It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
new file mode 100644
index 0000000..730bac6
--- /dev/null
+++ b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -0,0 +1,1122 @@
+//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pattern matching instruction selector for PowerPC,
+// converting from a legalized dag to a PPC dag.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ppc-codegen"
+#include "PPC.h"
+#include "PPCPredicates.h"
+#include "PPCTargetMachine.h"
+#include "PPCISelLowering.h"
+#include "PPCHazardRecognizers.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Constants.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Compiler.h"
+#include <queue>
+#include <set>
+using namespace llvm;
+
+namespace {
+  //===--------------------------------------------------------------------===//
+  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
+  /// instructions for SelectionDAG operations.
+  ///
+  class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
+    PPCTargetMachine &TM;
+    PPCTargetLowering PPCLowering;
+    unsigned GlobalBaseReg;
+  public:
+    PPCDAGToDAGISel(PPCTargetMachine &tm)
+      : SelectionDAGISel(PPCLowering), TM(tm),
+        PPCLowering(*TM.getTargetLowering()) {}
+    
+    virtual bool runOnFunction(Function &Fn) {
+      // Make sure we re-emit a set of the global base reg if necessary
+      GlobalBaseReg = 0;
+      SelectionDAGISel::runOnFunction(Fn);
+      
+      InsertVRSaveCode(Fn);
+      return true;
+    }
+   
+    /// getI32Imm - Return a target constant with the specified value, of type
+    /// i32.
+    inline SDOperand getI32Imm(unsigned Imm) {
+      return CurDAG->getTargetConstant(Imm, MVT::i32);
+    }
+
+    /// getI64Imm - Return a target constant with the specified value, of type
+    /// i64.
+    inline SDOperand getI64Imm(uint64_t Imm) {
+      return CurDAG->getTargetConstant(Imm, MVT::i64);
+    }
+    
+    /// getSmallIPtrImm - Return a target constant of pointer type.
+    inline SDOperand getSmallIPtrImm(unsigned Imm) {
+      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
+    }
+    
+    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 
+    /// with any number of 0s on either side.  The 1s are allowed to wrap from
+    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
+    /// 0x0F0F0000 is not, since all 1s are not contiguous.
+    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
+
+
+    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
+    /// rotate and mask opcode and mask operation.
+    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
+                                unsigned &SH, unsigned &MB, unsigned &ME);
+    
+    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
+    /// base register.  Return the virtual register that holds this value.
+    SDNode *getGlobalBaseReg();
+    
+    // Select - Convert the specified operand from a target-independent to a
+    // target-specific node if it hasn't already been changed.
+    SDNode *Select(SDOperand Op);
+    
+    SDNode *SelectBitfieldInsert(SDNode *N);
+
+    /// SelectCC - Select a comparison of the specified values with the
+    /// specified condition code, returning the CR# of the expression.
+    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
+
+    /// SelectAddrImm - Returns true if the address N can be represented by
+    /// a base register plus a signed 16-bit displacement [r+imm].
+    bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
+                       SDOperand &Base) {
+      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
+    }
+    
+    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
+    /// immediate field.  Because preinc imms have already been validated, just
+    /// accept it.
+    bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
+      Out = N;
+      return true;
+    }
+      
+    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
+    /// represented as an indexed [r+r] operation.  Returns false if it can
+    /// be represented by [r+imm], which are preferred.
+    bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
+                       SDOperand &Index) {
+      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
+    }
+    
+    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
+    /// represented as an indexed [r+r] operation.
+    bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
+                           SDOperand &Index) {
+      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
+    }
+
+    /// SelectAddrImmShift - Returns true if the address N can be represented by
+    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
+    /// for use by STD and friends.
+    bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
+                            SDOperand &Base) {
+      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
+    }
+      
+    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+    /// inline asm expressions.
+    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
+                                              char ConstraintCode,
+                                              std::vector<SDOperand> &OutOps,
+                                              SelectionDAG &DAG) {
+      SDOperand Op0, Op1;
+      switch (ConstraintCode) {
+      default: return true;
+      case 'm':   // memory
+        if (!SelectAddrIdx(Op, Op, Op0, Op1))
+          SelectAddrImm(Op, Op, Op0, Op1);
+        break;
+      case 'o':   // offsetable
+        if (!SelectAddrImm(Op, Op, Op0, Op1)) {
+          Op0 = Op;
+          AddToISelQueue(Op0);     // r+0.
