It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/ARM/ARMISelLowering.cpp b/lib/Target/ARM/ARMISelLowering.cpp
new file mode 100644
index 0000000..6f63fbd
--- /dev/null
+++ b/lib/Target/ARM/ARMISelLowering.cpp
@@ -0,0 +1,1859 @@
+//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Evan Cheng and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMISelLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMRegisterInfo.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/Instruction.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM), ARMPCLabelIndex(0) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+
+ if (Subtarget->isTargetDarwin()) {
+ // Don't have these.
+ setLibcallName(RTLIB::UINTTOFP_I64_F32, NULL);
+ setLibcallName(RTLIB::UINTTOFP_I64_F64, NULL);
+
+ // Uses VFP for Thumb libfuncs if available.
+ if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
+ // Single-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
+ setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
+ setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
+ setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
+
+ // Double-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
+ setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
+ setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
+ setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
+
+ // Single-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
+ setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
+ setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
+ setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
+ setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
+ setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
+ setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
+ setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+
+ // Double-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
+ setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
+ setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
+ setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
+ setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
+ setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
+ setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
+ setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+
+ // Floating-point to integer conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
+
+ // Conversions between floating types.
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
+
+ // Integer to floating-point conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ // FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g.
+ // __floatunsidf vs. __floatunssidfvfp.
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
+ }
+ }
+
+ addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
+ addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
+ addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
+ }
+ computeRegisterProperties();
+
+ // ARM does not have f32 extending load.
+ setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand);
+
+ // ARM supports all 4 flavors of integer indexed load / store.
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i1, Legal);
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i1, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ }
+
+ // i64 operation support.
+ if (Subtarget->isThumb()) {
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ } else {
+ setOperationAction(ISD::MUL, MVT::i64, Custom);
+ setOperationAction(ISD::MULHU, MVT::i32, Custom);
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::MULHS, MVT::i32, Custom);
+ }
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL, MVT::i64, Custom);
+ setOperationAction(ISD::SRA, MVT::i64, Custom);
+
+ // ARM does not have ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ if (!Subtarget->hasV5TOps() || Subtarget->isThumb())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ // Only ARMv6 has BSWAP.
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ // These are expanded into libcalls.
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+
+ // Support label based line numbers.
+ setOperationAction(ISD::LOCATION, MVT::Other, Expand);
+ setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
+
+ setOperationAction(ISD::RET, MVT::Other, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+
+ // Expand mem operations genericly.
+ setOperationAction(ISD::MEMSET , MVT::Other, Expand);
+ setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
+ setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VASTART , MVT::Other, Expand);
+ setOperationAction(ISD::VAARG , MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
+
+ if (!Subtarget->hasV6Ops()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ }
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb())
+ // Turn f64->i64 into FMRRD iff target supports vfp2.
+ setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
+
+ setOperationAction(ISD::SETCC , MVT::i32, Expand);
+ setOperationAction(ISD::SETCC , MVT::f32, Expand);
+ setOperationAction(ISD::SETCC , MVT::f64, Expand);
+ setOperationAction(ISD::SELECT , MVT::i32, Expand);
+ setOperationAction(ISD::SELECT , MVT::f32, Expand);
+ setOperationAction(ISD::SELECT , MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND , MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC , MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC , MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT , MVT::Other, Custom);
+
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ // FP Constants can't be immediates.
+ setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+
+ // We don't support sin/cos/fmod/copysign
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // int <-> fp are custom expanded into bit_convert + ARMISD ops.
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ setStackPointerRegisterToSaveRestore(ARM::SP);
+ setSchedulingPreference(SchedulingForRegPressure);
+ setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
+ setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
+
+ maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
+}
+
+
+const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
+ case ARMISD::CALL: return "ARMISD::CALL";
+ case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
+ case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
+ case ARMISD::tCALL: return "ARMISD::tCALL";
+ case ARMISD::BRCOND: return "ARMISD::BRCOND";
+ case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
+ case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
+ case ARMISD::CMP: return "ARMISD::CMP";
+ case ARMISD::CMPNZ: return "ARMISD::CMPNZ";
+ case ARMISD::CMPFP: return "ARMISD::CMPFP";
+ case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
+ case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
+ case ARMISD::CMOV: return "ARMISD::CMOV";
+ case ARMISD::CNEG: return "ARMISD::CNEG";
+
+ case ARMISD::FTOSI: return "ARMISD::FTOSI";
+ case ARMISD::FTOUI: return "ARMISD::FTOUI";
+ case ARMISD::SITOF: return "ARMISD::SITOF";
+ case ARMISD::UITOF: return "ARMISD::UITOF";
+ case ARMISD::MULHILOU: return "ARMISD::MULHILOU";
+ case ARMISD::MULHILOS: return "ARMISD::MULHILOS";
+
+ case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
+ case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
+ case ARMISD::RRX: return "ARMISD::RRX";
+
+ case ARMISD::FMRRD: return "ARMISD::FMRRD";
+ case ARMISD::FMDRR: return "ARMISD::FMDRR";
+
+ case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+
+/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
+static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: assert(0 && "Unknown condition code!");
+ case ISD::SETNE: return ARMCC::NE;
+ case ISD::SETEQ: return ARMCC::EQ;
+ case ISD::SETGT: return ARMCC::GT;
+ case ISD::SETGE: return ARMCC::GE;
+ case ISD::SETLT: return ARMCC::LT;
+ case ISD::SETLE: return ARMCC::LE;
+ case ISD::SETUGT: return ARMCC::HI;
+ case ISD::SETUGE: return ARMCC::HS;
+ case ISD::SETULT: return ARMCC::LO;
+ case ISD::SETULE: return ARMCC::LS;
+ }
+}
+
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
+/// returns true if the operands should be inverted to form the proper
+/// comparison.
