It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
new file mode 100644
index 0000000..267aaf8
--- /dev/null
+++ b/lib/Support/APInt.cpp
@@ -0,0 +1,2014 @@
+//===-- APInt.cpp - Implement APInt class ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Sheng Zhou and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision integer
+// constant values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "apint"
+#include "llvm/ADT/APInt.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <math.h>
+#include <limits>
+#include <cstring>
+#include <cstdlib>
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+
+using namespace llvm;
+
+/// A utility function for allocating memory, checking for allocation failures,
+/// and ensuring the contents are zeroed.
+inline static uint64_t* getClearedMemory(uint32_t numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ memset(result, 0, numWords * sizeof(uint64_t));
+ return result;
+}
+
+/// A utility function for allocating memory and checking for allocation
+/// failure. The content is not zeroed.
+inline static uint64_t* getMemory(uint32_t numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ return result;
+}
+
+APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
+ : BitWidth(numBits), VAL(0) {
+ assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+ assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+ if (isSingleWord())
+ VAL = val;
+ else {
+ pVal = getClearedMemory(getNumWords());
+ pVal[0] = val;
+ if (isSigned && int64_t(val) < 0)
+ for (unsigned i = 1; i < getNumWords(); ++i)
+ pVal[i] = -1ULL;
+ }
+ clearUnusedBits();
+}
+
+APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
+ : BitWidth(numBits), VAL(0) {
+ assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+ assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+ assert(bigVal && "Null pointer detected!");
+ if (isSingleWord())
+ VAL = bigVal[0];
+ else {
+ // Get memory, cleared to 0
+ pVal = getClearedMemory(getNumWords());
+ // Calculate the number of words to copy
+ uint32_t words = std::min<uint32_t>(numWords, getNumWords());
+ // Copy the words from bigVal to pVal
+ memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
+ }
+ // Make sure unused high bits are cleared
+ clearUnusedBits();
+}
+
+APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
+ uint8_t radix)
+ : BitWidth(numbits), VAL(0) {
+ assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+ assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+ fromString(numbits, StrStart, slen, radix);
+}
+
+APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
+ : BitWidth(numbits), VAL(0) {
+ assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+ assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+ assert(!Val.empty() && "String empty?");
+ fromString(numbits, Val.c_str(), Val.size(), radix);
+}
+
+APInt::APInt(const APInt& that)
+ : BitWidth(that.BitWidth), VAL(0) {
+ assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+ assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+ if (isSingleWord())
+ VAL = that.VAL;
+ else {
+ pVal = getMemory(getNumWords());
+ memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
+ }
+}
+
+APInt::~APInt() {
+ if (!isSingleWord() && pVal)
+ delete [] pVal;
+}
+
+APInt& APInt::operator=(const APInt& RHS) {
+ // Don't do anything for X = X
+ if (this == &RHS)
+ return *this;
+
+ // If the bitwidths are the same, we can avoid mucking with memory
+ if (BitWidth == RHS.getBitWidth()) {
+ if (isSingleWord())
+ VAL = RHS.VAL;
+ else
+ memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
+ return *this;
+ }
+
+ if (isSingleWord())
+ if (RHS.isSingleWord())
+ VAL = RHS.VAL;
+ else {
+ VAL = 0;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ }
+ else if (getNumWords() == RHS.getNumWords())
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ else if (RHS.isSingleWord()) {
+ delete [] pVal;
+ VAL = RHS.VAL;
+ } else {
+ delete [] pVal;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ }
+ BitWidth = RHS.BitWidth;
+ return clearUnusedBits();
+}
+
+APInt& APInt::operator=(uint64_t RHS) {
+ if (isSingleWord())
+ VAL = RHS;
+ else {
+ pVal[0] = RHS;
+ memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ }
+ return clearUnusedBits();
+}
+
+/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// "digit" integer array, x[]. x[] is modified to reflect the addition and
+/// 1 is returned if there is a carry out, otherwise 0 is returned.
+/// @returns the carry of the addition.
+static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
+ for (uint32_t i = 0; i < len; ++i) {
+ dest[i] = y + x[i];
+ if (dest[i] < y)
+ y = 1; // Carry one to next digit.
+ else {
+ y = 0; // No need to carry so exit early
+ break;
+ }
+ }
+ return y;
+}
+
+/// @brief Prefix increment operator. Increments the APInt by one.
+APInt& APInt::operator++() {
+ if (isSingleWord())
+ ++VAL;
+ else
+ add_1(pVal, pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// the multi-digit integer array, x[], propagating the borrowed 1 value until
+/// no further borrowing is neeeded or it runs out of "digits" in x. The result
+/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
+/// In other words, if y > x then this function returns 1, otherwise 0.
+/// @returns the borrow out of the subtraction
+static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
+ for (uint32_t i = 0; i < len; ++i) {
+ uint64_t X = x[i];
+ x[i] -= y;
+ if (y > X)
+ y = 1; // We have to "borrow 1" from next "digit"
+ else {
+ y = 0; // No need to borrow
+ break; // Remaining digits are unchanged so exit early
+ }
+ }
+ return bool(y);
+}
+
+/// @brief Prefix decrement operator. Decrements the APInt by one.
+APInt& APInt::operator--() {
+ if (isSingleWord())
+ --VAL;
+ else
+ sub_1(pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// add - This function adds the integer array x to the integer array Y and
+/// places the result in dest.
+/// @returns the carry out from the addition
+/// @brief General addition of 64-bit integer arrays
+static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ uint32_t len) {
+ bool carry = false;
+ for (uint32_t i = 0; i< len; ++i) {
+ uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
+ dest[i] = x[i] + y[i] + carry;
+ carry = dest[i] < limit || (carry && dest[i] == limit);
+ }
+ return carry;
+}
+
+/// Adds the RHS APint to this APInt.
+/// @returns this, after addition of RHS.
+/// @brief Addition assignment operator.
+APInt& APInt::operator+=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL += RHS.VAL;
+ else {
+ add(pVal, pVal, RHS.pVal, getNumWords());
+ }
+ return clearUnusedBits();
+}
+
+/// Subtracts the integer array y from the integer array x
+/// @returns returns the borrow out.
+/// @brief Generalized subtraction of 64-bit integer arrays.
+static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ uint32_t len) {
+ bool borrow = false;
+ for (uint32_t i = 0; i < len; ++i) {
+ uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
+ borrow = y[i] > x_tmp || (borrow && x[i] == 0);
+ dest[i] = x_tmp - y[i];
+ }
+ return borrow;
+}
+
+/// Subtracts the RHS APInt from this APInt
+/// @returns this, after subtraction
+/// @brief Subtraction assignment operator.
+APInt& APInt::operator-=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL -= RHS.VAL;
+ else
+ sub(pVal, pVal, RHS.pVal, getNumWords());
+ return clearUnusedBits();
+}
+
+/// Multiplies an integer array, x by a a uint64_t integer and places the result
+/// into dest.
