It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
new file mode 100644
index 0000000..b0c76c8
--- /dev/null
+++ b/lib/Target/CBackend/CBackend.cpp
@@ -0,0 +1,2930 @@
+//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library converts LLVM code to C code, compilable by GCC and other C
+// compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CTargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Analysis/ConstantsScanner.h"
+#include "llvm/Analysis/FindUsedTypes.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Config/config.h"
+#include <algorithm>
+#include <sstream>
+using namespace llvm;
+
+namespace {
+ // Register the target.
+ RegisterTarget<CTargetMachine> X("c", " C backend");
+
+ /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
+ /// any unnamed structure types that are used by the program, and merges
+ /// external functions with the same name.
+ ///
+ class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
+ public:
+ static char ID;
+ CBackendNameAllUsedStructsAndMergeFunctions()
+ : ModulePass((intptr_t)&ID) {}
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<FindUsedTypes>();
+ }
+
+ virtual const char *getPassName() const {
+ return "C backend type canonicalizer";
+ }
+
+ virtual bool runOnModule(Module &M);
+ };
+
+ char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
+
+ /// CWriter - This class is the main chunk of code that converts an LLVM
+ /// module to a C translation unit.
+ class CWriter : public FunctionPass, public InstVisitor<CWriter> {
+ std::ostream &Out;
+ IntrinsicLowering *IL;
+ Mangler *Mang;
+ LoopInfo *LI;
+ const Module *TheModule;
+ const TargetAsmInfo* TAsm;
+ const TargetData* TD;
+ std::map<const Type *, std::string> TypeNames;
+ std::map<const ConstantFP *, unsigned> FPConstantMap;
+ std::set<Function*> intrinsicPrototypesAlreadyGenerated;
+
+ public:
+ static char ID;
+ CWriter(std::ostream &o)
+ : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
+ TheModule(0), TAsm(0), TD(0) {}
+
+ virtual const char *getPassName() const { return "C backend"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<LoopInfo>();
+ AU.setPreservesAll();
+ }
+
+ virtual bool doInitialization(Module &M);
+
+ bool runOnFunction(Function &F) {
+ LI = &getAnalysis<LoopInfo>();
+
+ // Get rid of intrinsics we can't handle.
+ lowerIntrinsics(F);
+
+ // Output all floating point constants that cannot be printed accurately.
+ printFloatingPointConstants(F);
+
+ printFunction(F);
+ FPConstantMap.clear();
+ return false;
+ }
+
+ virtual bool doFinalization(Module &M) {
+ // Free memory...
+ delete Mang;
+ TypeNames.clear();
+ return false;
+ }
+
+ std::ostream &printType(std::ostream &Out, const Type *Ty,
+ bool isSigned = false,
+ const std::string &VariableName = "",
+ bool IgnoreName = false);
+ std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
+ bool isSigned,
+ const std::string &NameSoFar = "");
+
+ void printStructReturnPointerFunctionType(std::ostream &Out,
+ const PointerType *Ty);
+
+ void writeOperand(Value *Operand);
+ void writeOperandRaw(Value *Operand);
+ void writeOperandInternal(Value *Operand);
+ void writeOperandWithCast(Value* Operand, unsigned Opcode);
+ void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
+ bool writeInstructionCast(const Instruction &I);
+
+ private :
+ std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
+
+ void lowerIntrinsics(Function &F);
+
+ void printModule(Module *M);
+ void printModuleTypes(const TypeSymbolTable &ST);
+ void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
+ void printFloatingPointConstants(Function &F);
+ void printFunctionSignature(const Function *F, bool Prototype);
+
+ void printFunction(Function &);
+ void printBasicBlock(BasicBlock *BB);
+ void printLoop(Loop *L);
+
+ void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
+ void printConstant(Constant *CPV);
+ void printConstantWithCast(Constant *CPV, unsigned Opcode);
+ bool printConstExprCast(const ConstantExpr *CE);
+ void printConstantArray(ConstantArray *CPA);
+ void printConstantVector(ConstantVector *CP);
+
+ // isInlinableInst - Attempt to inline instructions into their uses to build
+ // trees as much as possible. To do this, we have to consistently decide
+ // what is acceptable to inline, so that variable declarations don't get
+ // printed and an extra copy of the expr is not emitted.
+ //
+ static bool isInlinableInst(const Instruction &I) {
+ // Always inline cmp instructions, even if they are shared by multiple
+ // expressions. GCC generates horrible code if we don't.
+ if (isa<CmpInst>(I))
+ return true;
+
+ // Must be an expression, must be used exactly once. If it is dead, we
+ // emit it inline where it would go.
+ if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
+ isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
+ isa<LoadInst>(I) || isa<VAArgInst>(I))
+ // Don't inline a load across a store or other bad things!
+ return false;
+
+ // Must not be used in inline asm
+ if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
+
+ // Only inline instruction it if it's use is in the same BB as the inst.
+ return I.getParent() == cast<Instruction>(I.use_back())->getParent();
+ }
+
+ // isDirectAlloca - Define fixed sized allocas in the entry block as direct
+ // variables which are accessed with the & operator. This causes GCC to
+ // generate significantly better code than to emit alloca calls directly.
+ //
+ static const AllocaInst *isDirectAlloca(const Value *V) {
+ const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+ if (!AI) return false;
+ if (AI->isArrayAllocation())
+ return 0; // FIXME: we can also inline fixed size array allocas!
+ if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
+ return 0;
+ return AI;
+ }
+
+ // isInlineAsm - Check if the instruction is a call to an inline asm chunk
+ static bool isInlineAsm(const Instruction& I) {
+ if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
+ return true;
+ return false;
+ }
+
+ // Instruction visitation functions
+ friend class InstVisitor<CWriter>;
+
+ void visitReturnInst(ReturnInst &I);
+ void visitBranchInst(BranchInst &I);
+ void visitSwitchInst(SwitchInst &I);
+ void visitInvokeInst(InvokeInst &I) {
+ assert(0 && "Lowerinvoke pass didn't work!");
+ }
+
+ void visitUnwindInst(UnwindInst &I) {
+ assert(0 && "Lowerinvoke pass didn't work!");
+ }
+ void visitUnreachableInst(UnreachableInst &I);
+
+ void visitPHINode(PHINode &I);
+ void visitBinaryOperator(Instruction &I);
+ void visitICmpInst(ICmpInst &I);
+ void visitFCmpInst(FCmpInst &I);
+
+ void visitCastInst (CastInst &I);
+ void visitSelectInst(SelectInst &I);
+ void visitCallInst (CallInst &I);
+ void visitInlineAsm(CallInst &I);
+
+ void visitMallocInst(MallocInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitFreeInst (FreeInst &I);
+ void visitLoadInst (LoadInst &I);
+ void visitStoreInst (StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitVAArgInst (VAArgInst &I);
+
+ void visitInstruction(Instruction &I) {
+ cerr << "C Writer does not know about " << I;
+ abort();
+ }
+
+ void outputLValue(Instruction *I) {
+ Out << " " << GetValueName(I) << " = ";
+ }
+
+ bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
+ void printPHICopiesForSuccessor(BasicBlock *CurBlock,
+ BasicBlock *Successor, unsigned Indent);
+ void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
+ unsigned Indent);
+ void printIndexingExpression(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E);
+
+ std::string GetValueName(const Value *Operand);
+ };
+}
+
+char CWriter::ID = 0;
+
+/// This method inserts names for any unnamed structure types that are used by
+/// the program, and removes names from structure types that are not used by the
+/// program.
+///
+bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
+ // Get a set of types that are used by the program...
+ std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
+
+ // Loop over the module symbol table, removing types from UT that are
+ // already named, and removing names for types that are not used.
+ //
+ TypeSymbolTable &TST = M.getTypeSymbolTable();
+ for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ) {
+ TypeSymbolTable::iterator I = TI++;
+
+ // If this isn't a struct type, remove it from our set of types to name.
+ // This simplifies emission later.
+ if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
+ TST.remove(I);
+ } else {
+ // If this is not used, remove it from the symbol table.
+ std::set<const Type *>::iterator UTI = UT.find(I->second);
+ if (UTI == UT.end())
+ TST.remove(I);
+ else
+ UT.erase(UTI); // Only keep one name for this type.
+ }
+ }
+
+ // UT now contains types that are not named. Loop over it, naming
+ // structure types.
+ //
+ bool Changed = false;
+ unsigned RenameCounter = 0;
+ for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
+ I != E; ++I)
+ if (const StructType *ST = dyn_cast<StructType>(*I)) {
+ while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
+ ++RenameCounter;
+ Changed = true;
+ }
+
+
+ // Loop over all external functions and globals. If we have two with
+ // identical names, merge them.
+ // FIXME: This code should disappear when we don't allow values with the same
+ // names when they have different types!
+ std::map<std::string, GlobalValue*> ExtSymbols;
+ for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
+ Function *GV = I++;
+ if (GV->isDeclaration() && GV->hasName()) {
+ std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
+ = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
+ if (!X.second) {
+ // Found a conflict, replace this global with the previous one.
+ GlobalValue *OldGV = X.first->second;
+ GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
+ GV->eraseFromParent();
+ Changed = true;
+ }
+ }
+ }
+ // Do the same for globals.
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E;) {
+ GlobalVariable *GV = I++;
+ if (GV->isDeclaration() && GV->hasName()) {
+ std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
+ = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
+ if (!X.second) {
+ // Found a conflict, replace this global with the previous one.
+ GlobalValue *OldGV = X.first->second;
+ GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
+ GV->eraseFromParent();
+ Changed = true;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+/// printStructReturnPointerFunctionType - This is like printType for a struct
+/// return type, except, instead of printing the type as void (*)(Struct*, ...)
+/// print it as "Struct (*)(...)", for struct return functions.
+void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
+ const PointerType *TheTy) {
+ const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
+ std::stringstream FunctionInnards;
+ FunctionInnards << " (*) (";
+ bool PrintedType = false;
+
+ FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
+ const Type *RetTy = cast<PointerType>(I->get())->getElementType();
+ unsigned Idx = 1;
+ const ParamAttrsList *Attrs = FTy->getParamAttrs();
+ for (++I; I != E; ++I) {
+ if (PrintedType)
+ FunctionInnards << ", ";
+ printType(FunctionInnards, *I,
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
+ PrintedType = true;
+ }
+ if (FTy->isVarArg()) {
+ if (PrintedType)
+ FunctionInnards << ", ...";
+ } else if (!PrintedType) {
+ FunctionInnards << "void";
+ }
+ FunctionInnards << ')';
+ std::string tstr = FunctionInnards.str();
+ printType(Out, RetTy,
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
+}
+
+std::ostream &
+CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
+ const std::string &NameSoFar) {
+ assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
+ "Invalid type for printSimpleType");
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return Out << "void " << NameSoFar;
+ case Type::IntegerTyID: {
+ unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+ if (NumBits == 1)
+ return Out << "bool " << NameSoFar;
+ else if (NumBits <= 8)
+ return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
+ else if (NumBits <= 16)
+ return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
+ else if (NumBits <= 32)
+ return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
+ else {
+ assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
+ return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
+ }
+ }
+ case Type::FloatTyID: return Out << "float " << NameSoFar;
+ case Type::DoubleTyID: return Out << "double " << NameSoFar;
+ default :
+ cerr << "Unknown primitive type: " << *Ty << "\n";
+ abort();
+ }
+}
+
+// Pass the Type* and the variable name and this prints out the variable
+// declaration.