+static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ ARMCC::CondCodes &CondCode2) {
+ bool Invert = false;
+ CondCode2 = ARMCC::AL;
+ switch (CC) {
+ default: assert(0 && "Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = ARMCC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = ARMCC::GE; break;
+ case ISD::SETOLT: CondCode = ARMCC::MI; break;
+ case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
+ case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
+ case ISD::SETO: CondCode = ARMCC::VC; break;
+ case ISD::SETUO: CondCode = ARMCC::VS; break;
+ case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
+ case ISD::SETUGT: CondCode = ARMCC::HI; break;
+ case ISD::SETUGE: CondCode = ARMCC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = ARMCC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = ARMCC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = ARMCC::NE; break;
+ }
+ return Invert;
+}
+
+static void
+HowToPassArgument(MVT::ValueType ObjectVT, unsigned NumGPRs,
+ unsigned StackOffset, unsigned &NeededGPRs,
+ unsigned &NeededStackSize, unsigned &GPRPad,
+ unsigned &StackPad, unsigned Flags) {
+ NeededStackSize = 0;
+ NeededGPRs = 0;
+ StackPad = 0;
+ GPRPad = 0;
+ unsigned align = (Flags >> ISD::ParamFlags::OrigAlignmentOffs);
+ GPRPad = NumGPRs % ((align + 3)/4);
+ StackPad = StackOffset % align;
+ unsigned firstGPR = NumGPRs + GPRPad;
+ switch (ObjectVT) {
+ default: assert(0 && "Unhandled argument type!");
+ case MVT::i32:
+ case MVT::f32:
+ if (firstGPR < 4)
+ NeededGPRs = 1;
+ else
+ NeededStackSize = 4;
+ break;
+ case MVT::i64:
+ case MVT::f64:
+ if (firstGPR < 3)
+ NeededGPRs = 2;
+ else if (firstGPR == 3) {
+ NeededGPRs = 1;
+ NeededStackSize = 4;
+ } else
+ NeededStackSize = 8;
+ }
+}
+
+/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
+/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
+/// nodes.
+SDOperand ARMTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType RetVT= Op.Val->getValueType(0);
+ SDOperand Chain = Op.getOperand(0);
+ unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
+ assert((CallConv == CallingConv::C ||
+ CallConv == CallingConv::Fast) && "unknown calling convention");
+ SDOperand Callee = Op.getOperand(4);
+ unsigned NumOps = (Op.getNumOperands() - 5) / 2;
+ unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
+ unsigned NumGPRs = 0; // GPRs used for parameter passing.
+
+ // Count how many bytes are to be pushed on the stack.
+ unsigned NumBytes = 0;
+
+ // Add up all the space actually used.
+ for (unsigned i = 0; i < NumOps; ++i) {
+ unsigned ObjSize;
+ unsigned ObjGPRs;
+ unsigned StackPad;
+ unsigned GPRPad;
+ MVT::ValueType ObjectVT = Op.getOperand(5+2*i).getValueType();
+ unsigned Flags = Op.getConstantOperandVal(5+2*i+1);
+ HowToPassArgument(ObjectVT, NumGPRs, NumBytes, ObjGPRs, ObjSize,
+ GPRPad, StackPad, Flags);
+ NumBytes += ObjSize + StackPad;
+ NumGPRs += ObjGPRs + GPRPad;
+ }
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain,
+ DAG.getConstant(NumBytes, MVT::i32));
+
+ SDOperand StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
+
+ static const unsigned GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ NumGPRs = 0;
+ std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
+ std::vector<SDOperand> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDOperand Arg = Op.getOperand(5+2*i);
+ unsigned Flags = Op.getConstantOperandVal(5+2*i+1);
+ MVT::ValueType ArgVT = Arg.getValueType();
+
+ unsigned ObjSize;
+ unsigned ObjGPRs;
+ unsigned GPRPad;
+ unsigned StackPad;
+ HowToPassArgument(ArgVT, NumGPRs, ArgOffset, ObjGPRs,
+ ObjSize, GPRPad, StackPad, Flags);
+ NumGPRs += GPRPad;
+ ArgOffset += StackPad;
+ if (ObjGPRs > 0) {
+ switch (ArgVT) {
+ default: assert(0 && "Unexpected ValueType for argument!");
+ case MVT::i32:
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg));
+ break;
+ case MVT::f32:
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs],
+ DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg)));
+ break;
+ case MVT::i64: {
+ SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
+ DAG.getConstant(0, getPointerTy()));
+ SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
+ DAG.getConstant(1, getPointerTy()));
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo));
+ if (ObjGPRs == 2)
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi));
+ else {
+ SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0));
+ }
+ break;
+ }
+ case MVT::f64: {
+ SDOperand Cvt = DAG.getNode(ARMISD::FMRRD,
+ DAG.getVTList(MVT::i32, MVT::i32),
+ &Arg, 1);
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt));
+ if (ObjGPRs == 2)
+ RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1],
+ Cvt.getValue(1)));
+ else {
+ SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff,
+ NULL, 0));
+ }
+ break;
+ }
+ }
+ } else {
+ assert(ObjSize != 0);
+ SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+ }
+
+ NumGPRs += ObjGPRs;
+ ArgOffset += ObjSize;
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDOperand InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
+ InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool isDirect = false;
+ bool isARMFunc = false;
+ bool isLocalARMFunc = false;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ GlobalValue *GV = G->getGlobal();
+ isDirect = true;
+ bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
+ GV->hasLinkOnceLinkage());
+ bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // ARM call to a local ARM function is predicable.
