It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
new file mode 100644
index 0000000..b0c76c8
--- /dev/null
+++ b/lib/Target/CBackend/CBackend.cpp
@@ -0,0 +1,2930 @@
+//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library converts LLVM code to C code, compilable by GCC and other C
+// compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CTargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Analysis/ConstantsScanner.h"
+#include "llvm/Analysis/FindUsedTypes.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Config/config.h"
+#include <algorithm>
+#include <sstream>
+using namespace llvm;
+
+namespace {
+  // Register the target.
+  RegisterTarget<CTargetMachine> X("c", "  C backend");
+
+  /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
+  /// any unnamed structure types that are used by the program, and merges
+  /// external functions with the same name.
+  ///
+  class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
+  public:
+    static char ID;
+    CBackendNameAllUsedStructsAndMergeFunctions() 
+      : ModulePass((intptr_t)&ID) {}
+    void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<FindUsedTypes>();
+    }
+
+    virtual const char *getPassName() const {
+      return "C backend type canonicalizer";
+    }
+
+    virtual bool runOnModule(Module &M);
+  };
+
+  char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
+
+  /// CWriter - This class is the main chunk of code that converts an LLVM
+  /// module to a C translation unit.
+  class CWriter : public FunctionPass, public InstVisitor<CWriter> {
+    std::ostream &Out;
+    IntrinsicLowering *IL;
+    Mangler *Mang;
+    LoopInfo *LI;
+    const Module *TheModule;
+    const TargetAsmInfo* TAsm;
+    const TargetData* TD;
+    std::map<const Type *, std::string> TypeNames;
+    std::map<const ConstantFP *, unsigned> FPConstantMap;
+    std::set<Function*> intrinsicPrototypesAlreadyGenerated;
+
+  public:
+    static char ID;
+    CWriter(std::ostream &o) 
+      : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0), 
+        TheModule(0), TAsm(0), TD(0) {}
+
+    virtual const char *getPassName() const { return "C backend"; }
+
+    void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<LoopInfo>();
+      AU.setPreservesAll();
+    }
+
+    virtual bool doInitialization(Module &M);
+
+    bool runOnFunction(Function &F) {
+      LI = &getAnalysis<LoopInfo>();
+
+      // Get rid of intrinsics we can't handle.
+      lowerIntrinsics(F);
+
+      // Output all floating point constants that cannot be printed accurately.
+      printFloatingPointConstants(F);
+
+      printFunction(F);
+      FPConstantMap.clear();
+      return false;
+    }
+
+    virtual bool doFinalization(Module &M) {
+      // Free memory...
+      delete Mang;
+      TypeNames.clear();
+      return false;
+    }
+
+    std::ostream &printType(std::ostream &Out, const Type *Ty, 
+                            bool isSigned = false,
+                            const std::string &VariableName = "",
+                            bool IgnoreName = false);
+    std::ostream &printSimpleType(std::ostream &Out, const Type *Ty, 
+                                     bool isSigned, 
+                                     const std::string &NameSoFar = "");
+
+    void printStructReturnPointerFunctionType(std::ostream &Out,
+                                              const PointerType *Ty);
+    
+    void writeOperand(Value *Operand);
+    void writeOperandRaw(Value *Operand);
+    void writeOperandInternal(Value *Operand);
+    void writeOperandWithCast(Value* Operand, unsigned Opcode);
+    void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
+    bool writeInstructionCast(const Instruction &I);
+
+  private :
+    std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
+
+    void lowerIntrinsics(Function &F);
+
+    void printModule(Module *M);
+    void printModuleTypes(const TypeSymbolTable &ST);
+    void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
+    void printFloatingPointConstants(Function &F);
+    void printFunctionSignature(const Function *F, bool Prototype);
+
+    void printFunction(Function &);
+    void printBasicBlock(BasicBlock *BB);
+    void printLoop(Loop *L);
+
+    void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
+    void printConstant(Constant *CPV);
+    void printConstantWithCast(Constant *CPV, unsigned Opcode);
+    bool printConstExprCast(const ConstantExpr *CE);
+    void printConstantArray(ConstantArray *CPA);
+    void printConstantVector(ConstantVector *CP);
+
+    // isInlinableInst - Attempt to inline instructions into their uses to build
+    // trees as much as possible.  To do this, we have to consistently decide
+    // what is acceptable to inline, so that variable declarations don't get
+    // printed and an extra copy of the expr is not emitted.
+    //
+    static bool isInlinableInst(const Instruction &I) {
+      // Always inline cmp instructions, even if they are shared by multiple
+      // expressions.  GCC generates horrible code if we don't.
+      if (isa<CmpInst>(I)) 
+        return true;
+
+      // Must be an expression, must be used exactly once.  If it is dead, we
+      // emit it inline where it would go.
+      if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
+          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
+          isa<LoadInst>(I) || isa<VAArgInst>(I))
+        // Don't inline a load across a store or other bad things!
+        return false;
+
+      // Must not be used in inline asm
+      if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
+
+      // Only inline instruction it if it's use is in the same BB as the inst.
+      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
+    }
+
+    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
+    // variables which are accessed with the & operator.  This causes GCC to
+    // generate significantly better code than to emit alloca calls directly.
+    //
+    static const AllocaInst *isDirectAlloca(const Value *V) {
+      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+      if (!AI) return false;
+      if (AI->isArrayAllocation())
+        return 0;   // FIXME: we can also inline fixed size array allocas!
+      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
+        return 0;
+      return AI;
+    }
+    
+    // isInlineAsm - Check if the instruction is a call to an inline asm chunk
+    static bool isInlineAsm(const Instruction& I) {
+      if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
+        return true;
+      return false;
+    }
+    
+    // Instruction visitation functions
+    friend class InstVisitor<CWriter>;
+
+    void visitReturnInst(ReturnInst &I);
+    void visitBranchInst(BranchInst &I);
+    void visitSwitchInst(SwitchInst &I);
+    void visitInvokeInst(InvokeInst &I) {
+      assert(0 && "Lowerinvoke pass didn't work!");
+    }
+
+    void visitUnwindInst(UnwindInst &I) {
+      assert(0 && "Lowerinvoke pass didn't work!");
+    }
+    void visitUnreachableInst(UnreachableInst &I);
+
+    void visitPHINode(PHINode &I);
+    void visitBinaryOperator(Instruction &I);
+    void visitICmpInst(ICmpInst &I);
+    void visitFCmpInst(FCmpInst &I);
+
+    void visitCastInst (CastInst &I);
+    void visitSelectInst(SelectInst &I);
+    void visitCallInst (CallInst &I);
+    void visitInlineAsm(CallInst &I);
+
+    void visitMallocInst(MallocInst &I);
+    void visitAllocaInst(AllocaInst &I);
+    void visitFreeInst  (FreeInst   &I);
+    void visitLoadInst  (LoadInst   &I);
+    void visitStoreInst (StoreInst  &I);
+    void visitGetElementPtrInst(GetElementPtrInst &I);
+    void visitVAArgInst (VAArgInst &I);
+
+    void visitInstruction(Instruction &I) {
+      cerr << "C Writer does not know about " << I;
+      abort();
+    }
+
+    void outputLValue(Instruction *I) {
+      Out << "  " << GetValueName(I) << " = ";
+    }
+
+    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
+    void printPHICopiesForSuccessor(BasicBlock *CurBlock,
+                                    BasicBlock *Successor, unsigned Indent);
+    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
+                            unsigned Indent);
+    void printIndexingExpression(Value *Ptr, gep_type_iterator I,
+                                 gep_type_iterator E);
+
+    std::string GetValueName(const Value *Operand);
+  };
+}
+
+char CWriter::ID = 0;
+
+/// This method inserts names for any unnamed structure types that are used by
+/// the program, and removes names from structure types that are not used by the
+/// program.
+///
+bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
+  // Get a set of types that are used by the program...
+  std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
+
+  // Loop over the module symbol table, removing types from UT that are
+  // already named, and removing names for types that are not used.
+  //
+  TypeSymbolTable &TST = M.getTypeSymbolTable();
+  for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
+       TI != TE; ) {
+    TypeSymbolTable::iterator I = TI++;
+    
+    // If this isn't a struct type, remove it from our set of types to name.
+    // This simplifies emission later.
+    if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
+      TST.remove(I);
+    } else {
+      // If this is not used, remove it from the symbol table.
+      std::set<const Type *>::iterator UTI = UT.find(I->second);
+      if (UTI == UT.end())
+        TST.remove(I);
+      else
+        UT.erase(UTI);    // Only keep one name for this type.
+    }
+  }
+
+  // UT now contains types that are not named.  Loop over it, naming
+  // structure types.
+  //
+  bool Changed = false;
+  unsigned RenameCounter = 0;
+  for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
+       I != E; ++I)
+    if (const StructType *ST = dyn_cast<StructType>(*I)) {
+      while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
+        ++RenameCounter;
+      Changed = true;
+    }
+      
+      
+  // Loop over all external functions and globals.  If we have two with
+  // identical names, merge them.
+  // FIXME: This code should disappear when we don't allow values with the same
+  // names when they have different types!
+  std::map<std::string, GlobalValue*> ExtSymbols;
+  for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
+    Function *GV = I++;
+    if (GV->isDeclaration() && GV->hasName()) {
+      std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
+        = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
+      if (!X.second) {
+        // Found a conflict, replace this global with the previous one.
+        GlobalValue *OldGV = X.first->second;
+        GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
+        GV->eraseFromParent();
+        Changed = true;
+      }
+    }
+  }
+  // Do the same for globals.
+  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+       I != E;) {
+    GlobalVariable *GV = I++;
+    if (GV->isDeclaration() && GV->hasName()) {
+      std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
+        = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
+      if (!X.second) {
+        // Found a conflict, replace this global with the previous one.
+        GlobalValue *OldGV = X.first->second;
+        GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
+        GV->eraseFromParent();
+        Changed = true;
+      }
+    }
+  }
+  
+  return Changed;
+}
+
+/// printStructReturnPointerFunctionType - This is like printType for a struct
+/// return type, except, instead of printing the type as void (*)(Struct*, ...)
+/// print it as "Struct (*)(...)", for struct return functions.
+void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
+                                                   const PointerType *TheTy) {
+  const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
+  std::stringstream FunctionInnards;
+  FunctionInnards << " (*) (";
+  bool PrintedType = false;
+
+  FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
+  const Type *RetTy = cast<PointerType>(I->get())->getElementType();
+  unsigned Idx = 1;
+  const ParamAttrsList *Attrs = FTy->getParamAttrs();
+  for (++I; I != E; ++I) {
+    if (PrintedType)
+      FunctionInnards << ", ";
+    printType(FunctionInnards, *I, 
+        /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
+    PrintedType = true;
+  }
+  if (FTy->isVarArg()) {
+    if (PrintedType)
+      FunctionInnards << ", ...";
+  } else if (!PrintedType) {
+    FunctionInnards << "void";
+  }
+  FunctionInnards << ')';
+  std::string tstr = FunctionInnards.str();
+  printType(Out, RetTy, 
+      /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
+}
+
+std::ostream &
+CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
+                            const std::string &NameSoFar) {
+  assert((Ty->isPrimitiveType() || Ty->isInteger()) && 
+         "Invalid type for printSimpleType");
+  switch (Ty->getTypeID()) {
+  case Type::VoidTyID:   return Out << "void " << NameSoFar;
+  case Type::IntegerTyID: {
+    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+    if (NumBits == 1) 
+      return Out << "bool " << NameSoFar;
+    else if (NumBits <= 8)
+      return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
+    else if (NumBits <= 16)
+      return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
+    else if (NumBits <= 32)
+      return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
+    else { 
+      assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
+      return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
+    }
+  }
+  case Type::FloatTyID:  return Out << "float "   << NameSoFar;
+  case Type::DoubleTyID: return Out << "double "  << NameSoFar;
+  default :
+    cerr << "Unknown primitive type: " << *Ty << "\n";
+    abort();
+  }
+}
+
+// Pass the Type* and the variable name and this prints out the variable
+// declaration.
