if (isa<PointerType>(DstTy)) {
+ assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
+ Dest.PointerVal = Src.PointerVal;
+ } else if (DstTy->isInteger()) {
+ if (SrcTy == Type::FloatTy) {
+ Dest.IntVal.zext(sizeof(Src.FloatVal) * 8);
+ Dest.IntVal.floatToBits(Src.FloatVal);
+ } else if (SrcTy == Type::DoubleTy) {
+ Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8);
+ Dest.IntVal.doubleToBits(Src.DoubleVal);
+ } else if (SrcTy->isInteger()) {
+ Dest.IntVal = Src.IntVal;
+ } else
+ assert(0 && "Invalid BitCast");
+ } else if (DstTy == Type::FloatTy) {
+ if (SrcTy->isInteger())
+ Dest.FloatVal = Src.IntVal.bitsToFloat();
+ else
+ Dest.FloatVal = Src.FloatVal;
+ } else if (DstTy == Type::DoubleTy) {
+ if (SrcTy->isInteger())
+ Dest.DoubleVal = Src.IntVal.bitsToDouble();
+ else
+ Dest.DoubleVal = Src.DoubleVal;
+ } else
+ assert(0 && "Invalid Bitcast");
+
+ return Dest;
+}
+
+void Interpreter::visitTruncInst(TruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSExtInst(SExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitZExtInst(ZExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPTruncInst(FPTruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPExtInst(FPExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitUIToFPInst(UIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSIToFPInst(SIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToUIInst(FPToUIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToSIInst(FPToSIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitBitCastInst(BitCastInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+#define IMPLEMENT_VAARG(TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
+
+void Interpreter::visitVAArgInst(VAArgInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Get the incoming valist parameter. LLI treats the valist as a
+ // (ec-stack-depth var-arg-index) pair.
+ GenericValue VAList = getOperandValue(I.getOperand(0), SF);
+ GenericValue Dest;
+ GenericValue Src = ECStack[VAList.UIntPairVal.first]
+ .VarArgs[VAList.UIntPairVal.second];
+ const Type *Ty = I.getType();
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
+ IMPLEMENT_VAARG(Pointer);
+ IMPLEMENT_VAARG(Float);
+ IMPLEMENT_VAARG(Double);
+ default:
+ cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ abort();
+ }
+
+ // Set the Value of this Instruction.
+ SetValue(&I, Dest, SF);
+
+ // Move the pointer to the next vararg.
+ ++VAList.UIntPairVal.second;
+}
+
+GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
+ ExecutionContext &SF) {
+ switch (CE->getOpcode()) {
+ case Instruction::Trunc:
+ return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::ZExt:
+ return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SExt:
+ return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPTrunc:
+ return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPExt:
+ return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::UIToFP:
+ return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SIToFP:
+ return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToUI:
+ return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToSI:
+ return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::PtrToInt:
+ return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::IntToPtr:
+ return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::BitCast:
+ return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::GetElementPtr:
+ return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
+ gep_type_end(CE), SF);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return executeCmpInst(CE->getPredicate(),
+ getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Select:
+ return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ getOperandValue(CE->getOperand(2), SF));
+ default :
+ break;
+ }
+
+ // The cases below here require a GenericValue parameter for the result
+ // so we initialize one, compute it and then return it.
+ GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
+ GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
+ GenericValue Dest;
+ const Type * Ty = CE->getOperand(0)->getType();
+ switch (CE->getOpcode()) {
+ case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break;
+ case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break;
+ case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break;
+ case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
+ case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
+ case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
+ case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
+ case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break;
+ case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break;
+ case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break;
+ case Instruction::Shl:
+ Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::LShr:
+ Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::AShr:
+ Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
+ break;
+ default:
+ cerr << "Unhandled ConstantExpr: " << *CE << "\n";
+ abort();
+ return GenericValue();
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ return getConstantExprValue(CE, SF);
+ } else if (Constant *CPV = dyn_cast<Constant>(V)) {
+ return getConstantValue(CPV);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ return PTOGV(getPointerToGlobal(GV));
+ } else {
+ return SF.Values[V];
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Dispatch and Execution Code
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// callFunction - Execute the specified function...
+//
+void Interpreter::callFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
+ ECStack.back().Caller.arg_size() == ArgVals.size()) &&
+ "Incorrect number of arguments passed into function call!");
+ // Make a new stack frame... and fill it in.
+ ECStack.push_back(ExecutionContext());
+ ExecutionContext &StackFrame = ECStack.back();
+ StackFrame.CurFunction = F;
+
+ // Special handling for external functions.
+ if (F->isDeclaration()) {
+ GenericValue Result = callExternalFunction (F, ArgVals);
+ // Simulate a 'ret' instruction of the appropriate type.
+ popStackAndReturnValueToCaller (F->getReturnType (), Result);
+ return;
+ }
+
+ // Get pointers to first LLVM BB & Instruction in function.
+ StackFrame.CurBB = F->begin();
+ StackFrame.CurInst = StackFrame.CurBB->begin();
+
+ // Run through the function arguments and initialize their values...
+ assert((ArgVals.size() == F->arg_size() ||
+ (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
+ "Invalid number of values passed to function invocation!");
+
+ // Handle non-varargs arguments...
+ unsigned i = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI, ++i)
+ SetValue(AI, ArgVals[i], StackFrame);
+
+ // Handle varargs arguments...
+ StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
+}
+
+static void PrintGenericValue(const GenericValue &Val, const Type* Ty) {
+ switch (Ty->getTypeID()) {
+ default: assert(0 && "Invalid GenericValue Type");
+ case Type::VoidTyID: DOUT << "void"; break;
+ case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
+ case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
+ case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal); break;
+ case Type::IntegerTyID:
+ DOUT << "i" << Val.IntVal.getBitWidth() << " " << Val.IntVal.toString(10)
+ << " (0x" << Val.IntVal.toString(16) << ")\n";
+ break;
+ }
+}
+
+void Interpreter::run() {
+ while (!ECStack.empty()) {
+ // Interpret a single instruction & increment the "PC".
+ ExecutionContext &SF = ECStack.back(); // Current stack frame
+ Instruction &I = *SF.CurInst++; // Increment before execute
+
+ // Track the number of dynamic instructions executed.
+ ++NumDynamicInsts;
+
+ DOUT << "About to interpret: " << I;
+ visit(I); // Dispatch to one of the visit* methods...
+#ifndef NDEBUG
+ if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
+ I.getType() != Type::VoidTy) {
+ DOUT << " --> ";
+ PrintGenericValue(SF.Values[&I], I.getType());
+ }
+#endif
+ }
+}
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
new file mode 100644
index 0000000..14dcdf9
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -0,0 +1,757 @@
+//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains both code to deal with invoking "external" functions, but
+// also contains code that implements "exported" external functions.
+//
+// External functions in the interpreter are implemented by
+// using the system's dynamic loader to look up the address of the function
+// we want to invoke. If a function is found, then one of the
+// many lle_* wrapper functions in this file will translate its arguments from
+// GenericValues to the types the function is actually expecting, before the
+// function is called.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetData.h"
+#include <csignal>
+#include <map>
+#include <cmath>
+using std::vector;
+
+using namespace llvm;
+
+typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
+static std::map<const Function *, ExFunc> Functions;
+static std::map<std::string, ExFunc> FuncNames;
+
+static Interpreter *TheInterpreter;
+
+static char getTypeID(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return 'V';
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 1: return 'o';
+ case 8: return 'B';
+ case 16: return 'S';
+ case 32: return 'I';
+ case 64: return 'L';
+ default: return 'N';
+ }
+ case Type::FloatTyID: return 'F';
+ case Type::DoubleTyID: return 'D';
+ case Type::PointerTyID: return 'P';
+ case Type::FunctionTyID:return 'M';
+ case Type::StructTyID: return 'T';
+ case Type::ArrayTyID: return 'A';
+ case Type::OpaqueTyID: return 'O';
+ default: return 'U';
+ }
+}
+
+static ExFunc lookupFunction(const Function *F) {
+ // Function not found, look it up... start by figuring out what the
+ // composite function name should be.
+ std::string ExtName = "lle_";
+ const FunctionType *FT = F->getFunctionType();
+ for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
+ ExtName += getTypeID(FT->getContainedType(i));
+ ExtName += "_" + F->getName();
+
+ ExFunc FnPtr = FuncNames[ExtName];
+ if (FnPtr == 0)
+ FnPtr = FuncNames["lle_X_"+F->getName()];
+ if (FnPtr == 0) // Try calling a generic function... if it exists...
+ FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
+ ("lle_X_"+F->getName()).c_str());
+ if (FnPtr == 0)
+ FnPtr = (ExFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+ if (FnPtr != 0)
+ Functions.insert(std::make_pair(F, FnPtr)); // Cache for later
+ return FnPtr;
+}
+
+GenericValue Interpreter::callExternalFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ TheInterpreter = this;
+
+ // Do a lookup to see if the function is in our cache... this should just be a
+ // deferred annotation!
+ std::map<const Function *, ExFunc>::iterator FI = Functions.find(F);
+ ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second;
+ if (Fn == 0) {
+ cerr << "Tried to execute an unknown external function: "
+ << F->getType()->getDescription() << " " << F->getName() << "\n";
+ if (F->getName() == "__main")
+ return GenericValue();
+ abort();
+ }
+
+ // TODO: FIXME when types are not const!
+ GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
+ ArgVals);
+ return Result;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Functions "exported" to the running application...
+//
+extern "C" { // Don't add C++ manglings to llvm mangling :)
+
+// void putchar(ubyte)
+GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
+ cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
+ return Args[0];
+}
+
+// void _IO_putc(int c, FILE* fp)
+GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
+#ifdef __linux__
+ _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
+#else
+ assert(0 && "Can't call _IO_putc on this platform");
+#endif
+ return Args[0];
+}
+
+// void atexit(Function*)
+GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+// void exit(int)
+GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
+ TheInterpreter->exitCalled(Args[0]);
+ return GenericValue();
+}
+
+// void abort(void)
+GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
+ raise (SIGABRT);
+ return GenericValue();
+}
+
+// void *malloc(uint)
+GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1 && "Malloc expects one argument!");
+ assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
+ return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
+ return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
+ Args[1].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
+ return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
+}
+
+// void free(void *)
+GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ free(GVTOP(Args[0]));
+ return GenericValue();
+}
+
+// int atoi(char *)
+GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// double pow(double, double)
+GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
+ return GV;
+}
+
+// double exp(double)
+GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = exp(Args[0].DoubleVal);
+ return GV;
+}
+
+// double sqrt(double)
+GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = sqrt(Args[0].DoubleVal);
+ return GV;
+}
+
+// double log(double)
+GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = log(Args[0].DoubleVal);
+ return GV;
+}
+
+// double floor(double)
+GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = floor(Args[0].DoubleVal);
+ return GV;
+}
+
+#ifdef HAVE_RAND48
+
+// double drand48()
+GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.DoubleVal = drand48();
+ return GV;
+}
+
+// long lrand48()
+GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.Int32Val = lrand48();
+ return GV;
+}
+
+// void srand48(long)
+GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand48(Args[0].Int32Val);
+ return GenericValue();
+}
+
+#endif
+
+// int rand()
+GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.IntVal = APInt(32, rand());
+ return GV;
+}
+
+// void srand(uint)
+GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand(Args[0].IntVal.getZExtValue());
+ return GenericValue();
+}
+
+// int puts(const char*)
+GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
+// output useful.
+GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+ char *OutputBuffer = (char *)GVTOP(Args[0]);
+ const char *FmtStr = (const char *)GVTOP(Args[1]);
+ unsigned ArgNo = 2;
+
+ // printf should return # chars printed. This is completely incorrect, but
+ // close enough for now.
+ GenericValue GV;
+ GV.IntVal = APInt(32, strlen(FmtStr));
+ while (1) {
+ switch (*FmtStr) {
+ case 0: return GV; // Null terminator...
+ default: // Normal nonspecial character
+ sprintf(OutputBuffer++, "%c", *FmtStr++);
+ break;
+ case '\\': { // Handle escape codes
+ sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
+ FmtStr += 2; OutputBuffer += 2;
+ break;
+ }
+ case '%': { // Handle format specifiers
+ char FmtBuf[100] = "", Buffer[1000] = "";
+ char *FB = FmtBuf;
+ *FB++ = *FmtStr++;
+ char Last = *FB++ = *FmtStr++;
+ unsigned HowLong = 0;
+ while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
+ Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
+ Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
+ Last != 'p' && Last != 's' && Last != '%') {
+ if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
+ Last = *FB++ = *FmtStr++;
+ }
+ *FB = 0;
+
+ switch (Last) {
+ case '%':
+ sprintf(Buffer, FmtBuf); break;
+ case 'c':
+ sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'd': case 'i':
+ case 'u': case 'o':
+ case 'x': case 'X':
+ if (HowLong >= 1) {
+ if (HowLong == 1 &&
+ TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
+ sizeof(long) < sizeof(int64_t)) {
+ // Make sure we use %lld with a 64 bit argument because we might be
+ // compiling LLI on a 32 bit compiler.
+ unsigned Size = strlen(FmtBuf);
+ FmtBuf[Size] = FmtBuf[Size-1];
+ FmtBuf[Size+1] = 0;
+ FmtBuf[Size-1] = 'l';
+ }
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
+ } else
+ sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'e': case 'E': case 'g': case 'G': case 'f':
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
+ case 'p':
+ sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
+ case 's':
+ sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
+ default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
+ ArgNo++; break;
+ }
+ strcpy(OutputBuffer, Buffer);
+ OutputBuffer += strlen(Buffer);
+ }
+ break;
+ }
+ }
+ return GV;
+}
+
+// int printf(sbyte *, ...) - a very rough implementation to make output useful.
+GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
+ char Buffer[10000];
+ vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV((void*)&Buffer[0]));
+ NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+ cout << Buffer;
+ return GV;
+}
+
+static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
+ void *Arg2, void *Arg3, void *Arg4, void *Arg5,
+ void *Arg6, void *Arg7, void *Arg8) {
+ void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
+
+ // Loop over the format string, munging read values as appropriate (performs
+ // byteswaps as necessary).
+ unsigned ArgNo = 0;
+ while (*Fmt) {
+ if (*Fmt++ == '%') {
+ // Read any flag characters that may be present...
+ bool Suppress = false;
+ bool Half = false;
+ bool Long = false;
+ bool LongLong = false; // long long or long double
+
+ while (1) {
+ switch (*Fmt++) {
+ case '*': Suppress = true; break;
+ case 'a': /*Allocate = true;*/ break; // We don't need to track this
+ case 'h': Half = true; break;
+ case 'l': Long = true; break;
+ case 'q':
+ case 'L': LongLong = true; break;
+ default:
+ if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
+ goto Out;
+ }
+ }
+ Out:
+
+ // Read the conversion character
+ if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
+ unsigned Size = 0;
+ const Type *Ty = 0;
+
+ switch (Fmt[-1]) {
+ case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
+ case 'd':
+ if (Long || LongLong) {
+ Size = 8; Ty = Type::Int64Ty;
+ } else if (Half) {
+ Size = 4; Ty = Type::Int16Ty;
+ } else {
+ Size = 4; Ty = Type::Int32Ty;
+ }
+ break;
+
+ case 'e': case 'g': case 'E':
+ case 'f':
+ if (Long || LongLong) {
+ Size = 8; Ty = Type::DoubleTy;
+ } else {
+ Size = 4; Ty = Type::FloatTy;
+ }
+ break;
+
+ case 's': case 'c': case '[': // No byteswap needed
+ Size = 1;
+ Ty = Type::Int8Ty;
+ break;
+
+ default: break;
+ }
+
+ if (Size) {
+ GenericValue GV;
+ void *Arg = Args[ArgNo++];
+ memcpy(&GV, Arg, Size);
+ TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
+ }
+ }
+ }
+ }
+}
+
+// int sscanf(const char *format, ...);
+GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9], 0);
+ return GV;
+}
+
+// int scanf(const char *format, ...);
+GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]);
+ return GV;
+}
+
+
+// int clock(void) - Profiling implementation
+GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
+ extern unsigned int clock(void);
+ GenericValue GV;
+ GV.IntVal = APInt(32, clock());
+ return GV;
+}
+
+
+//===----------------------------------------------------------------------===//
+// String Functions...
+//===----------------------------------------------------------------------===//
+
+// int strcmp(const char *S1, const char *S2);
+GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue Ret;
+ Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+ return Ret;
+}
+
+// char *strcat(char *Dest, const char *src);
+GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
+ return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+// char *strcpy(char *Dest, const char *src);
+GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
+ return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+static GenericValue size_t_to_GV (size_t n) {
+ GenericValue Ret;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ Ret.IntVal = APInt(64, n);
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ Ret.IntVal = APInt(32, n);
+ }
+ return Ret;
+}
+
+static size_t GV_to_size_t (GenericValue GV) {
+ size_t count;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ count = (size_t)GV.IntVal.getZExtValue();
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ count = (size_t)GV.IntVal.getZExtValue();
+ }
+ return count;
+}
+
+// size_t strlen(const char *src);
+GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
+ return size_t_to_GV (strlenResult);
+}
+
+// char *strdup(const char *src);
+GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// char *__strdup(const char *src);
+GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// void *memset(void *S, int C, size_t N)
+GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ size_t count = GV_to_size_t (Args[2]);
+ assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
+ return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
+ count));
+}
+
+// void *memcpy(void *Dest, void *src, size_t Size);
+GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
+ size_t count = GV_to_size_t (Args[2]);
+ return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
+}
+
+//===----------------------------------------------------------------------===//
+// IO Functions...
+//===----------------------------------------------------------------------===//
+
+// getFILE - Turn a pointer in the host address space into a legit pointer in
+// the interpreter address space. This is an identity transformation.
+#define getFILE(ptr) ((FILE*)ptr)
+
+// FILE *fopen(const char *filename, const char *mode);
+GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
+ return PTOGV(fopen((const char *)GVTOP(Args[0]),
+ (const char *)GVTOP(Args[1])));
+}
+
+// int fclose(FILE *F);
+GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int feof(FILE *stream);
+GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+
+ GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// char *fgets(char *s, int n, FILE *stream);
+GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// FILE *freopen(const char *path, const char *mode, FILE *stream);
+GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
+ return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// int fflush(FILE *stream);
+GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int getc(FILE *stream);
+GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int _IO_getc(FILE *stream);
+GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
+ return lle_X_getc(F, Args);
+}
+
+// int fputc(int C, FILE *stream);
+GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ungetc(int C, FILE *stream);
+GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ferror (FILE *stream);
+GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
+// useful.
+GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() >= 2);
+ char Buffer[10000];
+ vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV(Buffer));
+ NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+
+ fputs(Buffer, getFILE(GVTOP(Args[0])));
+ return GV;
+}
+
+} // End extern "C"
+
+
+void Interpreter::initializeExternalFunctions() {
+ FuncNames["lle_X_putchar"] = lle_X_putchar;
+ FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
+ FuncNames["lle_X_exit"] = lle_X_exit;
+ FuncNames["lle_X_abort"] = lle_X_abort;
+ FuncNames["lle_X_malloc"] = lle_X_malloc;
+ FuncNames["lle_X_calloc"] = lle_X_calloc;
+ FuncNames["lle_X_realloc"] = lle_X_realloc;
+ FuncNames["lle_X_free"] = lle_X_free;
+ FuncNames["lle_X_atoi"] = lle_X_atoi;
+ FuncNames["lle_X_pow"] = lle_X_pow;
+ FuncNames["lle_X_exp"] = lle_X_exp;
+ FuncNames["lle_X_log"] = lle_X_log;
+ FuncNames["lle_X_floor"] = lle_X_floor;
+ FuncNames["lle_X_srand"] = lle_X_srand;
+ FuncNames["lle_X_rand"] = lle_X_rand;
+#ifdef HAVE_RAND48
+ FuncNames["lle_X_drand48"] = lle_X_drand48;
+ FuncNames["lle_X_srand48"] = lle_X_srand48;
+ FuncNames["lle_X_lrand48"] = lle_X_lrand48;
+#endif
+ FuncNames["lle_X_sqrt"] = lle_X_sqrt;
+ FuncNames["lle_X_puts"] = lle_X_puts;
+ FuncNames["lle_X_printf"] = lle_X_printf;
+ FuncNames["lle_X_sprintf"] = lle_X_sprintf;
+ FuncNames["lle_X_sscanf"] = lle_X_sscanf;
+ FuncNames["lle_X_scanf"] = lle_X_scanf;
+ FuncNames["lle_i_clock"] = lle_i_clock;
+
+ FuncNames["lle_X_strcmp"] = lle_X_strcmp;
+ FuncNames["lle_X_strcat"] = lle_X_strcat;
+ FuncNames["lle_X_strcpy"] = lle_X_strcpy;
+ FuncNames["lle_X_strlen"] = lle_X_strlen;
+ FuncNames["lle_X___strdup"] = lle_X___strdup;
+ FuncNames["lle_X_memset"] = lle_X_memset;
+ FuncNames["lle_X_memcpy"] = lle_X_memcpy;
+
+ FuncNames["lle_X_fopen"] = lle_X_fopen;
+ FuncNames["lle_X_fclose"] = lle_X_fclose;
+ FuncNames["lle_X_feof"] = lle_X_feof;
+ FuncNames["lle_X_fread"] = lle_X_fread;
+ FuncNames["lle_X_fwrite"] = lle_X_fwrite;
+ FuncNames["lle_X_fgets"] = lle_X_fgets;
+ FuncNames["lle_X_fflush"] = lle_X_fflush;
+ FuncNames["lle_X_fgetc"] = lle_X_getc;
+ FuncNames["lle_X_getc"] = lle_X_getc;
+ FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
+ FuncNames["lle_X_fputc"] = lle_X_fputc;
+ FuncNames["lle_X_ungetc"] = lle_X_ungetc;
+ FuncNames["lle_X_fprintf"] = lle_X_fprintf;
+ FuncNames["lle_X_freopen"] = lle_X_freopen;
+}
+
diff --git a/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/lib/ExecutionEngine/Interpreter/Interpreter.cpp
new file mode 100644
index 0000000..3a156bf
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Interpreter.cpp
@@ -0,0 +1,106 @@
+//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the top-level functionality for the LLVM interpreter.