+ isLocalARMFunc = !Subtarget->isThumb() && !isExt;
+ // tBX takes a register source operand.
+ if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
+ ARMCP::CPStub, 4);
+ SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel);
+ } else
+ Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ isDirect = true;
+ bool isStub = Subtarget->isTargetDarwin() &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // tBX takes a register source operand.
+ const char *Sym = S->getSymbol();
+ if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
+ ARMCP::CPStub, 4);
+ SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel);
+ } else
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+ }
+
+ // FIXME: handle tail calls differently.
+ unsigned CallOpc;
+ if (Subtarget->isThumb()) {
+ if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
+ } else {
+ CallOpc = (isDirect || Subtarget->hasV5TOps())
+ ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
+ : ARMISD::CALL_NOLINK;
+ }
+ if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) {
+ // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
+ Chain = DAG.getCopyToReg(Chain, ARM::LR,
+ DAG.getNode(ISD::UNDEF, MVT::i32), InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<MVT::ValueType> NodeTys;
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+
+ std::vector<SDOperand> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.Val)
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ SDOperand CSOps[] = { Chain, DAG.getConstant(NumBytes, MVT::i32), InFlag };
+ Chain = DAG.getNode(ISD::CALLSEQ_END,
+ DAG.getNodeValueTypes(MVT::Other, MVT::Flag),
+ ((RetVT != MVT::Other) ? 2 : 1), CSOps, 3);
+ if (RetVT != MVT::Other)
+ InFlag = Chain.getValue(1);
+
+ std::vector<SDOperand> ResultVals;
+ NodeTys.clear();
+
+ // If the call has results, copy the values out of the ret val registers.
+ switch (RetVT) {
+ default: assert(0 && "Unexpected ret value!");
+ case MVT::Other:
+ break;
+ case MVT::i32:
+ Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
+ ResultVals.push_back(Chain.getValue(0));
+ if (Op.Val->getValueType(1) == MVT::i32) {
+ // Returns a i64 value.
+ Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32,
+ Chain.getValue(2)).getValue(1);
+ ResultVals.push_back(Chain.getValue(0));
+ NodeTys.push_back(MVT::i32);
+ }
+ NodeTys.push_back(MVT::i32);
+ break;
+ case MVT::f32:
+ Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
+ ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32,
+ Chain.getValue(0)));
+ NodeTys.push_back(MVT::f32);
+ break;
+ case MVT::f64: {
+ SDOperand Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag);
+ SDOperand Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2));
+ ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi));
+ NodeTys.push_back(MVT::f64);
+ break;
+ }
+ }
+
+ NodeTys.push_back(MVT::Other);
+
+ if (ResultVals.empty())
+ return Chain;
+
+ ResultVals.push_back(Chain);
+ SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0],
+ ResultVals.size());
+ return Res.getValue(Op.ResNo);
+}
+
+static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand Copy;
+ SDOperand Chain = Op.getOperand(0);
+ switch(Op.getNumOperands()) {
+ default:
+ assert(0 && "Do not know how to return this many arguments!");
+ abort();
+ case 1: {
+ SDOperand LR = DAG.getRegister(ARM::LR, MVT::i32);
+ return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
+ }
+ case 3:
+ Op = Op.getOperand(1);
+ if (Op.getValueType() == MVT::f32) {
+ Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
+ } else if (Op.getValueType() == MVT::f64) {
+ // Recursively legalize f64 -> i64.
+ Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Op);
+ return DAG.getNode(ISD::RET, MVT::Other, Chain, Op,
+ DAG.getConstant(0, MVT::i32));
+ }
+ Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDOperand());
+ if (DAG.getMachineFunction().liveout_empty())
+ DAG.getMachineFunction().addLiveOut(ARM::R0);
+ break;
+ case 5:
+ Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand());
+ Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
+ // If we haven't noted the R0+R1 are live out, do so now.