+          Op1 = getSmallIPtrImm(0);
+        }
+        break;
+      case 'v':   // not offsetable
+        SelectAddrIdxOnly(Op, Op, Op0, Op1);
+        break;
+      }
+      
+      OutOps.push_back(Op0);
+      OutOps.push_back(Op1);
+      return false;
+    }
+    
+    SDOperand BuildSDIVSequence(SDNode *N);
+    SDOperand BuildUDIVSequence(SDNode *N);
+    
+    /// InstructionSelectBasicBlock - This callback is invoked by
+    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
+    
+    void InsertVRSaveCode(Function &Fn);
+
+    virtual const char *getPassName() const {
+      return "PowerPC DAG->DAG Pattern Instruction Selection";
+    } 
+    
+    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
+    /// this target when scheduling the DAG.
+    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
+      // Should use subtarget info to pick the right hazard recognizer.  For
+      // now, always return a PPC970 recognizer.
+      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
+      assert(II && "No InstrInfo?");
+      return new PPCHazardRecognizer970(*II); 
+    }
+
+// Include the pieces autogenerated from the target description.
+#include "PPCGenDAGISel.inc"
+    
+private:
+    SDNode *SelectSETCC(SDOperand Op);
+  };
+}
+
+/// InstructionSelectBasicBlock - This callback is invoked by
+/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
+  DEBUG(BB->dump());
+
+  // Select target instructions for the DAG.
+  DAG.setRoot(SelectRoot(DAG.getRoot()));
+  DAG.RemoveDeadNodes();
+  
+  // Emit machine code to BB.
+  ScheduleAndEmitDAG(DAG);
+}
+
+/// InsertVRSaveCode - Once the entire function has been instruction selected,
+/// all virtual registers are created and all machine instructions are built,
+/// check to see if we need to save/restore VRSAVE.  If so, do it.
+void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
+  // Check to see if this function uses vector registers, which means we have to
+  // save and restore the VRSAVE register and update it with the regs we use.  
+  //
+  // In this case, there will be virtual registers of vector type type created
+  // by the scheduler.  Detect them now.
+  MachineFunction &Fn = MachineFunction::get(&F);
+  SSARegMap *RegMap = Fn.getSSARegMap();
+  bool HasVectorVReg = false;
+  for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
+       e = RegMap->getLastVirtReg()+1; i != e; ++i)
+    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
+      HasVectorVReg = true;
+      break;
+    }
+  if (!HasVectorVReg) return;  // nothing to do.
+      
+  // If we have a vector register, we want to emit code into the entry and exit
+  // blocks to save and restore the VRSAVE register.  We do this here (instead
+  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
+  //
+  // 1. This (trivially) reduces the load on the register allocator, by not
+  //    having to represent the live range of the VRSAVE register.
+  // 2. This (more significantly) allows us to create a temporary virtual
+  //    register to hold the saved VRSAVE value, allowing this temporary to be
+  //    register allocated, instead of forcing it to be spilled to the stack.
+
+  // Create two vregs - one to hold the VRSAVE register that is live-in to the
+  // function and one for the value after having bits or'd into it.
+  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
+  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
+  
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  MachineBasicBlock &EntryBB = *Fn.begin();
+  // Emit the following code into the entry block:
+  // InVRSAVE = MFVRSAVE
+  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
+  // MTVRSAVE UpdatedVRSAVE
+  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
+  BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
+  BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE);
+  BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
+  
+  // Find all return blocks, outputting a restore in each epilog.
+  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
+      IP = BB->end(); --IP;
+      
+      // Skip over all terminator instructions, which are part of the return
+      // sequence.
+      MachineBasicBlock::iterator I2 = IP;
+      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
+        IP = I2;
+      
+      // Emit: MTVRSAVE InVRSave
+      BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
+    }        
+  }
+}
+
+
+/// getGlobalBaseReg - Output the instructions required to put the
+/// base address to use for accessing globals into a register.
