It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/PowerPC/PPCISelLowering.cpp b/lib/Target/PowerPC/PPCISelLowering.cpp
new file mode 100644
index 0000000..6c2f383
--- /dev/null
+++ b/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -0,0 +1,3451 @@
+//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPCISelLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCISelLowering.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCPredicates.h"
+#include "PPCTargetMachine.h"
+#include "PPCPerfectShuffle.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
+cl::desc("enable preincrement load/store generation on PPC (experimental)"),
+ cl::Hidden);
+
+PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
+ : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
+
+ setPow2DivIsCheap();
+
+ // Use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
+ addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
+ addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
+
+ // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
+ setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
+
+ // PowerPC does not have truncstore for i1.
+ setStoreXAction(MVT::i1, Promote);
+
+ // PowerPC has pre-inc load and store's.
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
+
+ setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+
+ // PowerPC has no intrinsics for these particular operations
+ setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
+ setOperationAction(ISD::MEMSET, MVT::Other, Expand);
+ setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
+
+ // PowerPC has no SREM/UREM instructions
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // We don't support sin/cos/sqrt/fmod
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+
+ // If we're enabling GP optimizations, use hardware square root
+ if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f32, Expand);
+ }
+
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+
+ // PowerPC does not have BSWAP, CTPOP or CTTZ
+ setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
+
+ // PowerPC does not have ROTR
+ setOperationAction(ISD::ROTR, MVT::i32 , Expand);
+
+ // PowerPC does not have Select
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+
+ // PowerPC wants to turn select_cc of FP into fsel when possible.
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ // PowerPC wants to optimize integer setcc a bit
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+
+ // PowerPC does not have BRCOND which requires SetCC
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ // PowerPC does not have [U|S]INT_TO_FP
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+
+ setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
+ setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
+ setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
+ setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
+
+ // We cannot sextinreg(i1). Expand to shifts.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // Support label based line numbers.
+ setOperationAction(ISD::LOCATION, MVT::Other, Expand);
+ setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
+ if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
+ setOperationAction(ISD::LABEL, MVT::Other, Expand);
+ } else {
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
+ }
+
+ // We want to legalize GlobalAddress and ConstantPool nodes into the
+ // appropriate instructions to materialize the address.
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ // RET must be custom lowered, to meet ABI requirements
+ setOperationAction(ISD::RET , MVT::Other, Custom);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+
+ // VAARG is custom lowered with ELF 32 ABI
+ if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ else
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
+ // They also have instructions for converting between i64 and fp.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+
+ // FIXME: disable this lowered code. This generates 64-bit register values,
+ // and we don't model the fact that the top part is clobbered by calls. We
+ // need to flag these together so that the value isn't live across a call.
+ //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+
+ // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
+ } else {
+ // PowerPC does not have FP_TO_UINT on 32-bit implementations.
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ }
+
+ if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
+ // 64 bit PowerPC implementations can support i64 types directly
+ addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
+ // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
+ setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
+ } else {
+ // 32 bit PowerPC wants to expand i64 shifts itself.
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ }
+
+ if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
+ // First set operation action for all vector types to expand. Then we
+ // will selectively turn on ones that can be effectively codegen'd.
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+ // add/sub are legal for all supported vector VT's.
+ setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
+ setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
+
+ // We promote all shuffles to v16i8.
+ setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
+
+ // We promote all non-typed operations to v4i32.
+ setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
+ setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
+ setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
+ setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
+ setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
+ setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
+ AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
+
+ // No other operations are legal.
+ setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
+ setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
+ }
+
+ // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
+ // with merges, splats, etc.
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::AND , MVT::v4i32, Legal);
+ setOperationAction(ISD::OR , MVT::v4i32, Legal);
+ setOperationAction(ISD::XOR , MVT::v4i32, Legal);
+ setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
+ setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
+ setOperationAction(ISD::STORE , MVT::v4i32, Legal);
+
+ addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
+ addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
+ addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
+ addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
+
+ setOperationAction(ISD::MUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ }
+
+ setSetCCResultType(MVT::i32);
+ setShiftAmountType(MVT::i32);
+ setSetCCResultContents(ZeroOrOneSetCCResult);
+
+ if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
+ setStackPointerRegisterToSaveRestore(PPC::X1);
+ setExceptionPointerRegister(PPC::X3);
+ setExceptionSelectorRegister(PPC::X4);
+ } else {
+ setStackPointerRegisterToSaveRestore(PPC::R1);
+ setExceptionPointerRegister(PPC::R3);
+ setExceptionSelectorRegister(PPC::R4);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::BR_CC);
+ setTargetDAGCombine(ISD::BSWAP);
+
+ computeRegisterProperties();
+}
+
+const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case PPCISD::FSEL: return "PPCISD::FSEL";
+ case PPCISD::FCFID: return "PPCISD::FCFID";
+ case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
+ case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
+ case PPCISD::STFIWX: return "PPCISD::STFIWX";
+ case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
+ case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
+ case PPCISD::VPERM: return "PPCISD::VPERM";
+ case PPCISD::Hi: return "PPCISD::Hi";
+ case PPCISD::Lo: return "PPCISD::Lo";
+ case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
+ case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
+ case PPCISD::SRL: return "PPCISD::SRL";
+ case PPCISD::SRA: return "PPCISD::SRA";
+ case PPCISD::SHL: return "PPCISD::SHL";
+ case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
+ case PPCISD::STD_32: return "PPCISD::STD_32";
+ case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
+ case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
+ case PPCISD::MTCTR: return "PPCISD::MTCTR";
+ case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
+ case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
+ case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
+ case PPCISD::MFCR: return "PPCISD::MFCR";
+ case PPCISD::VCMP: return "PPCISD::VCMP";
+ case PPCISD::VCMPo: return "PPCISD::VCMPo";
+ case PPCISD::LBRX: return "PPCISD::LBRX";
+ case PPCISD::STBRX: return "PPCISD::STBRX";
+ case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Node matching predicates, for use by the tblgen matching code.
+//===----------------------------------------------------------------------===//
+
+/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
+static bool isFloatingPointZero(SDOperand Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
+ else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
+ // Maybe this has already been legalized into the constant pool?
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
+ }
+ return false;
+}
+
+/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
+/// true if Op is undef or if it matches the specified value.
+static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
+ return Op.getOpcode() == ISD::UNDEF ||
+ cast<ConstantSDNode>(Op)->getValue() == Val;
+}
+
+/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUHUM instruction.
+bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
+ if (!isUnary) {
+ for (unsigned i = 0; i != 16; ++i)
+ if (!isConstantOrUndef(N->getOperand(i), i*2+1))
+ return false;
+ } else {
+ for (unsigned i = 0; i != 8; ++i)
+ if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
+ !isConstantOrUndef(N->getOperand(i+8), i*2+1))
+ return false;
+ }
+ return true;
+}
+
+/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUWUM instruction.
+bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
+ if (!isUnary) {
+ for (unsigned i = 0; i != 16; i += 2)
+ if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
+ !isConstantOrUndef(N->getOperand(i+1), i*2+3))
+ return false;
+ } else {
+ for (unsigned i = 0; i != 8; i += 2)
+ if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
+ !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
+ !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
+ !isConstantOrUndef(N->getOperand(i+9), i*2+3))
+ return false;
+ }
+ return true;
+}
+
+/// isVMerge - Common function, used to match vmrg* shuffles.
+///
+static bool isVMerge(SDNode *N, unsigned UnitSize,
+ unsigned LHSStart, unsigned RHSStart) {
+ assert(N->getOpcode() == ISD::BUILD_VECTOR &&
+ N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
+ assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
+ "Unsupported merge size!");
+
+ for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
+ for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
+ if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
+ LHSStart+j+i*UnitSize) ||
+ !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
+ RHSStart+j+i*UnitSize))
+ return false;
+ }
+ return true;
+}
+
+/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
+bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 8, 24);
+ return isVMerge(N, UnitSize, 8, 8);
+}
+
+/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
+bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 0, 16);
+ return isVMerge(N, UnitSize, 0, 0);
+}
+
+
+/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
+/// amount, otherwise return -1.
+int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
+ assert(N->getOpcode() == ISD::BUILD_VECTOR &&
+ N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
+ // Find the first non-undef value in the shuffle mask.
+ unsigned i;
+ for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
+ /*search*/;
+
+ if (i == 16) return -1; // all undef.
+
+ // Otherwise, check to see if the rest of the elements are consequtively
+ // numbered from this value.
+ unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
+ if (ShiftAmt < i) return -1;
+ ShiftAmt -= i;
+
+ if (!isUnary) {
+ // Check the rest of the elements to see if they are consequtive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
+ return -1;
+ } else {
+ // Check the rest of the elements to see if they are consequtive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
+ return -1;
+ }
+
+ return ShiftAmt;
+}
+
+/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a splat of a single element that is suitable for input to
+/// VSPLTB/VSPLTH/VSPLTW.
+bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
+ assert(N->getOpcode() == ISD::BUILD_VECTOR &&
+ N->getNumOperands() == 16 &&
+ (EltSize == 1 || EltSize == 2 || EltSize == 4));
+
+ // This is a splat operation if each element of the permute is the same, and
+ // if the value doesn't reference the second vector.