+//
+std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
+                                 bool isSigned, const std::string &NameSoFar,
+                                 bool IgnoreName) {
+  if (Ty->isPrimitiveType() || Ty->isInteger()) {
+    printSimpleType(Out, Ty, isSigned, NameSoFar);
+    return Out;
+  }
+
+  // Check to see if the type is named.
+  if (!IgnoreName || isa<OpaqueType>(Ty)) {
+    std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
+    if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
+  }
+
+  switch (Ty->getTypeID()) {
+  case Type::FunctionTyID: {
+    const FunctionType *FTy = cast<FunctionType>(Ty);
+    std::stringstream FunctionInnards;
+    FunctionInnards << " (" << NameSoFar << ") (";
+    const ParamAttrsList *Attrs = FTy->getParamAttrs();
+    unsigned Idx = 1;
+    for (FunctionType::param_iterator I = FTy->param_begin(),
+           E = FTy->param_end(); I != E; ++I) {
+      if (I != FTy->param_begin())
+        FunctionInnards << ", ";
+      printType(FunctionInnards, *I, 
+         /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
+      ++Idx;
+    }
+    if (FTy->isVarArg()) {
+      if (FTy->getNumParams())
+        FunctionInnards << ", ...";
+    } else if (!FTy->getNumParams()) {
+      FunctionInnards << "void";
+    }
+    FunctionInnards << ')';
+    std::string tstr = FunctionInnards.str();
+    printType(Out, FTy->getReturnType(), 
+        /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
+    return Out;
+  }
+  case Type::StructTyID: {
+    const StructType *STy = cast<StructType>(Ty);
+    Out << NameSoFar + " {\n";
+    unsigned Idx = 0;
+    for (StructType::element_iterator I = STy->element_begin(),
+           E = STy->element_end(); I != E; ++I) {
+      Out << "  ";
+      printType(Out, *I, false, "field" + utostr(Idx++));
+      Out << ";\n";
+    }
+    Out << '}';
+    if (STy->isPacked())
+      Out << " __attribute__ ((packed))";
+    return Out;
+  }
+
+  case Type::PointerTyID: {
+    const PointerType *PTy = cast<PointerType>(Ty);
+    std::string ptrName = "*" + NameSoFar;
+
+    if (isa<ArrayType>(PTy->getElementType()) ||
+        isa<VectorType>(PTy->getElementType()))
+      ptrName = "(" + ptrName + ")";
+
+    return printType(Out, PTy->getElementType(), false, ptrName);
+  }
+
+  case Type::ArrayTyID: {
+    const ArrayType *ATy = cast<ArrayType>(Ty);
+    unsigned NumElements = ATy->getNumElements();
+    if (NumElements == 0) NumElements = 1;
+    return printType(Out, ATy->getElementType(), false,
+                     NameSoFar + "[" + utostr(NumElements) + "]");
+  }
+
+  case Type::VectorTyID: {
+    const VectorType *PTy = cast<VectorType>(Ty);
+    unsigned NumElements = PTy->getNumElements();
+    if (NumElements == 0) NumElements = 1;
+    return printType(Out, PTy->getElementType(), false,
+                     NameSoFar + "[" + utostr(NumElements) + "]");
+  }
+
+  case Type::OpaqueTyID: {
+    static int Count = 0;
+    std::string TyName = "struct opaque_" + itostr(Count++);
+    assert(TypeNames.find(Ty) == TypeNames.end());
+    TypeNames[Ty] = TyName;
+    return Out << TyName << ' ' << NameSoFar;
+  }
+  default:
+    assert(0 && "Unhandled case in getTypeProps!");
+    abort();
+  }
+
+  return Out;
+}
+
+void CWriter::printConstantArray(ConstantArray *CPA) {
+
+  // As a special case, print the array as a string if it is an array of
+  // ubytes or an array of sbytes with positive values.
+  //
+  const Type *ETy = CPA->getType()->getElementType();
+  bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
+
+  // Make sure the last character is a null char, as automatically added by C
+  if (isString && (CPA->getNumOperands() == 0 ||
+                   !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
+    isString = false;
+
+  if (isString) {
+    Out << '\"';
+    // Keep track of whether the last number was a hexadecimal escape
+    bool LastWasHex = false;
+
+    // Do not include the last character, which we know is null
+    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
+      unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
+
+      // Print it out literally if it is a printable character.  The only thing
+      // to be careful about is when the last letter output was a hex escape
+      // code, in which case we have to be careful not to print out hex digits
+      // explicitly (the C compiler thinks it is a continuation of the previous
+      // character, sheesh...)
+      //
+      if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
+        LastWasHex = false;
+        if (C == '"' || C == '\\')
+          Out << "\\" << C;
+        else
+          Out << C;
+      } else {
+        LastWasHex = false;
+        switch (C) {
+        case '\n': Out << "\\n"; break;
+        case '\t': Out << "\\t"; break;
+        case '\r': Out << "\\r"; break;
+        case '\v': Out << "\\v"; break;
+        case '\a': Out << "\\a"; break;
+        case '\"': Out << "\\\""; break;
+        case '\'': Out << "\\\'"; break;
+        default:
+          Out << "\\x";
+          Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
+          Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+          LastWasHex = true;
+          break;
+        }
+      }
+    }
+    Out << '\"';
+  } else {
+    Out << '{';
+    if (CPA->getNumOperands()) {
+      Out << ' ';
+      printConstant(cast<Constant>(CPA->getOperand(0)));
+      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
+        Out << ", ";
+        printConstant(cast<Constant>(CPA->getOperand(i)));
+      }
+    }
+    Out << " }";
+  }
+}
+
+void CWriter::printConstantVector(ConstantVector *CP) {
+  Out << '{';
+  if (CP->getNumOperands()) {
+    Out << ' ';
+    printConstant(cast<Constant>(CP->getOperand(0)));
+    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+      Out << ", ";
+      printConstant(cast<Constant>(CP->getOperand(i)));
+    }
+  }
+  Out << " }";
+}
+
+// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
+// textually as a double (rather than as a reference to a stack-allocated
+// variable). We decide this by converting CFP to a string and back into a
+// double, and then checking whether the conversion results in a bit-equal
+// double to the original value of CFP. This depends on us and the target C
+// compiler agreeing on the conversion process (which is pretty likely since we
+// only deal in IEEE FP).
+//
+static bool isFPCSafeToPrint(const ConstantFP *CFP) {
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+  char Buffer[100];
+  sprintf(Buffer, "%a", CFP->getValue());
+
+  if (!strncmp(Buffer, "0x", 2) ||
+      !strncmp(Buffer, "-0x", 3) ||
+      !strncmp(Buffer, "+0x", 3))
+    return atof(Buffer) == CFP->getValue();
+  return false;
+#else
+  std::string StrVal = ftostr(CFP->getValue());
+
+  while (StrVal[0] == ' ')
+    StrVal.erase(StrVal.begin());
+
+  // Check to make sure that the stringized number is not some string like "Inf"
+  // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
+  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+      ((StrVal[0] == '-' || StrVal[0] == '+') &&
+       (StrVal[1] >= '0' && StrVal[1] <= '9')))
+    // Reparse stringized version!
+    return atof(StrVal.c_str()) == CFP->getValue();
+  return false;
+#endif
+}
+
+/// Print out the casting for a cast operation. This does the double casting
+/// necessary for conversion to the destination type, if necessary. 
+/// @brief Print a cast
+void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
+  // Print the destination type cast
+  switch (opc) {
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::IntToPtr:
+    case Instruction::Trunc:
+    case Instruction::BitCast:
+    case Instruction::FPExt:
+    case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
+      Out << '(';
+      printType(Out, DstTy);
+      Out << ')';
+      break;
+    case Instruction::ZExt:
+    case Instruction::PtrToInt:
+    case Instruction::FPToUI: // For these, make sure we get an unsigned dest
+      Out << '(';
+      printSimpleType(Out, DstTy, false);
+      Out << ')';
+      break;
+    case Instruction::SExt: 
+    case Instruction::FPToSI: // For these, make sure we get a signed dest
+      Out << '(';
+      printSimpleType(Out, DstTy, true);
+      Out << ')';
+      break;
+    default:
+      assert(0 && "Invalid cast opcode");
+  }
+
+  // Print the source type cast
+  switch (opc) {
+    case Instruction::UIToFP:
+    case Instruction::ZExt:
+      Out << '(';
+      printSimpleType(Out, SrcTy, false);
+      Out << ')';
+      break;
+    case Instruction::SIToFP:
+    case Instruction::SExt:
+      Out << '(';
+      printSimpleType(Out, SrcTy, true); 
+      Out << ')';
+      break;
+    case Instruction::IntToPtr:
+    case Instruction::PtrToInt:
+      // Avoid "cast to pointer from integer of different size" warnings
+      Out << "(unsigned long)";
+      break;
+    case Instruction::Trunc:
+    case Instruction::BitCast:
+    case Instruction::FPExt:
+    case Instruction::FPTrunc:
+    case Instruction::FPToSI:
+    case Instruction::FPToUI:
+      break; // These don't need a source cast.
+    default:
+      assert(0 && "Invalid cast opcode");
+      break;
+  }
+}
+
+// printConstant - The LLVM Constant to C Constant converter.