+/// @returns the carry out of the multiplication.
+/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
+static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
+ // Split y into high 32-bit part (hy) and low 32-bit part (ly)
+ uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
+ uint64_t carry = 0;
+
+ // For each digit of x.
+ for (uint32_t i = 0; i < len; ++i) {
+ // Split x into high and low words
+ uint64_t lx = x[i] & 0xffffffffULL;
+ uint64_t hx = x[i] >> 32;
+ // hasCarry - A flag to indicate if there is a carry to the next digit.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ dest[i] = carry + lx * ly;
+ // Determine if the add above introduces carry.
+ hasCarry = (dest[i] < carry) ? 1 : 0;
+ carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
+ // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
+ // (2^32 - 1) + 2^32 = 2^64.
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
+ (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
+ }
+ return carry;
+}
+
+/// Multiplies integer array x by integer array y and stores the result into
+/// the integer array dest. Note that dest's size must be >= xlen + ylen.
+/// @brief Generalized multiplicate of integer arrays.
+static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
+ uint32_t ylen) {
+ dest[xlen] = mul_1(dest, x, xlen, y[0]);
+ for (uint32_t i = 1; i < ylen; ++i) {
+ uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
+ uint64_t carry = 0, lx = 0, hx = 0;
+ for (uint32_t j = 0; j < xlen; ++j) {
+ lx = x[j] & 0xffffffffULL;
+ hx = x[j] >> 32;
+ // hasCarry - A flag to indicate if has carry.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ uint64_t resul = carry + lx * ly;
+ hasCarry = (resul < carry) ? 1 : 0;
+ carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ resul = (carry << 32) | (resul & 0xffffffffULL);
+ dest[i+j] += resul;
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
+ ((lx * hy) >> 32) + hx * hy;
+ }
+ dest[i+xlen] = carry;
+ }
+}
+
+APInt& APInt::operator*=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL *= RHS.VAL;
+ clearUnusedBits();
+ return *this;
+ }
+
+ // Get some bit facts about LHS and check for zero
+ uint32_t lhsBits = getActiveBits();
+ uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
+ if (!lhsWords)
+ // 0 * X ===> 0
+ return *this;
+
+ // Get some bit facts about RHS and check for zero
+ uint32_t rhsBits = RHS.getActiveBits();
+ uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
+ if (!rhsWords) {
+ // X * 0 ===> 0
+ clear();
+ return *this;
+ }
+
+ // Allocate space for the result
+ uint32_t destWords = rhsWords + lhsWords;
+ uint64_t *dest = getMemory(destWords);
+
+ // Perform the long multiply
+ mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
+
+ // Copy result back into *this
+ clear();
+ uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
+ memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
+
+ // delete dest array and return
+ delete[] dest;
+ return *this;
+}
+
+APInt& APInt::operator&=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL &= RHS.VAL;
+ return *this;
+ }
+ uint32_t numWords = getNumWords();
+ for (uint32_t i = 0; i < numWords; ++i)
+ pVal[i] &= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator|=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL |= RHS.VAL;
+ return *this;
+ }
+ uint32_t numWords = getNumWords();
+ for (uint32_t i = 0; i < numWords; ++i)
+ pVal[i] |= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator^=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL ^= RHS.VAL;
+ this->clearUnusedBits();
+ return *this;
+ }
+ uint32_t numWords = getNumWords();
+ for (uint32_t i = 0; i < numWords; ++i)
+ pVal[i] ^= RHS.pVal[i];
+ return clearUnusedBits();
+}
+
+APInt APInt::operator&(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(getBitWidth(), VAL & RHS.VAL);
+
+ uint32_t numWords = getNumWords();
+ uint64_t* val = getMemory(numWords);
+ for (uint32_t i = 0; i < numWords; ++i)
+ val[i] = pVal[i] & RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::operator|(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(getBitWidth(), VAL | RHS.VAL);
+
+ uint32_t numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (uint32_t i = 0; i < numWords; ++i)
+ val[i] = pVal[i] | RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::operator^(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL ^ RHS.VAL);
+
+ uint32_t numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (uint32_t i = 0; i < numWords; ++i)
+ val[i] = pVal[i] ^ RHS.pVal[i];
+
+ // 0^0==1 so clear the high bits in case they got set.
+ return APInt(val, getBitWidth()).clearUnusedBits();
+}
+
+bool APInt::operator !() const {
+ if (isSingleWord())
+ return !VAL;
+
+ for (uint32_t i = 0; i < getNumWords(); ++i)
+ if (pVal[i])
+ return false;
+ return true;
+}
+
+APInt APInt::operator*(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL * RHS.VAL);
+ APInt Result(*this);
+ Result *= RHS;
+ return Result.clearUnusedBits();
+}
+
+APInt APInt::operator+(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL + RHS.VAL);
+ APInt Result(BitWidth, 0);
+ add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+APInt APInt::operator-(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL - RHS.VAL);
+ APInt Result(BitWidth, 0);
+ sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+bool APInt::operator[](uint32_t bitPosition) const {
+ return (maskBit(bitPosition) &
+ (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
+}
+
+bool APInt::operator==(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
+ if (isSingleWord())
+ return VAL == RHS.VAL;
+
+ // Get some facts about the number of bits used in the two operands.
+ uint32_t n1 = getActiveBits();
+ uint32_t n2 = RHS.getActiveBits();
+
+ // If the number of bits isn't the same, they aren't equal
+ if (n1 != n2)
+ return false;
+
+ // If the number of bits fits in a word, we only need to compare the low word.
+ if (n1 <= APINT_BITS_PER_WORD)
+ return pVal[0] == RHS.pVal[0];
+
+ // Otherwise, compare everything
+ for (int i = whichWord(n1 - 1); i >= 0; --i)
+ if (pVal[i] != RHS.pVal[i])
+ return false;
+ return true;
+}
+
+bool APInt::operator==(uint64_t Val) const {
+ if (isSingleWord())
+ return VAL == Val;
+
+ uint32_t n = getActiveBits();
+ if (n <= APINT_BITS_PER_WORD)
+ return pVal[0] == Val;
+ else
+ return false;
+}
+
+bool APInt::ult(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord())
+ return VAL < RHS.VAL;
+
+ // Get active bit length of both operands
+ uint32_t n1 = getActiveBits();
+ uint32_t n2 = RHS.getActiveBits();
+
+ // If magnitude of LHS is less than RHS, return true.
+ if (n1 < n2)
+ return true;
+
+ // If magnitude of RHS is greather than LHS, return false.