+// This interpreter is designed to be a very simple, portable, inefficient
+// interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+using namespace llvm;
+
+static struct RegisterInterp {
+ RegisterInterp() { Interpreter::Register(); }
+} InterpRegistrator;
+
+namespace llvm {
+ void LinkInInterpreter() {
+ }
+}
+
+/// create - Create a new interpreter object. This can never fail.
+///
+ExecutionEngine *Interpreter::create(ModuleProvider *MP, std::string* ErrStr) {
+ // Tell this ModuleProvide to materialize and release the module
+ Module *M = MP->releaseModule(ErrStr);
+ if (!M)
+ // We got an error, just return 0
+ return 0;
+
+ // This is a bit nasty, but the ExecutionEngine won't be able to delete the
+ // module due to use/def issues if we don't delete this MP here. Below we
+ // construct a new Interpreter with the Module we just got. This creates a
+ // new ExistingModuleProvider in the EE instance. Consequently, MP is left
+ // dangling and it contains references into the module which cause problems
+ // when the module is deleted via the ExistingModuleProvide via EE.
+ delete MP;
+
+ return new Interpreter(M);
+}
+
+//===----------------------------------------------------------------------===//
+// Interpreter ctor - Initialize stuff
+//
+Interpreter::Interpreter(Module *M) : ExecutionEngine(M), TD(M) {
+
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ setTargetData(&TD);
+ // Initialize the "backend"
+ initializeExecutionEngine();
+ initializeExternalFunctions();
+ emitGlobals();
+
+ IL = new IntrinsicLowering(TD);
+}
+
+Interpreter::~Interpreter() {
+ delete IL;
+}
+
+void Interpreter::runAtExitHandlers () {
+ while (!AtExitHandlers.empty()) {
+ callFunction(AtExitHandlers.back(), std::vector<GenericValue>());
+ AtExitHandlers.pop_back();
+ run();
+ }
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue
+Interpreter::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert (F && "Function *F was null at entry to run()");
+
+ // Try extra hard not to pass extra args to a function that isn't
+ // expecting them. C programmers frequently bend the rules and
+ // declare main() with fewer parameters than it actually gets
+ // passed, and the interpreter barfs if you pass a function more
+ // parameters than it is declared to take. This does not attempt to
+ // take into account gratuitous differences in declared types,
+ // though.
+ std::vector<GenericValue> ActualArgs;
+ const unsigned ArgCount = F->getFunctionType()->getNumParams();
+ for (unsigned i = 0; i < ArgCount; ++i)
+ ActualArgs.push_back(ArgValues[i]);
+
+ // Set up the function call.
+ callFunction(F, ActualArgs);
+
+ // Start executing the function.
+ run();
+
+ return ExitValue;
+}
+
diff --git a/lib/ExecutionEngine/Interpreter/Interpreter.h b/lib/ExecutionEngine/Interpreter/Interpreter.h
new file mode 100644
index 0000000..3238850
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -0,0 +1,241 @@
+//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header file defines the interpreter structure
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLI_INTERPRETER_H
+#define LLI_INTERPRETER_H
+
+#include "llvm/Function.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class IntrinsicLowering;
+struct FunctionInfo;
+template<typename T> class generic_gep_type_iterator;
+class ConstantExpr;
+typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
+
+
+// AllocaHolder - Object to track all of the blocks of memory allocated by
+// alloca. When the function returns, this object is popped off the execution
+// stack, which causes the dtor to be run, which frees all the alloca'd memory.
+//
+class AllocaHolder {
+ friend class AllocaHolderHandle;
+ std::vector<void*> Allocations;
+ unsigned RefCnt;
+public:
+ AllocaHolder() : RefCnt(0) {}
+ void add(void *mem) { Allocations.push_back(mem); }
+ ~AllocaHolder() {
+ for (unsigned i = 0; i < Allocations.size(); ++i)
+ free(Allocations[i]);
+ }
+};
+
+// AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into
+// a vector...
+//
+class AllocaHolderHandle {
+ AllocaHolder *H;
+public:
+ AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; }
+ AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; }
+ ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; }
+
+ void add(void *mem) { H->add(mem); }
+};
+
+typedef std::vector<GenericValue> ValuePlaneTy;
+
+// ExecutionContext struct - This struct represents one stack frame currently
+// executing.
+//
+struct ExecutionContext {
+ Function *CurFunction;// The currently executing function
+ BasicBlock *CurBB; // The currently executing BB
+ BasicBlock::iterator CurInst; // The next instruction to execute
+ std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
+ std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
+ CallSite Caller; // Holds the call that called subframes.
+ // NULL if main func or debugger invoked fn
+ AllocaHolderHandle Allocas; // Track memory allocated by alloca
+};
+
+// Interpreter - This class represents the entirety of the interpreter.
+//
+class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
+ GenericValue ExitValue; // The return value of the called function
+ TargetData TD;
+ IntrinsicLowering *IL;
+
+ // The runtime stack of executing code. The top of the stack is the current
+ // function record.
+ std::vector<ExecutionContext> ECStack;
+
+ // AtExitHandlers - List of functions to call when the program exits,
+ // registered with the atexit() library function.
+ std::vector<Function*> AtExitHandlers;
+
+public:
+ Interpreter(Module *M);
+ ~Interpreter();
+
+ /// runAtExitHandlers - Run any functions registered by the program's calls to
+ /// atexit(3), which we intercept and store in AtExitHandlers.
+ ///
+ void runAtExitHandlers();
+
+ static void Register() {
+ InterpCtor = create;
+ }
+
+ /// create - Create an interpreter ExecutionEngine. This can never fail.
+ ///
+ static ExecutionEngine *create(ModuleProvider *M, std::string *ErrorStr = 0);
+
+ /// run - Start execution with the specified function and arguments.
+ ///
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ /// recompileAndRelinkFunction - For the interpreter, functions are always
+ /// up-to-date.
+ ///
+ virtual void *recompileAndRelinkFunction(Function *F) {
+ return getPointerToFunction(F);
+ }
+
+ /// freeMachineCodeForFunction - The interpreter does not generate any code.
+ ///
+ void freeMachineCodeForFunction(Function *F) { }
+
+ // Methods used to execute code:
+ // Place a call on the stack
+ void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
+ void run(); // Execute instructions until nothing left to do
+
+ // Opcode Implementations
+ void visitReturnInst(ReturnInst &I);
+ void visitBranchInst(BranchInst &I);
+ void visitSwitchInst(SwitchInst &I);
+
+ void visitBinaryOperator(BinaryOperator &I);
+ void visitICmpInst(ICmpInst &I);
+ void visitFCmpInst(FCmpInst &I);
+ void visitAllocationInst(AllocationInst &I);
+ void visitFreeInst(FreeInst &I);
+ void visitLoadInst(LoadInst &I);
+ void visitStoreInst(StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitPHINode(PHINode &PN) { assert(0 && "PHI nodes already handled!"); }
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitSelectInst(SelectInst &I);
+
+
+ void visitCallSite(CallSite CS);
+ void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); }
+ void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); }
+ void visitUnwindInst(UnwindInst &I);
+ void visitUnreachableInst(UnreachableInst &I);
+
+ void visitShl(BinaryOperator &I);
+ void visitLShr(BinaryOperator &I);
+ void visitAShr(BinaryOperator &I);
+
+ void visitVAArgInst(VAArgInst &I);
+ void visitInstruction(Instruction &I) {
+ cerr << I;
+ assert(0 && "Instruction not interpretable yet!");
+ }
+
+ GenericValue callExternalFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals);
+ void exitCalled(GenericValue GV);
+
+ void addAtExitHandler(Function *F) {
+ AtExitHandlers.push_back(F);
+ }
+
+ GenericValue *getFirstVarArg () {
+ return &(ECStack.back ().VarArgs[0]);
+ }
+
+ //FIXME: private:
+public:
+ GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E, ExecutionContext &SF);
+
+private: // Helper functions
+ // SwitchToNewBasicBlock - Start execution in a new basic block and run any
+ // PHI nodes in the top of the block. This is used for intraprocedural
+ // control flow.
+ //
+ void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
+
+ void *getPointerToFunction(Function *F) { return (void*)F; }
+
+ void initializeExecutionEngine();
+ void initializeExternalFunctions();
+ GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF);
+ GenericValue getOperandValue(Value *V, ExecutionContext &SF);
+ GenericValue executeTruncInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeZExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPTruncInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPExtInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToUIInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToSIInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeUIToFPInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSIToFPInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executePtrToIntInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeBitCastInst(Value *SrcVal, const Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal,
+ const Type *Ty, ExecutionContext &SF);
+ void popStackAndReturnValueToCaller(const Type *RetTy, GenericValue Result);
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/ExecutionEngine/Interpreter/Makefile b/lib/ExecutionEngine/Interpreter/Makefile
new file mode 100644
index 0000000..93f74ec
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Makefile
@@ -0,0 +1,12 @@
+##===- lib/ExecutionEngine/Interpreter/Makefile ------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../..
+LIBRARYNAME = LLVMInterpreter
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/ExecutionEngine/JIT/Intercept.cpp b/lib/ExecutionEngine/JIT/Intercept.cpp
new file mode 100644
index 0000000..f370e5b
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/Intercept.cpp
@@ -0,0 +1,121 @@
+//===-- Intercept.cpp - System function interception routines -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// If a function call occurs to an external function, the JIT is designed to use
+// the dynamic loader interface to find a function to call. This is useful for
+// calling system calls and library functions that are not available in LLVM.
+// Some system calls, however, need to be handled specially. For this reason,
+// we intercept some of them here and use our own stubs to handle them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Config/config.h"
+using namespace llvm;
+
+// AtExitHandlers - List of functions to call when the program exits,
+// registered with the atexit() library function.
+static std::vector<void (*)()> AtExitHandlers;
+
+/// runAtExitHandlers - Run any functions registered by the program's
+/// calls to atexit(3), which we intercept and store in
+/// AtExitHandlers.