+void CWriter::printConstant(Constant *CPV) {
+  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+    switch (CE->getOpcode()) {
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::BitCast:
+      Out << "(";
+      printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
+      if (CE->getOpcode() == Instruction::SExt &&
+          CE->getOperand(0)->getType() == Type::Int1Ty) {
+        // Make sure we really sext from bool here by subtracting from 0
+        Out << "0-";
+      }
+      printConstant(CE->getOperand(0));
+      if (CE->getType() == Type::Int1Ty &&
+          (CE->getOpcode() == Instruction::Trunc ||
+           CE->getOpcode() == Instruction::FPToUI ||
+           CE->getOpcode() == Instruction::FPToSI ||
+           CE->getOpcode() == Instruction::PtrToInt)) {
+        // Make sure we really truncate to bool here by anding with 1
+        Out << "&1u";
+      }
+      Out << ')';
+      return;
+
+    case Instruction::GetElementPtr:
+      Out << "(&(";
+      printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
+                              gep_type_end(CPV));
+      Out << "))";
+      return;
+    case Instruction::Select:
+      Out << '(';
+      printConstant(CE->getOperand(0));
+      Out << '?';
+      printConstant(CE->getOperand(1));
+      Out << ':';
+      printConstant(CE->getOperand(2));
+      Out << ')';
+      return;
+    case Instruction::Add:
+    case Instruction::Sub:
+    case Instruction::Mul:
+    case Instruction::SDiv:
+    case Instruction::UDiv:
+    case Instruction::FDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor:
+    case Instruction::ICmp:
+    case Instruction::Shl:
+    case Instruction::LShr:
+    case Instruction::AShr:
+    {
+      Out << '(';
+      bool NeedsClosingParens = printConstExprCast(CE); 
+      printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+      switch (CE->getOpcode()) {
+      case Instruction::Add: Out << " + "; break;
+      case Instruction::Sub: Out << " - "; break;
+      case Instruction::Mul: Out << " * "; break;
+      case Instruction::URem:
+      case Instruction::SRem: 
+      case Instruction::FRem: Out << " % "; break;
+      case Instruction::UDiv: 
+      case Instruction::SDiv: 
+      case Instruction::FDiv: Out << " / "; break;
+      case Instruction::And: Out << " & "; break;
+      case Instruction::Or:  Out << " | "; break;
+      case Instruction::Xor: Out << " ^ "; break;
+      case Instruction::Shl: Out << " << "; break;
+      case Instruction::LShr:
+      case Instruction::AShr: Out << " >> "; break;
+      case Instruction::ICmp:
+        switch (CE->getPredicate()) {
+          case ICmpInst::ICMP_EQ: Out << " == "; break;
+          case ICmpInst::ICMP_NE: Out << " != "; break;
+          case ICmpInst::ICMP_SLT: 
+          case ICmpInst::ICMP_ULT: Out << " < "; break;
+          case ICmpInst::ICMP_SLE:
+          case ICmpInst::ICMP_ULE: Out << " <= "; break;
+          case ICmpInst::ICMP_SGT:
+          case ICmpInst::ICMP_UGT: Out << " > "; break;
+          case ICmpInst::ICMP_SGE:
+          case ICmpInst::ICMP_UGE: Out << " >= "; break;
+          default: assert(0 && "Illegal ICmp predicate");
+        }
+        break;
+      default: assert(0 && "Illegal opcode here!");
+      }
+      printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+      if (NeedsClosingParens)
+        Out << "))";
+      Out << ')';
+      return;
+    }
+    case Instruction::FCmp: {
+      Out << '('; 
+      bool NeedsClosingParens = printConstExprCast(CE); 
+      if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
+        Out << "0";
+      else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
+        Out << "1";
+      else {
+        const char* op = 0;
+        switch (CE->getPredicate()) {
+        default: assert(0 && "Illegal FCmp predicate");
+        case FCmpInst::FCMP_ORD: op = "ord"; break;
+        case FCmpInst::FCMP_UNO: op = "uno"; break;
+        case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+        case FCmpInst::FCMP_UNE: op = "une"; break;
+        case FCmpInst::FCMP_ULT: op = "ult"; break;
+        case FCmpInst::FCMP_ULE: op = "ule"; break;
+        case FCmpInst::FCMP_UGT: op = "ugt"; break;
+        case FCmpInst::FCMP_UGE: op = "uge"; break;
+        case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+        case FCmpInst::FCMP_ONE: op = "one"; break;
+        case FCmpInst::FCMP_OLT: op = "olt"; break;
+        case FCmpInst::FCMP_OLE: op = "ole"; break;
+        case FCmpInst::FCMP_OGT: op = "ogt"; break;
+        case FCmpInst::FCMP_OGE: op = "oge"; break;
+        }
+        Out << "llvm_fcmp_" << op << "(";
+        printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+        Out << ", ";
+        printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+        Out << ")";
+      }
+      if (NeedsClosingParens)
+        Out << "))";
+      Out << ')';
+    }
+    default:
+      cerr << "CWriter Error: Unhandled constant expression: "
+           << *CE << "\n";
+      abort();
+    }
+  } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
+    Out << "((";
+    printType(Out, CPV->getType()); // sign doesn't matter
+    Out << ")/*UNDEF*/0)";
+    return;
+  }
+
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
+    const Type* Ty = CI->getType();
+    if (Ty == Type::Int1Ty)
+      Out << (CI->getZExtValue() ? '1' : '0') ;
+    else {
+      Out << "((";
+      printSimpleType(Out, Ty, false) << ')';
+      if (CI->isMinValue(true)) 
+        Out << CI->getZExtValue() << 'u';
+      else
+        Out << CI->getSExtValue();
+      if (Ty->getPrimitiveSizeInBits() > 32)
+        Out << "ll";
+      Out << ')';
+    }
+    return;
+  } 
+
+  switch (CPV->getType()->getTypeID()) {
+  case Type::FloatTyID:
+  case Type::DoubleTyID: {
+    ConstantFP *FPC = cast<ConstantFP>(CPV);
+    std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
+    if (I != FPConstantMap.end()) {
+      // Because of FP precision problems we must load from a stack allocated
+      // value that holds the value in hex.
+      Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
+          << "*)&FPConstant" << I->second << ')';
+    } else {
+      if (IsNAN(FPC->getValue())) {
+        // The value is NaN
+
+        // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
+        // it's 0x7ff4.
+        const unsigned long QuietNaN = 0x7ff8UL;
+        //const unsigned long SignalNaN = 0x7ff4UL;
+
+        // We need to grab the first part of the FP #
+        char Buffer[100];
+
+        uint64_t ll = DoubleToBits(FPC->getValue());
+        sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
+
+        std::string Num(&Buffer[0], &Buffer[6]);
+        unsigned long Val = strtoul(Num.c_str(), 0, 16);
+
+        if (FPC->getType() == Type::FloatTy)
+          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
+              << Buffer << "\") /*nan*/ ";
+        else
+          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
+              << Buffer << "\") /*nan*/ ";
+      } else if (IsInf(FPC->getValue())) {
+        // The value is Inf
+        if (FPC->getValue() < 0) Out << '-';
+        Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
+            << " /*inf*/ ";
+      } else {
+        std::string Num;
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+        // Print out the constant as a floating point number.
+        char Buffer[100];
+        sprintf(Buffer, "%a", FPC->getValue());
+        Num = Buffer;
+#else
+        Num = ftostr(FPC->getValue());
+#endif
+        Out << Num;
+      }
+    }
+    break;
+  }
+
+  case Type::ArrayTyID:
+    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+      const ArrayType *AT = cast<ArrayType>(CPV->getType());
+      Out << '{';
+      if (AT->getNumElements()) {
+        Out << ' ';
+        Constant *CZ = Constant::getNullValue(AT->getElementType());
+        printConstant(CZ);
+        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
+          Out << ", ";
+          printConstant(CZ);
+        }
+      }
+      Out << " }";
+    } else {
+      printConstantArray(cast<ConstantArray>(CPV));
+    }
+    break;
+
+  case Type::VectorTyID:
+    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+      const VectorType *AT = cast<VectorType>(CPV->getType());
+      Out << '{';
+      if (AT->getNumElements()) {
+        Out << ' ';
+        Constant *CZ = Constant::getNullValue(AT->getElementType());
+        printConstant(CZ);
+        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
+          Out << ", ";
+          printConstant(CZ);
+        }
+      }
+      Out << " }";
+    } else {
+      printConstantVector(cast<ConstantVector>(CPV));
+    }
+    break;
+
+  case Type::StructTyID:
+    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+      const StructType *ST = cast<StructType>(CPV->getType());
+      Out << '{';
+      if (ST->getNumElements()) {
+        Out << ' ';
+        printConstant(Constant::getNullValue(ST->getElementType(0)));
+        for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
+          Out << ", ";
+          printConstant(Constant::getNullValue(ST->getElementType(i)));
+        }
+      }
+      Out << " }";
+    } else {
+      Out << '{';
+      if (CPV->getNumOperands()) {
+        Out << ' ';
+        printConstant(cast<Constant>(CPV->getOperand(0)));
+        for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
+          Out << ", ";
+          printConstant(cast<Constant>(CPV->getOperand(i)));
+        }
+      }
+      Out << " }";
+    }
+    break;
+
+  case Type::PointerTyID:
+    if (isa<ConstantPointerNull>(CPV)) {
+      Out << "((";
+      printType(Out, CPV->getType()); // sign doesn't matter
+      Out << ")/*NULL*/0)";
+      break;
+    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
+      writeOperand(GV);
+      break;
+    }
+    // FALL THROUGH
+  default:
+    cerr << "Unknown constant type: " << *CPV << "\n";
+    abort();
+  }
+}
+
+// Some constant expressions need to be casted back to the original types
+// because their operands were casted to the expected type. This function takes
+// care of detecting that case and printing the cast for the ConstantExpr.
+bool CWriter::printConstExprCast(const ConstantExpr* CE) {
+  bool NeedsExplicitCast = false;
+  const Type *Ty = CE->getOperand(0)->getType();
+  bool TypeIsSigned = false;
+  switch (CE->getOpcode()) {
+  case Instruction::LShr:
+  case Instruction::URem: 
+  case Instruction::UDiv: NeedsExplicitCast = true; break;
+  case Instruction::AShr:
+  case Instruction::SRem: 
+  case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
+  case Instruction::SExt:
+    Ty = CE->getType();
+    NeedsExplicitCast = true;
+    TypeIsSigned = true;
+    break;
+  case Instruction::ZExt:
+  case Instruction::Trunc:
+  case Instruction::FPTrunc:
+  case Instruction::FPExt:
+  case Instruction::UIToFP:
+  case Instruction::SIToFP:
+  case Instruction::FPToUI:
+  case Instruction::FPToSI:
+  case Instruction::PtrToInt:
+  case Instruction::IntToPtr:
+  case Instruction::BitCast:
+    Ty = CE->getType();
+    NeedsExplicitCast = true;
+    break;
+  default: break;
+  }
+  if (NeedsExplicitCast) {
+    Out << "((";
+    if (Ty->isInteger() && Ty != Type::Int1Ty)
+      printSimpleType(Out, Ty, TypeIsSigned);
+    else
+      printType(Out, Ty); // not integer, sign doesn't matter
+    Out << ")(";
+  }
+  return NeedsExplicitCast;
+}
+
+//  Print a constant assuming that it is the operand for a given Opcode. The
+//  opcodes that care about sign need to cast their operands to the expected
+//  type before the operation proceeds. This function does the casting.
+void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
+
+  // Extract the operand's type, we'll need it.
+  const Type* OpTy = CPV->getType();
+
+  // Indicate whether to do the cast or not.
+  bool shouldCast = false;
+  bool typeIsSigned = false;
+
+  // Based on the Opcode for which this Constant is being written, determine
+  // the new type to which the operand should be casted by setting the value
+  // of OpTy. If we change OpTy, also set shouldCast to true so it gets
+  // casted below.
+  switch (Opcode) {
+    default:
+      // for most instructions, it doesn't matter
+      break; 
+    case Instruction::LShr:
+    case Instruction::UDiv:
+    case Instruction::URem:
+      shouldCast = true;
+      break;
+    case Instruction::AShr:
+    case Instruction::SDiv:
+    case Instruction::SRem:
+      shouldCast = true;
+      typeIsSigned = true;
+      break;
+  }
+
+  // Write out the casted constant if we should, otherwise just write the
+  // operand.
+  if (shouldCast) {
+    Out << "((";
+    printSimpleType(Out, OpTy, typeIsSigned);
+    Out << ")";
+    printConstant(CPV);
+    Out << ")";
+  } else 
+    printConstant(CPV);
+}
+
+std::string CWriter::GetValueName(const Value *Operand) {
+  std::string Name;
+
+  if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
+    std::string VarName;
+
+    Name = Operand->getName();
+    VarName.reserve(Name.capacity());
+
+    for (std::string::iterator I = Name.begin(), E = Name.end();
+         I != E; ++I) {
+      char ch = *I;
+
+      if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
+            (ch >= '0' && ch <= '9') || ch == '_'))
+        VarName += '_';
+      else
+        VarName += ch;
+    }
+
+    Name = "llvm_cbe_" + VarName;
+  } else {
+    Name = Mang->getValueName(Operand);
+  }
+
+  return Name;
+}
+
+void CWriter::writeOperandInternal(Value *Operand) {
+  if (Instruction *I = dyn_cast<Instruction>(Operand))
+    if (isInlinableInst(*I) && !isDirectAlloca(I)) {
+      // Should we inline this instruction to build a tree?