+ if (n2 < n1)
+ return false;
+
+ // If they bot fit in a word, just compare the low order word
+ if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
+ return pVal[0] < RHS.pVal[0];
+
+ // Otherwise, compare all words
+ uint32_t topWord = whichWord(std::max(n1,n2)-1);
+ for (int i = topWord; i >= 0; --i) {
+ if (pVal[i] > RHS.pVal[i])
+ return false;
+ if (pVal[i] < RHS.pVal[i])
+ return true;
+ }
+ return false;
+}
+
+bool APInt::slt(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord()) {
+ int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
+ return lhsSext < rhsSext;
+ }
+
+ APInt lhs(*this);
+ APInt rhs(RHS);
+ bool lhsNeg = isNegative();
+ bool rhsNeg = rhs.isNegative();
+ if (lhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ lhs.flip();
+ lhs++;
+ }
+ if (rhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ rhs.flip();
+ rhs++;
+ }
+
+ // Now we have unsigned values to compare so do the comparison if necessary
+ // based on the negativeness of the values.
+ if (lhsNeg)
+ if (rhsNeg)
+ return lhs.ugt(rhs);
+ else
+ return true;
+ else if (rhsNeg)
+ return false;
+ else
+ return lhs.ult(rhs);
+}
+
+APInt& APInt::set(uint32_t bitPosition) {
+ if (isSingleWord())
+ VAL |= maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
+ return *this;
+}
+
+APInt& APInt::set() {
+ if (isSingleWord()) {
+ VAL = -1ULL;
+ return clearUnusedBits();
+ }
+
+ // Set all the bits in all the words.
+ for (uint32_t i = 0; i < getNumWords(); ++i)
+ pVal[i] = -1ULL;
+ // Clear the unused ones
+ return clearUnusedBits();
+}
+
+/// Set the given bit to 0 whose position is given as "bitPosition".
+/// @brief Set a given bit to 0.
+APInt& APInt::clear(uint32_t bitPosition) {
+ if (isSingleWord())
+ VAL &= ~maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
+ return *this;
+}
+
+/// @brief Set every bit to 0.
+APInt& APInt::clear() {
+ if (isSingleWord())
+ VAL = 0;
+ else
+ memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
+ return *this;
+}
+
+/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
+/// this APInt.
+APInt APInt::operator~() const {
+ APInt Result(*this);
+ Result.flip();
+ return Result;
+}
+
+/// @brief Toggle every bit to its opposite value.
+APInt& APInt::flip() {
+ if (isSingleWord()) {
+ VAL ^= -1ULL;
+ return clearUnusedBits();
+ }
+ for (uint32_t i = 0; i < getNumWords(); ++i)
+ pVal[i] ^= -1ULL;
+ return clearUnusedBits();
+}
+
+/// Toggle a given bit to its opposite value whose position is given
+/// as "bitPosition".
+/// @brief Toggles a given bit to its opposite value.
+APInt& APInt::flip(uint32_t bitPosition) {
+ assert(bitPosition < BitWidth && "Out of the bit-width range!");
+ if ((*this)[bitPosition]) clear(bitPosition);
+ else set(bitPosition);
+ return *this;
+}
+
+uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
+ assert(str != 0 && "Invalid value string");
+ assert(slen > 0 && "Invalid string length");
+
+ // Each computation below needs to know if its negative
+ uint32_t isNegative = str[0] == '-';
+ if (isNegative) {
+ slen--;
+ str++;
+ }
+ // For radixes of power-of-two values, the bits required is accurately and
+ // easily computed
+ if (radix == 2)
+ return slen + isNegative;
+ if (radix == 8)
+ return slen * 3 + isNegative;
+ if (radix == 16)
+ return slen * 4 + isNegative;
+
+ // Otherwise it must be radix == 10, the hard case
+ assert(radix == 10 && "Invalid radix");
+
+ // This is grossly inefficient but accurate. We could probably do something
+ // with a computation of roughly slen*64/20 and then adjust by the value of
+ // the first few digits. But, I'm not sure how accurate that could be.
+
+ // Compute a sufficient number of bits that is always large enough but might
+ // be too large. This avoids the assertion in the constructor.
+ uint32_t sufficient = slen*64/18;
+
+ // Convert to the actual binary value.
+ APInt tmp(sufficient, str, slen, radix);
+
+ // Compute how many bits are required.
+ return isNegative + tmp.logBase2() + 1;
+}
+
+uint64_t APInt::getHashValue() const {
+ // Put the bit width into the low order bits.
+ uint64_t hash = BitWidth;
+
+ // Add the sum of the words to the hash.
+ if (isSingleWord())
+ hash += VAL << 6; // clear separation of up to 64 bits
+ else
+ for (uint32_t i = 0; i < getNumWords(); ++i)
+ hash += pVal[i] << 6; // clear sepration of up to 64 bits
+ return hash;
+}
+
+/// HiBits - This function returns the high "numBits" bits of this APInt.
+APInt APInt::getHiBits(uint32_t numBits) const {
+ return APIntOps::lshr(*this, BitWidth - numBits);
+}
+
+/// LoBits - This function returns the low "numBits" bits of this APInt.
+APInt APInt::getLoBits(uint32_t numBits) const {
+ return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
+ BitWidth - numBits);
+}
+
+bool APInt::isPowerOf2() const {
+ return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
+}
+
+uint32_t APInt::countLeadingZeros() const {
+ uint32_t Count = 0;
+ if (isSingleWord())
+ Count = CountLeadingZeros_64(VAL);
+ else {
+ for (uint32_t i = getNumWords(); i > 0u; --i) {
+ if (pVal[i-1] == 0)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += CountLeadingZeros_64(pVal[i-1]);
+ break;
+ }
+ }
+ }
+ uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
+ if (remainder)
+ Count -= APINT_BITS_PER_WORD - remainder;
+ return Count;
+}
+
+static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
+ uint32_t Count = 0;
+ if (skip)
+ V <<= skip;
+ while (V && (V & (1ULL << 63))) {
+ Count++;
+ V <<= 1;
+ }
+ return Count;
+}
+
+uint32_t APInt::countLeadingOnes() const {
+ if (isSingleWord())
+ return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
+
+ uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
+ uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
+ int i = getNumWords() - 1;
+ uint32_t Count = countLeadingOnes_64(pVal[i], shift);
+ if (Count == highWordBits) {
+ for (i--; i >= 0; --i) {
+ if (pVal[i] == -1ULL)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += countLeadingOnes_64(pVal[i], 0);
+ break;
+ }
+ }
+ }
+ return Count;
+}
+
+uint32_t APInt::countTrailingZeros() const {
+ if (isSingleWord())
+ return CountTrailingZeros_64(VAL);
+ uint32_t Count = 0;
+ uint32_t i = 0;
+ for (; i < getNumWords() && pVal[i] == 0; ++i)
+ Count += APINT_BITS_PER_WORD;
+ if (i < getNumWords())
+ Count += CountTrailingZeros_64(pVal[i]);
+ return Count;
+}
+
+uint32_t APInt::countPopulation() const {
+ if (isSingleWord())
+ return CountPopulation_64(VAL);
+ uint32_t Count = 0;
+ for (uint32_t i = 0; i < getNumWords(); ++i)
+ Count += CountPopulation_64(pVal[i]);
+ return Count;
+}
+
+APInt APInt::byteSwap() const {
+ assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
+ if (BitWidth == 16)
+ return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
+ else if (BitWidth == 32)
+ return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
+ else if (BitWidth == 48) {
+ uint32_t Tmp1 = uint32_t(VAL >> 16);
+ Tmp1 = ByteSwap_32(Tmp1);
+ uint16_t Tmp2 = uint16_t(VAL);
+ Tmp2 = ByteSwap_16(Tmp2);
+ return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
+ } else if (BitWidth == 64)
+ return APInt(BitWidth, ByteSwap_64(VAL));
+ else {
+ APInt Result(BitWidth, 0);
+ char *pByte = (char*)Result.pVal;
+ for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
+ char Tmp = pByte[i];
+ pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
+ pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
+ }
+ return Result;
+ }
+}
+
+APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
+ const APInt& API2) {
+ APInt A = API1, B = API2;
+ while (!!B) {
+ APInt T = B;
+ B = APIntOps::urem(A, B);
+ A = T;
+ }
+ return A;
+}
+
+APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.D = Double;
+
+ // Get the sign bit from the highest order bit
+ bool isNeg = T.I >> 63;
+
+ // Get the 11-bit exponent and adjust for the 1023 bit bias
+ int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
+
+ // If the exponent is negative, the value is < 0 so just return 0.