+ unsigned ElementBase = 0;
+ SDOperand Elt = N->getOperand(0);
+ if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
+ ElementBase = EltV->getValue();
+ else
+ return false; // FIXME: Handle UNDEF elements too!
+
+ if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
+ return false;
+
+ // Check that they are consequtive.
+ for (unsigned i = 1; i != EltSize; ++i) {
+ if (!isa<ConstantSDNode>(N->getOperand(i)) ||
+ cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
+ return false;
+ }
+
+ assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
+ for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ assert(isa<ConstantSDNode>(N->getOperand(i)) &&
+ "Invalid VECTOR_SHUFFLE mask!");
+ for (unsigned j = 0; j != EltSize; ++j)
+ if (N->getOperand(i+j) != N->getOperand(j))
+ return false;
+ }
+
+ return true;
+}
+
+/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
+/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
+unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
+ assert(isSplatShuffleMask(N, EltSize));
+ return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
+}
+
+/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
+/// by using a vspltis[bhw] instruction of the specified element size, return
+/// the constant being splatted. The ByteSize field indicates the number of
+/// bytes of each element [124] -> [bhw].
+SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
+ SDOperand OpVal(0, 0);
+
+ // If ByteSize of the splat is bigger than the element size of the
+ // build_vector, then we have a case where we are checking for a splat where
+ // multiple elements of the buildvector are folded together into a single
+ // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
+ unsigned EltSize = 16/N->getNumOperands();
+ if (EltSize < ByteSize) {
+ unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
+ SDOperand UniquedVals[4];
+ assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
+
+ // See if all of the elements in the buildvector agree across.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ // If the element isn't a constant, bail fully out.
+ if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
+
+
+ if (UniquedVals[i&(Multiple-1)].Val == 0)
+ UniquedVals[i&(Multiple-1)] = N->getOperand(i);
+ else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
+ return SDOperand(); // no match.
+ }
+
+ // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
+ // either constant or undef values that are identical for each chunk. See
+ // if these chunks can form into a larger vspltis*.
+
+ // Check to see if all of the leading entries are either 0 or -1. If
+ // neither, then this won't fit into the immediate field.
+ bool LeadingZero = true;
+ bool LeadingOnes = true;
+ for (unsigned i = 0; i != Multiple-1; ++i) {
+ if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
+
+ LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
+ LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
+ }
+ // Finally, check the least significant entry.
+ if (LeadingZero) {
+ if (UniquedVals[Multiple-1].Val == 0)
+ return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
+ int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
+ if (Val < 16)
+ return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
+ }
+ if (LeadingOnes) {
+ if (UniquedVals[Multiple-1].Val == 0)
+ return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
+ int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
+ if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
+ return DAG.getTargetConstant(Val, MVT::i32);
+ }
+
+ return SDOperand();
+ }
+
+ // Check to see if this buildvec has a single non-undef value in its elements.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ if (OpVal.Val == 0)
+ OpVal = N->getOperand(i);
+ else if (OpVal != N->getOperand(i))
+ return SDOperand();
+ }
+
+ if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
+
+ unsigned ValSizeInBytes = 0;
+ uint64_t Value = 0;
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
+ Value = CN->getValue();
+ ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
+ } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
+ assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
+ Value = FloatToBits(CN->getValue());
+ ValSizeInBytes = 4;
+ }
+
+ // If the splat value is larger than the element value, then we can never do
+ // this splat. The only case that we could fit the replicated bits into our
+ // immediate field for would be zero, and we prefer to use vxor for it.
+ if (ValSizeInBytes < ByteSize) return SDOperand();
+
+ // If the element value is larger than the splat value, cut it in half and
+ // check to see if the two halves are equal. Continue doing this until we
+ // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
+ while (ValSizeInBytes > ByteSize) {
+ ValSizeInBytes >>= 1;
+
+ // If the top half equals the bottom half, we're still ok.
+ if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
+ (Value & ((1 << (8*ValSizeInBytes))-1)))
+ return SDOperand();
+ }
+
+ // Properly sign extend the value.
+ int ShAmt = (4-ByteSize)*8;
+ int MaskVal = ((int)Value << ShAmt) >> ShAmt;
+
+ // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
+ if (MaskVal == 0) return SDOperand();
+
+ // Finally, if this value fits in a 5 bit sext field, return it
+ if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
+ return DAG.getTargetConstant(MaskVal, MVT::i32);
+ return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing Mode Selection
+//===----------------------------------------------------------------------===//
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (N->getOpcode() != ISD::Constant)
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
+}
+static bool isIntS16Immediate(SDOperand Op, short &Imm) {
+ return isIntS16Immediate(Op.Val, Imm);
+}
+
+
+/// SelectAddressRegReg - Given the specified addressed, check to see if it
+/// can be represented as an indexed [r+r] operation. Returns false if it
+/// can be more efficiently represented with [r+imm].
+bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
+ SDOperand &Index,
+ SelectionDAG &DAG) {
+ short imm = 0;
+ if (N.getOpcode() == ISD::ADD) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i
+ if (N.getOperand(1).getOpcode() == PPCISD::Lo)
+ return false; // r+i
+
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ } else if (N.getOpcode() == ISD::OR) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i can fold it if we can.
+
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are provably
+ // disjoint.
+ uint64_t LHSKnownZero, LHSKnownOne;
+ uint64_t RHSKnownZero, RHSKnownOne;
+ DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
+
+ if (LHSKnownZero) {
+ DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ if ((LHSKnownZero | RHSKnownZero) == ~0U) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// Returns true if the address N can be represented by a base register plus
+/// a signed 16-bit displacement [r+imm], and if it is not better
+/// represented as reg+reg.
+bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
+ SDOperand &Base, SelectionDAG &DAG){
+ // If this can be more profitably realized as r+r, fail.
+ if (SelectAddressRegReg(N, Disp, Base, DAG))
+ return false;
+
+ if (N.getOpcode() == ISD::ADD) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm)) {
+ Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ } else {
+ Base = N.getOperand(0);
+ }
+ return true; // [r+i]
+ } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
+ // Match LOAD (ADD (X, Lo(G))).
+ assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
+ && "Cannot handle constant offsets yet!");
+ Disp = N.getOperand(1).getOperand(0); // The global address.
+ assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
+ Disp.getOpcode() == ISD::TargetConstantPool ||
+ Disp.getOpcode() == ISD::TargetJumpTable);
+ Base = N.getOperand(0);
+ return true; // [&g+r]
+ }
+ } else if (N.getOpcode() == ISD::OR) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm)) {
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are
+ // provably disjoint.
+ uint64_t LHSKnownZero, LHSKnownOne;
+ DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
+ if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ Base = N.getOperand(0);
+ Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
+ return true;
+ }
+ }
+ } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+ // Loading from a constant address.
+
+ // If this address fits entirely in a 16-bit sext immediate field, codegen
+ // this as "d, 0"
+ short Imm;
+ if (isIntS16Immediate(CN, Imm)) {
+ Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
+ Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
+ return true;
+ }
+
+ // Handle 32-bit sext immediates with LIS + addr mode.
+ if (CN->getValueType(0) == MVT::i32 ||
+ (int64_t)CN->getValue() == (int)CN->getValue()) {
+ int Addr = (int)CN->getValue();
+
+ // Otherwise, break this down into an LIS + disp.
+ Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
+
+ Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
+ unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
+ Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
+ return true;
+ }
+ }
+
+ Disp = DAG.getTargetConstant(0, getPointerTy());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ else
+ Base = N;
+ return true; // [r+0]
+}
+
+/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
+/// represented as an indexed [r+r] operation.
+bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
+ SDOperand &Index,
+ SelectionDAG &DAG) {
+ // Check to see if we can easily represent this as an [r+r] address. This
+ // will fail if it thinks that the address is more profitably represented as
+ // reg+imm, e.g. where imm = 0.
+ if (SelectAddressRegReg(N, Base, Index, DAG))
+ return true;
+
+ // If the operand is an addition, always emit this as [r+r], since this is
+ // better (for code size, and execution, as the memop does the add for free)
+ // than emitting an explicit add.
+ if (N.getOpcode() == ISD::ADD) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+
+ // Otherwise, do it the hard way, using R0 as the base register.
+ Base = DAG.getRegister(PPC::R0, N.getValueType());
+ Index = N;
+ return true;
+}
+
+/// SelectAddressRegImmShift - Returns true if the address N can be
+/// represented by a base register plus a signed 14-bit displacement
+/// [r+imm*4]. Suitable for use by STD and friends.
+bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
+ SDOperand &Base,
+ SelectionDAG &DAG) {
+ // If this can be more profitably realized as r+r, fail.
+ if (SelectAddressRegReg(N, Disp, Base, DAG))
+ return false;
+
+ if (N.getOpcode() == ISD::ADD) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
+ Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ } else {
+ Base = N.getOperand(0);
+ }
+ return true; // [r+i]
+ } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
+ // Match LOAD (ADD (X, Lo(G))).
+ assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
+ && "Cannot handle constant offsets yet!");
+ Disp = N.getOperand(1).getOperand(0); // The global address.
+ assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
+ Disp.getOpcode() == ISD::TargetConstantPool ||
+ Disp.getOpcode() == ISD::TargetJumpTable);
+ Base = N.getOperand(0);
+ return true; // [&g+r]
+ }
+ } else if (N.getOpcode() == ISD::OR) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are
+ // provably disjoint.
+ uint64_t LHSKnownZero, LHSKnownOne;
+ DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
+ if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ Base = N.getOperand(0);
+ Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
+ return true;
+ }
+ }
+ } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+ // Loading from a constant address. Verify low two bits are clear.
+ if ((CN->getValue() & 3) == 0) {
+ // If this address fits entirely in a 14-bit sext immediate field, codegen
+ // this as "d, 0"
+ short Imm;
+ if (isIntS16Immediate(CN, Imm)) {
+ Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
+ Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
+ return true;
+ }
+
+ // Fold the low-part of 32-bit absolute addresses into addr mode.
+ if (CN->getValueType(0) == MVT::i32 ||
+ (int64_t)CN->getValue() == (int)CN->getValue()) {
+ int Addr = (int)CN->getValue();
+
+ // Otherwise, break this down into an LIS + disp.
+ Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
+
+ Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
+ unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
+ Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
+ return true;
+ }
+ }
+ }
+
+ Disp = DAG.getTargetConstant(0, getPointerTy());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ else
+ Base = N;
+ return true; // [r+0]
+}
+
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
+ SDOperand &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) {
+ // Disabled by default for now.
+ if (!EnablePPCPreinc) return false;
+
+ SDOperand Ptr;
+ MVT::ValueType VT;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getLoadedVT();
+
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ ST = ST;
+ Ptr = ST->getBasePtr();
+ VT = ST->getStoredVT();
+ } else
+ return false;
+
+ // PowerPC doesn't have preinc load/store instructions for vectors.
+ if (MVT::isVector(VT))
+ return false;
+
+ // TODO: Check reg+reg first.
+
+ // LDU/STU use reg+imm*4, others use reg+imm.
+ if (VT != MVT::i64) {
+ // reg + imm
+ if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
+ return false;
+ } else {
+ // reg + imm * 4.
+ if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
+ return false;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
+ // sext i32 to i64 when addr mode is r+i.
+ if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
+ LD->getExtensionType() == ISD::SEXTLOAD &&
+ isa<ConstantSDNode>(Offset))
+ return false;
+ }
+
+ AM = ISD::PRE_INC;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// LowerOperation implementation
+//===----------------------------------------------------------------------===//
+
+static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = Op.getValueType();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ Constant *C = CP->getConstVal();
+ SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
+ SDOperand Zero = DAG.getConstant(0, PtrVT);
+
+ const TargetMachine &TM = DAG.getTarget();
+
+ SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
+ SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
+
+ // If this is a non-darwin platform, we don't support non-static relo models
+ // yet.
+ if (TM.getRelocationModel() == Reloc::Static ||
+ !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
+ // Generate non-pic code that has direct accesses to the constant pool.
+ // The address of the global is just (hi(&g)+lo(&g)).
+ return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+ }
+
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ // With PIC, the first instruction is actually "GR+hi(&G)".
+ Hi = DAG.getNode(ISD::ADD, PtrVT,
+ DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
+ }
+
+ Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+ return Lo;
+}
+
+static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = Op.getValueType();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
+ SDOperand Zero = DAG.getConstant(0, PtrVT);
+
+ const TargetMachine &TM = DAG.getTarget();
+
+ SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
+ SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
+
+ // If this is a non-darwin platform, we don't support non-static relo models
+ // yet.
+ if (TM.getRelocationModel() == Reloc::Static ||
+ !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
+ // Generate non-pic code that has direct accesses to the constant pool.
+ // The address of the global is just (hi(&g)+lo(&g)).
+ return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+ }
+
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ // With PIC, the first instruction is actually "GR+hi(&G)".
+ Hi = DAG.getNode(ISD::ADD, PtrVT,
+ DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
+ }
+
+ Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+ return Lo;
+}
+
+static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
+ assert(0 && "TLS not implemented for PPC.");
+}
+
+static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
+ MVT::ValueType PtrVT = Op.getValueType();
+ GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
+ GlobalValue *GV = GSDN->getGlobal();
+ SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
+ SDOperand Zero = DAG.getConstant(0, PtrVT);
+
+ const TargetMachine &TM = DAG.getTarget();
+
+ SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
+ SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
+
+ // If this is a non-darwin platform, we don't support non-static relo models
+ // yet.
+ if (TM.getRelocationModel() == Reloc::Static ||
+ !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
+ // Generate non-pic code that has direct accesses to globals.
+ // The address of the global is just (hi(&g)+lo(&g)).
+ return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+ }
+
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ // With PIC, the first instruction is actually "GR+hi(&G)".
+ Hi = DAG.getNode(ISD::ADD, PtrVT,
+ DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
+ }
+
+ Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
+
+ if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
+ return Lo;
+
+ // If the global is weak or external, we have to go through the lazy
+ // resolution stub.
+ return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
+}
+
+static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ // If we're comparing for equality to zero, expose the fact that this is
+ // implented as a ctlz/srl pair on ppc, so that the dag combiner can
+ // fold the new nodes.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (C->isNullValue() && CC == ISD::SETEQ) {
+ MVT::ValueType VT = Op.getOperand(0).getValueType();
+ SDOperand Zext = Op.getOperand(0);
+ if (VT < MVT::i32) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
+ SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
+ SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
+ DAG.getConstant(Log2b, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
+ }
+ // Leave comparisons against 0 and -1 alone for now, since they're usually
+ // optimized. FIXME: revisit this when we can custom lower all setcc
+ // optimizations.
+ if (C->isAllOnesValue() || C->isNullValue())
+ return SDOperand();
+ }
+
+ // If we have an integer seteq/setne, turn it into a compare against zero
+ // by xor'ing the rhs with the lhs, which is faster than setting a
+ // condition register, reading it back out, and masking the correct bit. The
+ // normal approach here uses sub to do this instead of xor. Using xor exposes
+ // the result to other bit-twiddling opportunities.
+ MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
+ if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ MVT::ValueType VT = Op.getValueType();
+ SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
+ }
+ return SDOperand();
+}
+
+static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
+ int VarArgsFrameIndex,
+ int VarArgsStackOffset,
+ unsigned VarArgsNumGPR,
+ unsigned VarArgsNumFPR,
+ const PPCSubtarget &Subtarget) {
+
+ assert(0 && "VAARG in ELF32 ABI not implemented yet!");
+}
+
+static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
+ int VarArgsFrameIndex,
+ int VarArgsStackOffset,
+ unsigned VarArgsNumGPR,
+ unsigned VarArgsNumFPR,
+ const PPCSubtarget &Subtarget) {
+
+ if (Subtarget.isMachoABI()) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
+ SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
+ return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
+ SV->getOffset());
+ }
+
+ // For ELF 32 ABI we follow the layout of the va_list struct.
+ // We suppose the given va_list is already allocated.
+ //
+ // typedef struct {
+ // char gpr; /* index into the array of 8 GPRs
+ // * stored in the register save area
+ // * gpr=0 corresponds to r3,
+ // * gpr=1 to r4, etc.
+ // */
+ // char fpr; /* index into the array of 8 FPRs
+ // * stored in the register save area
+ // * fpr=0 corresponds to f1,
+ // * fpr=1 to f2, etc.
+ // */
+ // char *overflow_arg_area;
+ // /* location on stack that holds
+ // * the next overflow argument
+ // */
+ // char *reg_save_area;
+ // /* where r3:r10 and f1:f8 (if saved)
+ // * are stored
+ // */
+ // } va_list[1];
+
+
+ SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
+ SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
+
+
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
+ SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
+
+ SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
+ PtrVT);
+ SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
+ PtrVT);
+ SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
+
+ SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
+
+ // Store first byte : number of int regs
+ SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
+ Op.getOperand(1), SV->getValue(),
+ SV->getOffset());
+ SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
+ ConstFPROffset);
+
+ // Store second byte : number of float regs
+ SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
+ SV->getValue(), SV->getOffset());
+ nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
+
+ // Store second word : arguments given on stack
+ SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
+ SV->getValue(), SV->getOffset());
+ nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
+
+ // Store third word : arguments given in registers
+ return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
+ SV->getOffset());
+
+}
+
+#include "PPCGenCallingConv.inc"
+
+/// GetFPR - Get the set of FP registers that should be allocated for arguments,
+/// depending on which subtarget is selected.
+static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
+ if (Subtarget.isMachoABI()) {
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+ return FPR;
+ }
+
+
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8
+ };
+ return FPR;
+}
+
+static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
+ int &VarArgsFrameIndex,
+ int &VarArgsStackOffset,
+ unsigned &VarArgsNumGPR,
+ unsigned &VarArgsNumFPR,
+ const PPCSubtarget &Subtarget) {
+ // TODO: add description of PPC stack frame format, or at least some docs.