+      Out << '(';
+      visit(*I);
+      Out << ')';
+      return;
+    }
+
+  Constant* CPV = dyn_cast<Constant>(Operand);
+
+  if (CPV && !isa<GlobalValue>(CPV))
+    printConstant(CPV);
+  else
+    Out << GetValueName(Operand);
+}
+
+void CWriter::writeOperandRaw(Value *Operand) {
+  Constant* CPV = dyn_cast<Constant>(Operand);
+  if (CPV && !isa<GlobalValue>(CPV)) {
+    printConstant(CPV);
+  } else {
+    Out << GetValueName(Operand);
+  }
+}
+
+void CWriter::writeOperand(Value *Operand) {
+  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
+    Out << "(&";  // Global variables are referenced as their addresses by llvm
+
+  writeOperandInternal(Operand);
+
+  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
+    Out << ')';
+}
+
+// Some instructions need to have their result value casted back to the 
+// original types because their operands were casted to the expected type. 
+// This function takes care of detecting that case and printing the cast 
+// for the Instruction.
+bool CWriter::writeInstructionCast(const Instruction &I) {
+  const Type *Ty = I.getOperand(0)->getType();
+  switch (I.getOpcode()) {
+  case Instruction::LShr:
+  case Instruction::URem: 
+  case Instruction::UDiv: 
+    Out << "((";
+    printSimpleType(Out, Ty, false);
+    Out << ")(";
+    return true;
+  case Instruction::AShr:
+  case Instruction::SRem: 
+  case Instruction::SDiv: 
+    Out << "((";
+    printSimpleType(Out, Ty, true);
+    Out << ")(";
+    return true;
+  default: break;
+  }
+  return false;
+}
+
+// Write the operand with a cast to another type based on the Opcode being used.
+// This will be used in cases where an instruction has specific type
+// requirements (usually signedness) for its operands. 
+void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
+
+  // Extract the operand's type, we'll need it.
+  const Type* OpTy = Operand->getType();
+
+  // Indicate whether to do the cast or not.
+  bool shouldCast = false;
+
+  // Indicate whether the cast should be to a signed type or not.
+  bool castIsSigned = false;
+
+  // Based on the Opcode for which this Operand is being written, determine
+  // the new type to which the operand should be casted by setting the value
+  // of OpTy. If we change OpTy, also set shouldCast to true.
+  switch (Opcode) {
+    default:
+      // for most instructions, it doesn't matter
+      break; 
+    case Instruction::LShr:
+    case Instruction::UDiv:
+    case Instruction::URem: // Cast to unsigned first
+      shouldCast = true;
+      castIsSigned = false;
+      break;
+    case Instruction::AShr:
+    case Instruction::SDiv:
+    case Instruction::SRem: // Cast to signed first
+      shouldCast = true;
+      castIsSigned = true;
+      break;
+  }
+
+  // Write out the casted operand if we should, otherwise just write the
+  // operand.
+  if (shouldCast) {
+    Out << "((";
+    printSimpleType(Out, OpTy, castIsSigned);
+    Out << ")";
+    writeOperand(Operand);
+    Out << ")";
+  } else 
+    writeOperand(Operand);
+}
+
+// Write the operand with a cast to another type based on the icmp predicate 
+// being used. 
+void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
+
+  // Extract the operand's type, we'll need it.
+  const Type* OpTy = Operand->getType();
+
+  // Indicate whether to do the cast or not.
+  bool shouldCast = false;
+
+  // Indicate whether the cast should be to a signed type or not.
+  bool castIsSigned = false;
+
+  // Based on the Opcode for which this Operand is being written, determine
+  // the new type to which the operand should be casted by setting the value
+  // of OpTy. If we change OpTy, also set shouldCast to true.
+  switch (predicate) {
+    default:
+      // for eq and ne, it doesn't matter
+      break; 
+    case ICmpInst::ICMP_UGT:
+    case ICmpInst::ICMP_UGE:
+    case ICmpInst::ICMP_ULT:
+    case ICmpInst::ICMP_ULE:
+      shouldCast = true;
+      break;
+    case ICmpInst::ICMP_SGT:
+    case ICmpInst::ICMP_SGE:
+    case ICmpInst::ICMP_SLT:
+    case ICmpInst::ICMP_SLE:
+      shouldCast = true;
+      castIsSigned = true;
+      break;
+  }
+
+  // Write out the casted operand if we should, otherwise just write the
+  // operand.
+  if (shouldCast) {
+    Out << "((";
+    if (OpTy->isInteger() && OpTy != Type::Int1Ty)
+      printSimpleType(Out, OpTy, castIsSigned);
+    else
+      printType(Out, OpTy); // not integer, sign doesn't matter
+    Out << ")";
+    writeOperand(Operand);
+    Out << ")";
+  } else 
+    writeOperand(Operand);
+}
+
+// generateCompilerSpecificCode - This is where we add conditional compilation
+// directives to cater to specific compilers as need be.
+//
+static void generateCompilerSpecificCode(std::ostream& Out) {
+  // Alloca is hard to get, and we don't want to include stdlib.h here.
+  Out << "/* get a declaration for alloca */\n"
+      << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
+      << "#define  alloca(x) __builtin_alloca((x))\n"
+      << "#define _alloca(x) __builtin_alloca((x))\n"    
+      << "#elif defined(__APPLE__)\n"
+      << "extern void *__builtin_alloca(unsigned long);\n"
+      << "#define alloca(x) __builtin_alloca(x)\n"
+      << "#define longjmp _longjmp\n"
+      << "#define setjmp _setjmp\n"
+      << "#elif defined(__sun__)\n"
+      << "#if defined(__sparcv9)\n"
+      << "extern void *__builtin_alloca(unsigned long);\n"
+      << "#else\n"
+      << "extern void *__builtin_alloca(unsigned int);\n"
+      << "#endif\n"
+      << "#define alloca(x) __builtin_alloca(x)\n"
+      << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
+      << "#define alloca(x) __builtin_alloca(x)\n"
+      << "#elif defined(_MSC_VER)\n"
+      << "#define inline _inline\n"
+      << "#define alloca(x) _alloca(x)\n"
+      << "#else\n"
+      << "#include <alloca.h>\n"
+      << "#endif\n\n";
+
+  // We output GCC specific attributes to preserve 'linkonce'ness on globals.
+  // If we aren't being compiled with GCC, just drop these attributes.
+  Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
+      << "#define __attribute__(X)\n"
+      << "#endif\n\n";
+
+  // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
+  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
+      << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
+      << "#elif defined(__GNUC__)\n"
+      << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
+      << "#else\n"
+      << "#define __EXTERNAL_WEAK__\n"
+      << "#endif\n\n";
+
+  // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
+  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
+      << "#define __ATTRIBUTE_WEAK__\n"
+      << "#elif defined(__GNUC__)\n"
+      << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
+      << "#else\n"
+      << "#define __ATTRIBUTE_WEAK__\n"
+      << "#endif\n\n";
+
+  // Add hidden visibility support. FIXME: APPLE_CC?
+  Out << "#if defined(__GNUC__)\n"
+      << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
+      << "#endif\n\n";
+    
+  // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
+  // From the GCC documentation:
+  //
+  //   double __builtin_nan (const char *str)
+  //
+  // This is an implementation of the ISO C99 function nan.
+  //
+  // Since ISO C99 defines this function in terms of strtod, which we do
+  // not implement, a description of the parsing is in order. The string is
+  // parsed as by strtol; that is, the base is recognized by leading 0 or
+  // 0x prefixes. The number parsed is placed in the significand such that
+  // the least significant bit of the number is at the least significant
+  // bit of the significand. The number is truncated to fit the significand
+  // field provided. The significand is forced to be a quiet NaN.
+  //
+  // This function, if given a string literal, is evaluated early enough
+  // that it is considered a compile-time constant.
+  //
+  //   float __builtin_nanf (const char *str)
+  //
+  // Similar to __builtin_nan, except the return type is float.
+  //
+  //   double __builtin_inf (void)
+  //
+  // Similar to __builtin_huge_val, except a warning is generated if the
+  // target floating-point format does not support infinities. This
+  // function is suitable for implementing the ISO C99 macro INFINITY.
+  //
+  //   float __builtin_inff (void)
+  //
+  // Similar to __builtin_inf, except the return type is float.
+  Out << "#ifdef __GNUC__\n"
+      << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
+      << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
+      << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
+      << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
+      << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
+      << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
+      << "#define LLVM_PREFETCH(addr,rw,locality) "
+                              "__builtin_prefetch(addr,rw,locality)\n"
+      << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
+      << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
+      << "#define LLVM_ASM           __asm__\n"
+      << "#else\n"
+      << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
+      << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
+      << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
+      << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
+      << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
+      << "#define LLVM_INFF          0.0F                    /* Float */\n"
+      << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
+      << "#define __ATTRIBUTE_CTOR__\n"
+      << "#define __ATTRIBUTE_DTOR__\n"
+      << "#define LLVM_ASM(X)\n"
+      << "#endif\n\n";
+  
+  Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
+      << "#define __builtin_stack_save() 0   /* not implemented */\n"
+      << "#define __builtin_stack_restore(X) /* noop */\n"
+      << "#endif\n\n";
+
+  // Output target-specific code that should be inserted into main.
+  Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
+  // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
+  Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
+      << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
+      << "defined(__x86_64__)\n"
+      << "#undef CODE_FOR_MAIN\n"
+      << "#define CODE_FOR_MAIN() \\\n"
+      << "  {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
+      << "  F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
+      << "#endif\n#endif\n";
+
+}
+
+/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
+/// the StaticTors set.
+static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
+  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+  if (!InitList) return;
+  
+  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
+      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
+      
+      if (CS->getOperand(1)->isNullValue())
+        return;  // Found a null terminator, exit printing.
+      Constant *FP = CS->getOperand(1);
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+        if (CE->isCast())
+          FP = CE->getOperand(0);
+      if (Function *F = dyn_cast<Function>(FP))
+        StaticTors.insert(F);
+    }
+}
+
+enum SpecialGlobalClass {
+  NotSpecial = 0,
+  GlobalCtors, GlobalDtors,
+  NotPrinted
+};
+
+/// getGlobalVariableClass - If this is a global that is specially recognized
+/// by LLVM, return a code that indicates how we should handle it.
+static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
+  // If this is a global ctors/dtors list, handle it now.
+  if (GV->hasAppendingLinkage() && GV->use_empty()) {
+    if (GV->getName() == "llvm.global_ctors")
+      return GlobalCtors;
+    else if (GV->getName() == "llvm.global_dtors")
+      return GlobalDtors;
+  }
+  
+  // Otherwise, it it is other metadata, don't print it.  This catches things
+  // like debug information.
+  if (GV->getSection() == "llvm.metadata")
+    return NotPrinted;
+  
+  return NotSpecial;
+}
+
+
+bool CWriter::doInitialization(Module &M) {
+  // Initialize
+  TheModule = &M;
+
+  TD = new TargetData(&M);
+  IL = new IntrinsicLowering(*TD);
+  IL->AddPrototypes(M);
+
+  // Ensure that all structure types have names...