+//
+std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
+ bool isSigned, const std::string &NameSoFar,
+ bool IgnoreName) {
+ if (Ty->isPrimitiveType() || Ty->isInteger()) {
+ printSimpleType(Out, Ty, isSigned, NameSoFar);
+ return Out;
+ }
+
+ // Check to see if the type is named.
+ if (!IgnoreName || isa<OpaqueType>(Ty)) {
+ std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
+ }
+
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType *FTy = cast<FunctionType>(Ty);
+ std::stringstream FunctionInnards;
+ FunctionInnards << " (" << NameSoFar << ") (";
+ const ParamAttrsList *Attrs = FTy->getParamAttrs();
+ unsigned Idx = 1;
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ FunctionInnards << ", ";
+ printType(FunctionInnards, *I,
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
+ ++Idx;
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams())
+ FunctionInnards << ", ...";
+ } else if (!FTy->getNumParams()) {
+ FunctionInnards << "void";
+ }
+ FunctionInnards << ')';
+ std::string tstr = FunctionInnards.str();
+ printType(Out, FTy->getReturnType(),
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
+ return Out;
+ }
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(Ty);
+ Out << NameSoFar + " {\n";
+ unsigned Idx = 0;
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ Out << " ";
+ printType(Out, *I, false, "field" + utostr(Idx++));
+ Out << ";\n";
+ }
+ Out << '}';
+ if (STy->isPacked())
+ Out << " __attribute__ ((packed))";
+ return Out;
+ }
+
+ case Type::PointerTyID: {
+ const PointerType *PTy = cast<PointerType>(Ty);
+ std::string ptrName = "*" + NameSoFar;
+
+ if (isa<ArrayType>(PTy->getElementType()) ||
+ isa<VectorType>(PTy->getElementType()))
+ ptrName = "(" + ptrName + ")";
+
+ return printType(Out, PTy->getElementType(), false, ptrName);
+ }
+
+ case Type::ArrayTyID: {
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ unsigned NumElements = ATy->getNumElements();
+ if (NumElements == 0) NumElements = 1;
+ return printType(Out, ATy->getElementType(), false,
+ NameSoFar + "[" + utostr(NumElements) + "]");
+ }
+
+ case Type::VectorTyID: {
+ const VectorType *PTy = cast<VectorType>(Ty);
+ unsigned NumElements = PTy->getNumElements();
+ if (NumElements == 0) NumElements = 1;
+ return printType(Out, PTy->getElementType(), false,
+ NameSoFar + "[" + utostr(NumElements) + "]");
+ }
+
+ case Type::OpaqueTyID: {
+ static int Count = 0;
+ std::string TyName = "struct opaque_" + itostr(Count++);
+ assert(TypeNames.find(Ty) == TypeNames.end());
+ TypeNames[Ty] = TyName;
+ return Out << TyName << ' ' << NameSoFar;
+ }
+ default:
+ assert(0 && "Unhandled case in getTypeProps!");
+ abort();
+ }
+
+ return Out;
+}
+
+void CWriter::printConstantArray(ConstantArray *CPA) {
+
+ // As a special case, print the array as a string if it is an array of
+ // ubytes or an array of sbytes with positive values.
+ //
+ const Type *ETy = CPA->getType()->getElementType();
+ bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
+
+ // Make sure the last character is a null char, as automatically added by C
+ if (isString && (CPA->getNumOperands() == 0 ||
+ !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
+ isString = false;
+
+ if (isString) {
+ Out << '\"';
+ // Keep track of whether the last number was a hexadecimal escape
+ bool LastWasHex = false;
+
+ // Do not include the last character, which we know is null
+ for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
+ unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
+
+ // Print it out literally if it is a printable character. The only thing
+ // to be careful about is when the last letter output was a hex escape
+ // code, in which case we have to be careful not to print out hex digits
+ // explicitly (the C compiler thinks it is a continuation of the previous
+ // character, sheesh...)
+ //
+ if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
+ LastWasHex = false;
+ if (C == '"' || C == '\\')
+ Out << "\\" << C;
+ else
+ Out << C;
+ } else {
+ LastWasHex = false;
+ switch (C) {
+ case '\n': Out << "\\n"; break;
+ case '\t': Out << "\\t"; break;
+ case '\r': Out << "\\r"; break;
+ case '\v': Out << "\\v"; break;
+ case '\a': Out << "\\a"; break;
+ case '\"': Out << "\\\""; break;
+ case '\'': Out << "\\\'"; break;
+ default:
+ Out << "\\x";
+ Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
+ Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ LastWasHex = true;
+ break;
+ }
+ }
+ }
+ Out << '\"';
+ } else {
+ Out << '{';
+ if (CPA->getNumOperands()) {
+ Out << ' ';
+ printConstant(cast<Constant>(CPA->getOperand(0)));
+ for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printConstant(cast<Constant>(CPA->getOperand(i)));
+ }
+ }
+ Out << " }";
+ }
+}
+
+void CWriter::printConstantVector(ConstantVector *CP) {
+ Out << '{';
+ if (CP->getNumOperands()) {
+ Out << ' ';
+ printConstant(cast<Constant>(CP->getOperand(0)));
+ for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printConstant(cast<Constant>(CP->getOperand(i)));
+ }
+ }
+ Out << " }";
+}
+
+// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
+// textually as a double (rather than as a reference to a stack-allocated
+// variable). We decide this by converting CFP to a string and back into a
+// double, and then checking whether the conversion results in a bit-equal
+// double to the original value of CFP. This depends on us and the target C
+// compiler agreeing on the conversion process (which is pretty likely since we
+// only deal in IEEE FP).
+//
+static bool isFPCSafeToPrint(const ConstantFP *CFP) {
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+ char Buffer[100];
+ sprintf(Buffer, "%a", CFP->getValue());
+
+ if (!strncmp(Buffer, "0x", 2) ||
+ !strncmp(Buffer, "-0x", 3) ||
+ !strncmp(Buffer, "+0x", 3))
+ return atof(Buffer) == CFP->getValue();
+ return false;
+#else
+ std::string StrVal = ftostr(CFP->getValue());
+
+ while (StrVal[0] == ' ')
+ StrVal.erase(StrVal.begin());
+
+ // Check to make sure that the stringized number is not some string like "Inf"
+ // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9')))
+ // Reparse stringized version!
+ return atof(StrVal.c_str()) == CFP->getValue();
+ return false;
+#endif
+}
+
+/// Print out the casting for a cast operation. This does the double casting
+/// necessary for conversion to the destination type, if necessary.
+/// @brief Print a cast
+void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
+ // Print the destination type cast
+ switch (opc) {
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::IntToPtr:
+ case Instruction::Trunc:
+ case Instruction::BitCast:
+ case Instruction::FPExt:
+ case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
+ Out << '(';
+ printType(Out, DstTy);
+ Out << ')';
+ break;
+ case Instruction::ZExt:
+ case Instruction::PtrToInt:
+ case Instruction::FPToUI: // For these, make sure we get an unsigned dest
+ Out << '(';
+ printSimpleType(Out, DstTy, false);
+ Out << ')';
+ break;
+ case Instruction::SExt:
+ case Instruction::FPToSI: // For these, make sure we get a signed dest
+ Out << '(';
+ printSimpleType(Out, DstTy, true);
+ Out << ')';
+ break;
+ default:
+ assert(0 && "Invalid cast opcode");
+ }
+
+ // Print the source type cast
+ switch (opc) {
+ case Instruction::UIToFP:
+ case Instruction::ZExt:
+ Out << '(';
+ printSimpleType(Out, SrcTy, false);
+ Out << ')';
+ break;
+ case Instruction::SIToFP:
+ case Instruction::SExt:
+ Out << '(';
+ printSimpleType(Out, SrcTy, true);
+ Out << ')';
+ break;
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ // Avoid "cast to pointer from integer of different size" warnings
+ Out << "(unsigned long)";
+ break;
+ case Instruction::Trunc:
+ case Instruction::BitCast:
+ case Instruction::FPExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPToSI:
+ case Instruction::FPToUI:
+ break; // These don't need a source cast.
+ default:
+ assert(0 && "Invalid cast opcode");
+ break;
+ }
+}
+
+// printConstant - The LLVM Constant to C Constant converter.