+ if (DAG.getMachineFunction().liveout_empty()) {
+ DAG.getMachineFunction().addLiveOut(ARM::R0);
+ DAG.getMachineFunction().addLiveOut(ARM::R1);
+ }
+ break;
+ }
+
+ //We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
+ return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOVi.
+static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = Op.getValueType();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDOperand Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
+ return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+SDOperand
+ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = getPointerTy();
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
+ PCAdj, "tlsgd", true);
+ SDOperand Argument = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ Argument = DAG.getNode(ARMISD::Wrapper, MVT::i32, Argument);
+ Argument = DAG.getLoad(PtrVT, DAG.getEntryNode(), Argument, NULL, 0);
+ SDOperand Chain = Argument.getValue(1);
+
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Argument = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Argument, PICLabel);
+
+ // call __tls_get_addr.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = (const Type *) Type::Int32Ty;
+ Args.push_back(Entry);
+ std::pair<SDOperand, SDOperand> CallResult =
+ LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false,
+ CallingConv::C, false,
+ DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG);
+ return CallResult.first;
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or
+// "local exec" model.
+SDOperand
+ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) {
+ GlobalValue *GV = GA->getGlobal();
+ SDOperand Offset;
+ SDOperand Chain = DAG.getEntryNode();
+ MVT::ValueType PtrVT = getPointerTy();
+ // Get the Thread Pointer
+ SDOperand ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, PtrVT);
+
+ if (GV->isDeclaration()){
+ // initial exec model
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
+ PCAdj, "gottpoff", true);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
+ Chain = Offset.getValue(1);
+
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Offset = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Offset, PICLabel);
+
+ Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
+ } else {
+ // local exec model
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
+}
+
+SDOperand
+ARMTargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
+ // TODO: implement the "local dynamic" model
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ // If the relocation model is PIC, use the "General Dynamic" TLS Model,
+ // otherwise use the "Local Exec" TLS Model
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ return LowerToTLSGeneralDynamicModel(GA, DAG);
+ else
+ return LowerToTLSExecModels(GA, DAG);
+}
+
+SDOperand ARMTargetLowering::LowerGlobalAddressELF(SDOperand Op,
+ SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = getPointerTy();
+ GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ if (RelocM == Reloc::PIC_) {
+ bool UseGOTOFF = GV->hasInternalLinkage() || GV->hasHiddenVisibility();
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
+ SDOperand CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+ SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDOperand Chain = Result.getValue(1);
+ SDOperand GOT = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PtrVT);
+ Result = DAG.getNode(ISD::ADD, PtrVT, Result, GOT);
+ if (!UseGOTOFF)
+ Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
+ return Result;
+ } else {
+ SDOperand CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+ return DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
+ }
+}
+
+/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
+/// even in non-static mode.
+static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
+ return RelocM != Reloc::Static &&
+ (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
+ (GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode()));
+}
+
+SDOperand ARMTargetLowering::LowerGlobalAddressDarwin(SDOperand Op,
+ SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = getPointerTy();
+ GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
+ SDOperand CPAddr;
+ if (RelocM == Reloc::Static)
+ CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
+ else {
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
+ : ARMCP::CPValue;
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
+ Kind, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+
+ SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDOperand Chain = Result.getValue(1);
+
+ if (RelocM == Reloc::PIC_) {
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
+ }
+ if (IsIndirect)
+ Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
+
+ return Result;
+}
+
+SDOperand ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDOperand Op,
+ SelectionDAG &DAG){
+ assert(Subtarget->isTargetELF() &&
+ "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
+ MVT::ValueType PtrVT = getPointerTy();
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
+ ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj);
+ SDOperand CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
+ SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
+}
+
+static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
+ unsigned VarArgsFrameIndex) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
+ SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
+ return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
+ SV->getOffset());
+}
+
+static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG,
+ unsigned *vRegs, unsigned ArgNo,
+ unsigned &NumGPRs, unsigned &ArgOffset) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
+ SDOperand Root = Op.getOperand(0);
+ std::vector<SDOperand> ArgValues;
+ SSARegMap *RegMap = MF.getSSARegMap();
+
+ static const unsigned GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ unsigned ObjSize;
+ unsigned ObjGPRs;
+ unsigned GPRPad;
+ unsigned StackPad;
+ unsigned Flags = Op.getConstantOperandVal(ArgNo + 3);
+ HowToPassArgument(ObjectVT, NumGPRs, ArgOffset, ObjGPRs,
+ ObjSize, GPRPad, StackPad, Flags);
+ NumGPRs += GPRPad;
+ ArgOffset += StackPad;
+
+ SDOperand ArgValue;
+ if (ObjGPRs == 1) {
+ unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
+ MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
+ vRegs[NumGPRs] = VReg;
+ ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
+ if (ObjectVT == MVT::f32)
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue);
+ } else if (ObjGPRs == 2) {
+ unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
+ MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
+ vRegs[NumGPRs] = VReg;
+ ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
+
+ VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
+ MF.addLiveIn(GPRArgRegs[NumGPRs+1], VReg);
+ vRegs[NumGPRs+1] = VReg;
+ SDOperand ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32);
+
+ if (ObjectVT == MVT::i64)
+ ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
+ else
+ ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
+ }
+ NumGPRs += ObjGPRs;
+
+ if (ObjSize) {
+ // If the argument is actually used, emit a load from the right stack
+ // slot.