+  Mang = new Mangler(M);
+  Mang->markCharUnacceptable('.');
+
+  // Keep track of which functions are static ctors/dtors so they can have
+  // an attribute added to their prototypes.
+  std::set<Function*> StaticCtors, StaticDtors;
+  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+       I != E; ++I) {
+    switch (getGlobalVariableClass(I)) {
+    default: break;
+    case GlobalCtors:
+      FindStaticTors(I, StaticCtors);
+      break;
+    case GlobalDtors:
+      FindStaticTors(I, StaticDtors);
+      break;
+    }
+  }
+  
+  // get declaration for alloca
+  Out << "/* Provide Declarations */\n";
+  Out << "#include <stdarg.h>\n";      // Varargs support
+  Out << "#include <setjmp.h>\n";      // Unwind support
+  generateCompilerSpecificCode(Out);
+
+  // Provide a definition for `bool' if not compiling with a C++ compiler.
+  Out << "\n"
+      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
+
+      << "\n\n/* Support for floating point constants */\n"
+      << "typedef unsigned long long ConstantDoubleTy;\n"
+      << "typedef unsigned int        ConstantFloatTy;\n"
+
+      << "\n\n/* Global Declarations */\n";
+
+  // First output all the declarations for the program, because C requires
+  // Functions & globals to be declared before they are used.
+  //
+
+  // Loop over the symbol table, emitting all named constants...
+  printModuleTypes(M.getTypeSymbolTable());
+
+  // Global variable declarations...
+  if (!M.global_empty()) {
+    Out << "\n/* External Global Variable Declarations */\n";
+    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+         I != E; ++I) {
+
+      if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
+        Out << "extern ";
+      else if (I->hasDLLImportLinkage())
+        Out << "__declspec(dllimport) ";
+      else
+        continue; // Internal Global
+
+      // Thread Local Storage
+      if (I->isThreadLocal())
+        Out << "__thread ";
+
+      printType(Out, I->getType()->getElementType(), false, GetValueName(I));
+
+      if (I->hasExternalWeakLinkage())
+         Out << " __EXTERNAL_WEAK__";
+      Out << ";\n";
+    }
+  }
+
+  // Function declarations
+  Out << "\n/* Function Declarations */\n";
+  Out << "double fmod(double, double);\n";   // Support for FP rem
+  Out << "float fmodf(float, float);\n";
+  
+  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+    // Don't print declarations for intrinsic functions.
+    if (!I->getIntrinsicID() && I->getName() != "setjmp" && 
+        I->getName() != "longjmp" && I->getName() != "_setjmp") {
+      if (I->hasExternalWeakLinkage())
+        Out << "extern ";
+      printFunctionSignature(I, true);
+      if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 
+        Out << " __ATTRIBUTE_WEAK__";
+      if (I->hasExternalWeakLinkage())
+        Out << " __EXTERNAL_WEAK__";
+      if (StaticCtors.count(I))
+        Out << " __ATTRIBUTE_CTOR__";
+      if (StaticDtors.count(I))
+        Out << " __ATTRIBUTE_DTOR__";
+      if (I->hasHiddenVisibility())
+        Out << " __HIDDEN__";
+      
+      if (I->hasName() && I->getName()[0] == 1)
+        Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
+          
+      Out << ";\n";
+    }
+  }
+
+  // Output the global variable declarations
+  if (!M.global_empty()) {
+    Out << "\n\n/* Global Variable Declarations */\n";
+    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+         I != E; ++I)
+      if (!I->isDeclaration()) {
+        // Ignore special globals, such as debug info.
+        if (getGlobalVariableClass(I))
+          continue;
+
+        if (I->hasInternalLinkage())
+          Out << "static ";
+        else
+          Out << "extern ";
+
+        // Thread Local Storage
+        if (I->isThreadLocal())
+          Out << "__thread ";
+
+        printType(Out, I->getType()->getElementType(), false, 
+                  GetValueName(I));
+
+        if (I->hasLinkOnceLinkage())
+          Out << " __attribute__((common))";
+        else if (I->hasWeakLinkage())
+          Out << " __ATTRIBUTE_WEAK__";
+        else if (I->hasExternalWeakLinkage())
+          Out << " __EXTERNAL_WEAK__";
+        if (I->hasHiddenVisibility())
+          Out << " __HIDDEN__";
+        Out << ";\n";
+      }
+  }
+
+  // Output the global variable definitions and contents...
+  if (!M.global_empty()) {
+    Out << "\n\n/* Global Variable Definitions and Initialization */\n";
+    for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
+         I != E; ++I)
+      if (!I->isDeclaration()) {
+        // Ignore special globals, such as debug info.
+        if (getGlobalVariableClass(I))
+          continue;
+
+        if (I->hasInternalLinkage())
+          Out << "static ";
+        else if (I->hasDLLImportLinkage())
+          Out << "__declspec(dllimport) ";
+        else if (I->hasDLLExportLinkage())
+          Out << "__declspec(dllexport) ";
+
+        // Thread Local Storage
+        if (I->isThreadLocal())
+          Out << "__thread ";
+
+        printType(Out, I->getType()->getElementType(), false, 
+                  GetValueName(I));
+        if (I->hasLinkOnceLinkage())
+          Out << " __attribute__((common))";
+        else if (I->hasWeakLinkage())
+          Out << " __ATTRIBUTE_WEAK__";
+
+        if (I->hasHiddenVisibility())
+          Out << " __HIDDEN__";
+        
+        // If the initializer is not null, emit the initializer.  If it is null,
+        // we try to avoid emitting large amounts of zeros.  The problem with
+        // this, however, occurs when the variable has weak linkage.  In this
+        // case, the assembler will complain about the variable being both weak
+        // and common, so we disable this optimization.
+        if (!I->getInitializer()->isNullValue()) {
+          Out << " = " ;
+          writeOperand(I->getInitializer());
+        } else if (I->hasWeakLinkage()) {
+          // We have to specify an initializer, but it doesn't have to be
+          // complete.  If the value is an aggregate, print out { 0 }, and let
+          // the compiler figure out the rest of the zeros.
+          Out << " = " ;
+          if (isa<StructType>(I->getInitializer()->getType()) ||
+              isa<ArrayType>(I->getInitializer()->getType()) ||
+              isa<VectorType>(I->getInitializer()->getType())) {
+            Out << "{ 0 }";
+          } else {
+            // Just print it out normally.
+            writeOperand(I->getInitializer());
+          }
+        }
+        Out << ";\n";
+      }
+  }
+
+  if (!M.empty())
+    Out << "\n\n/* Function Bodies */\n";
+
+  // Emit some helper functions for dealing with FCMP instruction's 
+  // predicates
+  Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
+  Out << "return X == X && Y == Y; }\n";
+  Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
+  Out << "return X != X || Y != Y; }\n";
+  Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
+  Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
+  Out << "return X != Y; }\n";
+  Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
+  Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
+  Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
+  Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
+  Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
+  Out << "return X == Y ; }\n";
+  Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
+  Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
+  Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
+  Out << "return X <  Y ; }\n";
+  Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
+  Out << "return X >  Y ; }\n";
+  Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
+  Out << "return X <= Y ; }\n";
+  Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
+  Out << "return X >= Y ; }\n";
+  return false;
+}
+
+
+/// Output all floating point constants that cannot be printed accurately...
+void CWriter::printFloatingPointConstants(Function &F) {
+  // Scan the module for floating point constants.  If any FP constant is used
+  // in the function, we want to redirect it here so that we do not depend on
+  // the precision of the printed form, unless the printed form preserves
+  // precision.
+  //
+  static unsigned FPCounter = 0;
+  for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
+       I != E; ++I)
+    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
+      if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
+          !FPConstantMap.count(FPC)) {
+        double Val = FPC->getValue();
+
+        FPConstantMap[FPC] = FPCounter;  // Number the FP constants
+
+        if (FPC->getType() == Type::DoubleTy) {
+          Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
+              << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
+              << "ULL;    /* " << Val << " */\n";
+        } else if (FPC->getType() == Type::FloatTy) {
+          Out << "static const ConstantFloatTy FPConstant" << FPCounter++
+              << " = 0x" << std::hex << FloatToBits(Val) << std::dec
+              << "U;    /* " << Val << " */\n";
+        } else
+          assert(0 && "Unknown float type!");
+      }
+
+  Out << '\n';
+}
+
+
+/// printSymbolTable - Run through symbol table looking for type names.  If a
+/// type name is found, emit its declaration...
+///
+void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
+  Out << "/* Helper union for bitcasts */\n";
+  Out << "typedef union {\n";
+  Out << "  unsigned int Int32;\n";
+  Out << "  unsigned long long Int64;\n";
+  Out << "  float Float;\n";
+  Out << "  double Double;\n";
+  Out << "} llvmBitCastUnion;\n";
+
+  // We are only interested in the type plane of the symbol table.
+  TypeSymbolTable::const_iterator I   = TST.begin();
+  TypeSymbolTable::const_iterator End = TST.end();
+
+  // If there are no type names, exit early.
+  if (I == End) return;
+
+  // Print out forward declarations for structure types before anything else!
+  Out << "/* Structure forward decls */\n";
+  for (; I != End; ++I) {
+    std::string Name = "struct l_" + Mang->makeNameProper(I->first);
+    Out << Name << ";\n";
+    TypeNames.insert(std::make_pair(I->second, Name));
+  }
+
+  Out << '\n';
+
+  // Now we can print out typedefs.  Above, we guaranteed that this can only be
+  // for struct or opaque types.
+  Out << "/* Typedefs */\n";
+  for (I = TST.begin(); I != End; ++I) {
+    std::string Name = "l_" + Mang->makeNameProper(I->first);
+    Out << "typedef ";
+    printType(Out, I->second, false, Name);
+    Out << ";\n";
+  }
+
+  Out << '\n';
+
+  // Keep track of which structures have been printed so far...
+  std::set<const StructType *> StructPrinted;
+
+  // Loop over all structures then push them into the stack so they are
+  // printed in the correct order.
+  //
+  Out << "/* Structure contents */\n";
+  for (I = TST.begin(); I != End; ++I)
+    if (const StructType *STy = dyn_cast<StructType>(I->second))
+      // Only print out used types!
+      printContainedStructs(STy, StructPrinted);
+}
+
+// Push the struct onto the stack and recursively push all structs
+// this one depends on.
+//
+// TODO:  Make this work properly with vector types
+//
+void CWriter::printContainedStructs(const Type *Ty,
+                                    std::set<const StructType*> &StructPrinted){
+  // Don't walk through pointers.
+  if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
+  
+  // Print all contained types first.
+  for (Type::subtype_iterator I = Ty->subtype_begin(),
+       E = Ty->subtype_end(); I != E; ++I)
+    printContainedStructs(*I, StructPrinted);
+  
+  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    // Check to see if we have already printed this struct.
+    if (StructPrinted.insert(STy).second) {
+      // Print structure type out.
+      std::string Name = TypeNames[STy];
+      printType(Out, STy, false, Name, true);
+      Out << ";\n\n";
+    }
+  }
+}
+
+void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
+  /// isStructReturn - Should this function actually return a struct by-value?
+  bool isStructReturn = F->getFunctionType()->isStructReturn();
+  
+  if (F->hasInternalLinkage()) Out << "static ";
+  if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
+  if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";  
+  switch (F->getCallingConv()) {
+   case CallingConv::X86_StdCall:
+    Out << "__stdcall ";
+    break;
+   case CallingConv::X86_FastCall:
+    Out << "__fastcall ";
+    break;
+  }
+  
+  // Loop over the arguments, printing them...