+void CWriter::printConstant(Constant *CPV) {
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+ switch (CE->getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ Out << "(";
+ printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
+ if (CE->getOpcode() == Instruction::SExt &&
+ CE->getOperand(0)->getType() == Type::Int1Ty) {
+ // Make sure we really sext from bool here by subtracting from 0
+ Out << "0-";
+ }
+ printConstant(CE->getOperand(0));
+ if (CE->getType() == Type::Int1Ty &&
+ (CE->getOpcode() == Instruction::Trunc ||
+ CE->getOpcode() == Instruction::FPToUI ||
+ CE->getOpcode() == Instruction::FPToSI ||
+ CE->getOpcode() == Instruction::PtrToInt)) {
+ // Make sure we really truncate to bool here by anding with 1
+ Out << "&1u";
+ }
+ Out << ')';
+ return;
+
+ case Instruction::GetElementPtr:
+ Out << "(&(";
+ printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
+ gep_type_end(CPV));
+ Out << "))";
+ return;
+ case Instruction::Select:
+ Out << '(';
+ printConstant(CE->getOperand(0));
+ Out << '?';
+ printConstant(CE->getOperand(1));
+ Out << ':';
+ printConstant(CE->getOperand(2));
+ Out << ')';
+ return;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ {
+ Out << '(';
+ bool NeedsClosingParens = printConstExprCast(CE);
+ printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Out << " + "; break;
+ case Instruction::Sub: Out << " - "; break;
+ case Instruction::Mul: Out << " * "; break;
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem: Out << " % "; break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv: Out << " / "; break;
+ case Instruction::And: Out << " & "; break;
+ case Instruction::Or: Out << " | "; break;
+ case Instruction::Xor: Out << " ^ "; break;
+ case Instruction::Shl: Out << " << "; break;
+ case Instruction::LShr:
+ case Instruction::AShr: Out << " >> "; break;
+ case Instruction::ICmp:
+ switch (CE->getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << " == "; break;
+ case ICmpInst::ICMP_NE: Out << " != "; break;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_ULT: Out << " < "; break;
+ case ICmpInst::ICMP_SLE:
+ case ICmpInst::ICMP_ULE: Out << " <= "; break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_UGT: Out << " > "; break;
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_UGE: Out << " >= "; break;
+ default: assert(0 && "Illegal ICmp predicate");
+ }
+ break;
+ default: assert(0 && "Illegal opcode here!");
+ }
+ printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+ if (NeedsClosingParens)
+ Out << "))";
+ Out << ')';
+ return;
+ }
+ case Instruction::FCmp: {
+ Out << '(';
+ bool NeedsClosingParens = printConstExprCast(CE);
+ if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
+ Out << "0";
+ else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
+ Out << "1";
+ else {
+ const char* op = 0;
+ switch (CE->getPredicate()) {
+ default: assert(0 && "Illegal FCmp predicate");
+ case FCmpInst::FCMP_ORD: op = "ord"; break;
+ case FCmpInst::FCMP_UNO: op = "uno"; break;
+ case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+ case FCmpInst::FCMP_UNE: op = "une"; break;
+ case FCmpInst::FCMP_ULT: op = "ult"; break;
+ case FCmpInst::FCMP_ULE: op = "ule"; break;
+ case FCmpInst::FCMP_UGT: op = "ugt"; break;
+ case FCmpInst::FCMP_UGE: op = "uge"; break;
+ case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+ case FCmpInst::FCMP_ONE: op = "one"; break;
+ case FCmpInst::FCMP_OLT: op = "olt"; break;
+ case FCmpInst::FCMP_OLE: op = "ole"; break;
+ case FCmpInst::FCMP_OGT: op = "ogt"; break;
+ case FCmpInst::FCMP_OGE: op = "oge"; break;
+ }
+ Out << "llvm_fcmp_" << op << "(";
+ printConstantWithCast(CE->getOperand(0), CE->getOpcode());
+ Out << ", ";
+ printConstantWithCast(CE->getOperand(1), CE->getOpcode());
+ Out << ")";
+ }
+ if (NeedsClosingParens)
+ Out << "))";
+ Out << ')';
+ }
+ default:
+ cerr << "CWriter Error: Unhandled constant expression: "
+ << *CE << "\n";
+ abort();
+ }
+ } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
+ Out << "((";
+ printType(Out, CPV->getType()); // sign doesn't matter
+ Out << ")/*UNDEF*/0)";
+ return;
+ }
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
+ const Type* Ty = CI->getType();
+ if (Ty == Type::Int1Ty)
+ Out << (CI->getZExtValue() ? '1' : '0') ;
+ else {
+ Out << "((";
+ printSimpleType(Out, Ty, false) << ')';
+ if (CI->isMinValue(true))
+ Out << CI->getZExtValue() << 'u';
+ else
+ Out << CI->getSExtValue();
+ if (Ty->getPrimitiveSizeInBits() > 32)
+ Out << "ll";
+ Out << ')';
+ }
+ return;
+ }
+
+ switch (CPV->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ case Type::DoubleTyID: {
+ ConstantFP *FPC = cast<ConstantFP>(CPV);
+ std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
+ if (I != FPConstantMap.end()) {
+ // Because of FP precision problems we must load from a stack allocated
+ // value that holds the value in hex.
+ Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
+ << "*)&FPConstant" << I->second << ')';
+ } else {
+ if (IsNAN(FPC->getValue())) {
+ // The value is NaN
+
+ // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
+ // it's 0x7ff4.
+ const unsigned long QuietNaN = 0x7ff8UL;
+ //const unsigned long SignalNaN = 0x7ff4UL;
+
+ // We need to grab the first part of the FP #
+ char Buffer[100];
+
+ uint64_t ll = DoubleToBits(FPC->getValue());
+ sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
+
+ std::string Num(&Buffer[0], &Buffer[6]);
+ unsigned long Val = strtoul(Num.c_str(), 0, 16);
+
+ if (FPC->getType() == Type::FloatTy)
+ Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
+ << Buffer << "\") /*nan*/ ";
+ else
+ Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
+ << Buffer << "\") /*nan*/ ";
+ } else if (IsInf(FPC->getValue())) {
+ // The value is Inf
+ if (FPC->getValue() < 0) Out << '-';
+ Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
+ << " /*inf*/ ";
+ } else {
+ std::string Num;
+#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
+ // Print out the constant as a floating point number.
+ char Buffer[100];
+ sprintf(Buffer, "%a", FPC->getValue());
+ Num = Buffer;
+#else
+ Num = ftostr(FPC->getValue());
+#endif
+ Out << Num;
+ }
+ }
+ break;
+ }
+
+ case Type::ArrayTyID:
+ if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+ const ArrayType *AT = cast<ArrayType>(CPV->getType());
+ Out << '{';
+ if (AT->getNumElements()) {
+ Out << ' ';
+ Constant *CZ = Constant::getNullValue(AT->getElementType());
+ printConstant(CZ);
+ for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ printConstant(CZ);
+ }
+ }
+ Out << " }";
+ } else {
+ printConstantArray(cast<ConstantArray>(CPV));
+ }
+ break;
+
+ case Type::VectorTyID:
+ if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+ const VectorType *AT = cast<VectorType>(CPV->getType());
+ Out << '{';
+ if (AT->getNumElements()) {
+ Out << ' ';
+ Constant *CZ = Constant::getNullValue(AT->getElementType());
+ printConstant(CZ);
+ for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ printConstant(CZ);
+ }
+ }
+ Out << " }";
+ } else {
+ printConstantVector(cast<ConstantVector>(CPV));
+ }
+ break;
+
+ case Type::StructTyID:
+ if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
+ const StructType *ST = cast<StructType>(CPV->getType());
+ Out << '{';
+ if (ST->getNumElements()) {
+ Out << ' ';
+ printConstant(Constant::getNullValue(ST->getElementType(0)));
+ for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ printConstant(Constant::getNullValue(ST->getElementType(i)));
+ }
+ }
+ Out << " }";
+ } else {
+ Out << '{';
+ if (CPV->getNumOperands()) {
+ Out << ' ';
+ printConstant(cast<Constant>(CPV->getOperand(0)));
+ for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printConstant(cast<Constant>(CPV->getOperand(i)));
+ }
+ }
+ Out << " }";
+ }
+ break;
+
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(CPV)) {
+ Out << "((";
+ printType(Out, CPV->getType()); // sign doesn't matter
+ Out << ")/*NULL*/0)";
+ break;
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
+ writeOperand(GV);
+ break;
+ }
+ // FALL THROUGH
+ default:
+ cerr << "Unknown constant type: " << *CPV << "\n";
+ abort();
+ }
+}
+
+// Some constant expressions need to be casted back to the original types
+// because their operands were casted to the expected type. This function takes
+// care of detecting that case and printing the cast for the ConstantExpr.
+bool CWriter::printConstExprCast(const ConstantExpr* CE) {
+ bool NeedsExplicitCast = false;
+ const Type *Ty = CE->getOperand(0)->getType();
+ bool TypeIsSigned = false;
+ switch (CE->getOpcode()) {
+ case Instruction::LShr:
+ case Instruction::URem:
+ case Instruction::UDiv: NeedsExplicitCast = true; break;
+ case Instruction::AShr:
+ case Instruction::SRem:
+ case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
+ case Instruction::SExt:
+ Ty = CE->getType();
+ NeedsExplicitCast = true;
+ TypeIsSigned = true;
+ break;
+ case Instruction::ZExt:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ Ty = CE->getType();
+ NeedsExplicitCast = true;
+ break;
+ default: break;
+ }
+ if (NeedsExplicitCast) {
+ Out << "((";
+ if (Ty->isInteger() && Ty != Type::Int1Ty)
+ printSimpleType(Out, Ty, TypeIsSigned);
+ else
+ printType(Out, Ty); // not integer, sign doesn't matter
+ Out << ")(";
+ }
+ return NeedsExplicitCast;
+}
+
+// Print a constant assuming that it is the operand for a given Opcode. The
+// opcodes that care about sign need to cast their operands to the expected
+// type before the operation proceeds. This function does the casting.
+void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
+
+ // Extract the operand's type, we'll need it.
+ const Type* OpTy = CPV->getType();
+
+ // Indicate whether to do the cast or not.
+ bool shouldCast = false;
+ bool typeIsSigned = false;
+
+ // Based on the Opcode for which this Constant is being written, determine
+ // the new type to which the operand should be casted by setting the value
+ // of OpTy. If we change OpTy, also set shouldCast to true so it gets
+ // casted below.
+ switch (Opcode) {
+ default:
+ // for most instructions, it doesn't matter
+ break;
+ case Instruction::LShr:
+ case Instruction::UDiv:
+ case Instruction::URem:
+ shouldCast = true;
+ break;
+ case Instruction::AShr:
+ case Instruction::SDiv:
+ case Instruction::SRem:
+ shouldCast = true;
+ typeIsSigned = true;
+ break;
+ }
+
+ // Write out the casted constant if we should, otherwise just write the
+ // operand.
+ if (shouldCast) {
+ Out << "((";
+ printSimpleType(Out, OpTy, typeIsSigned);
+ Out << ")";
+ printConstant(CPV);
+ Out << ")";
+ } else
+ printConstant(CPV);
+}
+
+std::string CWriter::GetValueName(const Value *Operand) {
+ std::string Name;
+
+ if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
+ std::string VarName;
+
+ Name = Operand->getName();
+ VarName.reserve(Name.capacity());
+
+ for (std::string::iterator I = Name.begin(), E = Name.end();
+ I != E; ++I) {
+ char ch = *I;
+
+ if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
+ (ch >= '0' && ch <= '9') || ch == '_'))
+ VarName += '_';
+ else
+ VarName += ch;
+ }
+
+ Name = "llvm_cbe_" + VarName;
+ } else {
+ Name = Mang->getValueName(Operand);
+ }
+
+ return Name;
+}
+
+void CWriter::writeOperandInternal(Value *Operand) {
+ if (Instruction *I = dyn_cast<Instruction>(Operand))
+ if (isInlinableInst(*I) && !isDirectAlloca(I)) {
+ // Should we inline this instruction to build a tree?
+ Out << '(';
+ visit(*I);
+ Out << ')';
+ return;
+ }
+
+ Constant* CPV = dyn_cast<Constant>(Operand);
+
+ if (CPV && !isa<GlobalValue>(CPV))
+ printConstant(CPV);
+ else
+ Out << GetValueName(Operand);
+}
+
+void CWriter::writeOperandRaw(Value *Operand) {
+ Constant* CPV = dyn_cast<Constant>(Operand);
+ if (CPV && !isa<GlobalValue>(CPV)) {
+ printConstant(CPV);
+ } else {
+ Out << GetValueName(Operand);
+ }
+}
+
+void CWriter::writeOperand(Value *Operand) {
+ if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
+ Out << "(&"; // Global variables are referenced as their addresses by llvm
+
+ writeOperandInternal(Operand);
+
+ if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
+ Out << ')';
+}
+
+// Some instructions need to have their result value casted back to the
+// original types because their operands were casted to the expected type.
