It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp
new file mode 100644
index 0000000..fcad318
--- /dev/null
+++ b/utils/TableGen/DAGISelEmitter.cpp
@@ -0,0 +1,4001 @@
+//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tablegen backend emits a DAG instruction selector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DAGISelEmitter.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include <algorithm>
+#include <set>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
+
+/// FilterVTs - Filter a list of VT's according to a predicate.
+///
+template<typename T>
+static std::vector<MVT::ValueType>
+FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
+ std::vector<MVT::ValueType> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter(InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+template<typename T>
+static std::vector<unsigned char>
+FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter((MVT::ValueType)InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static std::vector<unsigned char>
+ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
+ const std::vector<unsigned char> &RHS) {
+ if (LHS.size() > RHS.size()) return false;
+ for (unsigned i = 0, e = LHS.size(); i != e; ++i)
+ if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
+ return false;
+ return true;
+}
+
+/// isExtIntegerVT - Return true if the specified extended value type vector
+/// contains isInt or an integer value type.
+static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
+}
+
+/// isExtFloatingPointVT - Return true if the specified extended value type
+/// vector contains isFP or a FP value type.
+static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == MVT::isFP ||
+ !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
+}
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R) {
+ OperandNo = R->getValueAsInt("OperandNum");
+
+ if (R->isSubClassOf("SDTCisVT")) {
+ ConstraintType = SDTCisVT;
+ x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+ } else if (R->isSubClassOf("SDTCisPtrTy")) {
+ ConstraintType = SDTCisPtrTy;
+ } else if (R->isSubClassOf("SDTCisInt")) {
+ ConstraintType = SDTCisInt;
+ } else if (R->isSubClassOf("SDTCisFP")) {
+ ConstraintType = SDTCisFP;
+ } else if (R->isSubClassOf("SDTCisSameAs")) {
+ ConstraintType = SDTCisSameAs;
+ x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+ ConstraintType = SDTCisVTSmallerThanOp;
+ x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+ ConstraintType = SDTCisOpSmallerThanOp;
+ x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
+ R->getValueAsInt("BigOperandNum");
+ } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
+ ConstraintType = SDTCisIntVectorOfSameSize;
+ x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOpNum");
+ } else {
+ cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
+ exit(1);
+ }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, which has NumResults results.
+TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
+ TreePatternNode *N,
+ unsigned NumResults) const {
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ if (OpNo >= (NumResults + N->getNumChildren())) {
+ cerr << "Invalid operand number " << OpNo << " ";
+ N->dump();
+ cerr << '\n';
+ exit(1);
+ }
+
+ if (OpNo < NumResults)
+ return N; // FIXME: need value #
+ else
+ return N->getChild(OpNo-NumResults);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const {
+ unsigned NumResults = NodeInfo.getNumResults();
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NodeInfo.getNumOperands() >= 0) {
+ if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
+ TP.error(N->getOperator()->getName() + " node requires exactly " +
+ itostr(NodeInfo.getNumOperands()) + " operands!");
+ }
+
+ const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
+
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
+
+ switch (ConstraintType) {
+ default: assert(0 && "Unknown constraint type!");
+ case SDTCisVT:
+ // Operand must be a particular type.
+ return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
+ case SDTCisPtrTy: {
+ // Operand must be same as target pointer type.
+ return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
+ }
+ case SDTCisInt: {
+ // If there is only one integer type supported, this must be it.
+ std::vector<MVT::ValueType> IntVTs =
+ FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
+
+ // If we found exactly one supported integer type, apply it.
+ if (IntVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(IntVTs[0], TP);
+ return NodeToApply->UpdateNodeType(MVT::isInt, TP);
+ }
+ case SDTCisFP: {
+ // If there is only one FP type supported, this must be it.
+ std::vector<MVT::ValueType> FPVTs =
+ FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
+
+ // If we found exactly one supported FP type, apply it.
+ if (FPVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(FPVTs[0], TP);
+ return NodeToApply->UpdateNodeType(MVT::isFP, TP);
+ }
+ case SDTCisSameAs: {
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
+ return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
+ OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
+ }
+ case SDTCisVTSmallerThanOp: {
+ // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
+ // have an integer type that is smaller than the VT.