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ SSARegMap *RegMap = MF.getSSARegMap();
+ SmallVector<SDOperand, 8> ArgValues;
+ SDOperand Root = Op.getOperand(0);
+
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ bool isMachoABI = Subtarget.isMachoABI();
+ bool isELF32_ABI = Subtarget.isELF32_ABI();
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
+
+ static const unsigned GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+
+ static const unsigned *FPR = GetFPR(Subtarget);
+
+ static const unsigned VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+
+ const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
+ const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
+ const unsigned Num_VR_Regs = sizeof( VR)/sizeof( VR[0]);
+
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ // Add DAG nodes to load the arguments or copy them out of registers. On
+ // entry to a function on PPC, the arguments start after the linkage area,
+ // although the first ones are often in registers.
+ //
+ // In the ELF 32 ABI, GPRs and stack are double word align: an argument
+ // represented with two words (long long or double) must be copied to an
+ // even GPR_idx value or to an even ArgOffset value.
+
+ for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
+ SDOperand ArgVal;
+ bool needsLoad = false;
+ MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
+ unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
+ unsigned ArgSize = ObjSize;
+ unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
+ unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
+ // See if next argument requires stack alignment in ELF
+ bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
+ (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
+ (!(Flags & AlignFlag)));
+
+ unsigned CurArgOffset = ArgOffset;
+ switch (ObjectVT) {
+ default: assert(0 && "Unhandled argument type!");
+ case MVT::i32:
+ // Double word align in ELF
+ if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
+ MF.addLiveIn(GPR[GPR_idx], VReg);
+ ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ // Stack align in ELF
+ if (needsLoad && Expand && isELF32_ABI)
+ ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
+ // All int arguments reserve stack space in Macho ABI.
+ if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
+ break;
+
+ case MVT::i64: // PPC64
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
+ MF.addLiveIn(GPR[GPR_idx], VReg);
+ ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ }
+ // All int arguments reserve stack space in Macho ABI.
+ if (isMachoABI || needsLoad) ArgOffset += 8;
+ break;
+
+ case MVT::f32:
+ case MVT::f64:
+ // Every 4 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_idx != Num_GPR_Regs && isMachoABI) {
+ ++GPR_idx;
+ if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
+ ++GPR_idx;
+ }
+ if (FPR_idx != Num_FPR_Regs) {
+ unsigned VReg;
+ if (ObjectVT == MVT::f32)
+ VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
+ else
+ VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
+ MF.addLiveIn(FPR[FPR_idx], VReg);
+ ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ }
+
+ // Stack align in ELF
+ if (needsLoad && Expand && isELF32_ABI)
+ ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
+ // All FP arguments reserve stack space in Macho ABI.
+ if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Note that vector arguments in registers don't reserve stack space.
+ if (VR_idx != Num_VR_Regs) {
+ unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
+ MF.addLiveIn(VR[VR_idx], VReg);
+ ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
+ ++VR_idx;
+ } else {
+ // This should be simple, but requires getting 16-byte aligned stack
+ // values.
+ assert(0 && "Loading VR argument not implemented yet!");
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined above
+ // that we ran out of physical registers of the appropriate type
+ if (needsLoad) {
+ // If the argument is actually used, emit a load from the right stack
+ // slot.
+ if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
+ int FI = MFI->CreateFixedObject(ObjSize,
+ CurArgOffset + (ArgSize - ObjSize));
+ SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
+ } else {
+ // Don't emit a dead load.
+ ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
+ }
+ }
+
+ ArgValues.push_back(ArgVal);
+ }
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+ if (isVarArg) {
+
+ int depth;
+ if (isELF32_ABI) {
+ VarArgsNumGPR = GPR_idx;
+ VarArgsNumFPR = FPR_idx;
+
+ // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
+ // pointer.
+ depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
+ Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
+ MVT::getSizeInBits(PtrVT)/8);
+
+ VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
+ ArgOffset);
+
+ }
+ else
+ depth = ArgOffset;
+
+ VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
+ depth);
+ SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
+
+ SmallVector<SDOperand, 8> MemOps;
+
+ // In ELF 32 ABI, the fixed integer arguments of a variadic function are
+ // stored to the VarArgsFrameIndex on the stack.
+ if (isELF32_ABI) {
+ for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
+ SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
+ SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+ unsigned VReg;
+ if (isPPC64)
+ VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
+ else
+ VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
+
+ MF.addLiveIn(GPR[GPR_idx], VReg);
+ SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
+ SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
+ }
+
+ // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
+ // on the stack.
+ if (isELF32_ABI) {
+ for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
+ SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
+ SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
+ MemOps.push_back(Store);
+ // Increment the address by eight for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
+ PtrVT);
+ FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
+ }
+
+ for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
+ unsigned VReg;
+ VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
+
+ MF.addLiveIn(FPR[FPR_idx], VReg);
+ SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
+ SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
+ MemOps.push_back(Store);
+ // Increment the address by eight for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
+ PtrVT);
+ FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
+ }
+
+ ArgValues.push_back(Root);
+
+ // Return the new list of results.
+ std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
+ Op.Val->value_end());
+ return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
+}
+
+/// isCallCompatibleAddress - Return the immediate to use if the specified
+/// 32-bit value is representable in the immediate field of a BxA instruction.
+static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C) return 0;
+
+ int Addr = C->getValue();
+ if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
+ (Addr << 6 >> 6) != Addr)
+ return 0; // Top 6 bits have to be sext of immediate.
+
+ return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
+}
+
+
+static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) {
+ SDOperand Chain = Op.getOperand(0);
+ bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+ SDOperand Callee = Op.getOperand(4);
+ unsigned NumOps = (Op.getNumOperands() - 5) / 2;
+
+ bool isMachoABI = Subtarget.isMachoABI();
+ bool isELF32_ABI = Subtarget.isELF32_ABI();
+
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
+ // SelectExpr to use to put the arguments in the appropriate registers.
+ std::vector<SDOperand> args_to_use;
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. We start with 24/48 bytes, which is
+ // prereserved space for [SP][CR][LR][3 x unused].
+ unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
+
+ // Add up all the space actually used.
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
+ ArgSize = std::max(ArgSize, PtrByteSize);
+ NumBytes += ArgSize;
+ }
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ NumBytes = std::max(NumBytes,
+ PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain,
+ DAG.getConstant(NumBytes, PtrVT));
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDOperand StackPtr;
+ if (isPPC64)
+ StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+ else
+ StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ static const unsigned GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+ static const unsigned *FPR = GetFPR(Subtarget);
+
+ static const unsigned VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
+ const unsigned NumFPRs = isMachoABI ? 13 : 8;
+ const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]);
+
+ const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
+ SmallVector<SDOperand, 8> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ bool inMem = false;
+ SDOperand Arg = Op.getOperand(5+2*i);
+ unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
+ unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
+ // See if next argument requires stack alignment in ELF
+ unsigned next = 5+2*(i+1)+1;
+ bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
+ (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
+ (!(Flags & AlignFlag)));
+
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDOperand PtrOff;
+
+ // Stack align in ELF 32
+ if (isELF32_ABI && Expand)
+ PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
+ StackPtr.getValueType());
+ else
+ PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+ PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
+
+ // On PPC64, promote integers to 64-bit values.
+ if (isPPC64 && Arg.getValueType() == MVT::i32) {
+ unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+
+ Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
+ }
+
+ switch (Arg.getValueType()) {
+ default: assert(0 && "Unexpected ValueType for argument!");
+ case MVT::i32:
+ case MVT::i64:
+ // Double word align in ELF
+ if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
+ if (GPR_idx != NumGPRs) {
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+ } else {
+ MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+ inMem = true;
+ }
+ if (inMem || isMachoABI) {
+ // Stack align in ELF
+ if (isELF32_ABI && Expand)
+ ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
+
+ ArgOffset += PtrByteSize;
+ }
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (isVarArg) {
+ // Float varargs need to be promoted to double.
+ if (Arg.getValueType() == MVT::f32)
+ Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
+ }
+
+ if (FPR_idx != NumFPRs) {
+ RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
+
+ if (isVarArg) {
+ SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
+ MemOpChains.push_back(Store);
+
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_idx != NumGPRs) {
+ SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
+ Load));
+ }
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
+ SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
+ SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
+ Load));
+ }
+ } else {
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
+ // GPRs.
+ if (isMachoABI) {
+ if (GPR_idx != NumGPRs)
+ ++GPR_idx;
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
+ !isPPC64) // PPC64 has 64-bit GPR's obviously :)
+ ++GPR_idx;
+ }
+ }
+ } else {
+ MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+ inMem = true;
+ }
+ if (inMem || isMachoABI) {
+ // Stack align in ELF
+ if (isELF32_ABI && Expand)
+ ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
+ if (isPPC64)
+ ArgOffset += 8;
+ else
+ ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
+ }
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ assert(!isVarArg && "Don't support passing vectors to varargs yet!");
+ assert(VR_idx != NumVRs &&
+ "Don't support passing more than 12 vector args yet!");
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
+ break;
+ }
+ }
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDOperand InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
+ InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
+ if (isVarArg && isELF32_ABI) {
+ SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
+ Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<MVT::ValueType> NodeTys;
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+
+ SmallVector<SDOperand, 8> Ops;
+ unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
+ else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
+ else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
+ // If this is an absolute destination address, use the munged value.