+///
+SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
+  if (!GlobalBaseReg) {
+    const TargetInstrInfo &TII = *TM.getInstrInfo();
+    // Insert the set of GlobalBaseReg into the first MBB of the function
+    MachineBasicBlock &FirstMBB = BB->getParent()->front();
+    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
+
+    if (PPCLowering.getPointerTy() == MVT::i32) {
+      GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
+      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
+      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
+    } else {
+      GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
+      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
+      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
+    }
+  }
+  return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
+}
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value.  If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+  if (N->getOpcode() != ISD::Constant)
+    return false;
+
+  Imm = (short)cast<ConstantSDNode>(N)->getValue();
+  if (N->getValueType(0) == MVT::i32)
+    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
+  else
+    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
+}
+
+static bool isIntS16Immediate(SDOperand Op, short &Imm) {
+  return isIntS16Immediate(Op.Val, Imm);
+}
+
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+    Imm = cast<ConstantSDNode>(N)->getValue();
+    return true;
+  }
+  return false;
+}
+
+/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
+/// operand.  If so Imm will receive the 64-bit value.
+static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
+  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
+    Imm = cast<ConstantSDNode>(N)->getValue();
+    return true;
+  }
+  return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
+  return isInt32Immediate(N.Val, Imm);
+}
+
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+  return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
+}
+
+bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
+  if (isShiftedMask_32(Val)) {
+    // look for the first non-zero bit
+    MB = CountLeadingZeros_32(Val);
+    // look for the first zero bit after the run of ones
+    ME = CountLeadingZeros_32((Val - 1) ^ Val);
+    return true;
+  } else {
+    Val = ~Val; // invert mask
+    if (isShiftedMask_32(Val)) {
+      // effectively look for the first zero bit
+      ME = CountLeadingZeros_32(Val) - 1;
+      // effectively look for the first one bit after the run of zeros
+      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
+      return true;
+    }
+  }
+  // no run present
+  return false;
+}
+
+bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 
+                                      bool IsShiftMask, unsigned &SH, 
+                                      unsigned &MB, unsigned &ME) {
+  // Don't even go down this path for i64, since different logic will be
+  // necessary for rldicl/rldicr/rldimi.
+  if (N->getValueType(0) != MVT::i32)
+    return false;
+
+  unsigned Shift  = 32;
+  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
+  unsigned Opcode = N->getOpcode();
+  if (N->getNumOperands() != 2 ||
+      !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
+    return false;
+  
+  if (Opcode == ISD::SHL) {
+    // apply shift left to mask if it comes first
+    if (IsShiftMask) Mask = Mask << Shift;
+    // determine which bits are made indeterminant by shift
+    Indeterminant = ~(0xFFFFFFFFu << Shift);
+  } else if (Opcode == ISD::SRL) { 
+    // apply shift right to mask if it comes first
+    if (IsShiftMask) Mask = Mask >> Shift;
+    // determine which bits are made indeterminant by shift
+    Indeterminant = ~(0xFFFFFFFFu >> Shift);
+    // adjust for the left rotate
+    Shift = 32 - Shift;
+  } else if (Opcode == ISD::ROTL) {
+    Indeterminant = 0;
+  } else {
+    return false;
+  }
+  
+  // if the mask doesn't intersect any Indeterminant bits
+  if (Mask && !(Mask & Indeterminant)) {
+    SH = Shift & 31;
+    // make sure the mask is still a mask (wrap arounds may not be)
+    return isRunOfOnes(Mask, MB, ME);
+  }
+  return false;
+}
+
+/// SelectBitfieldInsert - turn an or of two masked values into
+/// the rotate left word immediate then mask insert (rlwimi) instruction.
+SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
+  SDOperand Op0 = N->getOperand(0);
+  SDOperand Op1 = N->getOperand(1);
+  
+  uint64_t LKZ, LKO, RKZ, RKO;
+  CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
+  CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
+  
+  unsigned TargetMask = LKZ;
+  unsigned InsertMask = RKZ;
+  
+  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
+    unsigned Op0Opc = Op0.getOpcode();
+    unsigned Op1Opc = Op1.getOpcode();
+    unsigned Value, SH = 0;
+    TargetMask = ~TargetMask;
+    InsertMask = ~InsertMask;
+
+    // If the LHS has a foldable shift and the RHS does not, then swap it to the
+    // RHS so that we can fold the shift into the insert.