+// This function takes care of detecting that case and printing the cast
+// for the Instruction.
+bool CWriter::writeInstructionCast(const Instruction &I) {
+ const Type *Ty = I.getOperand(0)->getType();
+ switch (I.getOpcode()) {
+ case Instruction::LShr:
+ case Instruction::URem:
+ case Instruction::UDiv:
+ Out << "((";
+ printSimpleType(Out, Ty, false);
+ Out << ")(";
+ return true;
+ case Instruction::AShr:
+ case Instruction::SRem:
+ case Instruction::SDiv:
+ Out << "((";
+ printSimpleType(Out, Ty, true);
+ Out << ")(";
+ return true;
+ default: break;
+ }
+ return false;
+}
+
+// Write the operand with a cast to another type based on the Opcode being used.
+// This will be used in cases where an instruction has specific type
+// requirements (usually signedness) for its operands.
+void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
+
+ // Extract the operand's type, we'll need it.
+ const Type* OpTy = Operand->getType();
+
+ // Indicate whether to do the cast or not.
+ bool shouldCast = false;
+
+ // Indicate whether the cast should be to a signed type or not.
+ bool castIsSigned = false;
+
+ // Based on the Opcode for which this Operand is being written, determine
+ // the new type to which the operand should be casted by setting the value
+ // of OpTy. If we change OpTy, also set shouldCast to true.
+ switch (Opcode) {
+ default:
+ // for most instructions, it doesn't matter
+ break;
+ case Instruction::LShr:
+ case Instruction::UDiv:
+ case Instruction::URem: // Cast to unsigned first
+ shouldCast = true;
+ castIsSigned = false;
+ break;
+ case Instruction::AShr:
+ case Instruction::SDiv:
+ case Instruction::SRem: // Cast to signed first
+ shouldCast = true;
+ castIsSigned = true;
+ break;
+ }
+
+ // Write out the casted operand if we should, otherwise just write the
+ // operand.
+ if (shouldCast) {
+ Out << "((";
+ printSimpleType(Out, OpTy, castIsSigned);
+ Out << ")";
+ writeOperand(Operand);
+ Out << ")";
+ } else
+ writeOperand(Operand);
+}
+
+// Write the operand with a cast to another type based on the icmp predicate
+// being used.
+void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
+
+ // Extract the operand's type, we'll need it.
+ const Type* OpTy = Operand->getType();
+
+ // Indicate whether to do the cast or not.
+ bool shouldCast = false;
+
+ // Indicate whether the cast should be to a signed type or not.
+ bool castIsSigned = false;
+
+ // Based on the Opcode for which this Operand is being written, determine
+ // the new type to which the operand should be casted by setting the value
+ // of OpTy. If we change OpTy, also set shouldCast to true.
+ switch (predicate) {
+ default:
+ // for eq and ne, it doesn't matter
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ shouldCast = true;
+ break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ shouldCast = true;
+ castIsSigned = true;
+ break;
+ }
+
+ // Write out the casted operand if we should, otherwise just write the
+ // operand.
+ if (shouldCast) {
+ Out << "((";
+ if (OpTy->isInteger() && OpTy != Type::Int1Ty)
+ printSimpleType(Out, OpTy, castIsSigned);
+ else
+ printType(Out, OpTy); // not integer, sign doesn't matter
+ Out << ")";
+ writeOperand(Operand);
+ Out << ")";
+ } else
+ writeOperand(Operand);
+}
+
+// generateCompilerSpecificCode - This is where we add conditional compilation
+// directives to cater to specific compilers as need be.
+//
+static void generateCompilerSpecificCode(std::ostream& Out) {
+ // Alloca is hard to get, and we don't want to include stdlib.h here.
+ Out << "/* get a declaration for alloca */\n"
+ << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
+ << "#define alloca(x) __builtin_alloca((x))\n"
+ << "#define _alloca(x) __builtin_alloca((x))\n"
+ << "#elif defined(__APPLE__)\n"
+ << "extern void *__builtin_alloca(unsigned long);\n"
+ << "#define alloca(x) __builtin_alloca(x)\n"
+ << "#define longjmp _longjmp\n"
+ << "#define setjmp _setjmp\n"
+ << "#elif defined(__sun__)\n"
+ << "#if defined(__sparcv9)\n"
+ << "extern void *__builtin_alloca(unsigned long);\n"
+ << "#else\n"
+ << "extern void *__builtin_alloca(unsigned int);\n"
+ << "#endif\n"
+ << "#define alloca(x) __builtin_alloca(x)\n"
+ << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
+ << "#define alloca(x) __builtin_alloca(x)\n"
+ << "#elif defined(_MSC_VER)\n"
+ << "#define inline _inline\n"
+ << "#define alloca(x) _alloca(x)\n"
+ << "#else\n"
+ << "#include <alloca.h>\n"
+ << "#endif\n\n";
+
+ // We output GCC specific attributes to preserve 'linkonce'ness on globals.
+ // If we aren't being compiled with GCC, just drop these attributes.
+ Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
+ << "#define __attribute__(X)\n"
+ << "#endif\n\n";
+
+ // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
+ Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
+ << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
+ << "#elif defined(__GNUC__)\n"
+ << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
+ << "#else\n"
+ << "#define __EXTERNAL_WEAK__\n"
+ << "#endif\n\n";
+
+ // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
+ Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
+ << "#define __ATTRIBUTE_WEAK__\n"
+ << "#elif defined(__GNUC__)\n"
+ << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
+ << "#else\n"
+ << "#define __ATTRIBUTE_WEAK__\n"
+ << "#endif\n\n";
+
+ // Add hidden visibility support. FIXME: APPLE_CC?
+ Out << "#if defined(__GNUC__)\n"
+ << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
+ << "#endif\n\n";
+
+ // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
+ // From the GCC documentation:
+ //
+ // double __builtin_nan (const char *str)
+ //
+ // This is an implementation of the ISO C99 function nan.
+ //
+ // Since ISO C99 defines this function in terms of strtod, which we do
+ // not implement, a description of the parsing is in order. The string is
+ // parsed as by strtol; that is, the base is recognized by leading 0 or
+ // 0x prefixes. The number parsed is placed in the significand such that
+ // the least significant bit of the number is at the least significant
+ // bit of the significand. The number is truncated to fit the significand
+ // field provided. The significand is forced to be a quiet NaN.
+ //
+ // This function, if given a string literal, is evaluated early enough
+ // that it is considered a compile-time constant.
+ //
+ // float __builtin_nanf (const char *str)
+ //
+ // Similar to __builtin_nan, except the return type is float.
+ //
+ // double __builtin_inf (void)
+ //
+ // Similar to __builtin_huge_val, except a warning is generated if the
+ // target floating-point format does not support infinities. This
+ // function is suitable for implementing the ISO C99 macro INFINITY.
+ //
+ // float __builtin_inff (void)
+ //
+ // Similar to __builtin_inf, except the return type is float.
+ Out << "#ifdef __GNUC__\n"
+ << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
+ << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
+ << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
+ << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
+ << "#define LLVM_INF __builtin_inf() /* Double */\n"
+ << "#define LLVM_INFF __builtin_inff() /* Float */\n"
+ << "#define LLVM_PREFETCH(addr,rw,locality) "
+ "__builtin_prefetch(addr,rw,locality)\n"
+ << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
+ << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
+ << "#define LLVM_ASM __asm__\n"
+ << "#else\n"
+ << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
+ << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
+ << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
+ << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
+ << "#define LLVM_INF ((double)0.0) /* Double */\n"
+ << "#define LLVM_INFF 0.0F /* Float */\n"
+ << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
+ << "#define __ATTRIBUTE_CTOR__\n"
+ << "#define __ATTRIBUTE_DTOR__\n"
+ << "#define LLVM_ASM(X)\n"
+ << "#endif\n\n";
+
+ Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
+ << "#define __builtin_stack_save() 0 /* not implemented */\n"
+ << "#define __builtin_stack_restore(X) /* noop */\n"
+ << "#endif\n\n";
+
+ // Output target-specific code that should be inserted into main.
+ Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
+ // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
+ Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
+ << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
+ << "defined(__x86_64__)\n"
+ << "#undef CODE_FOR_MAIN\n"
+ << "#define CODE_FOR_MAIN() \\\n"
+ << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
+ << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
+ << "#endif\n#endif\n";
+
+}
+
+/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
+/// the StaticTors set.
+static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) return;
+
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
+ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+
+ if (CS->getOperand(1)->isNullValue())
+ return; // Found a null terminator, exit printing.
+ Constant *FP = CS->getOperand(1);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+ if (Function *F = dyn_cast<Function>(FP))
+ StaticTors.insert(F);
+ }
+}
+
+enum SpecialGlobalClass {
+ NotSpecial = 0,
+ GlobalCtors, GlobalDtors,
+ NotPrinted
+};
+
+/// getGlobalVariableClass - If this is a global that is specially recognized
+/// by LLVM, return a code that indicates how we should handle it.
+static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
+ // If this is a global ctors/dtors list, handle it now.
+ if (GV->hasAppendingLinkage() && GV->use_empty()) {
+ if (GV->getName() == "llvm.global_ctors")
+ return GlobalCtors;
+ else if (GV->getName() == "llvm.global_dtors")
+ return GlobalDtors;
+ }
+
+ // Otherwise, it it is other metadata, don't print it. This catches things
+ // like debug information.
+ if (GV->getSection() == "llvm.metadata")
+ return NotPrinted;
+
+ return NotSpecial;
+}
+
+
+bool CWriter::doInitialization(Module &M) {
+ // Initialize
+ TheModule = &M;
+
+ TD = new TargetData(&M);
+ IL = new IntrinsicLowering(*TD);
+ IL->AddPrototypes(M);
+
+ // Ensure that all structure types have names...
+ Mang = new Mangler(M);
+ Mang->markCharUnacceptable('.');
+
+ // Keep track of which functions are static ctors/dtors so they can have
+ // an attribute added to their prototypes.
+ std::set<Function*> StaticCtors, StaticDtors;
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ switch (getGlobalVariableClass(I)) {
+ default: break;
+ case GlobalCtors:
+ FindStaticTors(I, StaticCtors);
+ break;
+ case GlobalDtors:
+ FindStaticTors(I, StaticDtors);
+ break;
+ }
+ }
+
+ // get declaration for alloca
+ Out << "/* Provide Declarations */\n";
+ Out << "#include <stdarg.h>\n"; // Varargs support
+ Out << "#include <setjmp.h>\n"; // Unwind support
+ generateCompilerSpecificCode(Out);
+
+ // Provide a definition for `bool' if not compiling with a C++ compiler.