+ Callee = SDOperand(Dest, 0);
+ else {
+ // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
+ // to do the call, we can't use PPCISD::CALL.
+ SDOperand MTCTROps[] = {Chain, Callee, InFlag};
+ Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
+ InFlag = Chain.getValue(1);
+
+ // Copy the callee address into R12 on darwin.
+ if (isMachoABI) {
+ Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ NodeTys.clear();
+ NodeTys.push_back(MVT::Other);
+ NodeTys.push_back(MVT::Flag);
+ Ops.push_back(Chain);
+ CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
+ Callee.Val = 0;
+ }
+
+ // If this is a direct call, pass the chain and the callee.
+ if (Callee.Val) {
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ }
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.Val)
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ SDOperand ResultVals[3];
+ unsigned NumResults = 0;
+ NodeTys.clear();
+
+ // If the call has results, copy the values out of the ret val registers.
+ switch (Op.Val->getValueType(0)) {
+ default: assert(0 && "Unexpected ret value!");
+ case MVT::Other: break;
+ case MVT::i32:
+ if (Op.Val->getValueType(1) == MVT::i32) {
+ Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
+ ResultVals[0] = Chain.getValue(0);
+ Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
+ Chain.getValue(2)).getValue(1);
+ ResultVals[1] = Chain.getValue(0);
+ NumResults = 2;
+ NodeTys.push_back(MVT::i32);
+ } else {
+ Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
+ ResultVals[0] = Chain.getValue(0);
+ NumResults = 1;
+ }
+ NodeTys.push_back(MVT::i32);
+ break;
+ case MVT::i64:
+ Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
+ ResultVals[0] = Chain.getValue(0);
+ NumResults = 1;
+ NodeTys.push_back(MVT::i64);
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
+ InFlag).getValue(1);
+ ResultVals[0] = Chain.getValue(0);
+ NumResults = 1;
+ NodeTys.push_back(Op.Val->getValueType(0));
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
+ InFlag).getValue(1);
+ ResultVals[0] = Chain.getValue(0);
+ NumResults = 1;
+ NodeTys.push_back(Op.Val->getValueType(0));
+ break;
+ }
+
+ Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, PtrVT));
+ NodeTys.push_back(MVT::Other);
+
+ // If the function returns void, just return the chain.
+ if (NumResults == 0)
+ return Chain;
+
+ // Otherwise, merge everything together with a MERGE_VALUES node.
+ ResultVals[NumResults++] = Chain;
+ SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
+ ResultVals, NumResults);
+ return Res.getValue(Op.ResNo);
+}
+
+static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
+ bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+ CCState CCInfo(CC, isVarArg, TM, RVLocs);
+ CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
+
+ // If this is the first return lowered for this function, add the regs to the
+ // liveout set for the function.
+ if (DAG.getMachineFunction().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDOperand Chain = Op.getOperand(0);
+ SDOperand Flag;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
+ Flag = Chain.getValue(1);
+ }
+
+ if (Flag.Val)
+ return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
+ else
+ return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
+}
+
+static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) {
+ // When we pop the dynamic allocation we need to restore the SP link.
+
+ // Get the corect type for pointers.
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Construct the stack pointer operand.
+ bool IsPPC64 = Subtarget.isPPC64();
+ unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
+ SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
+
+ // Get the operands for the STACKRESTORE.
+ SDOperand Chain = Op.getOperand(0);
+ SDOperand SaveSP = Op.getOperand(1);
+
+ // Load the old link SP.
+ SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
+
+ // Restore the stack pointer.
+ Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
+
+ // Store the old link SP.
+ return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
+}
+
+static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsPPC64 = Subtarget.isPPC64();
+ bool isMachoABI = Subtarget.isMachoABI();
+
+ // Get current frame pointer save index. The users of this index will be
+ // primarily DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int FPSI = FI->getFramePointerSaveIndex();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!FPSI) {
+ // Find out what the fix offset of the frame pointer save area.
+ int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
+
+ // Allocate the frame index for frame pointer save area.
+ FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
+ // Save the result.
+ FI->setFramePointerSaveIndex(FPSI);
+ }
+
+ // Get the inputs.
+ SDOperand Chain = Op.getOperand(0);
+ SDOperand Size = Op.getOperand(1);
+
+ // Get the corect type for pointers.
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Negate the size.
+ SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
+ DAG.getConstant(0, PtrVT), Size);
+ // Construct a node for the frame pointer save index.
+ SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
+ // Build a DYNALLOC node.
+ SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
+ SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
+ return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
+}
+
+
+/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
+/// possible.
+static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
+ // Not FP? Not a fsel.
+ if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
+ !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
+ return SDOperand();
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+
+ // Cannot handle SETEQ/SETNE.
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
+
+ MVT::ValueType ResVT = Op.getValueType();
+ MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
+ SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+ SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
+
+ // If the RHS of the comparison is a 0.0, we don't need to do the
+ // subtraction at all.
+ if (isFloatingPointZero(RHS))
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETULT:
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETUGE:
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETULE:
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, ResVT,
+ DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
+ }
+
+ SDOperand Cmp;
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETULT:
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
+ case ISD::SETUGE:
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
+ case ISD::SETULE:
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
+ }
+ return SDOperand();
+}
+
+static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
+ assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
+ SDOperand Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::f32)
+ Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
+
+ SDOperand Tmp;
+ switch (Op.getValueType()) {
+ default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
+ case MVT::i32:
+ Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
+ break;
+ case MVT::i64:
+ Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
+ break;
+ }
+
+ // Convert the FP value to an int value through memory.
+ SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
+ if (Op.getValueType() == MVT::i32)
+ Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
+ return Bits;
+}
+
+static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
+ if (Op.getOperand(0).getValueType() == MVT::i64) {
+ SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
+ SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
+ if (Op.getValueType() == MVT::f32)
+ FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
+ return FP;
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::i32 &&
+ "Unhandled SINT_TO_FP type in custom expander!");
+ // Since we only generate this in 64-bit mode, we can take advantage of
+ // 64-bit registers. In particular, sign extend the input value into the
+ // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
+ // then lfd it and fcfid it.
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ int FrameIdx = FrameInfo->CreateStackObject(8, 8);
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
+ Op.getOperand(0));
+
+ // STD the extended value into the stack slot.
+ SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
+ DAG.getEntryNode(), Ext64, FIdx,
+ DAG.getSrcValue(NULL));
+ // Load the value as a double.
+ SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
+
+ // FCFID it and return it.
+ SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
+ if (Op.getValueType() == MVT::f32)
+ FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
+ return FP;
+}
+
+static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
+ Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
+
+ // Expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDOperand Lo = Op.getOperand(0);
+ SDOperand Hi = Op.getOperand(1);
+ SDOperand Amt = Op.getOperand(2);
+
+ SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
+ DAG.getConstant(32, MVT::i32), Amt);
+ SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
+ SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
+ SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
+ SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
+ DAG.getConstant(-32U, MVT::i32));
+ SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
+ SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
+ SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
+ SDOperand OutOps[] = { OutLo, OutHi };
+ return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
+ OutOps, 2);
+}
+
+static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
+ Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
+
+ // Otherwise, expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDOperand Lo = Op.getOperand(0);
+ SDOperand Hi = Op.getOperand(1);
+ SDOperand Amt = Op.getOperand(2);
+
+ SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
+ DAG.getConstant(32, MVT::i32), Amt);
+ SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
+ SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
+ SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
+ SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
+ DAG.getConstant(-32U, MVT::i32));
+ SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
+ SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
+ SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
+ SDOperand OutOps[] = { OutLo, OutHi };
+ return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
+ OutOps, 2);
+}
+
+static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
+ Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
+
+ // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
+ SDOperand Lo = Op.getOperand(0);
+ SDOperand Hi = Op.getOperand(1);
+ SDOperand Amt = Op.getOperand(2);
+
+ SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
+ DAG.getConstant(32, MVT::i32), Amt);
+ SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
+ SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
+ SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
+ SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
+ DAG.getConstant(-32U, MVT::i32));
+ SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
+ SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
+ SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
+ Tmp4, Tmp6, ISD::SETLE);
+ SDOperand OutOps[] = { OutLo, OutHi };
+ return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
+ OutOps, 2);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector related lowering.
+//
+
+// If this is a vector of constants or undefs, get the bits. A bit in
+// UndefBits is set if the corresponding element of the vector is an
+// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
+// zero. Return true if this is not an array of constants, false if it is.
+//
+static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
+ uint64_t UndefBits[2]) {
+ // Start with zero'd results.
+ VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
+
+ unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
+ for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+ SDOperand OpVal = BV->getOperand(i);
+
+ unsigned PartNo = i >= e/2; // In the upper 128 bits?
+ unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
+
+ uint64_t EltBits = 0;
+ if (OpVal.getOpcode() == ISD::UNDEF) {
+ uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
+ UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
+ continue;
+ } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
+ EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
+ } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
+ assert(CN->getValueType(0) == MVT::f32 &&
+ "Only one legal FP vector type!");
+ EltBits = FloatToBits(CN->getValue());
+ } else {
+ // Nonconstant element.