+    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
+      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
+          Op0.getOperand(0).getOpcode() == ISD::SRL) {
+        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
+            Op1.getOperand(0).getOpcode() != ISD::SRL) {
+          std::swap(Op0, Op1);
+          std::swap(Op0Opc, Op1Opc);
+          std::swap(TargetMask, InsertMask);
+        }
+      }
+    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
+      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
+          Op1.getOperand(0).getOpcode() != ISD::SRL) {
+        std::swap(Op0, Op1);
+        std::swap(Op0Opc, Op1Opc);
+        std::swap(TargetMask, InsertMask);
+      }
+    }
+    
+    unsigned MB, ME;
+    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
+      SDOperand Tmp1, Tmp2, Tmp3;
+      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
+
+      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
+          isInt32Immediate(Op1.getOperand(1), Value)) {
+        Op1 = Op1.getOperand(0);
+        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
+      }
+      if (Op1Opc == ISD::AND) {
+        unsigned SHOpc = Op1.getOperand(0).getOpcode();
+        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
+            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
+          Op1 = Op1.getOperand(0).getOperand(0);
+          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
+        } else {
+          Op1 = Op1.getOperand(0);
+        }
+      }
+      
+      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
+      AddToISelQueue(Tmp3);
+      AddToISelQueue(Op1);
+      SH &= 31;
+      SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
+                          getI32Imm(ME) };
+      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
+    }
+  }
+  return 0;
+}
+
+/// SelectCC - Select a comparison of the specified values with the specified
+/// condition code, returning the CR# of the expression.
+SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
+                                    ISD::CondCode CC) {
+  // Always select the LHS.
+  AddToISelQueue(LHS);
+  unsigned Opc;
+  
+  if (LHS.getValueType() == MVT::i32) {
+    unsigned Imm;
+    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+      if (isInt32Immediate(RHS, Imm)) {
+        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+        if (isUInt16(Imm))
+          return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
+                                                 getI32Imm(Imm & 0xFFFF)), 0);
+        // If this is a 16-bit signed immediate, fold it.
+        if (isInt16((int)Imm))
+          return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
+                                                 getI32Imm(Imm & 0xFFFF)), 0);
+        
+        // For non-equality comparisons, the default code would materialize the
+        // constant, then compare against it, like this:
+        //   lis r2, 4660
+        //   ori r2, r2, 22136 
+        //   cmpw cr0, r3, r2
+        // Since we are just comparing for equality, we can emit this instead:
+        //   xoris r0,r3,0x1234
+        //   cmplwi cr0,r0,0x5678
+        //   beq cr0,L6
+        SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
+                                            getI32Imm(Imm >> 16)), 0);
+        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
+                                               getI32Imm(Imm & 0xFFFF)), 0);
+      }
+      Opc = PPC::CMPLW;
+    } else if (ISD::isUnsignedIntSetCC(CC)) {
+      if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
+        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
+                                               getI32Imm(Imm & 0xFFFF)), 0);
+      Opc = PPC::CMPLW;
+    } else {
+      short SImm;
+      if (isIntS16Immediate(RHS, SImm))
+        return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
+                                               getI32Imm((int)SImm & 0xFFFF)),
+                         0);
+      Opc = PPC::CMPW;
+    }
+  } else if (LHS.getValueType() == MVT::i64) {
+    uint64_t Imm;
+    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+      if (isInt64Immediate(RHS.Val, Imm)) {
+        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+        if (isUInt16(Imm))
+          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
+                                                 getI32Imm(Imm & 0xFFFF)), 0);
+        // If this is a 16-bit signed immediate, fold it.