+///
+static void runAtExitHandlers() {
+ while (!AtExitHandlers.empty()) {
+ void (*Fn)() = AtExitHandlers.back();
+ AtExitHandlers.pop_back();
+ Fn();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Function stubs that are invoked instead of certain library calls
+//===----------------------------------------------------------------------===//
+
+// Force the following functions to be linked in to anything that uses the
+// JIT. This is a hack designed to work around the all-too-clever Glibc
+// strategy of making these functions work differently when inlined vs. when
+// not inlined, and hiding their real definitions in a separate archive file
+// that the dynamic linker can't see. For more info, search for
+// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
+#if defined(__linux__)
+#if defined(HAVE_SYS_STAT_H)
+#include <sys/stat.h>
+#endif
+void *FunctionPointers[] = {
+ (void *)(intptr_t) stat,
+ (void *)(intptr_t) fstat,
+ (void *)(intptr_t) lstat,
+ (void *)(intptr_t) stat64,
+ (void *)(intptr_t) fstat64,
+ (void *)(intptr_t) lstat64,
+ (void *)(intptr_t) atexit,
+ (void *)(intptr_t) mknod
+};
+#endif // __linux__
+
+// __mainFunc - If the program does not have a linked in __main function, allow
+// it to run, but print a warning.
+static void __mainFunc() {
+ fprintf(stderr, "WARNING: Program called __main but was not linked to "
+ "libcrtend.a.\nThis probably won't hurt anything unless the "
+ "program is written in C++.\n");
+}
+
+// jit_exit - Used to intercept the "exit" library call.
+static void jit_exit(int Status) {
+ runAtExitHandlers(); // Run atexit handlers...
+ exit(Status);
+}
+
+// jit_atexit - Used to intercept the "atexit" library call.
+static int jit_atexit(void (*Fn)(void)) {
+ AtExitHandlers.push_back(Fn); // Take note of atexit handler...
+ return 0; // Always successful
+}
+
+//===----------------------------------------------------------------------===//
+//
+/// getPointerToNamedFunction - This method returns the address of the specified
+/// function by using the dynamic loader interface. As such it is only useful
+/// for resolving library symbols, not code generated symbols.
+///
+void *JIT::getPointerToNamedFunction(const std::string &Name) {
+ // Check to see if this is one of the functions we want to intercept. Note,
+ // we cast to intptr_t here to silence a -pedantic warning that complains
+ // about casting a function pointer to a normal pointer.
+ if (Name == "exit") return (void*)(intptr_t)&jit_exit;
+ if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
+
+ // If the program does not have a linked in __main function, allow it to run,
+ // but print a warning.
+ if (Name == "__main") return (void*)(intptr_t)&__mainFunc;
+
+ const char *NameStr = Name.c_str();
+ // If this is an asm specifier, skip the sentinal.
+ if (NameStr[0] == 1) ++NameStr;
+
+ // If it's an external function, look it up in the process image...
+ void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
+ if (Ptr) return Ptr;
+
+ // If it wasn't found and if it starts with an underscore ('_') character, and
+ // has an asm specifier, try again without the underscore.
+ if (Name[0] == 1 && NameStr[0] == '_') {
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
+ if (Ptr) return Ptr;
+ }
+
+ cerr << "ERROR: Program used external function '" << Name
+ << "' which could not be resolved!\n";
+ abort();
+ return 0;
+}
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
new file mode 100644
index 0000000..603f8ec
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -0,0 +1,369 @@
+//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tool implements a just-in-time compiler for LLVM, allowing direct
+// execution of LLVM bitcode in an efficient manner.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetJITInfo.h"
+using namespace llvm;
+
+#ifdef __APPLE__
+#include <AvailabilityMacros.h>
+#if defined(MAC_OS_X_VERSION_10_4) && \
+ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
+ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
+ __APPLE_CC__ >= 5330))
+// __dso_handle is resolved by Mac OS X dynamic linker.
+extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
+#endif
+#endif
+
+static struct RegisterJIT {
+ RegisterJIT() { JIT::Register(); }
+} JITRegistrator;
+
+namespace llvm {
+ void LinkInJIT() {
+ }
+}
+
+JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
+ : ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) {
+ setTargetData(TM.getTargetData());
+
+ // Initialize MCE
+ MCE = createEmitter(*this);
+
+ // Add target data
+ MutexGuard locked(lock);
+ FunctionPassManager &PM = jitstate.getPM(locked);
+ PM.add(new TargetData(*TM.getTargetData()));
+
+ // Turn the machine code intermediate representation into bytes in memory that
+ // may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
+ cerr << "Target does not support machine code emission!\n";
+ abort();
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+}
+
+JIT::~JIT() {
+ delete MCE;
+ delete &TM;
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue JIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ const FunctionType *FTy = F->getFunctionType();
+ const Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
+ "Too many arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy == Type::Int32Ty || RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
+ switch (ArgValues.size()) {
+ case 3:
+ if ((FTy->getParamType(0) == Type::Int32Ty ||
+ FTy->getParamType(0) == Type::Int32Ty) &&
+ isa<PointerType>(FTy->getParamType(1)) &&
+ isa<PointerType>(FTy->getParamType(2))) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if ((FTy->getParamType(0) == Type::Int32Ty ||
+ FTy->getParamType(0) == Type::Int32Ty) &&
+ isa<PointerType>(FTy->getParamType(1))) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ (FTy->getParamType(0) == Type::Int32Ty ||
+ FTy->getParamType(0) == Type::Int32Ty)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: assert(0 && "Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ assert(0 && "Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ // Okay, this is not one of our quick and easy cases. Because we don't have a
+ // full FFI, we have to codegen a nullary stub function that just calls the
+ // function we are interested in, passing in constants for all of the
+ // arguments. Make this function and return.
+
+ // First, create the function.
+ FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
+ Function *Stub = new Function(STy, Function::InternalLinkage, "",
+ F->getParent());
+
+ // Insert a basic block.
+ BasicBlock *StubBB = new BasicBlock("", Stub);
+
+ // Convert all of the GenericValue arguments over to constants. Note that we
+ // currently don't support varargs.
+ SmallVector<Value*, 8> Args;
+ for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
+ Constant *C = 0;
+ const Type *ArgTy = FTy->getParamType(i);
+ const GenericValue &AV = ArgValues[i];
+ switch (ArgTy->getTypeID()) {
+ default: assert(0 && "Unknown argument type for function call!");
+ case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
+ case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break;
+ case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
+ case Type::PointerTyID:
+ void *ArgPtr = GVTOP(AV);
+ if (sizeof(void*) == 4) {
+ C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
+ } else {
+ C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
+ }
+ C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
+ break;
+ }
+ Args.push_back(C);
+ }
+
+ CallInst *TheCall = new CallInst(F, &Args[0], Args.size(), "", StubBB);
+ TheCall->setTailCall();
+ if (TheCall->getType() != Type::VoidTy)
+ new ReturnInst(TheCall, StubBB); // Return result of the call.
+ else
+ new ReturnInst(StubBB); // Just return void.
+
+ // Finally, return the value returned by our nullary stub function.
+ return runFunction(Stub, std::vector<GenericValue>());
+}
+
+/// runJITOnFunction - Run the FunctionPassManager full of
+/// just-in-time compilation passes on F, hopefully filling in
+/// GlobalAddress[F] with the address of F's machine code.
+///
+void JIT::runJITOnFunction(Function *F) {
+ static bool isAlreadyCodeGenerating = false;
+ assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
+
+ MutexGuard locked(lock);
+
+ // JIT the function
+ isAlreadyCodeGenerating = true;
+ jitstate.getPM(locked).run(*F);
+ isAlreadyCodeGenerating = false;
+
+ // If the function referred to a global variable that had not yet been
+ // emitted, it allocates memory for the global, but doesn't emit it yet. Emit
+ // all of these globals now.
+ while (!jitstate.getPendingGlobals(locked).empty()) {
+ const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back();
+ jitstate.getPendingGlobals(locked).pop_back();
+ EmitGlobalVariable(GV);
+ }
+}
+
+/// getPointerToFunction - This method is used to get the address of the
+/// specified function, compiling it if neccesary.
+///
+void *JIT::getPointerToFunction(Function *F) {
+ MutexGuard locked(lock);
+
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr; // Check if function already code gen'd
+
+ // Make sure we read in the function if it exists in this Module.
+ if (F->hasNotBeenReadFromBitcode()) {
+ // Determine the module provider this function is provided by.
+ Module *M = F->getParent();
+ ModuleProvider *MP = 0;
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Modules[i]->getModule() == M) {
+ MP = Modules[i];
+ break;
+ }
+ }
+ assert(MP && "Function isn't in a module we know about!");
+
+ std::string ErrorMsg;
+ if (MP->materializeFunction(F, &ErrorMsg)) {
+ cerr << "Error reading function '" << F->getName()
+ << "' from bitcode file: " << ErrorMsg << "\n";
+ abort();
+ }
+ }
+
+ if (F->isDeclaration()) {
+ void *Addr = getPointerToNamedFunction(F->getName());
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ runJITOnFunction(F);
+
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ return Addr;
+}
+
+/// getOrEmitGlobalVariable - Return the address of the specified global
+/// variable, possibly emitting it to memory if needed. This is used by the
+/// Emitter.
+void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
+ MutexGuard locked(lock);
+
+ void *Ptr = getPointerToGlobalIfAvailable(GV);
+ if (Ptr) return Ptr;
+
+ // If the global is external, just remember the address.
+ if (GV->isDeclaration()) {
+#if defined(__APPLE__) && defined(MAC_OS_X_VERSION_10_4) && \
+ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
+ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
+ __APPLE_CC__ >= 5330))
+ // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
+ // of atexit). It passes the address of linker generated symbol __dso_handle
+ // to the function.
+ // This configuration change happened at version 5330.
+ if (GV->getName() == "__dso_handle")
+ return (void*)&__dso_handle;
+#endif
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
+ if (Ptr == 0) {
+ cerr << "Could not resolve external global address: "
+ << GV->getName() << "\n";
+ abort();
+ }
+ } else {
+ // If the global hasn't been emitted to memory yet, allocate space. We will
+ // actually initialize the global after current function has finished
+ // compilation.
+ const Type *GlobalType = GV->getType()->getElementType();
+ size_t S = getTargetData()->getTypeSize(GlobalType);
+ size_t A = getTargetData()->getPrefTypeAlignment(GlobalType);
+ if (A <= 8) {
+ Ptr = malloc(S);
+ } else {
+ // Allocate S+A bytes of memory, then use an aligned pointer within that
+ // space.
+ Ptr = malloc(S+A);
+ unsigned MisAligned = ((intptr_t)Ptr & (A-1));
+ Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
+ }
+ jitstate.getPendingGlobals(locked).push_back(GV);
+ }
+ addGlobalMapping(GV, Ptr);
+ return Ptr;
+}
+
+
+/// recompileAndRelinkFunction - This method is used to force a function
+/// which has already been compiled, to be compiled again, possibly
+/// after it has been modified. Then the entry to the old copy is overwritten
+/// with a branch to the new copy. If there was no old copy, this acts
+/// just like JIT::getPointerToFunction().