+  const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
+  const ParamAttrsList *Attrs = FT->getParamAttrs();
+
+  std::stringstream FunctionInnards;
+
+  // Print out the name...
+  FunctionInnards << GetValueName(F) << '(';
+
+  bool PrintedArg = false;
+  if (!F->isDeclaration()) {
+    if (!F->arg_empty()) {
+      Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+      
+      // If this is a struct-return function, don't print the hidden
+      // struct-return argument.
+      if (isStructReturn) {
+        assert(I != E && "Invalid struct return function!");
+        ++I;
+      }
+      
+      std::string ArgName;
+      unsigned Idx = 1;
+      for (; I != E; ++I) {
+        if (PrintedArg) FunctionInnards << ", ";
+        if (I->hasName() || !Prototype)
+          ArgName = GetValueName(I);
+        else
+          ArgName = "";
+        printType(FunctionInnards, I->getType(), 
+            /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), 
+            ArgName);
+        PrintedArg = true;
+        ++Idx;
+      }
+    }
+  } else {
+    // Loop over the arguments, printing them.
+    FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
+    
+    // If this is a struct-return function, don't print the hidden
+    // struct-return argument.
+    if (isStructReturn) {
+      assert(I != E && "Invalid struct return function!");
+      ++I;
+    }
+    
+    unsigned Idx = 1;
+    for (; I != E; ++I) {
+      if (PrintedArg) FunctionInnards << ", ";
+      printType(FunctionInnards, *I,
+             /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
+      PrintedArg = true;
+      ++Idx;
+    }
+  }
+
+  // Finish printing arguments... if this is a vararg function, print the ...,
+  // unless there are no known types, in which case, we just emit ().
+  //
+  if (FT->isVarArg() && PrintedArg) {
+    if (PrintedArg) FunctionInnards << ", ";
+    FunctionInnards << "...";  // Output varargs portion of signature!
+  } else if (!FT->isVarArg() && !PrintedArg) {
+    FunctionInnards << "void"; // ret() -> ret(void) in C.
+  }
+  FunctionInnards << ')';
+  
+  // Get the return tpe for the function.
+  const Type *RetTy;
+  if (!isStructReturn)
+    RetTy = F->getReturnType();
+  else {
+    // If this is a struct-return function, print the struct-return type.
+    RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
+  }
+    
+  // Print out the return type and the signature built above.
+  printType(Out, RetTy, 
+            /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), 
+            FunctionInnards.str());
+}
+
+static inline bool isFPIntBitCast(const Instruction &I) {
+  if (!isa<BitCastInst>(I))
+    return false;
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DstTy = I.getType();
+  return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
+         (DstTy->isFloatingPoint() && SrcTy->isInteger());
+}
+
+void CWriter::printFunction(Function &F) {
+  /// isStructReturn - Should this function actually return a struct by-value?
+  bool isStructReturn = F.getFunctionType()->isStructReturn();
+
+  printFunctionSignature(&F, false);
+  Out << " {\n";
+  
+  // If this is a struct return function, handle the result with magic.
+  if (isStructReturn) {
+    const Type *StructTy =
+      cast<PointerType>(F.arg_begin()->getType())->getElementType();
+    Out << "  ";
+    printType(Out, StructTy, false, "StructReturn");
+    Out << ";  /* Struct return temporary */\n";
+
+    Out << "  ";
+    printType(Out, F.arg_begin()->getType(), false, 
+              GetValueName(F.arg_begin()));
+    Out << " = &StructReturn;\n";
+  }
+
+  bool PrintedVar = false;
+  
+  // print local variable information for the function
+  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
+    if (const AllocaInst *AI = isDirectAlloca(&*I)) {
+      Out << "  ";
+      printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
+      Out << ";    /* Address-exposed local */\n";
+      PrintedVar = true;
+    } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
+      Out << "  ";
+      printType(Out, I->getType(), false, GetValueName(&*I));
+      Out << ";\n";
+
+      if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
+        Out << "  ";
+        printType(Out, I->getType(), false,
+                  GetValueName(&*I)+"__PHI_TEMPORARY");
+        Out << ";\n";
+      }
+      PrintedVar = true;
+    }
+    // We need a temporary for the BitCast to use so it can pluck a value out
+    // of a union to do the BitCast. This is separate from the need for a
+    // variable to hold the result of the BitCast. 
+    if (isFPIntBitCast(*I)) {
+      Out << "  llvmBitCastUnion " << GetValueName(&*I)
+          << "__BITCAST_TEMPORARY;\n";
+      PrintedVar = true;
+    }
+  }
+
+  if (PrintedVar)
+    Out << '\n';
+
+  if (F.hasExternalLinkage() && F.getName() == "main")
+    Out << "  CODE_FOR_MAIN();\n";
+
+  // print the basic blocks
+  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+    if (Loop *L = LI->getLoopFor(BB)) {
+      if (L->getHeader() == BB && L->getParentLoop() == 0)
+        printLoop(L);
+    } else {
+      printBasicBlock(BB);
+    }
+  }
+
+  Out << "}\n\n";
+}
+
+void CWriter::printLoop(Loop *L) {
+  Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
+      << "' to make GCC happy */\n";
+  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
+    BasicBlock *BB = L->getBlocks()[i];
+    Loop *BBLoop = LI->getLoopFor(BB);
+    if (BBLoop == L)
+      printBasicBlock(BB);
+    else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
+      printLoop(BBLoop);
+  }
+  Out << "  } while (1); /* end of syntactic loop '"
+      << L->getHeader()->getName() << "' */\n";
+}
+
+void CWriter::printBasicBlock(BasicBlock *BB) {
+
+  // Don't print the label for the basic block if there are no uses, or if
+  // the only terminator use is the predecessor basic block's terminator.
+  // We have to scan the use list because PHI nodes use basic blocks too but
+  // do not require a label to be generated.
+  //
+  bool NeedsLabel = false;
+  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+    if (isGotoCodeNecessary(*PI, BB)) {
+      NeedsLabel = true;
+      break;
+    }
+
+  if (NeedsLabel) Out << GetValueName(BB) << ":\n";
+
+  // Output all of the instructions in the basic block...
+  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
+       ++II) {
+    if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
+      if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
+        outputLValue(II);
+      else
+        Out << "  ";
+      visit(*II);
+      Out << ";\n";
+    }
+  }
+
+  // Don't emit prefix or suffix for the terminator...
+  visit(*BB->getTerminator());
+}
+
+
+// Specific Instruction type classes... note that all of the casts are
+// necessary because we use the instruction classes as opaque types...
+//
+void CWriter::visitReturnInst(ReturnInst &I) {
+  // If this is a struct return function, return the temporary struct.
+  bool isStructReturn = I.getParent()->getParent()->
+    getFunctionType()->isStructReturn();
+
+  if (isStructReturn) {
+    Out << "  return StructReturn;\n";
+    return;
+  }
+  
+  // Don't output a void return if this is the last basic block in the function
+  if (I.getNumOperands() == 0 &&
+      &*--I.getParent()->getParent()->end() == I.getParent() &&
+      !I.getParent()->size() == 1) {
+    return;
+  }
+
+  Out << "  return";
+  if (I.getNumOperands()) {
+    Out << ' ';
+    writeOperand(I.getOperand(0));
+  }
+  Out << ";\n";
+}
+
+void CWriter::visitSwitchInst(SwitchInst &SI) {
+
+  Out << "  switch (";
+  writeOperand(SI.getOperand(0));
+  Out << ") {\n  default:\n";
+  printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
+  printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
+  Out << ";\n";
+  for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
+    Out << "  case ";
+    writeOperand(SI.getOperand(i));
+    Out << ":\n";
+    BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
+    printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
+    printBranchToBlock(SI.getParent(), Succ, 2);
+    if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
+      Out << "    break;\n";
+  }
+  Out << "  }\n";
+}
+
+void CWriter::visitUnreachableInst(UnreachableInst &I) {
+  Out << "  /*UNREACHABLE*/;\n";
+}
+
+bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
+  /// FIXME: This should be reenabled, but loop reordering safe!!
+  return true;
+
+  if (next(Function::iterator(From)) != Function::iterator(To))
+    return true;  // Not the direct successor, we need a goto.
+
+  //isa<SwitchInst>(From->getTerminator())
+
+  if (LI->getLoopFor(From) != LI->getLoopFor(To))
+    return true;
+  return false;
+}
+
+void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
+                                          BasicBlock *Successor,
+                                          unsigned Indent) {
+  for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
+    // Now we have to do the printing.
+    Value *IV = PN->getIncomingValueForBlock(CurBlock);
+    if (!isa<UndefValue>(IV)) {
+      Out << std::string(Indent, ' ');
+      Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
+      writeOperand(IV);
+      Out << ";   /* for PHI node */\n";
+    }
+  }
+}
+
+void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
+                                 unsigned Indent) {
+  if (isGotoCodeNecessary(CurBB, Succ)) {
+    Out << std::string(Indent, ' ') << "  goto ";
+    writeOperand(Succ);
+    Out << ";\n";
+  }
+}
+
+// Branch instruction printing - Avoid printing out a branch to a basic block
+// that immediately succeeds the current one.
+//
+void CWriter::visitBranchInst(BranchInst &I) {
+
+  if (I.isConditional()) {
+    if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
+      Out << "  if (";
+      writeOperand(I.getCondition());
+      Out << ") {\n";
+
+      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
+      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
+
+      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
+        Out << "  } else {\n";
+        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+      }
+    } else {
+      // First goto not necessary, assume second one is...
+      Out << "  if (!";
+      writeOperand(I.getCondition());
+      Out << ") {\n";
+
+      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+    }
+
+    Out << "  }\n";
+  } else {
+    printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
+    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
+  }
+  Out << "\n";
+}
+
+// PHI nodes get copied into temporary values at the end of predecessor basic
+// blocks.  We now need to copy these temporary values into the REAL value for
+// the PHI.
+void CWriter::visitPHINode(PHINode &I) {
+  writeOperand(&I);
+  Out << "__PHI_TEMPORARY";
+}
+
+
+void CWriter::visitBinaryOperator(Instruction &I) {
+  // binary instructions, shift instructions, setCond instructions.
+  assert(!isa<PointerType>(I.getType()));
+
+  // We must cast the results of binary operations which might be promoted.
+  bool needsCast = false;
+  if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty) 
+      || (I.getType() == Type::FloatTy)) {
+    needsCast = true;
+    Out << "((";
+    printType(Out, I.getType(), false);
+    Out << ")(";
+  }
+
+  // If this is a negation operation, print it out as such.  For FP, we don't
+  // want to print "-0.0 - X".
+  if (BinaryOperator::isNeg(&I)) {
+    Out << "-(";
+    writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
+    Out << ")";
+  } else if (I.getOpcode() == Instruction::FRem) {
+    // Output a call to fmod/fmodf instead of emitting a%b
+    if (I.getType() == Type::FloatTy)
+      Out << "fmodf(";
+    else
+      Out << "fmod(";
+    writeOperand(I.getOperand(0));
+    Out << ", ";
+    writeOperand(I.getOperand(1));
+    Out << ")";
+  } else {
+
+    // Write out the cast of the instruction's value back to the proper type
+    // if necessary.