+ return true;
+ }
+
+ VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
+ }
+
+ //printf("%llx %llx %llx %llx\n",
+ // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
+ return false;
+}
+
+// If this is a splat (repetition) of a value across the whole vector, return
+// the smallest size that splats it. For example, "0x01010101010101..." is a
+// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
+// SplatSize = 1 byte.
+static bool isConstantSplat(const uint64_t Bits128[2],
+ const uint64_t Undef128[2],
+ unsigned &SplatBits, unsigned &SplatUndef,
+ unsigned &SplatSize) {
+
+ // Don't let undefs prevent splats from matching. See if the top 64-bits are
+ // the same as the lower 64-bits, ignoring undefs.
+ if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
+ return false; // Can't be a splat if two pieces don't match.
+
+ uint64_t Bits64 = Bits128[0] | Bits128[1];
+ uint64_t Undef64 = Undef128[0] & Undef128[1];
+
+ // Check that the top 32-bits are the same as the lower 32-bits, ignoring
+ // undefs.
+ if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
+ return false; // Can't be a splat if two pieces don't match.
+
+ uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
+ uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
+
+ // If the top 16-bits are different than the lower 16-bits, ignoring
+ // undefs, we have an i32 splat.
+ if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
+ SplatBits = Bits32;
+ SplatUndef = Undef32;
+ SplatSize = 4;
+ return true;
+ }
+
+ uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
+ uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
+
+ // If the top 8-bits are different than the lower 8-bits, ignoring
+ // undefs, we have an i16 splat.
+ if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
+ SplatBits = Bits16;
+ SplatUndef = Undef16;
+ SplatSize = 2;
+ return true;
+ }
+
+ // Otherwise, we have an 8-bit splat.
+ SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
+ SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
+ SplatSize = 1;
+ return true;
+}
+
+/// BuildSplatI - Build a canonical splati of Val with an element size of
+/// SplatSize. Cast the result to VT.
+static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
+ SelectionDAG &DAG) {
+ assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
+
+ static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
+ MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
+ };
+
+ MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
+
+ // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
+ if (Val == -1)
+ SplatSize = 1;
+
+ MVT::ValueType CanonicalVT = VTys[SplatSize-1];
+
+ // Build a canonical splat for this value.
+ SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
+ SmallVector<SDOperand, 8> Ops;
+ Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
+ SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
+ &Ops[0], Ops.size());
+ return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
+}
+
+/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
+ SelectionDAG &DAG,
+ MVT::ValueType DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = LHS.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
+ DAG.getConstant(IID, MVT::i32), LHS, RHS);
+}
+
+/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
+ SDOperand Op2, SelectionDAG &DAG,
+ MVT::ValueType DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = Op0.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
+ DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
+}
+
+
+/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
+/// amount. The result has the specified value type.
+static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
+ MVT::ValueType VT, SelectionDAG &DAG) {
+ // Force LHS/RHS to be the right type.
+ LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
+ RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
+
+ SDOperand Ops[16];
+ for (unsigned i = 0; i != 16; ++i)
+ Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
+ SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
+ DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
+ return DAG.getNode(ISD::BIT_CONVERT, VT, T);
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it. If we CAN select this case, and if it
+// selects to a single instruction, return Op. Otherwise, if we can codegen
+// this case more efficiently than a constant pool load, lower it to the
+// sequence of ops that should be used.
+static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
+ // If this is a vector of constants or undefs, get the bits. A bit in
+ // UndefBits is set if the corresponding element of the vector is an
+ // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
+ // zero.
+ uint64_t VectorBits[2];
+ uint64_t UndefBits[2];
+ if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
+ return SDOperand(); // Not a constant vector.
+
+ // If this is a splat (repetition) of a value across the whole vector, return
+ // the smallest size that splats it. For example, "0x01010101010101..." is a
+ // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
+ // SplatSize = 1 byte.
+ unsigned SplatBits, SplatUndef, SplatSize;
+ if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
+ bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
+
+ // First, handle single instruction cases.
+
+ // All zeros?
+ if (SplatBits == 0) {
+ // Canonicalize all zero vectors to be v4i32.
+ if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
+ SDOperand Z = DAG.getConstant(0, MVT::i32);
+ Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
+ Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
+ }
+ return Op;
+ }
+
+ // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
+ int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
+ if (SextVal >= -16 && SextVal <= 15)
+ return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
+
+
+ // Two instruction sequences.
+
+ // If this value is in the range [-32,30] and is even, use:
+ // tmp = VSPLTI[bhw], result = add tmp, tmp
+ if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
+ Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
+ return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
+ }
+
+ // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
+ // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
+ // for fneg/fabs.
+ if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
+ // Make -1 and vspltisw -1:
+ SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
+
+ // Make the VSLW intrinsic, computing 0x8000_0000.
+ SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
+ OnesV, DAG);
+
+ // xor by OnesV to invert it.
+ Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
+ }
+
+ // Check to see if this is a wide variety of vsplti*, binop self cases.
+ unsigned SplatBitSize = SplatSize*8;
+ static const signed char SplatCsts[] = {
+ -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
+ -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
+ };
+
+ for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
+ // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
+ // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
+ int i = SplatCsts[idx];
+
+ // Figure out what shift amount will be used by altivec if shifted by i in
+ // this splat size.
+ unsigned TypeShiftAmt = i & (SplatBitSize-1);
+
+ // vsplti + shl self.
+ if (SextVal == (i << (int)TypeShiftAmt)) {
+ SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
+ Intrinsic::ppc_altivec_vslw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
+ }
+
+ // vsplti + srl self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
+ Intrinsic::ppc_altivec_vsrw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
+ }
+
+ // vsplti + sra self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
+ Intrinsic::ppc_altivec_vsraw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
+ }
+
+ // vsplti + rol self.
+ if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
+ ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
+ SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
+ Intrinsic::ppc_altivec_vrlw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
+ }
+
+ // t = vsplti c, result = vsldoi t, t, 1
+ if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
+ SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
+ return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
+ }
+ // t = vsplti c, result = vsldoi t, t, 2
+ if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
+ SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
+ return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
+ }
+ // t = vsplti c, result = vsldoi t, t, 3
+ if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
+ SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
+ return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
+ }
+ }
+
+ // Three instruction sequences.
+
+ // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
+ if (SextVal >= 0 && SextVal <= 31) {
+ SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
+ SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
+ LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
+ }
+ // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
+ if (SextVal >= -31 && SextVal <= 0) {
+ SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
+ SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
+ LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
+ }
+ }
+
+ return SDOperand();
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
+ SDOperand RHS, SelectionDAG &DAG) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VMRGHW,
+ OP_VMRGLW,
+ OP_VSPLTISW0,
+ OP_VSPLTISW1,
+ OP_VSPLTISW2,
+ OP_VSPLTISW3,
+ OP_VSLDOI4,
+ OP_VSLDOI8,
+ OP_VSLDOI12
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDOperand OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
+
+ unsigned ShufIdxs[16];
+ switch (OpNum) {
+ default: assert(0 && "Unknown i32 permute!");
+ case OP_VMRGHW:
+ ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
+ ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
+ ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
+ ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
+ break;
+ case OP_VMRGLW:
+ ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
+ ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
+ ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
+ ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
+ break;
+ case OP_VSPLTISW0:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+0;
+ break;
+ case OP_VSPLTISW1:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+4;
+ break;
+ case OP_VSPLTISW2:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+8;
+ break;
+ case OP_VSPLTISW3:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+12;
+ break;
+ case OP_VSLDOI4:
+ return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
+ case OP_VSLDOI8:
+ return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
+ case OP_VSLDOI12:
+ return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
+ }
+ SDOperand Ops[16];
+ for (unsigned i = 0; i != 16; ++i)
+ Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
+
+ return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
+ DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
+}
+
+/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
+/// is a shuffle we can handle in a single instruction, return it. Otherwise,
+/// return the code it can be lowered into. Worst case, it can always be
+/// lowered into a vperm.
+static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
+ SDOperand V1 = Op.getOperand(0);
+ SDOperand V2 = Op.getOperand(1);
+ SDOperand PermMask = Op.getOperand(2);
+
+ // Cases that are handled by instructions that take permute immediates
+ // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
+ // selected by the instruction selector.
+ if (V2.getOpcode() == ISD::UNDEF) {
+ if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
+ PPC::isSplatShuffleMask(PermMask.Val, 2) ||
+ PPC::isSplatShuffleMask(PermMask.Val, 4) ||
+ PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
+ PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
+ PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
+ return Op;
+ }
+ }
+
+ // Altivec has a variety of "shuffle immediates" that take two vector inputs
+ // and produce a fixed permutation. If any of these match, do not lower to
+ // VPERM.
+ if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
+ PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
+ PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
+ PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
+ PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
+ return Op;
+
+ // Check to see if this is a shuffle of 4-byte values. If so, we can use our
+ // perfect shuffle table to emit an optimal matching sequence.
+ unsigned PFIndexes[4];
+ bool isFourElementShuffle = true;
+ for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
+ unsigned EltNo = 8; // Start out undef.