+///
+void *JIT::recompileAndRelinkFunction(Function *F) {
+ void *OldAddr = getPointerToGlobalIfAvailable(F);
+
+ // If it's not already compiled there is no reason to patch it up.
+ if (OldAddr == 0) { return getPointerToFunction(F); }
+
+ // Delete the old function mapping.
+ addGlobalMapping(F, 0);
+
+ // Recodegen the function
+ runJITOnFunction(F);
+
+ // Update state, forward the old function to the new function.
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ TJI.replaceMachineCodeForFunction(OldAddr, Addr);
+ return Addr;
+}
+
diff --git a/lib/ExecutionEngine/JIT/JIT.h b/lib/ExecutionEngine/JIT/JIT.h
new file mode 100644
index 0000000..5a3d661
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JIT.h
@@ -0,0 +1,130 @@
+//===-- JIT.h - Class definition for the JIT --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the top-level JIT data structure.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef JIT_H
+#define JIT_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/PassManager.h"
+#include <map>
+
+namespace llvm {
+
+class Function;
+class GlobalValue;
+class Constant;
+class TargetMachine;
+class TargetJITInfo;
+class MachineCodeEmitter;
+
+class JITState {
+private:
+ FunctionPassManager PM; // Passes to compile a function
+
+ /// PendingGlobals - Global variables which have had memory allocated for them
+ /// while a function was code generated, but which have not been initialized
+ /// yet.
+ std::vector<const GlobalVariable*> PendingGlobals;
+
+public:
+ JITState(ModuleProvider *MP) : PM(MP) {}
+
+ FunctionPassManager &getPM(const MutexGuard &L) {
+ return PM;
+ }
+
+ std::vector<const GlobalVariable*> &getPendingGlobals(const MutexGuard &L) {
+ return PendingGlobals;
+ }
+};
+
+
+class JIT : public ExecutionEngine {
+ TargetMachine &TM; // The current target we are compiling to
+ TargetJITInfo &TJI; // The JITInfo for the target we are compiling to
+ MachineCodeEmitter *MCE; // MCE object
+
+ JITState jitstate;
+
+ JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji);
+public:
+ ~JIT();
+
+ static void Register() {
+ JITCtor = create;
+ }
+
+ /// getJITInfo - Return the target JIT information structure.
+ ///
+ TargetJITInfo &getJITInfo() const { return TJI; }
+
+ /// create - Create an return a new JIT compiler if there is one available
+ /// for the current target. Otherwise, return null.
+ ///
+ static ExecutionEngine *create(ModuleProvider *MP, std::string* = 0);
+
+ /// run - Start execution with the specified function and arguments.
+ ///
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the dlsym function call. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ void *getPointerToNamedFunction(const std::string &Name);
+
+ // CompilationCallback - Invoked the first time that a call site is found,
+ // which causes lazy compilation of the target function.
+ //
+ static void CompilationCallback();
+
+ /// getPointerToFunction - This returns the address of the specified function,
+ /// compiling it if necessary.
+ ///
+ void *getPointerToFunction(Function *F);
+
+ /// getOrEmitGlobalVariable - Return the address of the specified global
+ /// variable, possibly emitting it to memory if needed. This is used by the
+ /// Emitter.
+ void *getOrEmitGlobalVariable(const GlobalVariable *GV);
+
+ /// getPointerToFunctionOrStub - If the specified function has been
+ /// code-gen'd, return a pointer to the function. If not, compile it, or use
+ /// a stub to implement lazy compilation if available.
+ ///
+ void *getPointerToFunctionOrStub(Function *F);
+
+ /// recompileAndRelinkFunction - This method is used to force a function
+ /// which has already been compiled, to be compiled again, possibly
+ /// after it has been modified. Then the entry to the old copy is overwritten
+ /// with a branch to the new copy. If there was no old copy, this acts
+ /// just like JIT::getPointerToFunction().
+ ///
+ void *recompileAndRelinkFunction(Function *F);
+
+ /// freeMachineCodeForFunction - deallocate memory used to code-generate this
+ /// Function.
+ ///
+ void freeMachineCodeForFunction(Function *F);
+
+ /// getCodeEmitter - Return the code emitter this JIT is emitting into.
+ MachineCodeEmitter *getCodeEmitter() const { return MCE; }
+private:
+ static MachineCodeEmitter *createEmitter(JIT &J);
+ void runJITOnFunction (Function *F);
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/ExecutionEngine/JIT/JITEmitter.cpp b/lib/ExecutionEngine/JIT/JITEmitter.cpp
new file mode 100644
index 0000000..484af48
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -0,0 +1,1067 @@
+//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a MachineCodeEmitter object that is used by the JIT to
+// write machine code to memory and remember where relocatable values are.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "JIT.h"
+#include "llvm/Constant.h"
+#include "llvm/Module.h"
+#include "llvm/Type.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRelocation.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/System/Disassembler.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/System/Memory.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumBytes, "Number of bytes of machine code compiled");
+STATISTIC(NumRelos, "Number of relocations applied");
+static JIT *TheJIT = 0;
+
+//===----------------------------------------------------------------------===//
+// JITMemoryManager code.
+//
+namespace {
+ /// MemoryRangeHeader - For a range of memory, this is the header that we put
+ /// on the block of memory. It is carefully crafted to be one word of memory.
+ /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
+ /// which starts with this.
+ struct FreeRangeHeader;
+ struct MemoryRangeHeader {
+ /// ThisAllocated - This is true if this block is currently allocated. If
+ /// not, this can be converted to a FreeRangeHeader.
+ intptr_t ThisAllocated : 1;
+
+ /// PrevAllocated - Keep track of whether the block immediately before us is
+ /// allocated. If not, the word immediately before this header is the size
+ /// of the previous block.
+ intptr_t PrevAllocated : 1;
+
+ /// BlockSize - This is the size in bytes of this memory block,
+ /// including this header.
+ uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2);
+
+
+ /// getBlockAfter - Return the memory block immediately after this one.
+ ///
+ MemoryRangeHeader &getBlockAfter() const {
+ return *(MemoryRangeHeader*)((char*)this+BlockSize);
+ }
+
+ /// getFreeBlockBefore - If the block before this one is free, return it,
+ /// otherwise return null.
+ FreeRangeHeader *getFreeBlockBefore() const {
+ if (PrevAllocated) return 0;
+ intptr_t PrevSize = ((intptr_t *)this)[-1];
+ return (FreeRangeHeader*)((char*)this-PrevSize);
+ }
+
+ /// FreeBlock - Turn an allocated block into a free block, adjusting
+ /// bits in the object headers, and adding an end of region memory block.
+ FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
+
+ /// TrimAllocationToSize - If this allocated block is significantly larger
+ /// than NewSize, split it into two pieces (where the former is NewSize
+ /// bytes, including the header), and add the new block to the free list.
+ FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
+ uint64_t NewSize);
+ };
+
+ /// FreeRangeHeader - For a memory block that isn't already allocated, this
+ /// keeps track of the current block and has a pointer to the next free block.
+ /// Free blocks are kept on a circularly linked list.
+ struct FreeRangeHeader : public MemoryRangeHeader {
+ FreeRangeHeader *Prev;
+ FreeRangeHeader *Next;
+
+ /// getMinBlockSize - Get the minimum size for a memory block. Blocks
+ /// smaller than this size cannot be created.
+ static unsigned getMinBlockSize() {
+ return sizeof(FreeRangeHeader)+sizeof(intptr_t);
+ }
+
+ /// SetEndOfBlockSizeMarker - The word at the end of every free block is
+ /// known to be the size of the free block. Set it for this block.
+ void SetEndOfBlockSizeMarker() {
+ void *EndOfBlock = (char*)this + BlockSize;
+ ((intptr_t *)EndOfBlock)[-1] = BlockSize;
+ }
+
+ FreeRangeHeader *RemoveFromFreeList() {
+ assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
+ Next->Prev = Prev;
+ return Prev->Next = Next;
+ }
+
+ void AddToFreeList(FreeRangeHeader *FreeList) {
+ Next = FreeList;
+ Prev = FreeList->Prev;
+ Prev->Next = this;
+ Next->Prev = this;
+ }
+
+ /// GrowBlock - The block after this block just got deallocated. Merge it
+ /// into the current block.
+ void GrowBlock(uintptr_t NewSize);
+
+ /// AllocateBlock - Mark this entire block allocated, updating freelists
+ /// etc. This returns a pointer to the circular free-list.
+ FreeRangeHeader *AllocateBlock();
+ };
+}
+
+
+/// AllocateBlock - Mark this entire block allocated, updating freelists
+/// etc. This returns a pointer to the circular free-list.
+FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
+ assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
+ "Cannot allocate an allocated block!");
+ // Mark this block allocated.
+ ThisAllocated = 1;
+ getBlockAfter().PrevAllocated = 1;
+
+ // Remove it from the free list.
+ return RemoveFromFreeList();
+}
+
+/// FreeBlock - Turn an allocated block into a free block, adjusting
+/// bits in the object headers, and adding an end of region memory block.
+/// If possible, coalesce this block with neighboring blocks. Return the
+/// FreeRangeHeader to allocate from.
+FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
+ MemoryRangeHeader *FollowingBlock = &getBlockAfter();
+ assert(ThisAllocated && "This block is already allocated!");
+ assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
+
+ FreeRangeHeader *FreeListToReturn = FreeList;
+
+ // If the block after this one is free, merge it into this block.
+ if (!FollowingBlock->ThisAllocated) {
+ FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
+ // "FreeList" always needs to be a valid free block. If we're about to
+ // coalesce with it, update our notion of what the free list is.
+ if (&FollowingFreeBlock == FreeList) {
+ FreeList = FollowingFreeBlock.Next;
+ FreeListToReturn = 0;
+ assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
+ }
+ FollowingFreeBlock.RemoveFromFreeList();
+
+ // Include the following block into this one.
+ BlockSize += FollowingFreeBlock.BlockSize;
+ FollowingBlock = &FollowingFreeBlock.getBlockAfter();
+
+ // Tell the block after the block we are coalescing that this block is
+ // allocated.
+ FollowingBlock->PrevAllocated = 1;
+ }
+
+ assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
+
+ if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
+ PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
+ return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
+ }
+
+ // Otherwise, mark this block free.
+ FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
+ FollowingBlock->PrevAllocated = 0;
+ FreeBlock.ThisAllocated = 0;
+
+ // Link this into the linked list of free blocks.
+ FreeBlock.AddToFreeList(FreeList);
+
+ // Add a marker at the end of the block, indicating the size of this free
+ // block.