+ if (exp < 0)
+ return APInt(width, 0u);
+
+ // Extract the mantissa by clearing the top 12 bits (sign + exponent).
+ uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
+
+ // If the exponent doesn't shift all bits out of the mantissa
+ if (exp < 52)
+ return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
+ APInt(width, mantissa >> (52 - exp));
+
+ // If the client didn't provide enough bits for us to shift the mantissa into
+ // then the result is undefined, just return 0
+ if (width <= exp - 52)
+ return APInt(width, 0);
+
+ // Otherwise, we have to shift the mantissa bits up to the right location
+ APInt Tmp(width, mantissa);
+ Tmp = Tmp.shl(exp - 52);
+ return isNeg ? -Tmp : Tmp;
+}
+
+/// RoundToDouble - This function convert this APInt to a double.
+/// The layout for double is as following (IEEE Standard 754):
+/// --------------------------------------
+/// | Sign Exponent Fraction Bias |
+/// |-------------------------------------- |
+/// | 1[63] 11[62-52] 52[51-00] 1023 |
+/// --------------------------------------
+double APInt::roundToDouble(bool isSigned) const {
+
+ // Handle the simple case where the value is contained in one uint64_t.
+ if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
+ if (isSigned) {
+ int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ return double(sext);
+ } else
+ return double(VAL);
+ }
+
+ // Determine if the value is negative.
+ bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
+
+ // Construct the absolute value if we're negative.
+ APInt Tmp(isNeg ? -(*this) : (*this));
+
+ // Figure out how many bits we're using.
+ uint32_t n = Tmp.getActiveBits();
+
+ // The exponent (without bias normalization) is just the number of bits
+ // we are using. Note that the sign bit is gone since we constructed the
+ // absolute value.
+ uint64_t exp = n;
+
+ // Return infinity for exponent overflow
+ if (exp > 1023) {
+ if (!isSigned || !isNeg)
+ return std::numeric_limits<double>::infinity();
+ else
+ return -std::numeric_limits<double>::infinity();
+ }
+ exp += 1023; // Increment for 1023 bias
+
+ // Number of bits in mantissa is 52. To obtain the mantissa value, we must
+ // extract the high 52 bits from the correct words in pVal.
+ uint64_t mantissa;
+ unsigned hiWord = whichWord(n-1);
+ if (hiWord == 0) {
+ mantissa = Tmp.pVal[0];
+ if (n > 52)
+ mantissa >>= n - 52; // shift down, we want the top 52 bits.
+ } else {
+ assert(hiWord > 0 && "huh?");
+ uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
+ uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
+ mantissa = hibits | lobits;
+ }
+
+ // The leading bit of mantissa is implicit, so get rid of it.
+ uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.I = sign | (exp << 52) | mantissa;
+ return T.D;
+}
+
+// Truncate to new width.
+APInt &APInt::trunc(uint32_t width) {
+ assert(width < BitWidth && "Invalid APInt Truncate request");
+ assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
+ uint32_t wordsBefore = getNumWords();
+ BitWidth = width;
+ uint32_t wordsAfter = getNumWords();
+ if (wordsBefore != wordsAfter) {
+ if (wordsAfter == 1) {
+ uint64_t *tmp = pVal;
+ VAL = pVal[0];
+ delete [] tmp;
+ } else {
+ uint64_t *newVal = getClearedMemory(wordsAfter);
+ for (uint32_t i = 0; i < wordsAfter; ++i)
+ newVal[i] = pVal[i];
+ delete [] pVal;
+ pVal = newVal;
+ }
+ }
+ return clearUnusedBits();
+}
+
+// Sign extend to a new width.
+APInt &APInt::sext(uint32_t width) {
+ assert(width > BitWidth && "Invalid APInt SignExtend request");
+ assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
+ // If the sign bit isn't set, this is the same as zext.
+ if (!isNegative()) {
+ zext(width);
+ return *this;
+ }
+
+ // The sign bit is set. First, get some facts
+ uint32_t wordsBefore = getNumWords();
+ uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
+ BitWidth = width;
+ uint32_t wordsAfter = getNumWords();
+
+ // Mask the high order word appropriately
+ if (wordsBefore == wordsAfter) {
+ uint32_t newWordBits = width % APINT_BITS_PER_WORD;
+ // The extension is contained to the wordsBefore-1th word.
+ uint64_t mask = ~0ULL;
+ if (newWordBits)
+ mask >>= APINT_BITS_PER_WORD - newWordBits;
+ mask <<= wordBits;
+ if (wordsBefore == 1)
+ VAL |= mask;
+ else
+ pVal[wordsBefore-1] |= mask;
+ return clearUnusedBits();
+ }
+
+ uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
+ uint64_t *newVal = getMemory(wordsAfter);
+ if (wordsBefore == 1)
+ newVal[0] = VAL | mask;
+ else {
+ for (uint32_t i = 0; i < wordsBefore; ++i)
+ newVal[i] = pVal[i];
+ newVal[wordsBefore-1] |= mask;
+ }
+ for (uint32_t i = wordsBefore; i < wordsAfter; i++)
+ newVal[i] = -1ULL;
+ if (wordsBefore != 1)
+ delete [] pVal;
+ pVal = newVal;
+ return clearUnusedBits();
+}
+
+// Zero extend to a new width.