+ for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
+ if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
+ continue; // Undef, ignore it.
+
+ unsigned ByteSource =
+ cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
+ if ((ByteSource & 3) != j) {
+ isFourElementShuffle = false;
+ break;
+ }
+
+ if (EltNo == 8) {
+ EltNo = ByteSource/4;
+ } else if (EltNo != ByteSource/4) {
+ isFourElementShuffle = false;
+ break;
+ }
+ }
+ PFIndexes[i] = EltNo;
+ }
+
+ // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
+ // perfect shuffle vector to determine if it is cost effective to do this as
+ // discrete instructions, or whether we should use a vperm.
+ if (isFourElementShuffle) {
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ // Determining when to avoid vperm is tricky. Many things affect the cost
+ // of vperm, particularly how many times the perm mask needs to be computed.
+ // For example, if the perm mask can be hoisted out of a loop or is already
+ // used (perhaps because there are multiple permutes with the same shuffle
+ // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
+ // the loop requires an extra register.
+ //
+ // As a compromise, we only emit discrete instructions if the shuffle can be
+ // generated in 3 or fewer operations. When we have loop information
+ // available, if this block is within a loop, we should avoid using vperm
+ // for 3-operation perms and use a constant pool load instead.
+ if (Cost < 3)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
+ }
+
+ // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
+ // vector that will get spilled to the constant pool.
+ if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
+
+ // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
+ // that it is in input element units, not in bytes. Convert now.
+ MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
+ unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
+
+ SmallVector<SDOperand, 16> ResultMask;
+ for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
+ unsigned SrcElt;
+ if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
+ SrcElt = 0;
+ else
+ SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
+
+ for (unsigned j = 0; j != BytesPerElement; ++j)
+ ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
+ MVT::i8));
+ }
+
+ SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
+ &ResultMask[0], ResultMask.size());
+ return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
+}
+
+/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
+/// altivec comparison. If it is, return true and fill in Opc/isDot with
+/// information about the intrinsic.
+static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
+ bool &isDot) {
+ unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
+ CompareOpc = -1;
+ isDot = false;
+ switch (IntrinsicID) {
+ default: return false;
+ // Comparison predicates.
+ case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
+
+ // Normal Comparisons.
+ case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
+ }
+ return true;
+}
+
+/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
+/// lower, do it, otherwise return null.
+static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
+ // If this is a lowered altivec predicate compare, CompareOpc is set to the
+ // opcode number of the comparison.
+ int CompareOpc;
+ bool isDot;
+ if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
+ return SDOperand(); // Don't custom lower most intrinsics.
+
+ // If this is a non-dot comparison, make the VCMP node and we are done.
+ if (!isDot) {
+ SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(CompareOpc, MVT::i32));
+ return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
+ }
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ SDOperand Ops[] = {
+ Op.getOperand(2), // LHS
+ Op.getOperand(3), // RHS
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ std::vector<MVT::ValueType> VTs;
+ VTs.push_back(Op.getOperand(2).getValueType());
+ VTs.push_back(MVT::Flag);
+ SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
+
+ // Now that we have the comparison, emit a copy from the CR to a GPR.
+ // This is flagged to the above dot comparison.
+ SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ CompNode.getValue(1));
+
+ // Unpack the result based on how the target uses it.
+ unsigned BitNo; // Bit # of CR6.
+ bool InvertBit; // Invert result?
+ switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Return the value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = false;
+ break;
+ case 1: // Return the inverted value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = true;
+ break;
+ case 2: // Return the value of the LT bit of CR6.
+ BitNo = 2; InvertBit = false;
+ break;
+ case 3: // Return the inverted value of the LT bit of CR6.
+ BitNo = 2; InvertBit = true;
+ break;
+ }
+
+ // Shift the bit into the low position.
+ Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
+ DAG.getConstant(8-(3-BitNo), MVT::i32));
+ // Isolate the bit.
+ Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+
+ // If we are supposed to, toggle the bit.
+ if (InvertBit)
+ Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+ return Flags;
+}
+
+static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
+ // Create a stack slot that is 16-byte aligned.
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ int FrameIdx = FrameInfo->CreateStackObject(16, 16);
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ // Store the input value into Value#0 of the stack slot.
+ SDOperand Store = DAG.getStore(DAG.getEntryNode(),
+ Op.getOperand(0), FIdx, NULL, 0);
+ // Load it out.
+ return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
+}
+
+static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
+ if (Op.getValueType() == MVT::v4i32) {
+ SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
+ SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
+
+ SDOperand RHSSwap = // = vrlw RHS, 16
+ BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
+
+ // Shrinkify inputs to v8i16.
+ LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
+ RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
+ RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
+
+ // Low parts multiplied together, generating 32-bit results (we ignore the
+ // top parts).
+ SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
+ LHS, RHS, DAG, MVT::v4i32);
+
+ SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
+ LHS, RHSSwap, Zero, DAG, MVT::v4i32);
+ // Shift the high parts up 16 bits.
+ HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
+ return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
+ } else if (Op.getValueType() == MVT::v8i16) {
+ SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
+
+ return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
+ LHS, RHS, Zero, DAG);
+ } else if (Op.getValueType() == MVT::v16i8) {
+ SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ // Multiply the even 8-bit parts, producing 16-bit sums.
+ SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
+ LHS, RHS, DAG, MVT::v8i16);
+ EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
+
+ // Multiply the odd 8-bit parts, producing 16-bit sums.
+ SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
+ LHS, RHS, DAG, MVT::v8i16);
+ OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
+
+ // Merge the results together.
+ SDOperand Ops[16];
+ for (unsigned i = 0; i != 8; ++i) {
+ Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
+ Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
+ }
+ return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
+ DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
+ } else {
+ assert(0 && "Unknown mul to lower!");
+ abort();
+ }
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
+ switch (Op.getOpcode()) {
+ default: assert(0 && "Wasn't expecting to be able to lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
+ VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
+
+ case ISD::VAARG:
+ return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
+ VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
+
+ case ISD::FORMAL_ARGUMENTS:
+ return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
+ VarArgsStackOffset, VarArgsNumGPR,
+ VarArgsNumFPR, PPCSubTarget);
+
+ case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
+ case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
+ case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
+ case ISD::DYNAMIC_STACKALLOC:
+ return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
+
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+
+ // Lower 64-bit shifts.
+ case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
+ case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
+ case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
+
+ // Vector-related lowering.
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+
+ // Frame & Return address. Currently unimplemented
+ case ISD::RETURNADDR: break;
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ }
+ return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
+ MachineBasicBlock *BB) {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8 ||
+ MI->getOpcode() == PPC::SELECT_CC_F4 ||
+ MI->getOpcode() == PPC::SELECT_CC_F8 ||
+ MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ unsigned SelectPred = MI->getOperand(4).getImm();
+ BuildMI(BB, TII->get(PPC::BCC))
+ .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
+ e = BB->succ_end(); i != e; ++i)
+ sinkMBB->addSuccessor(*i);
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while(!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ delete MI; // The pseudo instruction is gone now.
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ TargetMachine &TM = getTargetMachine();
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default: break;
+ case PPCISD::SHL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->getValue() == 0) // 0 << V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->getValue() == 0) // 0 >>u V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRA:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->getValue() == 0 || // 0 >>s V -> 0.
+ C->isAllOnesValue()) // -1 >>s V -> -1.
+ return N->getOperand(0);
+ }
+ break;
+
+ case ISD::SINT_TO_FP:
+ if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
+ if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
+ // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
+ // We allow the src/dst to be either f32/f64, but the intermediate
+ // type must be i64.
+ if (N->getOperand(0).getValueType() == MVT::i64) {
+ SDOperand Val = N->getOperand(0).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
+ DCI.AddToWorklist(Val.Val);
+ }
+
+ Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
+ DCI.AddToWorklist(Val.Val);
+ Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
+ DCI.AddToWorklist(Val.Val);
+ if (N->getValueType(0) == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
+ DCI.AddToWorklist(Val.Val);
+ }
+ return Val;
+ } else if (N->getOperand(0).getValueType() == MVT::i32) {
+ // If the intermediate type is i32, we can avoid the load/store here
+ // too.
+ }
+ }
+ }
+ break;
+ case ISD::STORE:
+ // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
+ if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
+ N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
+ N->getOperand(1).getValueType() == MVT::i32) {
+ SDOperand Val = N->getOperand(1).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
+ DCI.AddToWorklist(Val.Val);
+ }
+ Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
+ DCI.AddToWorklist(Val.Val);
+
+ Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
+ N->getOperand(2), N->getOperand(3));
+ DCI.AddToWorklist(Val.Val);
+ return Val;
+ }
+
+ // Turn STORE (BSWAP) -> sthbrx/stwbrx.
+ if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
+ N->getOperand(1).Val->hasOneUse() &&
+ (N->getOperand(1).getValueType() == MVT::i32 ||
+ N->getOperand(1).getValueType() == MVT::i16)) {
+ SDOperand BSwapOp = N->getOperand(1).getOperand(0);
+ // Do an any-extend to 32-bits if this is a half-word input.