+        if (isInt16(Imm))
+          return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
+                                                 getI32Imm(Imm & 0xFFFF)), 0);
+        
+        // For non-equality comparisons, the default code would materialize the
+        // constant, then compare against it, like this:
+        //   lis r2, 4660
+        //   ori r2, r2, 22136 
+        //   cmpd cr0, r3, r2
+        // Since we are just comparing for equality, we can emit this instead:
+        //   xoris r0,r3,0x1234
+        //   cmpldi cr0,r0,0x5678
+        //   beq cr0,L6
+        if (isUInt32(Imm)) {
+          SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
+                                              getI64Imm(Imm >> 16)), 0);
+          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
+                                                 getI64Imm(Imm & 0xFFFF)), 0);
+        }
+      }
+      Opc = PPC::CMPLD;
+    } else if (ISD::isUnsignedIntSetCC(CC)) {
+      if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
+        return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
+                                               getI64Imm(Imm & 0xFFFF)), 0);
+      Opc = PPC::CMPLD;
+    } else {
+      short SImm;
+      if (isIntS16Immediate(RHS, SImm))
+        return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
+                                               getI64Imm(SImm & 0xFFFF)),
+                         0);
+      Opc = PPC::CMPD;
+    }
+  } else if (LHS.getValueType() == MVT::f32) {
+    Opc = PPC::FCMPUS;
+  } else {
+    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
+    Opc = PPC::FCMPUD;
+  }
+  AddToISelQueue(RHS);
+  return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
+}
+
+static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
+  switch (CC) {
+  default: assert(0 && "Unknown condition!"); abort();
+  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
+  case ISD::SETUEQ:
+  case ISD::SETEQ:  return PPC::PRED_EQ;
+  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
+  case ISD::SETUNE:
+  case ISD::SETNE:  return PPC::PRED_NE;
+  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
+  case ISD::SETULT:
+  case ISD::SETLT:  return PPC::PRED_LT;
+  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
+  case ISD::SETULE:
+  case ISD::SETLE:  return PPC::PRED_LE;
+  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
+  case ISD::SETUGT:
+  case ISD::SETGT:  return PPC::PRED_GT;
+  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
+  case ISD::SETUGE:
+  case ISD::SETGE:  return PPC::PRED_GE;
+    
+  case ISD::SETO:   return PPC::PRED_NU;
+  case ISD::SETUO:  return PPC::PRED_UN;
+  }
+}
+
+/// getCRIdxForSetCC - Return the index of the condition register field
+/// associated with the SetCC condition, and whether or not the field is
+/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
+static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
+  switch (CC) {
+  default: assert(0 && "Unknown condition!"); abort();
+  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
+  case ISD::SETULT:
+  case ISD::SETLT:  Inv = false;  return 0;
+  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
+  case ISD::SETUGE:
+  case ISD::SETGE:  Inv = true;   return 0;
+  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
+  case ISD::SETUGT:
+  case ISD::SETGT:  Inv = false;  return 1;
+  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
+  case ISD::SETULE:
+  case ISD::SETLE:  Inv = true;   return 1;
+  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
+  case ISD::SETUEQ:
+  case ISD::SETEQ:  Inv = false;  return 2;
+  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
+  case ISD::SETUNE:
+  case ISD::SETNE:  Inv = true;   return 2;
+  case ISD::SETO:   Inv = true;   return 3;
+  case ISD::SETUO:  Inv = false;  return 3;
+  }
+  return 0;
+}
+
+SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
+  SDNode *N = Op.Val;
+  unsigned Imm;
+  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+  if (isInt32Immediate(N->getOperand(1), Imm)) {
+    // We can codegen setcc op, imm very efficiently compared to a brcond.
+    // Check for those cases here.
+    // setcc op, 0
+    if (Imm == 0) {
+      SDOperand Op = N->getOperand(0);
+      AddToISelQueue(Op);
+      switch (CC) {
+      default: break;
+      case ISD::SETEQ: {
+        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
+        SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
+        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+      }
+      case ISD::SETNE: {
+        SDOperand AD =
+          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
+                                          Op, getI32Imm(~0U)), 0);
+        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
+                                    AD.getValue(1));
+      }
+      case ISD::SETLT: {
+        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+      }
+      case ISD::SETGT: {
+        SDOperand T =
+          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
+        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
+        SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+      }
+      }
+    } else if (Imm == ~0U) {        // setcc op, -1
+      SDOperand Op = N->getOperand(0);
+      AddToISelQueue(Op);
+      switch (CC) {
+      default: break;
+      case ISD::SETEQ:
+        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
+                                             Op, getI32Imm(1)), 0);
+        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
+                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
+                                                              getI32Imm(0)), 0),
+                                    Op.getValue(1));
+      case ISD::SETNE: {
+        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
+        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
+                                           Op, getI32Imm(~0U));
+        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
+                                    Op, SDOperand(AD, 1));
+      }
+      case ISD::SETLT: {
+        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
+                                                       getI32Imm(1)), 0);
+        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
+                                                       Op), 0);
+        SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+      }
+      case ISD::SETGT: {
+        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
+        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 
+                                    getI32Imm(1));
+      }
+      }
+    }
+  }
+  
+  bool Inv;
+  unsigned Idx = getCRIdxForSetCC(CC, Inv);
+  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
+  SDOperand IntCR;
+  
+  // Force the ccreg into CR7.