+ if (!NodeToApply->isLeaf() ||
+ !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
+ !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+ ->isSubClassOf("ValueType"))
+ TP.error(N->getOperator()->getName() + " expects a VT operand!");
+ MVT::ValueType VT =
+ getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
+ if (!MVT::isInteger(VT))
+ TP.error(N->getOperator()->getName() + " VT operand must be integer!");
+
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
+
+ // It must be integer.
+ bool MadeChange = false;
+ MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
+
+ // This code only handles nodes that have one type set. Assert here so
+ // that we can change this if we ever need to deal with multiple value
+ // types at this point.
+ assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
+ if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
+ OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
+ return false;
+ }
+ case SDTCisOpSmallerThanOp: {
+ TreePatternNode *BigOperand =
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
+
+ // Both operands must be integer or FP, but we don't care which.
+ bool MadeChange = false;
+
+ // This code does not currently handle nodes which have multiple types,
+ // where some types are integer, and some are fp. Assert that this is not
+ // the case.
+ assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
+ isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
+ !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
+ isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
+ "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+ if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
+ else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
+ if (isExtIntegerInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
+ else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
+
+ std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
+
+ if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, MVT::isInteger);
+ } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, MVT::isFloatingPoint);
+ } else {
+ VTs.clear();
+ }
+
+ switch (VTs.size()) {
+ default: // Too many VT's to pick from.
+ case 0: break; // No info yet.
+ case 1:
+ // Only one VT of this flavor. Cannot ever satisify the constraints.
+ return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
+ case 2:
+ // If we have exactly two possible types, the little operand must be the
+ // small one, the big operand should be the big one. Common with
+ // float/double for example.
+ assert(VTs[0] < VTs[1] && "Should be sorted!");
+ MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
+ MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
+ break;
+ }
+ return MadeChange;
+ }
+ case SDTCisIntVectorOfSameSize: {
+ TreePatternNode *OtherOperand =
+ getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
+ N, NumResults);
+ if (OtherOperand->hasTypeSet()) {
+ if (!MVT::isVector(OtherOperand->getTypeNum(0)))
+ TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
+ MVT::ValueType IVT = OtherOperand->getTypeNum(0);
+ IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
+ return NodeToApply->UpdateNodeType(IVT, TP);
+ }
+ return false;
+ }
+ }
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
+ EnumName = R->getValueAsString("Opcode");
+ SDClassName = R->getValueAsString("SDClass");
+ Record *TypeProfile = R->getValueAsDef("TypeProfile");
+ NumResults = TypeProfile->getValueAsInt("NumResults");
+ NumOperands = TypeProfile->getValueAsInt("NumOperands");
+
+ // Parse the properties.
+ Properties = 0;
+ std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+ for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
+ if (PropList[i]->getName() == "SDNPCommutative") {
+ Properties |= 1 << SDNPCommutative;
+ } else if (PropList[i]->getName() == "SDNPAssociative") {
+ Properties |= 1 << SDNPAssociative;
+ } else if (PropList[i]->getName() == "SDNPHasChain") {
+ Properties |= 1 << SDNPHasChain;
+ } else if (PropList[i]->getName() == "SDNPOutFlag") {
+ Properties |= 1 << SDNPOutFlag;
+ } else if (PropList[i]->getName() == "SDNPInFlag") {
+ Properties |= 1 << SDNPInFlag;
+ } else if (PropList[i]->getName() == "SDNPOptInFlag") {
+ Properties |= 1 << SDNPOptInFlag;
+ } else {
+ cerr << "Unknown SD Node property '" << PropList[i]->getName()
+ << "' on node '" << R->getName() << "'!\n";
+ exit(1);
+ }
+ }
+
+
+ // Parse the type constraints.
+ std::vector<Record*> ConstraintList =
+ TypeProfile->getValueAsListOfDefs("Constraints");
+ TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+TreePatternNode::~TreePatternNode() {
+#if 0 // FIXME: implement refcounted tree nodes!
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ delete getChild(i);
+#endif
+}
+
+/// UpdateNodeType - Set the node type of N to VT if VT contains
+/// information. If N already contains a conflicting type, then throw an
+/// exception. This returns true if any information was updated.