+ Out << "\n"
+ << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
+
+ << "\n\n/* Support for floating point constants */\n"
+ << "typedef unsigned long long ConstantDoubleTy;\n"
+ << "typedef unsigned int ConstantFloatTy;\n"
+
+ << "\n\n/* Global Declarations */\n";
+
+ // First output all the declarations for the program, because C requires
+ // Functions & globals to be declared before they are used.
+ //
+
+ // Loop over the symbol table, emitting all named constants...
+ printModuleTypes(M.getTypeSymbolTable());
+
+ // Global variable declarations...
+ if (!M.global_empty()) {
+ Out << "\n/* External Global Variable Declarations */\n";
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+
+ if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
+ Out << "extern ";
+ else if (I->hasDLLImportLinkage())
+ Out << "__declspec(dllimport) ";
+ else
+ continue; // Internal Global
+
+ // Thread Local Storage
+ if (I->isThreadLocal())
+ Out << "__thread ";
+
+ printType(Out, I->getType()->getElementType(), false, GetValueName(I));
+
+ if (I->hasExternalWeakLinkage())
+ Out << " __EXTERNAL_WEAK__";
+ Out << ";\n";
+ }
+ }
+
+ // Function declarations
+ Out << "\n/* Function Declarations */\n";
+ Out << "double fmod(double, double);\n"; // Support for FP rem
+ Out << "float fmodf(float, float);\n";
+
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ // Don't print declarations for intrinsic functions.
+ if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
+ I->getName() != "longjmp" && I->getName() != "_setjmp") {
+ if (I->hasExternalWeakLinkage())
+ Out << "extern ";
+ printFunctionSignature(I, true);
+ if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
+ Out << " __ATTRIBUTE_WEAK__";
+ if (I->hasExternalWeakLinkage())
+ Out << " __EXTERNAL_WEAK__";
+ if (StaticCtors.count(I))
+ Out << " __ATTRIBUTE_CTOR__";
+ if (StaticDtors.count(I))
+ Out << " __ATTRIBUTE_DTOR__";
+ if (I->hasHiddenVisibility())
+ Out << " __HIDDEN__";
+
+ if (I->hasName() && I->getName()[0] == 1)
+ Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
+
+ Out << ";\n";
+ }
+ }
+
+ // Output the global variable declarations
+ if (!M.global_empty()) {
+ Out << "\n\n/* Global Variable Declarations */\n";
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isDeclaration()) {
+ // Ignore special globals, such as debug info.
+ if (getGlobalVariableClass(I))
+ continue;
+
+ if (I->hasInternalLinkage())
+ Out << "static ";
+ else
+ Out << "extern ";
+
+ // Thread Local Storage
+ if (I->isThreadLocal())
+ Out << "__thread ";
+
+ printType(Out, I->getType()->getElementType(), false,
+ GetValueName(I));
+
+ if (I->hasLinkOnceLinkage())
+ Out << " __attribute__((common))";
+ else if (I->hasWeakLinkage())
+ Out << " __ATTRIBUTE_WEAK__";
+ else if (I->hasExternalWeakLinkage())
+ Out << " __EXTERNAL_WEAK__";
+ if (I->hasHiddenVisibility())
+ Out << " __HIDDEN__";
+ Out << ";\n";
+ }
+ }
+
+ // Output the global variable definitions and contents...
+ if (!M.global_empty()) {
+ Out << "\n\n/* Global Variable Definitions and Initialization */\n";
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isDeclaration()) {
+ // Ignore special globals, such as debug info.
+ if (getGlobalVariableClass(I))
+ continue;
+
+ if (I->hasInternalLinkage())
+ Out << "static ";
+ else if (I->hasDLLImportLinkage())
+ Out << "__declspec(dllimport) ";
+ else if (I->hasDLLExportLinkage())
+ Out << "__declspec(dllexport) ";
+
+ // Thread Local Storage
+ if (I->isThreadLocal())
+ Out << "__thread ";
+
+ printType(Out, I->getType()->getElementType(), false,
+ GetValueName(I));
+ if (I->hasLinkOnceLinkage())
+ Out << " __attribute__((common))";
+ else if (I->hasWeakLinkage())
+ Out << " __ATTRIBUTE_WEAK__";
+
+ if (I->hasHiddenVisibility())
+ Out << " __HIDDEN__";
+
+ // If the initializer is not null, emit the initializer. If it is null,
+ // we try to avoid emitting large amounts of zeros. The problem with
+ // this, however, occurs when the variable has weak linkage. In this
+ // case, the assembler will complain about the variable being both weak
+ // and common, so we disable this optimization.
+ if (!I->getInitializer()->isNullValue()) {
+ Out << " = " ;
+ writeOperand(I->getInitializer());
+ } else if (I->hasWeakLinkage()) {
+ // We have to specify an initializer, but it doesn't have to be
+ // complete. If the value is an aggregate, print out { 0 }, and let
+ // the compiler figure out the rest of the zeros.
+ Out << " = " ;
+ if (isa<StructType>(I->getInitializer()->getType()) ||
+ isa<ArrayType>(I->getInitializer()->getType()) ||
+ isa<VectorType>(I->getInitializer()->getType())) {
+ Out << "{ 0 }";
+ } else {
+ // Just print it out normally.
+ writeOperand(I->getInitializer());
+ }
+ }
+ Out << ";\n";
+ }
+ }
+
+ if (!M.empty())
+ Out << "\n\n/* Function Bodies */\n";
+
+ // Emit some helper functions for dealing with FCMP instruction's
+ // predicates
+ Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
+ Out << "return X == X && Y == Y; }\n";
+ Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
+ Out << "return X != X || Y != Y; }\n";
+ Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
+ Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
+ Out << "return X != Y; }\n";
+ Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
+ Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
+ Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
+ Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
+ Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
+ Out << "return X == Y ; }\n";
+ Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
+ Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
+ Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
+ Out << "return X < Y ; }\n";
+ Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
+ Out << "return X > Y ; }\n";
+ Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
+ Out << "return X <= Y ; }\n";
+ Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
+ Out << "return X >= Y ; }\n";
+ return false;
+}
+
+
+/// Output all floating point constants that cannot be printed accurately...
+void CWriter::printFloatingPointConstants(Function &F) {
+ // Scan the module for floating point constants. If any FP constant is used
+ // in the function, we want to redirect it here so that we do not depend on
+ // the precision of the printed form, unless the printed form preserves
+ // precision.
+ //
+ static unsigned FPCounter = 0;
+ for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
+ I != E; ++I)
+ if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
+ if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
+ !FPConstantMap.count(FPC)) {
+ double Val = FPC->getValue();
+
+ FPConstantMap[FPC] = FPCounter; // Number the FP constants
+
+ if (FPC->getType() == Type::DoubleTy) {
+ Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
+ << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
+ << "ULL; /* " << Val << " */\n";
+ } else if (FPC->getType() == Type::FloatTy) {
+ Out << "static const ConstantFloatTy FPConstant" << FPCounter++
+ << " = 0x" << std::hex << FloatToBits(Val) << std::dec
+ << "U; /* " << Val << " */\n";
+ } else
+ assert(0 && "Unknown float type!");
+ }
+
+ Out << '\n';
+}
+
+
+/// printSymbolTable - Run through symbol table looking for type names. If a
+/// type name is found, emit its declaration...
+///
+void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
+ Out << "/* Helper union for bitcasts */\n";
+ Out << "typedef union {\n";
+ Out << " unsigned int Int32;\n";
+ Out << " unsigned long long Int64;\n";
+ Out << " float Float;\n";
+ Out << " double Double;\n";
+ Out << "} llvmBitCastUnion;\n";
+
+ // We are only interested in the type plane of the symbol table.
+ TypeSymbolTable::const_iterator I = TST.begin();
+ TypeSymbolTable::const_iterator End = TST.end();
+
+ // If there are no type names, exit early.
+ if (I == End) return;
+
+ // Print out forward declarations for structure types before anything else!
+ Out << "/* Structure forward decls */\n";
+ for (; I != End; ++I) {
+ std::string Name = "struct l_" + Mang->makeNameProper(I->first);
+ Out << Name << ";\n";
+ TypeNames.insert(std::make_pair(I->second, Name));
+ }
+
+ Out << '\n';
+
+ // Now we can print out typedefs. Above, we guaranteed that this can only be
+ // for struct or opaque types.
+ Out << "/* Typedefs */\n";
+ for (I = TST.begin(); I != End; ++I) {
+ std::string Name = "l_" + Mang->makeNameProper(I->first);
+ Out << "typedef ";
+ printType(Out, I->second, false, Name);
+ Out << ";\n";
+ }
+
+ Out << '\n';
+
+ // Keep track of which structures have been printed so far...
+ std::set<const StructType *> StructPrinted;
+
+ // Loop over all structures then push them into the stack so they are
+ // printed in the correct order.
+ //
+ Out << "/* Structure contents */\n";
+ for (I = TST.begin(); I != End; ++I)
+ if (const StructType *STy = dyn_cast<StructType>(I->second))
+ // Only print out used types!
+ printContainedStructs(STy, StructPrinted);
+}
+
+// Push the struct onto the stack and recursively push all structs
+// this one depends on.
+//
+// TODO: Make this work properly with vector types
+//
+void CWriter::printContainedStructs(const Type *Ty,
+ std::set<const StructType*> &StructPrinted){
+ // Don't walk through pointers.
+ if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
+
+ // Print all contained types first.
+ for (Type::subtype_iterator I = Ty->subtype_begin(),
+ E = Ty->subtype_end(); I != E; ++I)
+ printContainedStructs(*I, StructPrinted);
+
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ // Check to see if we have already printed this struct.
+ if (StructPrinted.insert(STy).second) {
+ // Print structure type out.
+ std::string Name = TypeNames[STy];
+ printType(Out, STy, false, Name, true);
+ Out << ";\n\n";
+ }
+ }
+}
+
+void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
+ /// isStructReturn - Should this function actually return a struct by-value?
+ bool isStructReturn = F->getFunctionType()->isStructReturn();
+
+ if (F->hasInternalLinkage()) Out << "static ";
+ if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
+ if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
+ switch (F->getCallingConv()) {
+ case CallingConv::X86_StdCall:
+ Out << "__stdcall ";
+ break;
+ case CallingConv::X86_FastCall:
+ Out << "__fastcall ";
+ break;
+ }
+
+ // Loop over the arguments, printing them...
+ const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
+ const ParamAttrsList *Attrs = FT->getParamAttrs();
+
+ std::stringstream FunctionInnards;
+
+ // Print out the name...
+ FunctionInnards << GetValueName(F) << '(';
+
+ bool PrintedArg = false;
+ if (!F->isDeclaration()) {
+ if (!F->arg_empty()) {
+ Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+
+ // If this is a struct-return function, don't print the hidden
+ // struct-return argument.
+ if (isStructReturn) {
+ assert(I != E && "Invalid struct return function!");
+ ++I;
+ }
+
+ std::string ArgName;
+ unsigned Idx = 1;
+ for (; I != E; ++I) {
+ if (PrintedArg) FunctionInnards << ", ";
+ if (I->hasName() || !Prototype)
+ ArgName = GetValueName(I);
+ else
+ ArgName = "";
+ printType(FunctionInnards, I->getType(),
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt),
+ ArgName);
+ PrintedArg = true;
+ ++Idx;
+ }
+ }
+ } else {
+ // Loop over the arguments, printing them.
+ FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
+
+ // If this is a struct-return function, don't print the hidden
+ // struct-return argument.
+ if (isStructReturn) {
+ assert(I != E && "Invalid struct return function!");
+ ++I;
+ }
+
+ unsigned Idx = 1;
+ for (; I != E; ++I) {
+ if (PrintedArg) FunctionInnards << ", ";
+ printType(FunctionInnards, *I,
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
+ PrintedArg = true;
+ ++Idx;
+ }
+ }
+
+ // Finish printing arguments... if this is a vararg function, print the ...,
+ // unless there are no known types, in which case, we just emit ().
+ //
+ if (FT->isVarArg() && PrintedArg) {
+ if (PrintedArg) FunctionInnards << ", ";
+ FunctionInnards << "..."; // Output varargs portion of signature!
+ } else if (!FT->isVarArg() && !PrintedArg) {
+ FunctionInnards << "void"; // ret() -> ret(void) in C.
+ }
+ FunctionInnards << ')';
+
+ // Get the return tpe for the function.
+ const Type *RetTy;
+ if (!isStructReturn)
+ RetTy = F->getReturnType();
+ else {
+ // If this is a struct-return function, print the struct-return type.
+ RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
+ }
+
+ // Print out the return type and the signature built above.
+ printType(Out, RetTy,
+ /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
+ FunctionInnards.str());
+}
+
+static inline bool isFPIntBitCast(const Instruction &I) {
+ if (!isa<BitCastInst>(I))
+ return false;
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DstTy = I.getType();
+ return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
+ (DstTy->isFloatingPoint() && SrcTy->isInteger());
+}
+
+void CWriter::printFunction(Function &F) {
+ /// isStructReturn - Should this function actually return a struct by-value?
+ bool isStructReturn = F.getFunctionType()->isStructReturn();
+
+ printFunctionSignature(&F, false);
+ Out << " {\n";
+
+ // If this is a struct return function, handle the result with magic.
+ if (isStructReturn) {
+ const Type *StructTy =
+ cast<PointerType>(F.arg_begin()->getType())->getElementType();
+ Out << " ";
+ printType(Out, StructTy, false, "StructReturn");
+ Out << "; /* Struct return temporary */\n";
+
+ Out << " ";
+ printType(Out, F.arg_begin()->getType(), false,
+ GetValueName(F.arg_begin()));
+ Out << " = &StructReturn;\n";
+ }
+
+ bool PrintedVar = false;
+
+ // print local variable information for the function
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
+ if (const AllocaInst *AI = isDirectAlloca(&*I)) {
+ Out << " ";
+ printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
+ Out << "; /* Address-exposed local */\n";
+ PrintedVar = true;
+ } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
+ Out << " ";
+ printType(Out, I->getType(), false, GetValueName(&*I));
+ Out << ";\n";
+
+ if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
+ Out << " ";
+ printType(Out, I->getType(), false,
+ GetValueName(&*I)+"__PHI_TEMPORARY");
+ Out << ";\n";
+ }
+ PrintedVar = true;
+ }
+ // We need a temporary for the BitCast to use so it can pluck a value out
+ // of a union to do the BitCast. This is separate from the need for a
+ // variable to hold the result of the BitCast.
+ if (isFPIntBitCast(*I)) {
+ Out << " llvmBitCastUnion " << GetValueName(&*I)
+ << "__BITCAST_TEMPORARY;\n";
+ PrintedVar = true;
+ }
+ }
+
+ if (PrintedVar)
+ Out << '\n';
+
+ if (F.hasExternalLinkage() && F.getName() == "main")
+ Out << " CODE_FOR_MAIN();\n";
+
+ // print the basic blocks
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Loop *L = LI->getLoopFor(BB)) {
+ if (L->getHeader() == BB && L->getParentLoop() == 0)
+ printLoop(L);
+ } else {
+ printBasicBlock(BB);
+ }
+ }
+
+ Out << "}\n\n";
+}
+
+void CWriter::printLoop(Loop *L) {
+ Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
+ << "' to make GCC happy */\n";
+ for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
+ BasicBlock *BB = L->getBlocks()[i];
+ Loop *BBLoop = LI->getLoopFor(BB);
+ if (BBLoop == L)
+ printBasicBlock(BB);
+ else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
+ printLoop(BBLoop);
+ }
+ Out << " } while (1); /* end of syntactic loop '"
+ << L->getHeader()->getName() << "' */\n";
+}
+
+void CWriter::printBasicBlock(BasicBlock *BB) {
+
+ // Don't print the label for the basic block if there are no uses, or if
+ // the only terminator use is the predecessor basic block's terminator.
+ // We have to scan the use list because PHI nodes use basic blocks too but
+ // do not require a label to be generated.
+ //
+ bool NeedsLabel = false;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (isGotoCodeNecessary(*PI, BB)) {
+ NeedsLabel = true;
+ break;
+ }
+
+ if (NeedsLabel) Out << GetValueName(BB) << ":\n";
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
+ ++II) {
+ if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
+ if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
+ outputLValue(II);
+ else
+ Out << " ";
+ visit(*II);
+ Out << ";\n";
+ }
+ }
+
+ // Don't emit prefix or suffix for the terminator...
+ visit(*BB->getTerminator());
+}
+
+
+// Specific Instruction type classes... note that all of the casts are
+// necessary because we use the instruction classes as opaque types...
+//
+void CWriter::visitReturnInst(ReturnInst &I) {
+ // If this is a struct return function, return the temporary struct.
+ bool isStructReturn = I.getParent()->getParent()->
+ getFunctionType()->isStructReturn();
+
+ if (isStructReturn) {
+ Out << " return StructReturn;\n";
+ return;
+ }
+
+ // Don't output a void return if this is the last basic block in the function
+ if (I.getNumOperands() == 0 &&
+ &*--I.getParent()->getParent()->end() == I.getParent() &&
+ !I.getParent()->size() == 1) {
+ return;
+ }
+
+ Out << " return";
+ if (I.getNumOperands()) {
+ Out << ' ';
+ writeOperand(I.getOperand(0));
+ }
+ Out << ";\n";
+}
+
+void CWriter::visitSwitchInst(SwitchInst &SI) {
+
+ Out << " switch (";
+ writeOperand(SI.getOperand(0));
+ Out << ") {\n default:\n";
+ printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
+ printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
+ Out << ";\n";
+ for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
+ Out << " case ";
+ writeOperand(SI.getOperand(i));
+ Out << ":\n";
+ BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
+ printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
+ printBranchToBlock(SI.getParent(), Succ, 2);
+ if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
+ Out << " break;\n";
+ }
+ Out << " }\n";
+}
+
+void CWriter::visitUnreachableInst(UnreachableInst &I) {
+ Out << " /*UNREACHABLE*/;\n";
+}
+
+bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
+ /// FIXME: This should be reenabled, but loop reordering safe!!
+ return true;
+
+ if (next(Function::iterator(From)) != Function::iterator(To))
+ return true; // Not the direct successor, we need a goto.
+
+ //isa<SwitchInst>(From->getTerminator())
+
+ if (LI->getLoopFor(From) != LI->getLoopFor(To))
+ return true;
+ return false;
+}
+
+void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
+ BasicBlock *Successor,
+ unsigned Indent) {
+ for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ // Now we have to do the printing.
+ Value *IV = PN->getIncomingValueForBlock(CurBlock);
+ if (!isa<UndefValue>(IV)) {
+ Out << std::string(Indent, ' ');
+ Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
+ writeOperand(IV);
+ Out << "; /* for PHI node */\n";
+ }
+ }
+}
+
+void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
+ unsigned Indent) {
+ if (isGotoCodeNecessary(CurBB, Succ)) {
+ Out << std::string(Indent, ' ') << " goto ";
+ writeOperand(Succ);
+ Out << ";\n";
+ }
+}
+
+// Branch instruction printing - Avoid printing out a branch to a basic block
+// that immediately succeeds the current one.
+//
+void CWriter::visitBranchInst(BranchInst &I) {
+
+ if (I.isConditional()) {
+ if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
+ Out << " if (";
+ writeOperand(I.getCondition());
+ Out << ") {\n";
+
+ printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
+ printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
+
+ if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
+ Out << " } else {\n";
+ printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+ printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+ }
+ } else {
+ // First goto not necessary, assume second one is...
+ Out << " if (!";
+ writeOperand(I.getCondition());
+ Out << ") {\n";
+
+ printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
+ printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
+ }
+
+ Out << " }\n";
+ } else {
+ printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
+ printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
+ }
+ Out << "\n";
+}
+
+// PHI nodes get copied into temporary values at the end of predecessor basic
+// blocks. We now need to copy these temporary values into the REAL value for
+// the PHI.
+void CWriter::visitPHINode(PHINode &I) {
+ writeOperand(&I);
+ Out << "__PHI_TEMPORARY";
+}
+
+
+void CWriter::visitBinaryOperator(Instruction &I) {
+ // binary instructions, shift instructions, setCond instructions.
+ assert(!isa<PointerType>(I.getType()));
+
+ // We must cast the results of binary operations which might be promoted.
+ bool needsCast = false;
+ if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
+ || (I.getType() == Type::FloatTy)) {
+ needsCast = true;
+ Out << "((";
+ printType(Out, I.getType(), false);
+ Out << ")(";
+ }
+
+ // If this is a negation operation, print it out as such. For FP, we don't
+ // want to print "-0.0 - X".
+ if (BinaryOperator::isNeg(&I)) {
+ Out << "-(";
+ writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
+ Out << ")";
+ } else if (I.getOpcode() == Instruction::FRem) {
+ // Output a call to fmod/fmodf instead of emitting a%b
+ if (I.getType() == Type::FloatTy)
+ Out << "fmodf(";
+ else
+ Out << "fmod(";
+ writeOperand(I.getOperand(0));
+ Out << ", ";
+ writeOperand(I.getOperand(1));
+ Out << ")";
+ } else {
+
+ // Write out the cast of the instruction's value back to the proper type
+ // if necessary.