+  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
+  
+  SDOperand InFlag(0, 0);  // Null incoming flag value.
+  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
+                               InFlag).getValue(1);
+  
+  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
+    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
+                                            CCReg), 0);
+  else
+    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
+  
+  SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
+                      getI32Imm(31), getI32Imm(31) };
+  if (!Inv) {
+    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+  } else {
+    SDOperand Tmp =
+      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
+    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
+  }
+}
+
+
+// Select - Convert the specified operand from a target-independent to a
+// target-specific node if it hasn't already been changed.
+SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
+  SDNode *N = Op.Val;
+  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
+      N->getOpcode() < PPCISD::FIRST_NUMBER)
+    return NULL;   // Already selected.
+
+  switch (N->getOpcode()) {
+  default: break;
+  
+  case ISD::Constant: {
+    if (N->getValueType(0) == MVT::i64) {
+      // Get 64 bit value.
+      int64_t Imm = cast<ConstantSDNode>(N)->getValue();
+      // Assume no remaining bits.
+      unsigned Remainder = 0;
+      // Assume no shift required.
+      unsigned Shift = 0;
+      
+      // If it can't be represented as a 32 bit value.
+      if (!isInt32(Imm)) {
+        Shift = CountTrailingZeros_64(Imm);
+        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+        
+        // If the shifted value fits 32 bits.
+        if (isInt32(ImmSh)) {
+          // Go with the shifted value.
+          Imm = ImmSh;
+        } else {
+          // Still stuck with a 64 bit value.
+          Remainder = Imm;
+          Shift = 32;
+          Imm >>= 32;
+        }
+      }
+      
+      // Intermediate operand.
+      SDNode *Result;
+
+      // Handle first 32 bits.
+      unsigned Lo = Imm & 0xFFFF;
+      unsigned Hi = (Imm >> 16) & 0xFFFF;
+      
+      // Simple value.
+      if (isInt16(Imm)) {
+       // Just the Lo bits.
+        Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
+      } else if (Lo) {
+        // Handle the Hi bits.
+        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
+        Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
+        // And Lo bits.
+        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
+                                       SDOperand(Result, 0), getI32Imm(Lo));
+      } else {
+       // Just the Hi bits.
+        Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
+      }
+      
+      // If no shift, we're done.
+      if (!Shift) return Result;
+
+      // Shift for next step if the upper 32-bits were not zero.
+      if (Imm) {
+        Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
+                                       SDOperand(Result, 0),
+                                       getI32Imm(Shift), getI32Imm(63 - Shift));
+      }
+
+      // Add in the last bits as required.
+      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
+        Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
+                                       SDOperand(Result, 0), getI32Imm(Hi));
+      } 
+      if ((Lo = Remainder & 0xFFFF)) {
+        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
+                                       SDOperand(Result, 0), getI32Imm(Lo));
+      }
+      
+      return Result;
+    }
+    break;
+  }
+  
+  case ISD::SETCC:
+    return SelectSETCC(Op);
+  case PPCISD::GlobalBaseReg:
+    return getGlobalBaseReg();
+    
+  case ISD::FrameIndex: {
+    int FI = cast<FrameIndexSDNode>(N)->getIndex();
+    SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
+    unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
+    if (N->hasOneUse())
+      return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
+                                  getSmallIPtrImm(0));
+    return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
+                                 getSmallIPtrImm(0));
+  }
+
+  case PPCISD::MFCR: {
+    SDOperand InFlag = N->getOperand(1);
+    AddToISelQueue(InFlag);
+    // Use MFOCRF if supported.