+ if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
+ SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
+ if (ObjGPRs == 0)
+ ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
+ else {
+ SDOperand ArgValue2 =
+ DAG.getLoad(MVT::i32, Root, FIN, NULL, 0);
+ if (ObjectVT == MVT::i64)
+ ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
+ else
+ ArgValue= DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
+ }
+ } else {
+ // Don't emit a dead load.
+ ArgValue = DAG.getNode(ISD::UNDEF, ObjectVT);
+ }
+
+ ArgOffset += ObjSize; // Move on to the next argument.
+ }
+
+ return ArgValue;
+}
+
+SDOperand
+ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
+ std::vector<SDOperand> ArgValues;
+ SDOperand Root = Op.getOperand(0);
+ unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
+ unsigned NumGPRs = 0; // GPRs used for parameter passing.
+ unsigned VRegs[4];
+
+ unsigned NumArgs = Op.Val->getNumValues()-1;
+ for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
+ ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo,
+ NumGPRs, ArgOffset));
+
+ bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+ if (isVarArg) {
+ static const unsigned GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SSARegMap *RegMap = MF.getSSARegMap();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+ unsigned VARegSize = (4 - NumGPRs) * 4;
+ unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
+ if (VARegSaveSize) {
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ AFI->setVarArgsRegSaveSize(VARegSaveSize);
+ VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
+ VARegSaveSize - VARegSize);
+ SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
+
+ SmallVector<SDOperand, 4> MemOps;
+ for (; NumGPRs < 4; ++NumGPRs) {
+ unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
+ MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
+ SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
+ SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+ DAG.getConstant(4, getPointerTy()));
+ }
+ if (!MemOps.empty())
+ Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &MemOps[0], MemOps.size());
+ } else
+ // This will point to the next argument passed via stack.
+ VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+ }
+
+ ArgValues.push_back(Root);
+
+ // Return the new list of results.
+ std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
+ Op.Val->value_end());
+ return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
+}
+
+/// isFloatingPointZero - Return true if this is +0.0.
+static bool isFloatingPointZero(SDOperand Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->isExactlyValue(0.0);
+ else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
+ // Maybe this has already been legalized into the constant pool?
+ if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
+ SDOperand WrapperOp = Op.getOperand(1).getOperand(0);
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->isExactlyValue(0.0);
+ }
+ }
+ return false;
+}
+
+static bool isLegalCmpImmediate(unsigned C, bool isThumb) {
+ return ( isThumb && (C & ~255U) == 0) ||
+ (!isThumb && ARM_AM::getSOImmVal(C) != -1);
+}
+
+/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
+/// the given operands.
+static SDOperand getARMCmp(SDOperand LHS, SDOperand RHS, ISD::CondCode CC,
+ SDOperand &ARMCC, SelectionDAG &DAG, bool isThumb) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.Val)) {
+ unsigned C = RHSC->getValue();
+ if (!isLegalCmpImmediate(C, isThumb)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (isLegalCmpImmediate(C-1, isThumb)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (isLegalCmpImmediate(C+1, isThumb)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ }
+ }
+ }
+
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMISD::NodeType CompareType;
+ switch (CondCode) {
+ default:
+ CompareType = ARMISD::CMP;
+ break;
+ case ARMCC::EQ:
+ case ARMCC::NE:
+ case ARMCC::MI:
+ case ARMCC::PL:
+ // Uses only N and Z Flags
+ CompareType = ARMISD::CMPNZ;
+ break;
+ }
+ ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ return DAG.getNode(CompareType, MVT::Flag, LHS, RHS);
+}
+
+/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
+static SDOperand getVFPCmp(SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) {
+ SDOperand Cmp;
+ if (!isFloatingPointZero(RHS))
+ Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS);
+ else
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp);
+}
+
+static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ MVT::ValueType VT = Op.getValueType();
+ SDOperand LHS = Op.getOperand(0);
+ SDOperand RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDOperand TrueVal = Op.getOperand(2);
+ SDOperand FalseVal = Op.getOperand(3);
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDOperand ARMCC;
+ SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
+ return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, CCR, Cmp);
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ if (FPCCToARMCC(CC, CondCode, CondCode2))
+ std::swap(TrueVal, FalseVal);
+
+ SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
+ SDOperand Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal,
+ ARMCC, CCR, Cmp);
+ if (CondCode2 != ARMCC::AL) {
+ SDOperand ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
+ // FIXME: Needs another CMP because flag can have but one use.