+ bool NeedsClosingParens = writeInstructionCast(I);
+
+ // Certain instructions require the operand to be forced to a specific type
+ // so we use writeOperandWithCast here instead of writeOperand. Similarly
+ // below for operand 1
+ writeOperandWithCast(I.getOperand(0), I.getOpcode());
+
+ switch (I.getOpcode()) {
+ case Instruction::Add: Out << " + "; break;
+ case Instruction::Sub: Out << " - "; break;
+ case Instruction::Mul: Out << " * "; break;
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem: Out << " % "; break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv: Out << " / "; break;
+ case Instruction::And: Out << " & "; break;
+ case Instruction::Or: Out << " | "; break;
+ case Instruction::Xor: Out << " ^ "; break;
+ case Instruction::Shl : Out << " << "; break;
+ case Instruction::LShr:
+ case Instruction::AShr: Out << " >> "; break;
+ default: cerr << "Invalid operator type!" << I; abort();
+ }
+
+ writeOperandWithCast(I.getOperand(1), I.getOpcode());
+ if (NeedsClosingParens)
+ Out << "))";
+ }
+
+ if (needsCast) {
+ Out << "))";
+ }
+}
+
+void CWriter::visitICmpInst(ICmpInst &I) {
+ // We must cast the results of icmp which might be promoted.
+ bool needsCast = false;
+
+ // Write out the cast of the instruction's value back to the proper type
+ // if necessary.
+ bool NeedsClosingParens = writeInstructionCast(I);
+
+ // Certain icmp predicate require the operand to be forced to a specific type
+ // so we use writeOperandWithCast here instead of writeOperand. Similarly
+ // below for operand 1
+ writeOperandWithCast(I.getOperand(0), I.getPredicate());
+
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << " == "; break;
+ case ICmpInst::ICMP_NE: Out << " != "; break;
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE: Out << " <= "; break;
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE: Out << " >= "; break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT: Out << " < "; break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT: Out << " > "; break;
+ default: cerr << "Invalid icmp predicate!" << I; abort();
+ }
+
+ writeOperandWithCast(I.getOperand(1), I.getPredicate());
+ if (NeedsClosingParens)
+ Out << "))";
+
+ if (needsCast) {
+ Out << "))";
+ }
+}
+
+void CWriter::visitFCmpInst(FCmpInst &I) {
+ if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
+ Out << "0";
+ return;
+ }
+ if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
+ Out << "1";
+ return;
+ }
+
+ const char* op = 0;
+ switch (I.getPredicate()) {
+ default: assert(0 && "Illegal FCmp predicate");
+ case FCmpInst::FCMP_ORD: op = "ord"; break;
+ case FCmpInst::FCMP_UNO: op = "uno"; break;
+ case FCmpInst::FCMP_UEQ: op = "ueq"; break;
+ case FCmpInst::FCMP_UNE: op = "une"; break;
+ case FCmpInst::FCMP_ULT: op = "ult"; break;
+ case FCmpInst::FCMP_ULE: op = "ule"; break;
+ case FCmpInst::FCMP_UGT: op = "ugt"; break;
+ case FCmpInst::FCMP_UGE: op = "uge"; break;
+ case FCmpInst::FCMP_OEQ: op = "oeq"; break;
+ case FCmpInst::FCMP_ONE: op = "one"; break;
+ case FCmpInst::FCMP_OLT: op = "olt"; break;
+ case FCmpInst::FCMP_OLE: op = "ole"; break;
+ case FCmpInst::FCMP_OGT: op = "ogt"; break;
+ case FCmpInst::FCMP_OGE: op = "oge"; break;
+ }
+
+ Out << "llvm_fcmp_" << op << "(";
+ // Write the first operand
+ writeOperand(I.getOperand(0));
+ Out << ", ";
+ // Write the second operand
+ writeOperand(I.getOperand(1));
+ Out << ")";
+}
+
+static const char * getFloatBitCastField(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ default: assert(0 && "Invalid Type");
+ case Type::FloatTyID: return "Float";
+ case Type::DoubleTyID: return "Double";
+ case Type::IntegerTyID: {
+ unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+ if (NumBits <= 32)
+ return "Int32";
+ else
+ return "Int64";
+ }
+ }
+}
+
+void CWriter::visitCastInst(CastInst &I) {
+ const Type *DstTy = I.getType();
+ const Type *SrcTy = I.getOperand(0)->getType();
+ Out << '(';
+ if (isFPIntBitCast(I)) {
+ // These int<->float and long<->double casts need to be handled specially
+ Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
+ << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
+ writeOperand(I.getOperand(0));
+ Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
+ << getFloatBitCastField(I.getType());
+ } else {
+ printCast(I.getOpcode(), SrcTy, DstTy);
+ if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
+ // Make sure we really get a sext from bool by subtracing the bool from 0
+ Out << "0-";
+ }
+ writeOperand(I.getOperand(0));
+ if (DstTy == Type::Int1Ty &&
+ (I.getOpcode() == Instruction::Trunc ||
+ I.getOpcode() == Instruction::FPToUI ||
+ I.getOpcode() == Instruction::FPToSI ||
+ I.getOpcode() == Instruction::PtrToInt)) {
+ // Make sure we really get a trunc to bool by anding the operand with 1
+ Out << "&1u";
+ }
+ }
+ Out << ')';
+}
+
+void CWriter::visitSelectInst(SelectInst &I) {
+ Out << "((";
+ writeOperand(I.getCondition());
+ Out << ") ? (";
+ writeOperand(I.getTrueValue());
+ Out << ") : (";
+ writeOperand(I.getFalseValue());
+ Out << "))";
+}
+
+
+void CWriter::lowerIntrinsics(Function &F) {
+ // This is used to keep track of intrinsics that get generated to a lowered
+ // function. We must generate the prototypes before the function body which
+ // will only be expanded on first use (by the loop below).
+ std::vector<Function*> prototypesToGen;
+
+ // Examine all the instructions in this function to find the intrinsics that
+ // need to be lowered.
+ for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+ if (CallInst *CI = dyn_cast<CallInst>(I++))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ case Intrinsic::vastart:
+ case Intrinsic::vacopy:
+ case Intrinsic::vaend:
+ case Intrinsic::returnaddress:
+ case Intrinsic::frameaddress:
+ case Intrinsic::setjmp:
+ case Intrinsic::longjmp:
+ case Intrinsic::prefetch:
+ case Intrinsic::dbg_stoppoint:
+ case Intrinsic::powi_f32:
+ case Intrinsic::powi_f64:
+ // We directly implement these intrinsics
+ break;
+ default:
+ // If this is an intrinsic that directly corresponds to a GCC
+ // builtin, we handle it.
+ const char *BuiltinName = "";
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+ // If we handle it, don't lower it.
+ if (BuiltinName[0]) break;
+
+ // All other intrinsic calls we must lower.
+ Instruction *Before = 0;
+ if (CI != &BB->front())
+ Before = prior(BasicBlock::iterator(CI));
+
+ IL->LowerIntrinsicCall(CI);
+ if (Before) { // Move iterator to instruction after call
+ I = Before; ++I;
+ } else {
+ I = BB->begin();
+ }
+ // If the intrinsic got lowered to another call, and that call has
+ // a definition then we need to make sure its prototype is emitted
+ // before any calls to it.
+ if (CallInst *Call = dyn_cast<CallInst>(I))
+ if (Function *NewF = Call->getCalledFunction())
+ if (!NewF->isDeclaration())
+ prototypesToGen.push_back(NewF);
+
+ break;
+ }
+
+ // We may have collected some prototypes to emit in the loop above.
+ // Emit them now, before the function that uses them is emitted. But,
+ // be careful not to emit them twice.
+ std::vector<Function*>::iterator I = prototypesToGen.begin();
+ std::vector<Function*>::iterator E = prototypesToGen.end();
+ for ( ; I != E; ++I) {
+ if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
+ Out << '\n';
+ printFunctionSignature(*I, true);
+ Out << ";\n";
+ }
+ }
+}
+
+
+void CWriter::visitCallInst(CallInst &I) {
+ //check if we have inline asm
+ if (isInlineAsm(I)) {
+ visitInlineAsm(I);
+ return;
+ }
+
+ bool WroteCallee = false;
+
+ // Handle intrinsic function calls first...
+ if (Function *F = I.getCalledFunction())
+ if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+ switch (ID) {
+ default: {
+ // If this is an intrinsic that directly corresponds to a GCC
+ // builtin, we emit it here.
+ const char *BuiltinName = "";
+#define GET_GCC_BUILTIN_NAME
+#include "llvm/Intrinsics.gen"
+#undef GET_GCC_BUILTIN_NAME
+ assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
+
+ Out << BuiltinName;
+ WroteCallee = true;
+ break;
+ }
+ case Intrinsic::vastart:
+ Out << "0; ";
+
+ Out << "va_start(*(va_list*)";
+ writeOperand(I.getOperand(1));
+ Out << ", ";
+ // Output the last argument to the enclosing function...
+ if (I.getParent()->getParent()->arg_empty()) {
+ cerr << "The C backend does not currently support zero "
+ << "argument varargs functions, such as '"
+ << I.getParent()->getParent()->getName() << "'!\n";
+ abort();
+ }
+ writeOperand(--I.getParent()->getParent()->arg_end());
+ Out << ')';
+ return;
+ case Intrinsic::vaend:
+ if (!isa<ConstantPointerNull>(I.getOperand(1))) {
+ Out << "0; va_end(*(va_list*)";
+ writeOperand(I.getOperand(1));
+ Out << ')';
+ } else {
+ Out << "va_end(*(va_list*)0)";
+ }
+ return;
+ case Intrinsic::vacopy:
+ Out << "0; ";
+ Out << "va_copy(*(va_list*)";
+ writeOperand(I.getOperand(1));
+ Out << ", *(va_list*)";
+ writeOperand(I.getOperand(2));
+ Out << ')';
+ return;
+ case Intrinsic::returnaddress:
+ Out << "__builtin_return_address(";
+ writeOperand(I.getOperand(1));
+ Out << ')';
+ return;
+ case Intrinsic::frameaddress:
+ Out << "__builtin_frame_address(";
+ writeOperand(I.getOperand(1));
+ Out << ')';
+ return;
+ case Intrinsic::powi_f32:
+ case Intrinsic::powi_f64:
+ Out << "__builtin_powi(";
+ writeOperand(I.getOperand(1));
+ Out << ", ";
+ writeOperand(I.getOperand(2));
+ Out << ')';
+ return;
+ case Intrinsic::setjmp:
+ Out << "setjmp(*(jmp_buf*)";
+ writeOperand(I.getOperand(1));
+ Out << ')';
+ return;
+ case Intrinsic::longjmp:
+ Out << "longjmp(*(jmp_buf*)";
+ writeOperand(I.getOperand(1));
+ Out << ", ";
+ writeOperand(I.getOperand(2));
+ Out << ')';
+ return;
+ case Intrinsic::prefetch:
+ Out << "LLVM_PREFETCH((const void *)";
+ writeOperand(I.getOperand(1));
+ Out << ", ";
+ writeOperand(I.getOperand(2));
+ Out << ", ";
+ writeOperand(I.getOperand(3));
+ Out << ")";
+ return;
+ case Intrinsic::dbg_stoppoint: {
+ // If we use writeOperand directly we get a "u" suffix which is rejected
+ // by gcc.
+ DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
+
+ Out << "\n#line "
+ << SPI.getLine()
+ << " \"" << SPI.getDirectory()
+ << SPI.getFileName() << "\"\n";
+ return;
+ }
+ }
+ }
+
+ Value *Callee = I.getCalledValue();
+
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+ // If this is a call to a struct-return function, assign to the first
+ // parameter instead of passing it to the call.
+ bool isStructRet = FTy->isStructReturn();
+ if (isStructRet) {
+ Out << "*(";
+ writeOperand(I.getOperand(1));
+ Out << ") = ";
+ }
+
+ if (I.isTailCall()) Out << " /*tail*/ ";
+
+ if (!WroteCallee) {
+ // If this is an indirect call to a struct return function, we need to cast
+ // the pointer.
+ bool NeedsCast = isStructRet && !isa<Function>(Callee);
+
+ // GCC is a real PITA. It does not permit codegening casts of functions to
+ // function pointers if they are in a call (it generates a trap instruction
+ // instead!). We work around this by inserting a cast to void* in between
+ // the function and the function pointer cast. Unfortunately, we can't just
+ // form the constant expression here, because the folder will immediately
+ // nuke it.
+ //
+ // Note finally, that this is completely unsafe. ANSI C does not guarantee
+ // that void* and function pointers have the same size. :( To deal with this
+ // in the common case, we handle casts where the number of arguments passed
+ // match exactly.
+ //
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
+ if (CE->isCast())
+ if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
+ NeedsCast = true;
+ Callee = RF;
+ }
+
+ if (NeedsCast) {
+ // Ok, just cast the pointer type.
+ Out << "((";
+ if (!isStructRet)
+ printType(Out, I.getCalledValue()->getType());
+ else
+ printStructReturnPointerFunctionType(Out,
+ cast<PointerType>(I.getCalledValue()->getType()));
+ Out << ")(void*)";
+ }
+ writeOperand(Callee);
+ if (NeedsCast) Out << ')';
+ }
+
+ Out << '(';
+
+ unsigned NumDeclaredParams = FTy->getNumParams();
+
+ CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
+ unsigned ArgNo = 0;
+ if (isStructRet) { // Skip struct return argument.
+ ++AI;
+ ++ArgNo;
+ }
+
+ const ParamAttrsList *Attrs = FTy->getParamAttrs();
+ bool PrintedArg = false;
+ unsigned Idx = 1;
+ for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
+ if (PrintedArg) Out << ", ";
+ if (ArgNo < NumDeclaredParams &&
+ (*AI)->getType() != FTy->getParamType(ArgNo)) {
+ Out << '(';
+ printType(Out, FTy->getParamType(ArgNo),
+ /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
+ Out << ')';
+ }
+ writeOperand(*AI);
+ PrintedArg = true;
+ }
+ Out << ')';
+}
+
+
+//This converts the llvm constraint string to something gcc is expecting.
+//TODO: work out platform independent constraints and factor those out
+// of the per target tables
+// handle multiple constraint codes
+std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
+
+ assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
+
+ const char** table = 0;
+
+ //Grab the translation table from TargetAsmInfo if it exists
+ if (!TAsm) {
+ std::string E;
+ const TargetMachineRegistry::Entry* Match =
+ TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
+ if (Match) {
+ //Per platform Target Machines don't exist, so create it
+ // this must be done only once
+ const TargetMachine* TM = Match->CtorFn(*TheModule, "");
+ TAsm = TM->getTargetAsmInfo();
+ }
+ }
+ if (TAsm)
+ table = TAsm->getAsmCBE();
+
+ //Search the translation table if it exists
+ for (int i = 0; table && table[i]; i += 2)
+ if (c.Codes[0] == table[i])
+ return table[i+1];
+
+ //default is identity
+ return c.Codes[0];
+}
+
+//TODO: import logic from AsmPrinter.cpp
+static std::string gccifyAsm(std::string asmstr) {
+ for (std::string::size_type i = 0; i != asmstr.size(); ++i)
+ if (asmstr[i] == '\n')
+ asmstr.replace(i, 1, "\\n");
+ else if (asmstr[i] == '\t')
+ asmstr.replace(i, 1, "\\t");
+ else if (asmstr[i] == '$') {
+ if (asmstr[i + 1] == '{') {
+ std::string::size_type a = asmstr.find_first_of(':', i + 1);
+ std::string::size_type b = asmstr.find_first_of('}', i + 1);
+ std::string n = "%" +
+ asmstr.substr(a + 1, b - a - 1) +
+ asmstr.substr(i + 2, a - i - 2);
+ asmstr.replace(i, b - i + 1, n);
+ i += n.size() - 1;
+ } else
+ asmstr.replace(i, 1, "%");
+ }
+ else if (asmstr[i] == '%')//grr
+ { asmstr.replace(i, 1, "%%"); ++i;}
+
+ return asmstr;
+}
+
+//TODO: assumptions about what consume arguments from the call are likely wrong
+// handle communitivity
+void CWriter::visitInlineAsm(CallInst &CI) {
+ InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
+ std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
+ std::vector<std::pair<std::string, Value*> > Input;
+ std::vector<std::pair<std::string, Value*> > Output;
+ std::string Clobber;
+ int count = CI.getType() == Type::VoidTy ? 1 : 0;
+ for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
+ E = Constraints.end(); I != E; ++I) {
+ assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
+ std::string c =
+ InterpretASMConstraint(*I);
+ switch(I->Type) {
+ default:
+ assert(0 && "Unknown asm constraint");
+ break;
+ case InlineAsm::isInput: {
+ if (c.size()) {
+ Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
+ ++count; //consume arg
+ }
+ break;
+ }
+ case InlineAsm::isOutput: {
+ if (c.size()) {
+ Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
+ count ? CI.getOperand(count) : &CI));
+ ++count; //consume arg
+ }
+ break;
+ }
+ case InlineAsm::isClobber: {
+ if (c.size())
+ Clobber += ",\"" + c + "\"";
+ break;
+ }
+ }
+ }
+
+ //fix up the asm string for gcc
+ std::string asmstr = gccifyAsm(as->getAsmString());
+
+ Out << "__asm__ volatile (\"" << asmstr << "\"\n";
+ Out << " :";
+ for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
+ E = Output.end(); I != E; ++I) {
+ Out << "\"" << I->first << "\"(";
+ writeOperandRaw(I->second);
+ Out << ")";
+ if (I + 1 != E)
+ Out << ",";
+ }
+ Out << "\n :";
+ for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
+ E = Input.end(); I != E; ++I) {
+ Out << "\"" << I->first << "\"(";
+ writeOperandRaw(I->second);
+ Out << ")";
+ if (I + 1 != E)
+ Out << ",";
+ }
+ if (Clobber.size())
+ Out << "\n :" << Clobber.substr(1);
+ Out << ")";
+}
+
+void CWriter::visitMallocInst(MallocInst &I) {
+ assert(0 && "lowerallocations pass didn't work!");
+}
+
+void CWriter::visitAllocaInst(AllocaInst &I) {
+ Out << '(';
+ printType(Out, I.getType());
+ Out << ") alloca(sizeof(";
+ printType(Out, I.getType()->getElementType());
+ Out << ')';
+ if (I.isArrayAllocation()) {
+ Out << " * " ;
+ writeOperand(I.getOperand(0));
+ }
+ Out << ')';
+}
+
+void CWriter::visitFreeInst(FreeInst &I) {
+ assert(0 && "lowerallocations pass didn't work!");
+}
+
+void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E) {
+ bool HasImplicitAddress = false;
+ // If accessing a global value with no indexing, avoid *(&GV) syndrome
+ if (isa<GlobalValue>(Ptr)) {
+ HasImplicitAddress = true;
+ } else if (isDirectAlloca(Ptr)) {
+ HasImplicitAddress = true;
+ }
+
+ if (I == E) {
+ if (!HasImplicitAddress)
+ Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
+
+ writeOperandInternal(Ptr);
+ return;
+ }
+
+ const Constant *CI = dyn_cast<Constant>(I.getOperand());
+ if (HasImplicitAddress && (!CI || !CI->isNullValue()))
+ Out << "(&";
+
+ writeOperandInternal(Ptr);
+
+ if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
+ Out << ')';
+ HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
+ }
+
+ assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
+ "Can only have implicit address with direct accessing");
+
+ if (HasImplicitAddress) {
+ ++I;
+ } else if (CI && CI->isNullValue()) {
+ gep_type_iterator TmpI = I; ++TmpI;
+
+ // Print out the -> operator if possible...
+ if (TmpI != E && isa<StructType>(*TmpI)) {
+ Out << (HasImplicitAddress ? "." : "->");
+ Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
+ I = ++TmpI;
+ }
+ }
+
+ for (; I != E; ++I)
+ if (isa<StructType>(*I)) {
+ Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
+ } else {
+ Out << '[';
+ writeOperand(I.getOperand());
+ Out << ']';
+ }
+}
+
+void CWriter::visitLoadInst(LoadInst &I) {
+ Out << '*';
+ if (I.isVolatile()) {
+ Out << "((";
+ printType(Out, I.getType(), false, "volatile*");
+ Out << ")";
+ }
+
+ writeOperand(I.getOperand(0));
+
+ if (I.isVolatile())
+ Out << ')';
+}
+
+void CWriter::visitStoreInst(StoreInst &I) {
+ Out << '*';
+ if (I.isVolatile()) {
+ Out << "((";
+ printType(Out, I.getOperand(0)->getType(), false, " volatile*");
+ Out << ")";
+ }
+ writeOperand(I.getPointerOperand());
+ if (I.isVolatile()) Out << ')';
+ Out << " = ";
+ Value *Operand = I.getOperand(0);
+ Constant *BitMask = 0;
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
+ if (!ITy->isPowerOf2ByteWidth())
+ // We have a bit width that doesn't match an even power-of-2 byte
+ // size. Consequently we must & the value with the type's bit mask
+ BitMask = ConstantInt::get(ITy, ITy->getBitMask());
+ if (BitMask)
+ Out << "((";
+ writeOperand(Operand);
+ if (BitMask) {
+ Out << ") & ";
+ printConstant(BitMask);
+ Out << ")";
+ }
+}
+
+void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
+ Out << '&';
+ printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
+ gep_type_end(I));
+}
+
+void CWriter::visitVAArgInst(VAArgInst &I) {
+ Out << "va_arg(*(va_list*)";
+ writeOperand(I.getOperand(0));
+ Out << ", ";
+ printType(Out, I.getType());
+ Out << ");\n ";
+}
+
+//===----------------------------------------------------------------------===//
+// External Interface declaration
+//===----------------------------------------------------------------------===//
+
+bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
+ std::ostream &o,
+ CodeGenFileType FileType,
+ bool Fast) {
+ if (FileType != TargetMachine::AssemblyFile) return true;
+
+ PM.add(createLowerGCPass());
+ PM.add(createLowerAllocationsPass(true));
+ PM.add(createLowerInvokePass());
+ PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
+ PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
+ PM.add(new CWriter(o));
+ return false;
+}