+    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
+      return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
+                                   N->getOperand(0), InFlag);
+    else
+      return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
+  }
+    
+  case ISD::SDIV: {
+    // FIXME: since this depends on the setting of the carry flag from the srawi
+    //        we should really be making notes about that for the scheduler.
+    // FIXME: It sure would be nice if we could cheaply recognize the 
+    //        srl/add/sra pattern the dag combiner will generate for this as
+    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
+    unsigned Imm;
+    if (isInt32Immediate(N->getOperand(1), Imm)) {
+      SDOperand N0 = N->getOperand(0);
+      AddToISelQueue(N0);
+      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
+        SDNode *Op =
+          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
+                                N0, getI32Imm(Log2_32(Imm)));
+        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
+                                    SDOperand(Op, 0), SDOperand(Op, 1));
+      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
+        SDNode *Op =
+          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
+                                N0, getI32Imm(Log2_32(-Imm)));
+        SDOperand PT =
+          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
+                                          SDOperand(Op, 0), SDOperand(Op, 1)),
+                    0);
+        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
+      }
+    }
+    
+    // Other cases are autogenerated.
+    break;
+  }
+    
+  case ISD::LOAD: {
+    // Handle preincrement loads.
+    LoadSDNode *LD = cast<LoadSDNode>(Op);
+    MVT::ValueType LoadedVT = LD->getLoadedVT();
+    
+    // Normal loads are handled by code generated from the .td file.
+    if (LD->getAddressingMode() != ISD::PRE_INC)
+      break;
+    
+    SDOperand Offset = LD->getOffset();
+    if (isa<ConstantSDNode>(Offset) ||
+        Offset.getOpcode() == ISD::TargetGlobalAddress) {
+      
+      unsigned Opcode;
+      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
+      if (LD->getValueType(0) != MVT::i64) {
+        // Handle PPC32 integer and normal FP loads.
+        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
+        switch (LoadedVT) {
+          default: assert(0 && "Invalid PPC load type!");
+          case MVT::f64: Opcode = PPC::LFDU; break;
+          case MVT::f32: Opcode = PPC::LFSU; break;
+          case MVT::i32: Opcode = PPC::LWZU; break;
+          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
+          case MVT::i1:
+          case MVT::i8:  Opcode = PPC::LBZU; break;
+        }
+      } else {
+        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
+        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
+        switch (LoadedVT) {
+          default: assert(0 && "Invalid PPC load type!");
+          case MVT::i64: Opcode = PPC::LDU; break;
+          case MVT::i32: Opcode = PPC::LWZU8; break;
+          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
+          case MVT::i1:
+          case MVT::i8:  Opcode = PPC::LBZU8; break;
+        }
+      }
+      
+      SDOperand Chain = LD->getChain();
+      SDOperand Base = LD->getBasePtr();
+      AddToISelQueue(Chain);
+      AddToISelQueue(Base);
+      AddToISelQueue(Offset);
+      SDOperand Ops[] = { Offset, Base, Chain };
+      // FIXME: PPC64
+      return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
+                                   MVT::Other, Ops, 3);
+    } else {
+      assert(0 && "R+R preindex loads not supported yet!");
+    }
+  }
+    
+  case ISD::AND: {
+    unsigned Imm, Imm2, SH, MB, ME;
+
+    // If this is an and of a value rotated between 0 and 31 bits and then and'd
+    // with a mask, emit rlwinm
+    if (isInt32Immediate(N->getOperand(1), Imm) &&
+        isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
+      SDOperand Val = N->getOperand(0).getOperand(0);
+      AddToISelQueue(Val);
+      SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+    }
+    // If this is just a masked value where the input is not handled above, and
+    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
+    if (isInt32Immediate(N->getOperand(1), Imm) &&
+        isRunOfOnes(Imm, MB, ME) && 
+        N->getOperand(0).getOpcode() != ISD::ROTL) {
+      SDOperand Val = N->getOperand(0);
+      AddToISelQueue(Val);
+      SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
+      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+    }
+    // AND X, 0 -> 0, not "rlwinm 32".
+    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
+      AddToISelQueue(N->getOperand(1));
+      ReplaceUses(SDOperand(N, 0), N->getOperand(1));
+      return NULL;
+    }
+    // ISD::OR doesn't get all the bitfield insertion fun.