+ FreeBlock.SetEndOfBlockSizeMarker();
+ return FreeListToReturn ? FreeListToReturn : &FreeBlock;
+}
+
+/// GrowBlock - The block after this block just got deallocated. Merge it
+/// into the current block.
+void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
+ assert(NewSize > BlockSize && "Not growing block?");
+ BlockSize = NewSize;
+ SetEndOfBlockSizeMarker();
+ getBlockAfter().PrevAllocated = 0;
+}
+
+/// TrimAllocationToSize - If this allocated block is significantly larger
+/// than NewSize, split it into two pieces (where the former is NewSize
+/// bytes, including the header), and add the new block to the free list.
+FreeRangeHeader *MemoryRangeHeader::
+TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
+ assert(ThisAllocated && getBlockAfter().PrevAllocated &&
+ "Cannot deallocate part of an allocated block!");
+
+ // Round up size for alignment of header.
+ unsigned HeaderAlign = __alignof(FreeRangeHeader);
+ NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
+
+ // Size is now the size of the block we will remove from the start of the
+ // current block.
+ assert(NewSize <= BlockSize &&
+ "Allocating more space from this block than exists!");
+
+ // If splitting this block will cause the remainder to be too small, do not
+ // split the block.
+ if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
+ return FreeList;
+
+ // Otherwise, we splice the required number of bytes out of this block, form
+ // a new block immediately after it, then mark this block allocated.
+ MemoryRangeHeader &FormerNextBlock = getBlockAfter();
+
+ // Change the size of this block.
+ BlockSize = NewSize;
+
+ // Get the new block we just sliced out and turn it into a free block.
+ FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
+ NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
+ NewNextBlock.ThisAllocated = 0;
+ NewNextBlock.PrevAllocated = 1;
+ NewNextBlock.SetEndOfBlockSizeMarker();
+ FormerNextBlock.PrevAllocated = 0;
+ NewNextBlock.AddToFreeList(FreeList);
+ return &NewNextBlock;
+}
+
+
+namespace {
+ /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
+ /// sane way. This splits a large block of MAP_NORESERVE'd memory into two
+ /// sections, one for function stubs, one for the functions themselves. We
+ /// have to do this because we may need to emit a function stub while in the
+ /// middle of emitting a function, and we don't know how large the function we
+ /// are emitting is. This never bothers to release the memory, because when
+ /// we are ready to destroy the JIT, the program exits.
+ class JITMemoryManager {
+ std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
+ FreeRangeHeader *FreeMemoryList; // Circular list of free blocks.
+
+ // When emitting code into a memory block, this is the block.
+ MemoryRangeHeader *CurBlock;
+
+ unsigned char *CurStubPtr, *StubBase;
+ unsigned char *GOTBase; // Target Specific reserved memory
+
+ // Centralize memory block allocation.
+ sys::MemoryBlock getNewMemoryBlock(unsigned size);
+
+ std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
+ public:
+ JITMemoryManager(bool useGOT);
+ ~JITMemoryManager();
+
+ inline unsigned char *allocateStub(unsigned StubSize, unsigned Alignment);
+
+ /// startFunctionBody - When a function starts, allocate a block of free
+ /// executable memory, returning a pointer to it and its actual size.
+ unsigned char *startFunctionBody(uintptr_t &ActualSize) {
+ CurBlock = FreeMemoryList;
+
+ // Allocate the entire memory block.
+ FreeMemoryList = FreeMemoryList->AllocateBlock();
+ ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader);
+ return (unsigned char *)(CurBlock+1);
+ }
+
+ /// endFunctionBody - The function F is now allocated, and takes the memory
+ /// in the range [FunctionStart,FunctionEnd).
+ void endFunctionBody(const Function *F, unsigned char *FunctionStart,
+ unsigned char *FunctionEnd) {
+ assert(FunctionEnd > FunctionStart);
+ assert(FunctionStart == (unsigned char *)(CurBlock+1) &&
+ "Mismatched function start/end!");
+
+ uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock;
+ FunctionBlocks[F] = CurBlock;
+
+ // Release the memory at the end of this block that isn't needed.
+ FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
+ }
+
+ unsigned char *getGOTBase() const {
+ return GOTBase;
+ }
+ bool isManagingGOT() const {
+ return GOTBase != NULL;
+ }
+
+ /// deallocateMemForFunction - Deallocate all memory for the specified
+ /// function body.
+ void deallocateMemForFunction(const Function *F) {
+ std::map<const Function*, MemoryRangeHeader*>::iterator
+ I = FunctionBlocks.find(F);
+ if (I == FunctionBlocks.end()) return;
+
+ // Find the block that is allocated for this function.
+ MemoryRangeHeader *MemRange = I->second;
+ assert(MemRange->ThisAllocated && "Block isn't allocated!");
+
+ // Fill the buffer with garbage!
+ DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)));
+
+ // Free the memory.
+ FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
+
+ // Finally, remove this entry from FunctionBlocks.
+ FunctionBlocks.erase(I);
+ }
+ };
+}
+
+JITMemoryManager::JITMemoryManager(bool useGOT) {
+ // Allocate a 16M block of memory for functions.
+ sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20);
+
+ unsigned char *MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());
+
+ // Allocate stubs backwards from the base, allocate functions forward
+ // from the base.
+ StubBase = MemBase;
+ CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards.
+
+ // We set up the memory chunk with 4 mem regions, like this:
+ // [ START
+ // [ Free #0 ] -> Large space to allocate functions from.
+ // [ Allocated #1 ] -> Tiny space to separate regions.
+ // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
+ // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
+ // END ]
+ //
+ // The last three blocks are never deallocated or touched.
+
+ // Add MemoryRangeHeader to the end of the memory region, indicating that
+ // the space after the block of memory is allocated. This is block #3.
+ MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
+ Mem3->ThisAllocated = 1;
+ Mem3->PrevAllocated = 0;
+ Mem3->BlockSize = 0;
+
+ /// Add a tiny free region so that the free list always has one entry.
+ FreeRangeHeader *Mem2 =
+ (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
+ Mem2->ThisAllocated = 0;
+ Mem2->PrevAllocated = 1;
+ Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
+ Mem2->SetEndOfBlockSizeMarker();
+ Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
+ Mem2->Next = Mem2;
+
+ /// Add a tiny allocated region so that Mem2 is never coalesced away.
+ MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
+ Mem1->ThisAllocated = 1;
+ Mem1->PrevAllocated = 0;
+ Mem1->BlockSize = (char*)Mem2 - (char*)Mem1;
+
+ // Add a FreeRangeHeader to the start of the function body region, indicating
+ // that the space is free. Mark the previous block allocated so we never look
+ // at it.
+ FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr;
+ Mem0->ThisAllocated = 0;
+ Mem0->PrevAllocated = 1;
+ Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
+ Mem0->SetEndOfBlockSizeMarker();
+ Mem0->AddToFreeList(Mem2);
+
+ // Start out with the freelist pointing to Mem0.
+ FreeMemoryList = Mem0;
+
+ // Allocate the GOT.
+ GOTBase = NULL;
+ if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192];
+}
+
+JITMemoryManager::~JITMemoryManager() {
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
+ sys::Memory::ReleaseRWX(Blocks[i]);
+
+ delete[] GOTBase;
+ Blocks.clear();
+}
+
+unsigned char *JITMemoryManager::allocateStub(unsigned StubSize,
+ unsigned Alignment) {
+ CurStubPtr -= StubSize;
+ CurStubPtr = (unsigned char*)(((intptr_t)CurStubPtr) &
+ ~(intptr_t)(Alignment-1));
+ if (CurStubPtr < StubBase) {
+ // FIXME: allocate a new block
+ cerr << "JIT ran out of memory for function stubs!\n";
+ abort();
+ }
+ return CurStubPtr;
+}
+
+sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
+ // Allocate a new block close to the last one.
+ const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
+ std::string ErrMsg;
+ sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg);
+ if (B.base() == 0) {
+ cerr << "Allocation failed when allocating new memory in the JIT\n";
+ cerr << ErrMsg << "\n";
+ abort();
+ }
+ Blocks.push_back(B);
+ return B;
+}
+
+//===----------------------------------------------------------------------===//
+// JIT lazy compilation code.
+//
+namespace {
+ class JITResolverState {
+ private:
+ /// FunctionToStubMap - Keep track of the stub created for a particular
+ /// function so that we can reuse them if necessary.
+ std::map<Function*, void*> FunctionToStubMap;
+
+ /// StubToFunctionMap - Keep track of the function that each stub
+ /// corresponds to.
+ std::map<void*, Function*> StubToFunctionMap;
+
+ public:
+ std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
+ assert(locked.holds(TheJIT->lock));
+ return FunctionToStubMap;
+ }
+
+ std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
+ assert(locked.holds(TheJIT->lock));
+ return StubToFunctionMap;
+ }
+ };
+
+ /// JITResolver - Keep track of, and resolve, call sites for functions that
+ /// have not yet been compiled.
+ class JITResolver {
+ /// LazyResolverFn - The target lazy resolver function that we actually
+ /// rewrite instructions to use.
+ TargetJITInfo::LazyResolverFn LazyResolverFn;
+
+ JITResolverState state;
+
+ /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
+ /// external functions.
+ std::map<void*, void*> ExternalFnToStubMap;
+
+ //map addresses to indexes in the GOT
+ std::map<void*, unsigned> revGOTMap;
+ unsigned nextGOTIndex;
+
+ static JITResolver *TheJITResolver;
+ public:
+ JITResolver(JIT &jit) : nextGOTIndex(0) {
+ TheJIT = &jit;
+
+ LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
+ assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
+ TheJITResolver = this;
+ }
+
+ ~JITResolver() {
+ TheJITResolver = 0;
+ }
+
+ /// getFunctionStub - This returns a pointer to a function stub, creating
+ /// one on demand as needed.
+ void *getFunctionStub(Function *F);
+
+ /// getExternalFunctionStub - Return a stub for the function at the
+ /// specified address, created lazily on demand.
+ void *getExternalFunctionStub(void *FnAddr);
+
+ /// AddCallbackAtLocation - If the target is capable of rewriting an
+ /// instruction without the use of a stub, record the location of the use so
+ /// we know which function is being used at the location.
+ void *AddCallbackAtLocation(Function *F, void *Location) {
+ MutexGuard locked(TheJIT->lock);
+ /// Get the target-specific JIT resolver function.
+ state.getStubToFunctionMap(locked)[Location] = F;
+ return (void*)(intptr_t)LazyResolverFn;
+ }
+
+ /// getGOTIndexForAddress - Return a new or existing index in the GOT for
+ /// and address. This function only manages slots, it does not manage the
+ /// contents of the slots or the memory associated with the GOT.
+ unsigned getGOTIndexForAddr(void* addr);
+
+ /// JITCompilerFn - This function is called to resolve a stub to a compiled
+ /// address. If the LLVM Function corresponding to the stub has not yet
+ /// been compiled, this function compiles it first.