+    bool NeedsClosingParens = writeInstructionCast(I);
+
+    // Certain instructions require the operand to be forced to a specific type
+    // so we use writeOperandWithCast here instead of writeOperand. Similarly
+    // below for operand 1
+    writeOperandWithCast(I.getOperand(0), I.getOpcode());
+
+    switch (I.getOpcode()) {
+    case Instruction::Add:  Out << " + "; break;
+    case Instruction::Sub:  Out << " - "; break;
+    case Instruction::Mul:  Out << " * "; break;
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::FRem: Out << " % "; break;
+    case Instruction::UDiv:
+    case Instruction::SDiv: 
+    case Instruction::FDiv: Out << " / "; break;
+    case Instruction::And:  Out << " & "; break;
+    case Instruction::Or:   Out << " | "; break;
+    case Instruction::Xor:  Out << " ^ "; break;
+    case Instruction::Shl : Out << " << "; break;
+    case Instruction::LShr:
+    case Instruction::AShr: Out << " >> "; break;
+    default: cerr << "Invalid operator type!" << I; abort();
+    }
+
+    writeOperandWithCast(I.getOperand(1), I.getOpcode());
+    if (NeedsClosingParens)
+      Out << "))";
+  }
+
+  if (needsCast) {
+    Out << "))";
+  }
+}
+
+void CWriter::visitICmpInst(ICmpInst &I) {
+  // We must cast the results of icmp which might be promoted.
+  bool needsCast = false;
+
+  // Write out the cast of the instruction's value back to the proper type
+  // if necessary.
+  bool NeedsClosingParens = writeInstructionCast(I);
+
+  // Certain icmp predicate require the operand to be forced to a specific type
+  // so we use writeOperandWithCast here instead of writeOperand. Similarly
+  // below for operand 1
+  writeOperandWithCast(I.getOperand(0), I.getPredicate());
+
+  switch (I.getPredicate()) {
+  case ICmpInst::ICMP_EQ:  Out << " == "; break;
+  case ICmpInst::ICMP_NE:  Out << " != "; break;
+  case ICmpInst::ICMP_ULE:
+  case ICmpInst::ICMP_SLE: Out << " <= "; break;
+  case ICmpInst::ICMP_UGE:
+  case ICmpInst::ICMP_SGE: Out << " >= "; break;
+  case ICmpInst::ICMP_ULT:
+  case ICmpInst::ICMP_SLT: Out << " < "; break;
+  case ICmpInst::ICMP_UGT:
+  case ICmpInst::ICMP_SGT: Out << " > "; break;
+  default: cerr << "Invalid icmp predicate!" << I; abort();
+  }
+
+  writeOperandWithCast(I.getOperand(1), I.getPredicate());
+  if (NeedsClosingParens)
+    Out << "))";
+
+  if (needsCast) {
+    Out << "))";
+  }
+}
+
+void CWriter::visitFCmpInst(FCmpInst &I) {
+  if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
+    Out << "0";
+    return;
+  }
+  if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
+    Out << "1";
+    return;
+  }
+
+  const char* op = 0;
+  switch (I.getPredicate()) {
+  default: assert(0 && "Illegal FCmp predicate");
+  case FCmpInst::FCMP_ORD: op = "ord"; break;
+  case FCmpInst::FCMP_UNO: op = "uno"; break;
+  case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+  case FCmpInst::FCMP_UNE: op = "une"; break;
+  case FCmpInst::FCMP_ULT: op = "ult"; break;
+  case FCmpInst::FCMP_ULE: op = "ule"; break;
+  case FCmpInst::FCMP_UGT: op = "ugt"; break;
+  case FCmpInst::FCMP_UGE: op = "uge"; break;
+  case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+  case FCmpInst::FCMP_ONE: op = "one"; break;
+  case FCmpInst::FCMP_OLT: op = "olt"; break;
+  case FCmpInst::FCMP_OLE: op = "ole"; break;
+  case FCmpInst::FCMP_OGT: op = "ogt"; break;
+  case FCmpInst::FCMP_OGE: op = "oge"; break;
+  }
+
+  Out << "llvm_fcmp_" << op << "(";
+  // Write the first operand
+  writeOperand(I.getOperand(0));
+  Out << ", ";
+  // Write the second operand
+  writeOperand(I.getOperand(1));
+  Out << ")";
+}
+
+static const char * getFloatBitCastField(const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    default: assert(0 && "Invalid Type");
+    case Type::FloatTyID:  return "Float";
+    case Type::DoubleTyID: return "Double";
+    case Type::IntegerTyID: {
+      unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+      if (NumBits <= 32)
+        return "Int32";
+      else
+        return "Int64";
+    }
+  }
+}
+
+void CWriter::visitCastInst(CastInst &I) {
+  const Type *DstTy = I.getType();
+  const Type *SrcTy = I.getOperand(0)->getType();
+  Out << '(';
+  if (isFPIntBitCast(I)) {
+    // These int<->float and long<->double casts need to be handled specially
+    Out << GetValueName(&I) << "__BITCAST_TEMPORARY." 
+        << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
+    writeOperand(I.getOperand(0));
+    Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
+        << getFloatBitCastField(I.getType());
+  } else {
+    printCast(I.getOpcode(), SrcTy, DstTy);
+    if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
+      // Make sure we really get a sext from bool by subtracing the bool from 0
+      Out << "0-";
+    }
+    writeOperand(I.getOperand(0));
+    if (DstTy == Type::Int1Ty && 
+        (I.getOpcode() == Instruction::Trunc ||
+         I.getOpcode() == Instruction::FPToUI ||
+         I.getOpcode() == Instruction::FPToSI ||
+         I.getOpcode() == Instruction::PtrToInt)) {
+      // Make sure we really get a trunc to bool by anding the operand with 1 
+      Out << "&1u";
+    }
+  }
+  Out << ')';
+}
+
+void CWriter::visitSelectInst(SelectInst &I) {
+  Out << "((";
+  writeOperand(I.getCondition());
+  Out << ") ? (";
+  writeOperand(I.getTrueValue());
+  Out << ") : (";
+  writeOperand(I.getFalseValue());
+  Out << "))";
+}
+
+
+void CWriter::lowerIntrinsics(Function &F) {
+  // This is used to keep track of intrinsics that get generated to a lowered
+  // function. We must generate the prototypes before the function body which
+  // will only be expanded on first use (by the loop below).
+  std::vector<Function*> prototypesToGen;
+
+  // Examine all the instructions in this function to find the intrinsics that
+  // need to be lowered.
+  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+      if (CallInst *CI = dyn_cast<CallInst>(I++))
+        if (Function *F = CI->getCalledFunction())
+          switch (F->getIntrinsicID()) {
+          case Intrinsic::not_intrinsic:
+          case Intrinsic::vastart:
+          case Intrinsic::vacopy:
+          case Intrinsic::vaend:
+          case Intrinsic::returnaddress:
+          case Intrinsic::frameaddress:
+          case Intrinsic::setjmp:
+          case Intrinsic::longjmp:
+          case Intrinsic::prefetch:
+          case Intrinsic::dbg_stoppoint:
+          case Intrinsic::powi_f32:
+          case Intrinsic::powi_f64:
+            // We directly implement these intrinsics
+            break;
+          default:
+            // If this is an intrinsic that directly corresponds to a GCC
+            // builtin, we handle it.
+            const char *BuiltinName = "";
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+            // If we handle it, don't lower it.
+            if (BuiltinName[0]) break;
+            
+            // All other intrinsic calls we must lower.
+            Instruction *Before = 0;
+            if (CI != &BB->front())
+              Before = prior(BasicBlock::iterator(CI));
+
+            IL->LowerIntrinsicCall(CI);
+            if (Before) {        // Move iterator to instruction after call
+              I = Before; ++I;
+            } else {
+              I = BB->begin();
+            }
+            // If the intrinsic got lowered to another call, and that call has
+            // a definition then we need to make sure its prototype is emitted
+            // before any calls to it.
+            if (CallInst *Call = dyn_cast<CallInst>(I))
+              if (Function *NewF = Call->getCalledFunction())
+                if (!NewF->isDeclaration())
+                  prototypesToGen.push_back(NewF);
+
+            break;
+          }
+
+  // We may have collected some prototypes to emit in the loop above. 
+  // Emit them now, before the function that uses them is emitted. But,
+  // be careful not to emit them twice.
+  std::vector<Function*>::iterator I = prototypesToGen.begin();
+  std::vector<Function*>::iterator E = prototypesToGen.end();
+  for ( ; I != E; ++I) {
+    if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
+      Out << '\n';
+      printFunctionSignature(*I, true);
+      Out << ";\n";
+    }
+  }
+}
+
+
+void CWriter::visitCallInst(CallInst &I) {
+  //check if we have inline asm
+  if (isInlineAsm(I)) {
+    visitInlineAsm(I);
+    return;
+  }
+
+  bool WroteCallee = false;
+
+  // Handle intrinsic function calls first...
+  if (Function *F = I.getCalledFunction())
+    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+      switch (ID) {
+      default: {
+        // If this is an intrinsic that directly corresponds to a GCC
+        // builtin, we emit it here.
+        const char *BuiltinName = "";
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+        assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
+
+        Out << BuiltinName;
+        WroteCallee = true;
+        break;
+      }
+      case Intrinsic::vastart:
+        Out << "0; ";
+
+        Out << "va_start(*(va_list*)";
+        writeOperand(I.getOperand(1));
+        Out << ", ";
+        // Output the last argument to the enclosing function...
+        if (I.getParent()->getParent()->arg_empty()) {
+          cerr << "The C backend does not currently support zero "
+               << "argument varargs functions, such as '"
+               << I.getParent()->getParent()->getName() << "'!\n";
+          abort();
+        }
+        writeOperand(--I.getParent()->getParent()->arg_end());
+        Out << ')';
+        return;
+      case Intrinsic::vaend:
+        if (!isa<ConstantPointerNull>(I.getOperand(1))) {
+          Out << "0; va_end(*(va_list*)";
+          writeOperand(I.getOperand(1));
+          Out << ')';
+        } else {
+          Out << "va_end(*(va_list*)0)";
+        }
+        return;
+      case Intrinsic::vacopy:
+        Out << "0; ";
+        Out << "va_copy(*(va_list*)";
+        writeOperand(I.getOperand(1));
+        Out << ", *(va_list*)";
+        writeOperand(I.getOperand(2));
+        Out << ')';
+        return;
+      case Intrinsic::returnaddress:
+        Out << "__builtin_return_address(";
+        writeOperand(I.getOperand(1));
+        Out << ')';
+        return;
+      case Intrinsic::frameaddress:
+        Out << "__builtin_frame_address(";
+        writeOperand(I.getOperand(1));
+        Out << ')';
+        return;
+      case Intrinsic::powi_f32:
+      case Intrinsic::powi_f64:
+        Out << "__builtin_powi(";
+        writeOperand(I.getOperand(1));
+        Out << ", ";
+        writeOperand(I.getOperand(2));
+        Out << ')';
+        return;
+      case Intrinsic::setjmp:
+        Out << "setjmp(*(jmp_buf*)";
+        writeOperand(I.getOperand(1));
+        Out << ')';
+        return;
+      case Intrinsic::longjmp:
+        Out << "longjmp(*(jmp_buf*)";
+        writeOperand(I.getOperand(1));
+        Out << ", ";
+        writeOperand(I.getOperand(2));
+        Out << ')';
+        return;
+      case Intrinsic::prefetch:
+        Out << "LLVM_PREFETCH((const void *)";
+        writeOperand(I.getOperand(1));
+        Out << ", ";
+        writeOperand(I.getOperand(2));
+        Out << ", ";
+        writeOperand(I.getOperand(3));
+        Out << ")";
+        return;
+      case Intrinsic::dbg_stoppoint: {
+        // If we use writeOperand directly we get a "u" suffix which is rejected
+        // by gcc.