+APInt &APInt::zext(uint32_t width) {
+ assert(width > BitWidth && "Invalid APInt ZeroExtend request");
+ assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
+ uint32_t wordsBefore = getNumWords();
+ BitWidth = width;
+ uint32_t wordsAfter = getNumWords();
+ if (wordsBefore != wordsAfter) {
+ uint64_t *newVal = getClearedMemory(wordsAfter);
+ if (wordsBefore == 1)
+ newVal[0] = VAL;
+ else
+ for (uint32_t i = 0; i < wordsBefore; ++i)
+ newVal[i] = pVal[i];
+ if (wordsBefore != 1)
+ delete [] pVal;
+ pVal = newVal;
+ }
+ return *this;
+}
+
+APInt &APInt::zextOrTrunc(uint32_t width) {
+ if (BitWidth < width)
+ return zext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+APInt &APInt::sextOrTrunc(uint32_t width) {
+ if (BitWidth < width)
+ return sext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(uint32_t shiftAmt) const {
+ assert(shiftAmt <= BitWidth && "Invalid shift amount");
+ // Handle a degenerate case
+ if (shiftAmt == 0)
+ return *this;
+
+ // Handle single word shifts with built-in ashr
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0); // undefined
+ else {
+ uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
+ return APInt(BitWidth,
+ (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
+ }
+ }
+
+ // If all the bits were shifted out, the result is, technically, undefined.
+ // We return -1 if it was negative, 0 otherwise. We check this early to avoid
+ // issues in the algorithm below.
+ if (shiftAmt == BitWidth) {
+ if (isNegative())
+ return APInt(BitWidth, -1ULL);
+ else
+ return APInt(BitWidth, 0);
+ }
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // Compute some values needed by the following shift algorithms
+ uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
+ uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
+ uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
+ uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
+ if (bitsInWord == 0)
+ bitsInWord = APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ // Move the words containing significant bits
+ for (uint32_t i = 0; i <= breakWord; ++i)
+ val[i] = pVal[i+offset]; // move whole word
+
+ // Adjust the top significant word for sign bit fill, if negative
+ if (isNegative())
+ if (bitsInWord < APINT_BITS_PER_WORD)
+ val[breakWord] |= ~0ULL << bitsInWord; // set high bits
+ } else {
+ // Shift the low order words
+ for (uint32_t i = 0; i < breakWord; ++i) {
+ // This combines the shifted corresponding word with the low bits from
+ // the next word (shifted into this word's high bits).
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ }
+
+ // Shift the break word. In this case there are no bits from the next word
+ // to include in this word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Deal with sign extenstion in the break word, and possibly the word before
+ // it.
+ if (isNegative()) {
+ if (wordShift > bitsInWord) {
+ if (breakWord > 0)
+ val[breakWord-1] |=
+ ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
+ val[breakWord] |= ~0ULL;
+ } else
+ val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
+ }
+ }
+
+ // Remaining words are 0 or -1, just assign them.
+ uint64_t fillValue = (isNegative() ? -1ULL : 0);
+ for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = fillValue;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(uint32_t shiftAmt) const {
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+ else
+ return APInt(BitWidth, this->VAL >> shiftAmt);
+ }
+
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids
+ // issues with shifting byt he size of the integer type, which produces
+ // undefined results in the code below. This is also an optimization.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, compute the shift with a simple carry
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ uint64_t carry = 0;
+ for (int i = getNumWords()-1; i >= 0; --i) {
+ val[i] = (pVal[i] >> shiftAmt) | carry;
+ carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
+ }
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (uint32_t i = 0; i < getNumWords() - offset; ++i)
+ val[i] = pVal[i+offset];
+ for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
+ val[i] = 0;
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Shift the low order words
+ uint32_t breakWord = getNumWords() - offset -1;
+ for (uint32_t i = 0; i < breakWord; ++i)
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ // Shift the break word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Remaining words are 0
+ for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Left-shift this APInt by shiftAmt.
+/// @brief Left-shift function.
+APInt APInt::shl(uint32_t shiftAmt) const {
+ assert(shiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0); // avoid undefined shift results
+ return APInt(BitWidth, VAL << shiftAmt);
+ }
+
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids a
+ // lshr by the words size in the loop below which can produce incorrect
+ // results. It also avoids the expensive computation below for a common case.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, do it the easy way
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ uint64_t carry = 0;
+ for (uint32_t i = 0; i < getNumWords(); i++) {
+ val[i] = pVal[i] << shiftAmt | carry;
+ carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
+ }
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (uint32_t i = 0; i < offset; i++)
+ val[i] = 0;
+ for (uint32_t i = offset; i < getNumWords(); i++)
+ val[i] = pVal[i-offset];
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Copy whole words from this to Result.
+ uint32_t i = getNumWords() - 1;
+ for (; i > offset; --i)
+ val[i] = pVal[i-offset] << wordShift |
+ pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
+ val[offset] = pVal[0] << wordShift;
+ for (i = 0; i < offset; ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+APInt APInt::rotl(uint32_t rotateAmt) const {
+ if (rotateAmt == 0)
+ return *this;
+ // Don't get too fancy, just use existing shift/or facilities
+ APInt hi(*this);
+ APInt lo(*this);
+ hi.shl(rotateAmt);
+ lo.lshr(BitWidth - rotateAmt);
+ return hi | lo;
+}
+
+APInt APInt::rotr(uint32_t rotateAmt) const {
+ if (rotateAmt == 0)
+ return *this;
+ // Don't get too fancy, just use existing shift/or facilities
+ APInt hi(*this);
+ APInt lo(*this);
+ lo.lshr(rotateAmt);
+ hi.shl(BitWidth - rotateAmt);
+ return hi | lo;
+}
+
+// Square Root - this method computes and returns the square root of "this".
+// Three mechanisms are used for computation. For small values (<= 5 bits),
+// a table lookup is done. This gets some performance for common cases. For
+// values using less than 52 bits, the value is converted to double and then
+// the libc sqrt function is called. The result is rounded and then converted
+// back to a uint64_t which is then used to construct the result. Finally,
+// the Babylonian method for computing square roots is used.
+APInt APInt::sqrt() const {
+
+ // Determine the magnitude of the value.
+ uint32_t magnitude = getActiveBits();
+
+ // Use a fast table for some small values. This also gets rid of some
+ // rounding errors in libc sqrt for small values.
+ if (magnitude <= 5) {
+ static const uint8_t results[32] = {
+ /* 0 */ 0,
+ /* 1- 2 */ 1, 1,
+ /* 3- 6 */ 2, 2, 2, 2,
+ /* 7-12 */ 3, 3, 3, 3, 3, 3,
+ /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
+ /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ /* 31 */ 6
+ };
+ return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
+ }
+
+ // If the magnitude of the value fits in less than 52 bits (the precision of
+ // an IEEE double precision floating point value), then we can use the
+ // libc sqrt function which will probably use a hardware sqrt computation.
+ // This should be faster than the algorithm below.
+ if (magnitude < 52) {
+#ifdef _MSC_VER
+ // Amazingly, VC++ doesn't have round().
+ return APInt(BitWidth,
+ uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
+#else
+ return APInt(BitWidth,
+ uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
+#endif
+ }
+
+ // Okay, all the short cuts are exhausted. We must compute it. The following
+ // is a classical Babylonian method for computing the square root. This code
+ // was adapted to APINt from a wikipedia article on such computations.