+ static void *JITCompilerFn(void *Stub);
+ };
+}
+
+JITResolver *JITResolver::TheJITResolver = 0;
+
+#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
+ defined(__APPLE__)
+extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
+#endif
+
+/// synchronizeICache - On some targets, the JIT emitted code must be
+/// explicitly refetched to ensure correct execution.
+static void synchronizeICache(const void *Addr, size_t len) {
+#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
+ defined(__APPLE__)
+ sys_icache_invalidate(Addr, len);
+#endif
+}
+
+/// getFunctionStub - This returns a pointer to a function stub, creating
+/// one on demand as needed.
+void *JITResolver::getFunctionStub(Function *F) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a stub for this function, recycle it.
+ void *&Stub = state.getFunctionToStubMap(locked)[F];
+ if (Stub) return Stub;
+
+ // Call the lazy resolver function unless we already KNOW it is an external
+ // function, in which case we just skip the lazy resolution step.
+ void *Actual = (void*)(intptr_t)LazyResolverFn;
+ if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
+ Actual = TheJIT->getPointerToFunction(F);
+
+ // Otherwise, codegen a new stub. For now, the stub will call the lazy
+ // resolver function.
+ Stub = TheJIT->getJITInfo().emitFunctionStub(Actual,
+ *TheJIT->getCodeEmitter());
+
+ if (Actual != (void*)(intptr_t)LazyResolverFn) {
+ // If we are getting the stub for an external function, we really want the
+ // address of the stub in the GlobalAddressMap for the JIT, not the address
+ // of the external function.
+ TheJIT->updateGlobalMapping(F, Stub);
+ }
+
+ // Invalidate the icache if necessary.
+ synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
+ (intptr_t)Stub);
+
+ DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
+ << F->getName() << "'\n";
+
+ // Finally, keep track of the stub-to-Function mapping so that the
+ // JITCompilerFn knows which function to compile!
+ state.getStubToFunctionMap(locked)[Stub] = F;
+ return Stub;
+}
+
+/// getExternalFunctionStub - Return a stub for the function at the
+/// specified address, created lazily on demand.
+void *JITResolver::getExternalFunctionStub(void *FnAddr) {
+ // If we already have a stub for this function, recycle it.
+ void *&Stub = ExternalFnToStubMap[FnAddr];
+ if (Stub) return Stub;
+
+ Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr,
+ *TheJIT->getCodeEmitter());
+
+ // Invalidate the icache if necessary.
+ synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
+ (intptr_t)Stub);
+
+ DOUT << "JIT: Stub emitted at [" << Stub
+ << "] for external function at '" << FnAddr << "'\n";
+ return Stub;
+}
+
+unsigned JITResolver::getGOTIndexForAddr(void* addr) {
+ unsigned idx = revGOTMap[addr];
+ if (!idx) {
+ idx = ++nextGOTIndex;
+ revGOTMap[addr] = idx;
+ DOUT << "Adding GOT entry " << idx
+ << " for addr " << addr << "\n";
+ // ((void**)MemMgr.getGOTBase())[idx] = addr;
+ }
+ return idx;
+}
+
+/// JITCompilerFn - This function is called when a lazy compilation stub has
+/// been entered. It looks up which function this stub corresponds to, compiles
+/// it if necessary, then returns the resultant function pointer.
+void *JITResolver::JITCompilerFn(void *Stub) {
+ JITResolver &JR = *TheJITResolver;
+
+ MutexGuard locked(TheJIT->lock);
+
+ // The address given to us for the stub may not be exactly right, it might be
+ // a little bit after the stub. As such, use upper_bound to find it.
+ std::map<void*, Function*>::iterator I =
+ JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
+ assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
+ "This is not a known stub!");
+ Function *F = (--I)->second;
+
+ // If we have already code generated the function, just return the address.
+ void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
+
+ if (!Result) {
+ // Otherwise we don't have it, do lazy compilation now.
+
+ // If lazy compilation is disabled, emit a useful error message and abort.
+ if (TheJIT->isLazyCompilationDisabled()) {
+ cerr << "LLVM JIT requested to do lazy compilation of function '"
+ << F->getName() << "' when lazy compiles are disabled!\n";
+ abort();
+ }
+
+ // We might like to remove the stub from the StubToFunction map.
+ // We can't do that! Multiple threads could be stuck, waiting to acquire the
+ // lock above. As soon as the 1st function finishes compiling the function,
+ // the next one will be released, and needs to be able to find the function
+ // it needs to call.
+ //JR.state.getStubToFunctionMap(locked).erase(I);
+
+ DOUT << "JIT: Lazily resolving function '" << F->getName()
+ << "' In stub ptr = " << Stub << " actual ptr = "
+ << I->first << "\n";
+
+ Result = TheJIT->getPointerToFunction(F);
+ }
+
+ // We don't need to reuse this stub in the future, as F is now compiled.
+ JR.state.getFunctionToStubMap(locked).erase(F);
+
+ // FIXME: We could rewrite all references to this stub if we knew them.
+
+ // What we will do is set the compiled function address to map to the
+ // same GOT entry as the stub so that later clients may update the GOT
+ // if they see it still using the stub address.
+ // Note: this is done so the Resolver doesn't have to manage GOT memory
+ // Do this without allocating map space if the target isn't using a GOT
+ if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
+ JR.revGOTMap[Result] = JR.revGOTMap[Stub];
+
+ return Result;
+}
+
+
+//===----------------------------------------------------------------------===//
+// JITEmitter code.
+//
+namespace {
+ /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
+ /// used to output functions to memory for execution.
+ class JITEmitter : public MachineCodeEmitter {
+ JITMemoryManager MemMgr;
+
+ // When outputting a function stub in the context of some other function, we
+ // save BufferBegin/BufferEnd/CurBufferPtr here.
+ unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
+
+ /// Relocations - These are the relocations that the function needs, as
+ /// emitted.
+ std::vector<MachineRelocation> Relocations;
+
+ /// MBBLocations - This vector is a mapping from MBB ID's to their address.
+ /// It is filled in by the StartMachineBasicBlock callback and queried by
+ /// the getMachineBasicBlockAddress callback.
+ std::vector<intptr_t> MBBLocations;
+
+ /// ConstantPool - The constant pool for the current function.
+ ///
+ MachineConstantPool *ConstantPool;
+
+ /// ConstantPoolBase - A pointer to the first entry in the constant pool.
+ ///
+ void *ConstantPoolBase;
+
+ /// JumpTable - The jump tables for the current function.
+ ///
+ MachineJumpTableInfo *JumpTable;
+
+ /// JumpTableBase - A pointer to the first entry in the jump table.
+ ///
+ void *JumpTableBase;
+
+ /// Resolver - This contains info about the currently resolved functions.
+ JITResolver Resolver;
+ public:
+ JITEmitter(JIT &jit)
+ : MemMgr(jit.getJITInfo().needsGOT()), Resolver(jit) {
+ if (MemMgr.isManagingGOT()) DOUT << "JIT is managing a GOT\n";
+ }
+
+ JITResolver &getJITResolver() { return Resolver; }
+
+ virtual void startFunction(MachineFunction &F);
+ virtual bool finishFunction(MachineFunction &F);
+
+ void emitConstantPool(MachineConstantPool *MCP);
+ void initJumpTableInfo(MachineJumpTableInfo *MJTI);
+ void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
+
+ virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1);
+ virtual void* finishFunctionStub(const Function *F);
+
+ virtual void addRelocation(const MachineRelocation &MR) {
+ Relocations.push_back(MR);
+ }
+
+ virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
+ if (MBBLocations.size() <= (unsigned)MBB->getNumber())
+ MBBLocations.resize((MBB->getNumber()+1)*2);
+ MBBLocations[MBB->getNumber()] = getCurrentPCValue();
+ }
+
+ virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
+ virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
+
+ virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
+ assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
+ MBBLocations[MBB->getNumber()] && "MBB not emitted!");
+ return MBBLocations[MBB->getNumber()];
+ }
+
+ /// deallocateMemForFunction - Deallocate all memory for the specified
+ /// function body.
+ void deallocateMemForFunction(Function *F) {
+ MemMgr.deallocateMemForFunction(F);
+ }
+ private:
+ void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
+ };
+}
+
+void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
+ bool DoesntNeedStub) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ /// FIXME: If we straightened things out, this could actually emit the
+ /// global immediately instead of queuing it for codegen later!
+ return TheJIT->getOrEmitGlobalVariable(GV);
+ }
+
+ // If we have already compiled the function, return a pointer to its body.
+ Function *F = cast<Function>(V);
+ void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
+ if (ResultPtr) return ResultPtr;
+
+ if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
+ // If this is an external function pointer, we can force the JIT to
+ // 'compile' it, which really just adds it to the map.
+ if (DoesntNeedStub)
+ return TheJIT->getPointerToFunction(F);
+
+ return Resolver.getFunctionStub(F);
+ }
+
+ // Okay, the function has not been compiled yet, if the target callback
+ // mechanism is capable of rewriting the instruction directly, prefer to do
+ // that instead of emitting a stub.
+ if (DoesntNeedStub)
+ return Resolver.AddCallbackAtLocation(F, Reference);
+
+ // Otherwise, we have to emit a lazy resolving stub.
+ return Resolver.getFunctionStub(F);
+}
+
+void JITEmitter::startFunction(MachineFunction &F) {
+ uintptr_t ActualSize;
+ BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize);
+ BufferEnd = BufferBegin+ActualSize;
+
+ // Ensure the constant pool/jump table info is at least 4-byte aligned.
+ emitAlignment(16);
+
+ emitConstantPool(F.getConstantPool());
+ initJumpTableInfo(F.getJumpTableInfo());
+
+ // About to start emitting the machine code for the function.
+ emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
+ TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
+
+ MBBLocations.clear();
+}
+
+bool JITEmitter::finishFunction(MachineFunction &F) {
+ if (CurBufferPtr == BufferEnd) {
+ // FIXME: Allocate more space, then try again.
+ cerr << "JIT: Ran out of space for generated machine code!\n";
+ abort();
+ }
+
+ emitJumpTableInfo(F.getJumpTableInfo());
+
+ // FnStart is the start of the text, not the start of the constant pool and
+ // other per-function data.
+ unsigned char *FnStart =
+ (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
+ unsigned char *FnEnd = CurBufferPtr;
+
+ MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
+ NumBytes += FnEnd-FnStart;
+
+ if (!Relocations.empty()) {
+ NumRelos += Relocations.size();
+
+ // Resolve the relocations to concrete pointers.
+ for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
+ MachineRelocation &MR = Relocations[i];
+ void *ResultPtr;
+ if (MR.isString()) {
+ ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
+
+ // If the target REALLY wants a stub for this function, emit it now.