+ SDOperand Cmp2 = getVFPCmp(LHS, RHS, DAG);
+ Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, CCR, Cmp2);
+ }
+ return Result;
+}
+
+static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDOperand Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDOperand LHS = Op.getOperand(2);
+ SDOperand RHS = Op.getOperand(3);
+ SDOperand Dest = Op.getOperand(4);
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDOperand ARMCC;
+ SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
+ return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, CCR,Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+ ARMCC::CondCodes CondCode, CondCode2;
+ if (FPCCToARMCC(CC, CondCode, CondCode2))
+ // Swap the LHS/RHS of the comparison if needed.
+ std::swap(LHS, RHS);
+
+ SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
+ SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDOperand Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
+ SDOperand Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5);
+ if (CondCode2 != ARMCC::AL) {
+ ARMCC = DAG.getConstant(CondCode2, MVT::i32);
+ SDOperand Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
+ Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5);
+ }
+ return Res;
+}
+
+SDOperand ARMTargetLowering::LowerBR_JT(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand Chain = Op.getOperand(0);
+ SDOperand Table = Op.getOperand(1);
+ SDOperand Index = Op.getOperand(2);
+
+ MVT::ValueType PTy = getPointerTy();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
+ SDOperand UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
+ SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
+ Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId);
+ Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy));
+ SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
+ bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+ Addr = DAG.getLoad(isPIC ? (MVT::ValueType)MVT::i32 : PTy,
+ Chain, Addr, NULL, 0);
+ Chain = Addr.getValue(1);
+ if (isPIC)
+ Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table);
+ return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId);
+}
+
+static SDOperand LowerFP_TO_INT(SDOperand Op, SelectionDAG &DAG) {
+ unsigned Opc =
+ Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
+ Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
+}
+
+static SDOperand LowerINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType VT = Op.getValueType();
+ unsigned Opc =
+ Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
+
+ Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(Opc, VT, Op);
+}
+
+static SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
+ // Implement fcopysign with a fabs and a conditional fneg.
+ SDOperand Tmp0 = Op.getOperand(0);
+ SDOperand Tmp1 = Op.getOperand(1);
+ MVT::ValueType VT = Op.getValueType();
+ MVT::ValueType SrcVT = Tmp1.getValueType();
+ SDOperand AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0);
+ SDOperand Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG);
+ SDOperand ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
+ SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
+}
+
+static SDOperand LowerBIT_CONVERT(SDOperand Op, SelectionDAG &DAG) {
+ // Turn f64->i64 into FMRRD.
+ assert(Op.getValueType() == MVT::i64 &&
+ Op.getOperand(0).getValueType() == MVT::f64);
+
+ Op = Op.getOperand(0);
+ SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32),
+ &Op, 1);
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1));
+}
+
+static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
+ // FIXME: All this code is target-independent. Create a new target-indep
+ // MULHILO node and move this code to the legalizer.
+ //
+ assert(Op.getValueType() == MVT::i64 && "Only handles i64 expand right now!");
+
+ SDOperand LL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ SDOperand RL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
+ DAG.getConstant(0, MVT::i32));
+
+ unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0));
+ unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1));
+
+ SDOperand Lo, Hi;
+ // Figure out how to lower this multiply.
+ if (LHSSB >= 33 && RHSSB >= 33) {
+ // If the input values are both sign extended, we can emit a mulhs+mul.
+ Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
+ Hi = DAG.getNode(ISD::MULHS, MVT::i32, LL, RL);
+ } else if (LHSSB == 32 && RHSSB == 32 &&
+ DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) &&
+ DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) {
+ // If the inputs are zero extended, use mulhu.
+ Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
+ Hi = DAG.getNode(ISD::MULHU, MVT::i32, LL, RL);
+ } else {
+ SDOperand LH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
+ DAG.getConstant(1, MVT::i32));
+ SDOperand RH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
+ DAG.getConstant(1, MVT::i32));
+
+ // Lo,Hi = umul LHS, RHS.
+ SDOperand Ops[] = { LL, RL };
+ SDOperand UMul64 = DAG.getNode(ARMISD::MULHILOU,
+ DAG.getVTList(MVT::i32, MVT::i32), Ops, 2);
+ Lo = UMul64;
+ Hi = UMul64.getValue(1);
+ RH = DAG.getNode(ISD::MUL, MVT::i32, LL, RH);
+ LH = DAG.getNode(ISD::MUL, MVT::i32, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, LH);
+ }
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
+}
+
+static SDOperand LowerMULHU(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
+ return DAG.getNode(ARMISD::MULHILOU,
+ DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
+}
+
+static SDOperand LowerMULHS(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
+ return DAG.getNode(ARMISD::MULHILOS,
+ DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
+}
+
+static SDOperand LowerSRx(SDOperand Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ assert(Op.getValueType() == MVT::i64 &&
+ (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
+ "Unknown shift to lower!");
+
+ // We only lower SRA, SRL of 1 here, all others use generic lowering.
+ if (!isa<ConstantSDNode>(Op.getOperand(1)) ||
+ cast<ConstantSDNode>(Op.getOperand(1))->getValue() != 1)
+ return SDOperand();
+
+ // If we are in thumb mode, we don't have RRX.
+ if (ST->isThumb()) return SDOperand();
+
+ // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
+ SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
+ DAG.getConstant(1, MVT::i32));
+
+ // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
+ // captures the result into a carry flag.