+    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
+    if (isInt32Immediate(N->getOperand(1), Imm) && 
+        N->getOperand(0).getOpcode() == ISD::OR &&
+        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
+      unsigned MB, ME;
+      Imm = ~(Imm^Imm2);
+      if (isRunOfOnes(Imm, MB, ME)) {
+        AddToISelQueue(N->getOperand(0).getOperand(0));
+        AddToISelQueue(N->getOperand(0).getOperand(1));
+        SDOperand Ops[] = { N->getOperand(0).getOperand(0),
+                            N->getOperand(0).getOperand(1),
+                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
+        return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
+      }
+    }
+    
+    // Other cases are autogenerated.
+    break;
+  }
+  case ISD::OR:
+    if (N->getValueType(0) == MVT::i32)
+      if (SDNode *I = SelectBitfieldInsert(N))
+        return I;
+      
+    // Other cases are autogenerated.
+    break;
+  case ISD::SHL: {
+    unsigned Imm, SH, MB, ME;
+    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
+        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
+      AddToISelQueue(N->getOperand(0).getOperand(0));
+      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
+                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+    }
+    
+    // Other cases are autogenerated.
+    break;
+  }
+  case ISD::SRL: {
+    unsigned Imm, SH, MB, ME;
+    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
+        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
+      AddToISelQueue(N->getOperand(0).getOperand(0));
+      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
+                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+    }
+    
+    // Other cases are autogenerated.
+    break;
+  }
+  case ISD::SELECT_CC: {
+    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+    
+    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
+    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
+          if (N1C->isNullValue() && N3C->isNullValue() &&
+              N2C->getValue() == 1ULL && CC == ISD::SETNE &&
+              // FIXME: Implement this optzn for PPC64.
+              N->getValueType(0) == MVT::i32) {
+            AddToISelQueue(N->getOperand(0));
+            SDNode *Tmp =
+              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
+                                    N->getOperand(0), getI32Imm(~0U));
+            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
+                                        SDOperand(Tmp, 0), N->getOperand(0),
+                                        SDOperand(Tmp, 1));
+          }
+
+    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
+    unsigned BROpc = getPredicateForSetCC(CC);
+
+    unsigned SelectCCOp;
+    if (N->getValueType(0) == MVT::i32)
+      SelectCCOp = PPC::SELECT_CC_I4;
+    else if (N->getValueType(0) == MVT::i64)
+      SelectCCOp = PPC::SELECT_CC_I8;
+    else if (N->getValueType(0) == MVT::f32)
+      SelectCCOp = PPC::SELECT_CC_F4;
+    else if (N->getValueType(0) == MVT::f64)
+      SelectCCOp = PPC::SELECT_CC_F8;
+    else
+      SelectCCOp = PPC::SELECT_CC_VRRC;
+
+    AddToISelQueue(N->getOperand(2));
+    AddToISelQueue(N->getOperand(3));
+    SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
+                        getI32Imm(BROpc) };
+    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
+  }
+  case PPCISD::COND_BRANCH: {
+    AddToISelQueue(N->getOperand(0));  // Op #0 is the Chain.
+    // Op #1 is the PPC::PRED_* number.
+    // Op #2 is the CR#
+    // Op #3 is the Dest MBB
+    AddToISelQueue(N->getOperand(4));  // Op #4 is the Flag.
+    // Prevent PPC::PRED_* from being selected into LI.
+    SDOperand Pred =
+      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
+    SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
+      N->getOperand(0), N->getOperand(4) };
+    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
+  }
+  case ISD::BR_CC: {
+    AddToISelQueue(N->getOperand(0));
+    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
+    SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 
+                        N->getOperand(4), N->getOperand(0) };
+    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
+  }
+  case ISD::BRIND: {
+    // FIXME: Should custom lower this.
+    SDOperand Chain = N->getOperand(0);
+    SDOperand Target = N->getOperand(1);
+    AddToISelQueue(Chain);
+    AddToISelQueue(Target);
+    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
+    Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
+                                            Chain), 0);
+    return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
+  }
+  }
+  
+  return SelectCode(Op);
+}
+
+
+
+/// createPPCISelDag - This pass converts a legalized DAG into a 
+/// PowerPC-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
+  return new PPCDAGToDAGISel(TM);
+}
+