+ // See http://www.wikipedia.org/ and go to the page named
+ // Calculate_an_integer_square_root.
+ uint32_t nbits = BitWidth, i = 4;
+ APInt testy(BitWidth, 16);
+ APInt x_old(BitWidth, 1);
+ APInt x_new(BitWidth, 0);
+ APInt two(BitWidth, 2);
+
+ // Select a good starting value using binary logarithms.
+ for (;; i += 2, testy = testy.shl(2))
+ if (i >= nbits || this->ule(testy)) {
+ x_old = x_old.shl(i / 2);
+ break;
+ }
+
+ // Use the Babylonian method to arrive at the integer square root:
+ for (;;) {
+ x_new = (this->udiv(x_old) + x_old).udiv(two);
+ if (x_old.ule(x_new))
+ break;
+ x_old = x_new;
+ }
+
+ // Make sure we return the closest approximation
+ // NOTE: The rounding calculation below is correct. It will produce an
+ // off-by-one discrepancy with results from pari/gp. That discrepancy has been
+ // determined to be a rounding issue with pari/gp as it begins to use a
+ // floating point representation after 192 bits. There are no discrepancies
+ // between this algorithm and pari/gp for bit widths < 192 bits.
+ APInt square(x_old * x_old);
+ APInt nextSquare((x_old + 1) * (x_old +1));
+ if (this->ult(square))
+ return x_old;
+ else if (this->ule(nextSquare)) {
+ APInt midpoint((nextSquare - square).udiv(two));
+ APInt offset(*this - square);
+ if (offset.ult(midpoint))
+ return x_old;
+ else
+ return x_old + 1;
+ } else
+ assert(0 && "Error in APInt::sqrt computation");
+ return x_old + 1;
+}
+
+/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
+/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
+/// variables here have the same names as in the algorithm. Comments explain
+/// the algorithm and any deviation from it.
+static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
+ uint32_t m, uint32_t n) {
+ assert(u && "Must provide dividend");
+ assert(v && "Must provide divisor");
+ assert(q && "Must provide quotient");
+ assert(u != v && u != q && v != q && "Must us different memory");
+ assert(n>1 && "n must be > 1");
+
+ // Knuth uses the value b as the base of the number system. In our case b
+ // is 2^31 so we just set it to -1u.
+ uint64_t b = uint64_t(1) << 32;
+
+ DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(cerr << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
+ DEBUG(cerr << " by");
+ DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
+ DEBUG(cerr << '\n');
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
+ // shift amount from the leading zeros. We are basically normalizing the u
+ // and v so that its high bits are shifted to the top of v's range without
+ // overflow. Note that this can require an extra word in u so that u must
+ // be of length m+n+1.
+ uint32_t shift = CountLeadingZeros_32(v[n-1]);
+ uint32_t v_carry = 0;
+ uint32_t u_carry = 0;
+ if (shift) {
+ for (uint32_t i = 0; i < m+n; ++i) {
+ uint32_t u_tmp = u[i] >> (32 - shift);
+ u[i] = (u[i] << shift) | u_carry;
+ u_carry = u_tmp;
+ }
+ for (uint32_t i = 0; i < n; ++i) {
+ uint32_t v_tmp = v[i] >> (32 - shift);
+ v[i] = (v[i] << shift) | v_carry;
+ v_carry = v_tmp;
+ }
+ }
+ u[m+n] = u_carry;
+ DEBUG(cerr << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
+ DEBUG(cerr << " by");
+ DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
+ DEBUG(cerr << '\n');
+
+ // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
+ int j = m;
+ do {
+ DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
+ // D3. [Calculate q'.].
+ // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
+ // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
+ // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
+ // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
+ // on v[n-2] determines at high speed most of the cases in which the trial
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
+ uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
+ DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
+ uint64_t qp = dividend / v[n-1];
+ uint64_t rp = dividend % v[n-1];
+ if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
+ qp--;
+ rp += v[n-1];
+ if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
+ qp--;
+ }
+ DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+
+ // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
+ // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
+ // consists of a simple multiplication by a one-place number, combined with
+ // a subtraction.
+ bool isNeg = false;
+ for (uint32_t i = 0; i < n; ++i) {
+ uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
+ uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
+ bool borrow = subtrahend > u_tmp;
+ DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
+ << ", subtrahend == " << subtrahend
+ << ", borrow = " << borrow << '\n');
+
+ uint64_t result = u_tmp - subtrahend;
+ uint32_t k = j + i;
+ u[k++] = result & (b-1); // subtract low word
+ u[k++] = result >> 32; // subtract high word
+ while (borrow && k <= m+n) { // deal with borrow to the left
+ borrow = u[k] == 0;
+ u[k]--;
+ k++;
+ }
+ isNeg |= borrow;
+ DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ u[j+i+1] << '\n');
+ }
+ DEBUG(cerr << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
+ DEBUG(cerr << '\n');
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ // true value plus b**(n+1), namely as the b's complement of
+ // the true value, and a "borrow" to the left should be remembered.
+ //
+ if (isNeg) {
+ bool carry = true; // true because b's complement is "complement + 1"
+ for (uint32_t i = 0; i <= m+n; ++i) {
+ u[i] = ~u[i] + carry; // b's complement
+ carry = carry && u[i] == 0;
+ }
+ }
+ DEBUG(cerr << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
+ DEBUG(cerr << '\n');
+
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // negative, go to step D6; otherwise go on to step D7.
+ q[j] = qp;
+ if (isNeg) {
+ // D6. [Add back]. The probability that this step is necessary is very
+ // small, on the order of only 2/b. Make sure that test data accounts for
+ // this possibility. Decrease q[j] by 1
+ q[j]--;
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
+ // since it cancels with the borrow that occurred in D4.
+ bool carry = false;
+ for (uint32_t i = 0; i < n; i++) {
+ uint32_t limit = std::min(u[j+i],v[i]);
+ u[j+i] += v[i] + carry;
+ carry = u[j+i] < limit || (carry && u[j+i] == limit);
+ }
+ u[j+n] += carry;
+ }
+ DEBUG(cerr << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
+ DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
+
+ // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
+ } while (--j >= 0);
+
+ DEBUG(cerr << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
+ DEBUG(cerr << '\n');
+
+ // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
+ // remainder may be obtained by dividing u[...] by d. If r is non-null we
+ // compute the remainder (urem uses this).