+ unsigned Opc = Op.getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
+ Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
+
+ // The low part is an ARMISD::RRX operand, which shifts the carry in.
+ Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1));
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
+}
+
+SDOperand ARMTargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand Chain = Op.getOperand(0);
+ SDOperand Dest = Op.getOperand(1);
+ SDOperand Src = Op.getOperand(2);
+ SDOperand Count = Op.getOperand(3);
+ unsigned Align =
+ (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
+ if (Align == 0) Align = 1;
+
+ ConstantSDNode *I = dyn_cast<ConstantSDNode>(Count);
+ // Just call memcpy if:
+ // not 4-byte aligned
+ // size is unknown
+ // size is >= the threshold.
+ if ((Align & 3) != 0 ||
+ !I ||
+ I->getValue() >= 64 ||
+ (I->getValue() & 3) != 0) {
+ MVT::ValueType IntPtr = getPointerTy();
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = getTargetData()->getIntPtrType();
+ Entry.Node = Op.getOperand(1); Args.push_back(Entry);
+ Entry.Node = Op.getOperand(2); Args.push_back(Entry);
+ Entry.Node = Op.getOperand(3); Args.push_back(Entry);
+ std::pair<SDOperand,SDOperand> CallResult =
+ LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
+ DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
+ return CallResult.second;
+ }
+
+ // Otherwise do repeated 4-byte loads and stores. To be improved.
+ assert((I->getValue() & 3) == 0);
+ assert((Align & 3) == 0);
+ unsigned NumMemOps = I->getValue() >> 2;
+ unsigned EmittedNumMemOps = 0;
+ unsigned SrcOff = 0, DstOff = 0;
+ MVT::ValueType VT = MVT::i32;
+ unsigned VTSize = 4;
+ const unsigned MAX_LOADS_IN_LDM = 6;
+ SDOperand LoadChains[MAX_LOADS_IN_LDM];
+ SDOperand Loads[MAX_LOADS_IN_LDM];
+
+ // Emit up to 4 loads, then a TokenFactor barrier, then the same
+ // number of stores. The loads and stores will get combined into
+ // ldm/stm later on.
+ while(EmittedNumMemOps < NumMemOps) {
+ unsigned i;
+ for (i=0; i<MAX_LOADS_IN_LDM && EmittedNumMemOps+i < NumMemOps; i++) {
+ Loads[i] = DAG.getLoad(VT, Chain,
+ DAG.getNode(ISD::ADD, VT, Src,
+ DAG.getConstant(SrcOff, VT)),
+ NULL, 0);
+ LoadChains[i] = Loads[i].getValue(1);
+ SrcOff += VTSize;
+ }
+
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &LoadChains[0], i);
+
+ for (i=0; i<MAX_LOADS_IN_LDM && EmittedNumMemOps+i < NumMemOps; i++) {
+ Chain = DAG.getStore(Chain, Loads[i],
+ DAG.getNode(ISD::ADD, VT, Dest,
+ DAG.getConstant(DstOff, VT)),
+ NULL, 0);
+ DstOff += VTSize;
+ }
+ EmittedNumMemOps += i;
+ }
+
+ return Chain;
+}
+
+SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
+ switch (Op.getOpcode()) {
+ default: assert(0 && "Don't know how to custom lower this!"); abort();
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress:
+ return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
+ LowerGlobalAddressELF(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::CALL: return LowerCALL(Op, DAG);
+ case ISD::RET: return LowerRET(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+ case ISD::MULHU: return LowerMULHU(Op, DAG);
+ case ISD::MULHS: return LowerMULHS(Op, DAG);
+ case ISD::SRL:
+ case ISD::SRA: return LowerSRx(Op, DAG, Subtarget);
+ case ISD::FORMAL_ARGUMENTS:
+ return LowerFORMAL_ARGUMENTS(Op, DAG);
+ case ISD::RETURNADDR: break;
+ case ISD::FRAMEADDR: break;
+ case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
+ case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
+ }
+ return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
+ MachineBasicBlock *BB) {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ switch (MI->getOpcode()) {
+ default: assert(false && "Unexpected instr type to insert");
+ case ARM::tMOVCCr: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB)
+ .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
+ e = BB->succ_end(); i != e; ++i)
+ sinkMBB->addSuccessor(*i);
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while(!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ delete MI; // The pseudo instruction is gone now.
+ return BB;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+static bool isLegalAddressImmediate(int64_t V, MVT::ValueType VT,
+ const ARMSubtarget *Subtarget) {
+ if (V == 0)
+ return true;
+
+ if (Subtarget->isThumb()) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == V & ((1LL << 5) - 1);
+ }
+
+ if (V < 0)
+ V = - V;
+ switch (VT) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ // +- imm12
+ return V == V & ((1LL << 12) - 1);
+ case MVT::i16:
+ // +- imm8
+ return V == V & ((1LL << 8) - 1);
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == V & ((1LL << 8) - 1);
+ }
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ const Type *Ty) const {
+ if (!isLegalAddressImmediate(AM.BaseOffs, getValueType(Ty), Subtarget))
+ return false;
+
+ // Can never fold addr of global into load/store.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // no scale reg, must be "r+i" or "r", or "i".