+ if (!MR.doesntNeedFunctionStub())
+ ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
+ } else if (MR.isGlobalValue()) {
+ ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
+ BufferBegin+MR.getMachineCodeOffset(),
+ MR.doesntNeedFunctionStub());
+ } else if (MR.isBasicBlock()) {
+ ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
+ } else if (MR.isConstantPoolIndex()) {
+ ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
+ } else {
+ assert(MR.isJumpTableIndex());
+ ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
+ }
+
+ MR.setResultPointer(ResultPtr);
+
+ // if we are managing the GOT and the relocation wants an index,
+ // give it one
+ if (MemMgr.isManagingGOT() && MR.isGOTRelative()) {
+ unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
+ MR.setGOTIndex(idx);
+ if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
+ DOUT << "GOT was out of date for " << ResultPtr
+ << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
+ << "\n";
+ ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
+ }
+ }
+ }
+
+ TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
+ Relocations.size(), MemMgr.getGOTBase());
+ }
+
+ // Update the GOT entry for F to point to the new code.
+ if (MemMgr.isManagingGOT()) {
+ unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
+ if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
+ DOUT << "GOT was out of date for " << (void*)BufferBegin
+ << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n";
+ ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
+ }
+ }
+
+ // Invalidate the icache if necessary.
+ synchronizeICache(FnStart, FnEnd-FnStart);
+
+ DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
+ << "] Function: " << F.getFunction()->getName()
+ << ": " << (FnEnd-FnStart) << " bytes of text, "
+ << Relocations.size() << " relocations\n";
+ Relocations.clear();
+
+#ifndef NDEBUG
+ if (sys::hasDisassembler())
+ DOUT << "Disassembled code:\n"
+ << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
+#endif
+
+ return false;
+}
+
+void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
+ const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
+ if (Constants.empty()) return;
+
+ MachineConstantPoolEntry CPE = Constants.back();
+ unsigned Size = CPE.Offset;
+ const Type *Ty = CPE.isMachineConstantPoolEntry()
+ ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
+ Size += TheJIT->getTargetData()->getTypeSize(Ty);
+
+ ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
+ ConstantPool = MCP;
+
+ if (ConstantPoolBase == 0) return; // Buffer overflow.
+
+ // Initialize the memory for all of the constant pool entries.
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
+ if (Constants[i].isMachineConstantPoolEntry()) {
+ // FIXME: add support to lower machine constant pool values into bytes!
+ cerr << "Initialize memory with machine specific constant pool entry"
+ << " has not been implemented!\n";
+ abort();
+ }
+ TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
+ }
+}
+
+void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty()) return;
+
+ unsigned NumEntries = 0;
+ for (unsigned i = 0, e = JT.size(); i != e; ++i)
+ NumEntries += JT[i].MBBs.size();
+
+ unsigned EntrySize = MJTI->getEntrySize();
+
+ // Just allocate space for all the jump tables now. We will fix up the actual
+ // MBB entries in the tables after we emit the code for each block, since then
+ // we will know the final locations of the MBBs in memory.
+ JumpTable = MJTI;
+ JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
+}
+
+void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty() || JumpTableBase == 0) return;
+
+ if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
+ assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
+ // For each jump table, place the offset from the beginning of the table
+ // to the target address.
+ int *SlotPtr = (int*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the offset of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ intptr_t Base = (intptr_t)SlotPtr;
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
+ *SlotPtr++ = (intptr_t)getMachineBasicBlockAddress(MBBs[mi]) - Base;
+ }
+ } else {
+ assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
+
+ // For each jump table, map each target in the jump table to the address of
+ // an emitted MachineBasicBlock.
+ intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the address of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
+ *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
+ }
+ }
+}
+
+void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) {
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+
+ BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize, Alignment);
+ BufferEnd = BufferBegin+StubSize+1;
+}
+
+void *JITEmitter::finishFunctionStub(const Function *F) {
+ NumBytes += getCurrentPCOffset();
+ std::swap(SavedBufferBegin, BufferBegin);
+ BufferEnd = SavedBufferEnd;
+ CurBufferPtr = SavedCurBufferPtr;
+ return SavedBufferBegin;
+}
+
+// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
+// in the constant pool that was last emitted with the 'emitConstantPool'
+// method.
+//
+intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
+ assert(ConstantNum < ConstantPool->getConstants().size() &&
+ "Invalid ConstantPoolIndex!");
+ return (intptr_t)ConstantPoolBase +
+ ConstantPool->getConstants()[ConstantNum].Offset;
+}
+
+// getJumpTableEntryAddress - Return the address of the JumpTable with index
+// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
+//
+intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
+ const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
+ assert(Index < JT.size() && "Invalid jump table index!");
+
+ unsigned Offset = 0;
+ unsigned EntrySize = JumpTable->getEntrySize();
+
+ for (unsigned i = 0; i < Index; ++i)
+ Offset += JT[i].MBBs.size();
+
+ Offset *= EntrySize;
+
+ return (intptr_t)((char *)JumpTableBase + Offset);
+}
+
+//===----------------------------------------------------------------------===//
+// Public interface to this file
+//===----------------------------------------------------------------------===//
+
+MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
+ return new JITEmitter(jit);
+}
+
+// getPointerToNamedFunction - This function is used as a global wrapper to
+// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
+// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
+// need to resolve function(s) that are being mis-codegenerated, so we need to
+// resolve their addresses at runtime, and this is the way to do it.
+extern "C" {
+ void *getPointerToNamedFunction(const char *Name) {
+ if (Function *F = TheJIT->FindFunctionNamed(Name))
+ return TheJIT->getPointerToFunction(F);
+ return TheJIT->getPointerToNamedFunction(Name);
+ }
+}
+
+// getPointerToFunctionOrStub - If the specified function has been
+// code-gen'd, return a pointer to the function. If not, compile it, or use
+// a stub to implement lazy compilation if available.
+//
+void *JIT::getPointerToFunctionOrStub(Function *F) {
+ // If we have already code generated the function, just return the address.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+
+ // Get a stub if the target supports it.
+ assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
+ JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
+ return JE->getJITResolver().getFunctionStub(F);
+}
+
+/// freeMachineCodeForFunction - release machine code memory for given Function.
+///
+void JIT::freeMachineCodeForFunction(Function *F) {
+ // Delete translation for this from the ExecutionEngine, so it will get
+ // retranslated next time it is used.
+ updateGlobalMapping(F, 0);
+
+ // Free the actual memory for the function body and related stuff.
+ assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
+ static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
+}
+
diff --git a/lib/ExecutionEngine/JIT/Makefile b/lib/ExecutionEngine/JIT/Makefile
new file mode 100644
index 0000000..ebbdc3f
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/Makefile
@@ -0,0 +1,37 @@
+##===- lib/ExecutionEngine/JIT/Makefile --------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../..
+LIBRARYNAME = LLVMJIT
+
+# Get the $(ARCH) setting
+include $(LEVEL)/Makefile.config
+
+# Enable the X86 JIT if compiling on X86
+ifeq ($(ARCH), x86)
+ ENABLE_X86_JIT = 1
+endif
+
+# This flag can also be used on the command line to force inclusion
+# of the X86 JIT on non-X86 hosts
+ifdef ENABLE_X86_JIT
+ CPPFLAGS += -DENABLE_X86_JIT
+endif
+
+# Enable the Sparc JIT if compiling on Sparc
+ifeq ($(ARCH), Sparc)
+ ENABLE_SPARC_JIT = 1
+endif
+
+# This flag can also be used on the command line to force inclusion
+# of the Sparc JIT on non-Sparc hosts
+ifdef ENABLE_SPARC_JIT
+ CPPFLAGS += -DENABLE_SPARC_JIT
+endif
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/ExecutionEngine/JIT/TargetSelect.cpp b/lib/ExecutionEngine/JIT/TargetSelect.cpp
new file mode 100644
index 0000000..bf968af
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/TargetSelect.cpp
@@ -0,0 +1,78 @@
+//===-- TargetSelect.cpp - Target Chooser Code ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This just asks the TargetMachineRegistry for the appropriate JIT to use, and
+// allows the user to specify a specific one on the commandline with -march=x.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/Target/SubtargetFeature.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetMachineRegistry.h"
+using namespace llvm;
+
+static cl::opt<const TargetMachineRegistry::Entry*, false, TargetNameParser>
+MArch("march", cl::desc("Architecture to generate assembly for:"));
+
+static cl::opt<std::string>
+MCPU("mcpu",
+ cl::desc("Target a specific cpu type (-mcpu=help for details)"),
+ cl::value_desc("cpu-name"),
+ cl::init(""));
+
+static cl::list<std::string>
+MAttrs("mattr",
+ cl::CommaSeparated,
+ cl::desc("Target specific attributes (-mattr=help for details)"),
+ cl::value_desc("a1,+a2,-a3,..."));
+
+/// create - Create an return a new JIT compiler if there is one available
+/// for the current target. Otherwise, return null.
+///
+ExecutionEngine *JIT::create(ModuleProvider *MP, std::string *ErrorStr) {
+ const TargetMachineRegistry::Entry *TheArch = MArch;
+ if (TheArch == 0) {
+ std::string Error;
+ TheArch = TargetMachineRegistry::getClosestTargetForJIT(Error);
+ if (TheArch == 0) {
+ if (ErrorStr)
+ *ErrorStr = Error;
+ return 0;
+ }
+ } else if (TheArch->JITMatchQualityFn() == 0) {
+ cerr << "WARNING: This target JIT is not designed for the host you are"
+ << " running. If bad things happen, please choose a different "
+ << "-march switch.\n";
+ }
+
+ // Package up features to be passed to target/subtarget
+ std::string FeaturesStr;
+ if (MCPU.size() || MAttrs.size()) {
+ SubtargetFeatures Features;
+ Features.setCPU(MCPU);
+ for (unsigned i = 0; i != MAttrs.size(); ++i)
+ Features.AddFeature(MAttrs[i]);
+ FeaturesStr = Features.getString();
+ }
+
+ // Allocate a target...
+ TargetMachine *Target = TheArch->CtorFn(*MP->getModule(), FeaturesStr);
+ assert(Target && "Could not allocate target machine!");
+
+ // If the target supports JIT code generation, return a new JIT now.
+ if (TargetJITInfo *TJ = Target->getJITInfo())
+ return new JIT(MP, *Target, *TJ);
+
+ if (ErrorStr)
+ *ErrorStr = "target does not support JIT code generation";
+ return 0;
+}
diff --git a/lib/ExecutionEngine/Makefile b/lib/ExecutionEngine/Makefile
new file mode 100644
index 0000000..c4998fc
--- /dev/null
+++ b/lib/ExecutionEngine/Makefile
@@ -0,0 +1,13 @@
+##===- lib/ExecutionEngine/Makefile ------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+LIBRARYNAME = LLVMExecutionEngine
+PARALLEL_DIRS = Interpreter JIT
+
+include $(LEVEL)/Makefile.common