+        DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
+
+        Out << "\n#line "
+            << SPI.getLine()
+            << " \"" << SPI.getDirectory()
+            << SPI.getFileName() << "\"\n";
+        return;
+      }
+      }
+    }
+
+  Value *Callee = I.getCalledValue();
+
+  const PointerType  *PTy   = cast<PointerType>(Callee->getType());
+  const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
+
+  // If this is a call to a struct-return function, assign to the first
+  // parameter instead of passing it to the call.
+  bool isStructRet = FTy->isStructReturn();
+  if (isStructRet) {
+    Out << "*(";
+    writeOperand(I.getOperand(1));
+    Out << ") = ";
+  }
+  
+  if (I.isTailCall()) Out << " /*tail*/ ";
+  
+  if (!WroteCallee) {
+    // If this is an indirect call to a struct return function, we need to cast
+    // the pointer.
+    bool NeedsCast = isStructRet && !isa<Function>(Callee);
+
+    // GCC is a real PITA.  It does not permit codegening casts of functions to
+    // function pointers if they are in a call (it generates a trap instruction
+    // instead!).  We work around this by inserting a cast to void* in between
+    // the function and the function pointer cast.  Unfortunately, we can't just
+    // form the constant expression here, because the folder will immediately
+    // nuke it.
+    //
+    // Note finally, that this is completely unsafe.  ANSI C does not guarantee
+    // that void* and function pointers have the same size. :( To deal with this
+    // in the common case, we handle casts where the number of arguments passed
+    // match exactly.
+    //
+    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
+      if (CE->isCast())
+        if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
+          NeedsCast = true;
+          Callee = RF;
+        }
+  
+    if (NeedsCast) {
+      // Ok, just cast the pointer type.
+      Out << "((";
+      if (!isStructRet)
+        printType(Out, I.getCalledValue()->getType());
+      else
+        printStructReturnPointerFunctionType(Out, 
+                             cast<PointerType>(I.getCalledValue()->getType()));
+      Out << ")(void*)";
+    }
+    writeOperand(Callee);
+    if (NeedsCast) Out << ')';
+  }
+
+  Out << '(';
+
+  unsigned NumDeclaredParams = FTy->getNumParams();
+
+  CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
+  unsigned ArgNo = 0;
+  if (isStructRet) {   // Skip struct return argument.
+    ++AI;
+    ++ArgNo;
+  }
+      
+  const ParamAttrsList *Attrs = FTy->getParamAttrs();
+  bool PrintedArg = false;
+  unsigned Idx = 1;
+  for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
+    if (PrintedArg) Out << ", ";
+    if (ArgNo < NumDeclaredParams &&
+        (*AI)->getType() != FTy->getParamType(ArgNo)) {
+      Out << '(';
+      printType(Out, FTy->getParamType(ArgNo), 
+            /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
+      Out << ')';
+    }
+    writeOperand(*AI);
+    PrintedArg = true;
+  }
+  Out << ')';
+}
+
+
+//This converts the llvm constraint string to something gcc is expecting.
+//TODO: work out platform independent constraints and factor those out
+//      of the per target tables
+//      handle multiple constraint codes
+std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
+
+  assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
+
+  const char** table = 0;
+  
+  //Grab the translation table from TargetAsmInfo if it exists
+  if (!TAsm) {
+    std::string E;
+    const TargetMachineRegistry::Entry* Match = 
+      TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
+    if (Match) {
+      //Per platform Target Machines don't exist, so create it
+      // this must be done only once
+      const TargetMachine* TM = Match->CtorFn(*TheModule, "");
+      TAsm = TM->getTargetAsmInfo();
+    }
+  }
+  if (TAsm)
+    table = TAsm->getAsmCBE();
+
+  //Search the translation table if it exists
+  for (int i = 0; table && table[i]; i += 2)
+    if (c.Codes[0] == table[i])
+      return table[i+1];
+
+  //default is identity
+  return c.Codes[0];
+}
+
+//TODO: import logic from AsmPrinter.cpp
+static std::string gccifyAsm(std::string asmstr) {
+  for (std::string::size_type i = 0; i != asmstr.size(); ++i)
+    if (asmstr[i] == '\n')
+      asmstr.replace(i, 1, "\\n");
+    else if (asmstr[i] == '\t')
+      asmstr.replace(i, 1, "\\t");
+    else if (asmstr[i] == '$') {
+      if (asmstr[i + 1] == '{') {
+        std::string::size_type a = asmstr.find_first_of(':', i + 1);
+        std::string::size_type b = asmstr.find_first_of('}', i + 1);
+        std::string n = "%" + 
+          asmstr.substr(a + 1, b - a - 1) +
+          asmstr.substr(i + 2, a - i - 2);
+        asmstr.replace(i, b - i + 1, n);
+        i += n.size() - 1;
+      } else
+        asmstr.replace(i, 1, "%");
+    }
+    else if (asmstr[i] == '%')//grr
+      { asmstr.replace(i, 1, "%%"); ++i;}
+  
+  return asmstr;
+}
+
+//TODO: assumptions about what consume arguments from the call are likely wrong
+//      handle communitivity
+void CWriter::visitInlineAsm(CallInst &CI) {
+  InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
+  std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
+  std::vector<std::pair<std::string, Value*> > Input;
+  std::vector<std::pair<std::string, Value*> > Output;
+  std::string Clobber;
+  int count = CI.getType() == Type::VoidTy ? 1 : 0;
+  for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
+         E = Constraints.end(); I != E; ++I) {
+    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
+    std::string c = 
+      InterpretASMConstraint(*I);
+    switch(I->Type) {
+    default:
+      assert(0 && "Unknown asm constraint");
+      break;
+    case InlineAsm::isInput: {
+      if (c.size()) {
+        Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
+        ++count; //consume arg
+      }
+      break;
+    }
+    case InlineAsm::isOutput: {
+      if (c.size()) {
+        Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
+                                        count ? CI.getOperand(count) : &CI));
+        ++count; //consume arg
+      }
+      break;
+    }
+    case InlineAsm::isClobber: {
+      if (c.size()) 
+        Clobber += ",\"" + c + "\"";
+      break;
+    }
+    }
+  }
+  
+  //fix up the asm string for gcc
+  std::string asmstr = gccifyAsm(as->getAsmString());
+  
+  Out << "__asm__ volatile (\"" << asmstr << "\"\n";
+  Out << "        :";
+  for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
+         E = Output.end(); I != E; ++I) {
+    Out << "\"" << I->first << "\"(";
+    writeOperandRaw(I->second);
+    Out << ")";
+    if (I + 1 != E)
+      Out << ",";
+  }
+  Out << "\n        :";
+  for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
+         E = Input.end(); I != E; ++I) {
+    Out << "\"" << I->first << "\"(";
+    writeOperandRaw(I->second);
+    Out << ")";
+    if (I + 1 != E)
+      Out << ",";
+  }
+  if (Clobber.size())
+    Out << "\n        :" << Clobber.substr(1);
+  Out << ")";
+}
+
+void CWriter::visitMallocInst(MallocInst &I) {
+  assert(0 && "lowerallocations pass didn't work!");
+}
+
+void CWriter::visitAllocaInst(AllocaInst &I) {
+  Out << '(';
+  printType(Out, I.getType());
+  Out << ") alloca(sizeof(";
+  printType(Out, I.getType()->getElementType());
+  Out << ')';
+  if (I.isArrayAllocation()) {
+    Out << " * " ;
+    writeOperand(I.getOperand(0));
+  }
+  Out << ')';
+}
+
+void CWriter::visitFreeInst(FreeInst &I) {
+  assert(0 && "lowerallocations pass didn't work!");
+}
+
+void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
+                                      gep_type_iterator E) {
+  bool HasImplicitAddress = false;
+  // If accessing a global value with no indexing, avoid *(&GV) syndrome
+  if (isa<GlobalValue>(Ptr)) {
+    HasImplicitAddress = true;
+  } else if (isDirectAlloca(Ptr)) {
+    HasImplicitAddress = true;
+  }
+
+  if (I == E) {
+    if (!HasImplicitAddress)
+      Out << '*';  // Implicit zero first argument: '*x' is equivalent to 'x[0]'
+
+    writeOperandInternal(Ptr);
+    return;
+  }
+
+  const Constant *CI = dyn_cast<Constant>(I.getOperand());
+  if (HasImplicitAddress && (!CI || !CI->isNullValue()))
+    Out << "(&";
+
+  writeOperandInternal(Ptr);
+
+  if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
+    Out << ')';
+    HasImplicitAddress = false;  // HIA is only true if we haven't addressed yet
+  }
+
+  assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
+         "Can only have implicit address with direct accessing");
+
+  if (HasImplicitAddress) {
+    ++I;
+  } else if (CI && CI->isNullValue()) {
+    gep_type_iterator TmpI = I; ++TmpI;
+
+    // Print out the -> operator if possible...
+    if (TmpI != E && isa<StructType>(*TmpI)) {
+      Out << (HasImplicitAddress ? "." : "->");
+      Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
+      I = ++TmpI;
+    }
+  }
+
+  for (; I != E; ++I)
+    if (isa<StructType>(*I)) {
+      Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
+    } else {
+      Out << '[';
+      writeOperand(I.getOperand());
+      Out << ']';
+    }
+}
+
+void CWriter::visitLoadInst(LoadInst &I) {
+  Out << '*';
+  if (I.isVolatile()) {
+    Out << "((";
+    printType(Out, I.getType(), false, "volatile*");
+    Out << ")";
+  }
+
+  writeOperand(I.getOperand(0));
+
+  if (I.isVolatile())
+    Out << ')';
+}
+
+void CWriter::visitStoreInst(StoreInst &I) {
+  Out << '*';
+  if (I.isVolatile()) {
+    Out << "((";
+    printType(Out, I.getOperand(0)->getType(), false, " volatile*");
+    Out << ")";
+  }
+  writeOperand(I.getPointerOperand());
+  if (I.isVolatile()) Out << ')';
+  Out << " = ";
+  Value *Operand = I.getOperand(0);
+  Constant *BitMask = 0;
+  if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
+    if (!ITy->isPowerOf2ByteWidth())
+      // We have a bit width that doesn't match an even power-of-2 byte
+      // size. Consequently we must & the value with the type's bit mask
+      BitMask = ConstantInt::get(ITy, ITy->getBitMask());
+  if (BitMask)
+    Out << "((";
+  writeOperand(Operand);
+  if (BitMask) {
+    Out << ") & ";
+    printConstant(BitMask);
+    Out << ")"; 
+  }
+}
+
+void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
+  Out << '&';
+  printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
+                          gep_type_end(I));
+}
+
+void CWriter::visitVAArgInst(VAArgInst &I) {
+  Out << "va_arg(*(va_list*)";
+  writeOperand(I.getOperand(0));
+  Out << ", ";
+  printType(Out, I.getType());
+  Out << ");\n ";
+}
+
+//===----------------------------------------------------------------------===//
+//                       External Interface declaration
+//===----------------------------------------------------------------------===//
+
+bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
+                                              std::ostream &o,
+                                              CodeGenFileType FileType,
+                                              bool Fast) {
+  if (FileType != TargetMachine::AssemblyFile) return true;
+
+  PM.add(createLowerGCPass());
+  PM.add(createLowerAllocationsPass(true));
+  PM.add(createLowerInvokePass());
+  PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
+  PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
+  PM.add(new CWriter(o));
+  return false;
+}