+ break;
+ case 1:
+ if (Subtarget->isThumb())
+ return false;
+ // FALL THROUGH.
+ default:
+ // ARM doesn't support any R+R*scale+imm addr modes.
+ if (AM.BaseOffs)
+ return false;
+
+ int Scale = AM.Scale;
+ switch (getValueType(Ty)) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ case MVT::i64:
+ // This assumes i64 is legalized to a pair of i32. If not (i.e.
+ // ldrd / strd are used, then its address mode is same as i16.
+ // r + r
+ if (Scale < 0) Scale = -Scale;
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ return isPowerOf2_32(Scale & ~1);
+ case MVT::i16:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (AM.Scale & 1) return false;
+ return isPowerOf2_32(AM.Scale);
+ }
+ break;
+ }
+ return true;
+}
+
+
+static bool getIndexedAddressParts(SDNode *Ptr, MVT::ValueType VT,
+ bool isSEXTLoad, SDOperand &Base,
+ SDOperand &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
+ // AddressingMode 3
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getValue();
+ if (RHSC < 0 && RHSC > -256) {
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Offset = Ptr->getOperand(1);
+ return true;
+ } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
+ // AddressingMode 2
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getValue();
+ if (RHSC < 0 && RHSC > -0x1000) {
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ Base = Ptr->getOperand(0);
+ return true;
+ }
+ }
+
+ if (Ptr->getOpcode() == ISD::ADD) {
+ isInc = true;
+ ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
+ if (ShOpcVal != ARM_AM::no_shift) {
+ Base = Ptr->getOperand(1);
+ Offset = Ptr->getOperand(0);
+ } else {
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ }
+ return true;
+ }
+
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ return true;
+ }
+
+ // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
+ return false;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool
+ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
+ SDOperand &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) {
+ if (Subtarget->isThumb())
+ return false;
+
+ MVT::ValueType VT;
+ SDOperand Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getLoadedVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getStoredVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = getIndexedAddressParts(Ptr.Val, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (isLegal) {
+ AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+ }
+ return false;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDOperand &Base,
+ SDOperand &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) {
+ if (Subtarget->isThumb())
+ return false;
+
+ MVT::ValueType VT;
+ SDOperand Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getLoadedVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getStoredVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (isLegal) {
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+ }
+ return false;
+}
+
+void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
+ uint64_t Mask,
+ uint64_t &KnownZero,
+ uint64_t &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = 0;
+ KnownOne = 0;
+ switch (Op.getOpcode()) {
+ default: break;
+ case ARMISD::CMOV: {
+ // Bits are known zero/one if known on the LHS and RHS.
+ DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+ if (KnownZero == 0 && KnownOne == 0) return;
+
+ uint64_t KnownZeroRHS, KnownOneRHS;
+ DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
+ KnownZeroRHS, KnownOneRHS, Depth+1);
+ KnownZero &= KnownZeroRHS;
+ KnownOne &= KnownOneRHS;
+ return;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+ARMTargetLowering::ConstraintType
+ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'l': return C_RegisterClass;
+ case 'w': return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT::ValueType VT) const {
+ if (Constraint.size() == 1) {
+ // GCC RS6000 Constraint Letters
+ switch (Constraint[0]) {
+ case 'l':
+ // FIXME: in thumb mode, 'l' is only low-regs.
+ // FALL THROUGH.
+ case 'r':
+ return std::make_pair(0U, ARM::GPRRegisterClass);
+ case 'w':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, ARM::SPRRegisterClass);
+ if (VT == MVT::f64)
+ return std::make_pair(0U, ARM::DPRRegisterClass);
+ break;
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+std::vector<unsigned> ARMTargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ MVT::ValueType VT) const {
+ if (Constraint.size() != 1)
+ return std::vector<unsigned>();
+
+ switch (Constraint[0]) { // GCC ARM Constraint Letters
+ default: break;
+ case 'l':
+ case 'r':
+ return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
+ ARM::R4, ARM::R5, ARM::R6, ARM::R7,
+ ARM::R8, ARM::R9, ARM::R10, ARM::R11,
+ ARM::R12, ARM::LR, 0);
+ case 'w':
+ if (VT == MVT::f32)
+ return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
+ ARM::S4, ARM::S5, ARM::S6, ARM::S7,
+ ARM::S8, ARM::S9, ARM::S10, ARM::S11,
+ ARM::S12,ARM::S13,ARM::S14,ARM::S15,
+ ARM::S16,ARM::S17,ARM::S18,ARM::S19,
+ ARM::S20,ARM::S21,ARM::S22,ARM::S23,
+ ARM::S24,ARM::S25,ARM::S26,ARM::S27,
+ ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
+ if (VT == MVT::f64)
+ return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7,
+ ARM::D8, ARM::D9, ARM::D10,ARM::D11,
+ ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
+ break;
+ }
+
+ return std::vector<unsigned>();
+}