+ if (r) {
+ // The value d is expressed by the "shift" value above since we avoided
+ // multiplication by d by using a shift left. So, all we have to do is
+ // shift right here. In order to mak
+ if (shift) {
+ uint32_t carry = 0;
+ DEBUG(cerr << "KnuthDiv: remainder:");
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = (u[i] >> shift) | carry;
+ carry = u[i] << (32 - shift);
+ DEBUG(cerr << " " << r[i]);
+ }
+ } else {
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = u[i];
+ DEBUG(cerr << " " << r[i]);
+ }
+ }
+ DEBUG(cerr << '\n');
+ }
+ DEBUG(cerr << std::setbase(10) << '\n');
+}
+
+void APInt::divide(const APInt LHS, uint32_t lhsWords,
+ const APInt &RHS, uint32_t rhsWords,
+ APInt *Quotient, APInt *Remainder)
+{
+ assert(lhsWords >= rhsWords && "Fractional result");
+
+ // First, compose the values into an array of 32-bit words instead of
+ // 64-bit words. This is a necessity of both the "short division" algorithm
+ // and the the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
+ // work on large-endian machines.
+ uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
+ uint32_t n = rhsWords * 2;
+ uint32_t m = (lhsWords * 2) - n;
+
+ // Allocate space for the temporary values we need either on the stack, if
+ // it will fit, or on the heap if it won't.
+ uint32_t SPACE[128];
+ uint32_t *U = 0;
+ uint32_t *V = 0;
+ uint32_t *Q = 0;
+ uint32_t *R = 0;
+ if ((Remainder?4:3)*n+2*m+1 <= 128) {
+ U = &SPACE[0];
+ V = &SPACE[m+n+1];
+ Q = &SPACE[(m+n+1) + n];
+ if (Remainder)
+ R = &SPACE[(m+n+1) + n + (m+n)];
+ } else {
+ U = new uint32_t[m + n + 1];
+ V = new uint32_t[n];
+ Q = new uint32_t[m+n];
+ if (Remainder)
+ R = new uint32_t[n];
+ }
+
+ // Initialize the dividend
+ memset(U, 0, (m+n+1)*sizeof(uint32_t));
+ for (unsigned i = 0; i < lhsWords; ++i) {
+ uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
+ U[i * 2] = tmp & mask;
+ U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+ }
+ U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
+
+ // Initialize the divisor
+ memset(V, 0, (n)*sizeof(uint32_t));
+ for (unsigned i = 0; i < rhsWords; ++i) {
+ uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
+ V[i * 2] = tmp & mask;
+ V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+ }
+
+ // initialize the quotient and remainder
+ memset(Q, 0, (m+n) * sizeof(uint32_t));
+ if (Remainder)
+ memset(R, 0, n * sizeof(uint32_t));
+
+ // Now, adjust m and n for the Knuth division. n is the number of words in
+ // the divisor. m is the number of words by which the dividend exceeds the
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // contain any zero words or the Knuth algorithm fails.
+ for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
+ n--;
+ m++;
+ }
+ for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
+ m--;
+
+ // If we're left with only a single word for the divisor, Knuth doesn't work
+ // so we implement the short division algorithm here. This is much simpler
+ // and faster because we are certain that we can divide a 64-bit quantity
+ // by a 32-bit quantity at hardware speed and short division is simply a
+ // series of such operations. This is just like doing short division but we
+ // are using base 2^32 instead of base 10.
+ assert(n != 0 && "Divide by zero?");
+ if (n == 1) {
+ uint32_t divisor = V[0];
+ uint32_t remainder = 0;
+ for (int i = m+n-1; i >= 0; i--) {
+ uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
+ if (partial_dividend == 0) {
+ Q[i] = 0;
+ remainder = 0;
+ } else if (partial_dividend < divisor) {
+ Q[i] = 0;
+ remainder = partial_dividend;
+ } else if (partial_dividend == divisor) {
+ Q[i] = 1;
+ remainder = 0;
+ } else {
+ Q[i] = partial_dividend / divisor;
+ remainder = partial_dividend - (Q[i] * divisor);
+ }
+ }
+ if (R)
+ R[0] = remainder;
+ } else {
+ // Now we're ready to invoke the Knuth classical divide algorithm. In this
+ // case n > 1.
+ KnuthDiv(U, V, Q, R, m, n);
+ }
+
+ // If the caller wants the quotient
+ if (Quotient) {
+ // Set up the Quotient value's memory.
+ if (Quotient->BitWidth != LHS.BitWidth) {
+ if (Quotient->isSingleWord())
+ Quotient->VAL = 0;
+ else
+ delete [] Quotient->pVal;
+ Quotient->BitWidth = LHS.BitWidth;
+ if (!Quotient->isSingleWord())
+ Quotient->pVal = getClearedMemory(Quotient->getNumWords());
+ } else
+ Quotient->clear();
+
+ // The quotient is in Q. Reconstitute the quotient into Quotient's low
+ // order words.
+ if (lhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Quotient->isSingleWord())
+ Quotient->VAL = tmp;
+ else
+ Quotient->pVal[0] = tmp;
+ } else {
+ assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
+ for (unsigned i = 0; i < lhsWords; ++i)
+ Quotient->pVal[i] =
+ uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // If the caller wants the remainder
+ if (Remainder) {
+ // Set up the Remainder value's memory.
+ if (Remainder->BitWidth != RHS.BitWidth) {
+ if (Remainder->isSingleWord())
+ Remainder->VAL = 0;
+ else
+ delete [] Remainder->pVal;
+ Remainder->BitWidth = RHS.BitWidth;
+ if (!Remainder->isSingleWord())
+ Remainder->pVal = getClearedMemory(Remainder->getNumWords());
+ } else
+ Remainder->clear();
+
+ // The remainder is in R. Reconstitute the remainder into Remainder's low
+ // order words.
+ if (rhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Remainder->isSingleWord())
+ Remainder->VAL = tmp;
+ else
+ Remainder->pVal[0] = tmp;
+ } else {
+ assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
+ for (unsigned i = 0; i < rhsWords; ++i)
+ Remainder->pVal[i] =
+ uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // Clean up the memory we allocated.
+ if (U != &SPACE[0]) {
+ delete [] U;
+ delete [] V;
+ delete [] Q;
+ delete [] R;
+ }
+}
+
+APInt APInt::udiv(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+
+ // First, deal with the easy case
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Divide by zero?");
+ return APInt(BitWidth, VAL / RHS.VAL);
+ }
+
+ // Get some facts about the LHS and RHS number of bits and words
+ uint32_t rhsBits = RHS.getActiveBits();
+ uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Divided by zero???");
+ uint32_t lhsBits = this->getActiveBits();
+ uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+
+ // Deal with some degenerate cases
+ if (!lhsWords)
+ // 0 / X ===> 0
+ return APInt(BitWidth, 0);
+ else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X / Y ===> 0, iff X < Y
+ return APInt(BitWidth, 0);
+ } else if (*this == RHS) {
+ // X / X ===> 1
+ return APInt(BitWidth, 1);
+ } else if (lhsWords == 1 && rhsWords == 1) {
+ // All high words are zero, just use native divide
+ return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Quotient(1,0); // to hold result.
+ divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
+ return Quotient;
+}
+
+APInt APInt::urem(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Remainder by zero?");
+ return APInt(BitWidth, VAL % RHS.VAL);
+ }
+
+ // Get some facts about the LHS
+ uint32_t lhsBits = getActiveBits();
+ uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
+
+ // Get some facts about the RHS
+ uint32_t rhsBits = RHS.getActiveBits();
+ uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Performing remainder operation by zero ???");
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ // 0 % Y ===> 0
+ return APInt(BitWidth, 0);
+ } else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X % Y ===> X, iff X < Y
+ return *this;
+ } else if (*this == RHS) {
+ // X % X == 0;
+ return APInt(BitWidth, 0);
+ } else if (lhsWords == 1) {
+ // All high words are zero, just use native remainder
+ return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Remainder(1,0);
+ divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
+ return Remainder;
+}
+
+void APInt::udivrem(const APInt &LHS, const APInt &RHS,
+ APInt &Quotient, APInt &Remainder) {
+ // Get some size facts about the dividend and divisor
+ uint32_t lhsBits = LHS.getActiveBits();
+ uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+ uint32_t rhsBits = RHS.getActiveBits();
+ uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ Quotient = 0; // 0 / Y ===> 0
+ Remainder = 0; // 0 % Y ===> 0
+ return;
+ }
+
+ if (lhsWords < rhsWords || LHS.ult(RHS)) {
+ Quotient = 0; // X / Y ===> 0, iff X < Y
+ Remainder = LHS; // X % Y ===> X, iff X < Y
+ return;
+ }
+
+ if (LHS == RHS) {
+ Quotient = 1; // X / X ===> 1
+ Remainder = 0; // X % X ===> 0;
+ return;
+ }
+
+ if (lhsWords == 1 && rhsWords == 1) {
+ // There is only one word to consider so use the native versions.
+ if (LHS.isSingleWord()) {
+ Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
+ Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
+ } else {
+ Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
+ Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
+ }
+ return;
+ }
+
+ // Okay, lets do it the long way
+ divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
+}
+
+void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
+ uint8_t radix) {
+ // Check our assumptions here
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+ assert(str && "String is null?");
+ bool isNeg = str[0] == '-';
+ if (isNeg)
+ str++, slen--;
+ assert((slen <= numbits || radix != 2) && "Insufficient bit width");
+ assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
+ assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
+ assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
+
+ // Allocate memory
+ if (!isSingleWord())
+ pVal = getClearedMemory(getNumWords());
+
+ // Figure out if we can shift instead of multiply
+ uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
+
+ // Set up an APInt for the digit to add outside the loop so we don't
+ // constantly construct/destruct it.
+ APInt apdigit(getBitWidth(), 0);
+ APInt apradix(getBitWidth(), radix);
+
+ // Enter digit traversal loop
+ for (unsigned i = 0; i < slen; i++) {
+ // Get a digit
+ uint32_t digit = 0;
+ char cdigit = str[i];
+ if (radix == 16) {
+ if (!isxdigit(cdigit))
+ assert(0 && "Invalid hex digit in string");
+ if (isdigit(cdigit))
+ digit = cdigit - '0';
+ else if (cdigit >= 'a')
+ digit = cdigit - 'a' + 10;
+ else if (cdigit >= 'A')
+ digit = cdigit - 'A' + 10;
+ else
+ assert(0 && "huh? we shouldn't get here");
+ } else if (isdigit(cdigit)) {
+ digit = cdigit - '0';
+ } else {
+ assert(0 && "Invalid character in digit string");
+ }
+
+ // Shift or multiply the value by the radix
+ if (shift)
+ *this <<= shift;
+ else
+ *this *= apradix;
+
+ // Add in the digit we just interpreted
+ if (apdigit.isSingleWord())
+ apdigit.VAL = digit;
+ else
+ apdigit.pVal[0] = digit;
+ *this += apdigit;
+ }
+ // If its negative, put it in two's complement form
+ if (isNeg) {
+ (*this)--;
+ this->flip();
+ }
+}
+
+std::string APInt::toString(uint8_t radix, bool wantSigned) const {
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+ static const char *digits[] = {
+ "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
+ };
+ std::string result;
+ uint32_t bits_used = getActiveBits();
+ if (isSingleWord()) {
+ char buf[65];
+ const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
+ (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
+ if (format) {
+ if (wantSigned) {
+ int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
+ (APINT_BITS_PER_WORD-BitWidth);
+ sprintf(buf, format, sextVal);
+ } else
+ sprintf(buf, format, VAL);
+ } else {
+ memset(buf, 0, 65);
+ uint64_t v = VAL;
+ while (bits_used) {
+ uint32_t bit = v & 1;
+ bits_used--;
+ buf[bits_used] = digits[bit][0];
+ v >>=1;
+ }
+ }
+ result = buf;
+ return result;
+ }
+
+ if (radix != 10) {
+ // For the 2, 8 and 16 bit cases, we can just shift instead of divide
+ // because the number of bits per digit (1,3 and 4 respectively) divides
+ // equaly. We just shift until there value is zero.
+
+ // First, check for a zero value and just short circuit the logic below.
+ if (*this == 0)
+ result = "0";
+ else {
+ APInt tmp(*this);
+ size_t insert_at = 0;
+ if (wantSigned && this->isNegative()) {
+ // They want to print the signed version and it is a negative value
+ // Flip the bits and add one to turn it into the equivalent positive
+ // value and put a '-' in the result.
+ tmp.flip();
+ tmp++;
+ result = "-";
+ insert_at = 1;
+ }
+ // Just shift tmp right for each digit width until it becomes zero
+ uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
+ uint64_t mask = radix - 1;
+ APInt zero(tmp.getBitWidth(), 0);
+ while (tmp.ne(zero)) {
+ unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
+ result.insert(insert_at, digits[digit]);
+ tmp = tmp.lshr(shift);
+ }
+ }
+ return result;
+ }
+
+ APInt tmp(*this);
+ APInt divisor(4, radix);
+ APInt zero(tmp.getBitWidth(), 0);
+ size_t insert_at = 0;
+ if (wantSigned && tmp[BitWidth-1]) {
+ // They want to print the signed version and it is a negative value
+ // Flip the bits and add one to turn it into the equivalent positive
+ // value and put a '-' in the result.
+ tmp.flip();
+ tmp++;
+ result = "-";
+ insert_at = 1;
+ }
+ if (tmp == APInt(tmp.getBitWidth(), 0))
+ result = "0";
+ else while (tmp.ne(zero)) {
+ APInt APdigit(1,0);
+ APInt tmp2(tmp.getBitWidth(), 0);
+ divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
+ &APdigit);
+ uint32_t digit = APdigit.getZExtValue();
+ assert(digit < radix && "divide failed");
+ result.insert(insert_at,digits[digit]);
+ tmp = tmp2;
+ }
+
+ return result;
+}
+
+#ifndef NDEBUG
+void APInt::dump() const
+{
+ cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
+ if (isSingleWord())
+ cerr << VAL;
+ else for (unsigned i = getNumWords(); i > 0; i--) {
+ cerr << pVal[i-1] << " ";
+ }
+ cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
+ << ")\n" << std::setbase(10);
+}
+#endif