+ if (BSwapOp.getValueType() == MVT::i16)
+ BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
+
+ return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
+ N->getOperand(2), N->getOperand(3),
+ DAG.getValueType(N->getOperand(1).getValueType()));
+ }
+ break;
+ case ISD::BSWAP:
+ // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
+ if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
+ N->getOperand(0).hasOneUse() &&
+ (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
+ SDOperand Load = N->getOperand(0);
+ LoadSDNode *LD = cast<LoadSDNode>(Load);
+ // Create the byte-swapping load.
+ std::vector<MVT::ValueType> VTs;
+ VTs.push_back(MVT::i32);
+ VTs.push_back(MVT::Other);
+ SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
+ SDOperand Ops[] = {
+ LD->getChain(), // Chain
+ LD->getBasePtr(), // Ptr
+ SV, // SrcValue
+ DAG.getValueType(N->getValueType(0)) // VT
+ };
+ SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
+
+ // If this is an i16 load, insert the truncate.
+ SDOperand ResVal = BSLoad;
+ if (N->getValueType(0) == MVT::i16)
+ ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
+
+ // First, combine the bswap away. This makes the value produced by the
+ // load dead.
+ DCI.CombineTo(N, ResVal);
+
+ // Next, combine the load away, we give it a bogus result value but a real
+ // chain result. The result value is dead because the bswap is dead.
+ DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
+
+ // Return N so it doesn't get rechecked!
+ return SDOperand(N, 0);
+ }
+
+ break;
+ case PPCISD::VCMP: {
+ // If a VCMPo node already exists with exactly the same operands as this
+ // node, use its result instead of this node (VCMPo computes both a CR6 and
+ // a normal output).
+ //
+ if (!N->getOperand(0).hasOneUse() &&
+ !N->getOperand(1).hasOneUse() &&
+ !N->getOperand(2).hasOneUse()) {
+
+ // Scan all of the users of the LHS, looking for VCMPo's that match.
+ SDNode *VCMPoNode = 0;
+
+ SDNode *LHSN = N->getOperand(0).Val;
+ for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
+ UI != E; ++UI)
+ if ((*UI)->getOpcode() == PPCISD::VCMPo &&
+ (*UI)->getOperand(1) == N->getOperand(1) &&
+ (*UI)->getOperand(2) == N->getOperand(2) &&
+ (*UI)->getOperand(0) == N->getOperand(0)) {
+ VCMPoNode = *UI;
+ break;
+ }
+
+ // If there is no VCMPo node, or if the flag value has a single use, don't
+ // transform this.
+ if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
+ break;
+
+ // Look at the (necessarily single) use of the flag value. If it has a
+ // chain, this transformation is more complex. Note that multiple things
+ // could use the value result, which we should ignore.
+ SDNode *FlagUser = 0;
+ for (SDNode::use_iterator UI = VCMPoNode->use_begin();
+ FlagUser == 0; ++UI) {
+ assert(UI != VCMPoNode->use_end() && "Didn't find user!");
+ SDNode *User = *UI;
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
+ if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
+ FlagUser = User;
+ break;
+ }
+ }
+ }
+
+ // If the user is a MFCR instruction, we know this is safe. Otherwise we
+ // give up for right now.
+ if (FlagUser->getOpcode() == PPCISD::MFCR)
+ return SDOperand(VCMPoNode, 0);
+ }
+ break;
+ }
+ case ISD::BR_CC: {
+ // If this is a branch on an altivec predicate comparison, lower this so
+ // that we don't have to do a MFCR: instead, branch directly on CR6. This
+ // lowering is done pre-legalize, because the legalizer lowers the predicate
+ // compare down to code that is difficult to reassemble.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+ SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
+ int CompareOpc;
+ bool isDot;
+
+ if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
+ isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
+ assert(isDot && "Can't compare against a vector result!");
+
+ // If this is a comparison against something other than 0/1, then we know
+ // that the condition is never/always true.
+ unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
+ if (Val != 0 && Val != 1) {
+ if (CC == ISD::SETEQ) // Cond never true, remove branch.
+ return N->getOperand(0);
+ // Always !=, turn it into an unconditional branch.
+ return DAG.getNode(ISD::BR, MVT::Other,
+ N->getOperand(0), N->getOperand(4));
+ }
+
+ bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ std::vector<MVT::ValueType> VTs;
+ SDOperand Ops[] = {
+ LHS.getOperand(2), // LHS of compare
+ LHS.getOperand(3), // RHS of compare
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ VTs.push_back(LHS.getOperand(2).getValueType());
+ VTs.push_back(MVT::Flag);
+ SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
+
+ // Unpack the result based on how the target uses it.
+ PPC::Predicate CompOpc;
+ switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Branch on the value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
+ break;
+ case 1: // Branch on the inverted value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
+ break;
+ case 2: // Branch on the value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
+ break;
+ case 3: // Branch on the inverted value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
+ break;
+ }
+
+ return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
+ DAG.getConstant(CompOpc, MVT::i32),
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ N->getOperand(4), CompNode.getValue(1));
+ }
+ break;
+ }
+ }
+
+ return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
+ uint64_t Mask,
+ uint64_t &KnownZero,
+ uint64_t &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = 0;
+ KnownOne = 0;
+ switch (Op.getOpcode()) {
+ default: break;
+ case PPCISD::LBRX: {
+ // lhbrx is known to have the top bits cleared out.
+ if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
+ KnownZero = 0xFFFF0000;
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
+ default: break;
+ case Intrinsic::ppc_altivec_vcmpbfp_p:
+ case Intrinsic::ppc_altivec_vcmpeqfp_p:
+ case Intrinsic::ppc_altivec_vcmpequb_p:
+ case Intrinsic::ppc_altivec_vcmpequh_p:
+ case Intrinsic::ppc_altivec_vcmpequw_p:
+ case Intrinsic::ppc_altivec_vcmpgefp_p:
+ case Intrinsic::ppc_altivec_vcmpgtfp_p:
+ case Intrinsic::ppc_altivec_vcmpgtsb_p:
+ case Intrinsic::ppc_altivec_vcmpgtsh_p:
+ case Intrinsic::ppc_altivec_vcmpgtsw_p:
+ case Intrinsic::ppc_altivec_vcmpgtub_p:
+ case Intrinsic::ppc_altivec_vcmpgtuh_p:
+ case Intrinsic::ppc_altivec_vcmpgtuw_p:
+ KnownZero = ~1U; // All bits but the low one are known to be zero.
+ break;
+ }
+ }
+ }
+}
+
+
+/// getConstraintType - Given a constraint, return the type of
+/// constraint it is for this target.
+PPCTargetLowering::ConstraintType
+PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'b':
+ case 'r':
+ case 'f':
+ case 'v':
+ case 'y':
+ return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT::ValueType VT) const {
+ if (Constraint.size() == 1) {
+ // GCC RS6000 Constraint Letters
+ switch (Constraint[0]) {
+ case 'b': // R1-R31
+ case 'r': // R0-R31
+ if (VT == MVT::i64 && PPCSubTarget.isPPC64())
+ return std::make_pair(0U, PPC::G8RCRegisterClass);
+ return std::make_pair(0U, PPC::GPRCRegisterClass);
+ case 'f':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, PPC::F4RCRegisterClass);
+ else if (VT == MVT::f64)
+ return std::make_pair(0U, PPC::F8RCRegisterClass);
+ break;
+ case 'v':
+ return std::make_pair(0U, PPC::VRRCRegisterClass);
+ case 'y': // crrc
+ return std::make_pair(0U, PPC::CRRCRegisterClass);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+
+// isOperandValidForConstraint
+SDOperand PPCTargetLowering::
+isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
+ switch (Letter) {
+ default: break;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P': {
+ ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
+ if (!CST) return SDOperand(0, 0); // Must be an immediate to match.
+ unsigned Value = CST->getValue();
+ switch (Letter) {
+ default: assert(0 && "Unknown constraint letter!");
+ case 'I': // "I" is a signed 16-bit constant.
+ if ((short)Value == (int)Value)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
+ case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
+ if ((short)Value == 0)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
+ if ((Value >> 16) == 0)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'M': // "M" is a constant that is greater than 31.
+ if (Value > 31)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'N': // "N" is a positive constant that is an exact power of two.
+ if ((int)Value > 0 && isPowerOf2_32(Value))
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'O': // "O" is the constant zero.
+ if (Value == 0)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
+ if ((short)-Value == (int)-Value)
+ return DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ }
+ break;
+ }
+ }
+
+ // Handle standard constraint letters.
+ return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ const Type *Ty) const {
+ // FIXME: PPC does not allow r+i addressing modes for vectors!
+
+ // PPC allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // PPC only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ default:
+ // No other scales are supported.
+ return false;
+ }
+
+ return true;
+}
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
+ // PPC allows a sign-extended 16-bit immediate field.
+ return (V > -(1 << 16) && V < (1 << 16)-1);
+}
+
+bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
+ return false;
+}
+
+SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
+{
+ // Depths > 0 not supported yet!
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
+ return SDOperand();
+
+ MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
+ && MFI->getStackSize();
+
+ if (isPPC64)
+ return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
+ MVT::i32);
+ else
+ return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
+ MVT::i32);
+}