+///
+bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
+ TreePattern &TP) {
+ assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
+
+ if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
+ return false;
+ if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (getExtTypeNum(0) == MVT::iPTR) {
+ if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
+ return false;
+ if (isExtIntegerInVTs(ExtVTs)) {
+ std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
+ if (FVTs.size()) {
+ setTypes(ExtVTs);
+ return true;
+ }
+ }
+ }
+
+ if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+ if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
+ //assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ if (FVTs.size()) {
+ setTypes(FVTs);
+ return true;
+ }
+ }
+ if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs =
+ FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+
+ // If we know this is an int or fp type, and we are told it is a specific one,
+ // take the advice.
+ //
+ // Similarly, we should probably set the type here to the intersection of
+ // {isInt|isFP} and ExtVTs
+ if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
+ (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
+ setTypes(ExtVTs);
+ return true;
+ }
+ if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (isLeaf()) {
+ dump();
+ cerr << " ";
+ TP.error("Type inference contradiction found in node!");
+ } else {
+ TP.error("Type inference contradiction found in node " +
+ getOperator()->getName() + "!");
+ }
+ return true; // unreachable
+}
+
+
+void TreePatternNode::print(std::ostream &OS) const {
+ if (isLeaf()) {
+ OS << *getLeafValue();
+ } else {
+ OS << "(" << getOperator()->getName();
+ }
+
+ // FIXME: At some point we should handle printing all the value types for
+ // nodes that are multiply typed.
+ switch (getExtTypeNum(0)) {
+ case MVT::Other: OS << ":Other"; break;
+ case MVT::isInt: OS << ":isInt"; break;
+ case MVT::isFP : OS << ":isFP"; break;
+ case MVT::isUnknown: ; /*OS << ":?";*/ break;
+ case MVT::iPTR: OS << ":iPTR"; break;
+ default: {
+ std::string VTName = llvm::getName(getTypeNum(0));
+ // Strip off MVT:: prefix if present.
+ if (VTName.substr(0,5) == "MVT::")
+ VTName = VTName.substr(5);
+ OS << ":" << VTName;
+ break;
+ }
+ }
+
+ if (!isLeaf()) {
+ if (getNumChildren() != 0) {
+ OS << " ";
+ getChild(0)->print(OS);
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ OS << ", ";
+ getChild(i)->print(OS);
+ }
+ }
+ OS << ")";
+ }
+
+ if (!PredicateFn.empty())
+ OS << "<<P:" << PredicateFn << ">>";
+ if (TransformFn)
+ OS << "<<X:" << TransformFn->getName() << ">>";
+ if (!getName().empty())
+ OS << ":$" << getName();
+
+}
+void TreePatternNode::dump() const {
+ print(*cerr.stream());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively isomorphic to
+/// the specified node. For this comparison, all of the state of the node
+/// is considered, except for the assigned name. Nodes with differing names
+/// that are otherwise identical are considered isomorphic.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
+ if (N == this) return true;
+ if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+ getPredicateFn() != N->getPredicateFn() ||
+ getTransformFn() != N->getTransformFn())
+ return false;
+
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
+ if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
+ return DI->getDef() == NDI->getDef();
+ return getLeafValue() == N->getLeafValue();
+ }
+
+ if (N->getOperator() != getOperator() ||
+ N->getNumChildren() != getNumChildren()) return false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
+ return false;
+ return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+ TreePatternNode *New;
+ if (isLeaf()) {
+ New = new TreePatternNode(getLeafValue());
+ } else {
+ std::vector<TreePatternNode*> CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(getChild(i)->clone());
+ New = new TreePatternNode(getOperator(), CChildren);
+ }
+ New->setName(getName());
+ New->setTypes(getExtTypes());
+ New->setPredicateFn(getPredicateFn());
+ New->setTransformFn(getTransformFn());
+ return New;
+}
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::
+SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
+ if (isLeaf()) return;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ if (Child->isLeaf()) {
+ Init *Val = Child->getLeafValue();
+ if (dynamic_cast<DefInit*>(Val) &&
+ static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
+ // We found a use of a formal argument, replace it with its value.
+ Child = ArgMap[Child->getName()];
+ assert(Child && "Couldn't find formal argument!");
+ setChild(i, Child);
+ }
+ } else {
+ getChild(i)->SubstituteFormalArguments(ArgMap);
+ }
+ }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, inline them into place, giving us a pattern without any
+/// PatFrag references.
+TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
+ if (isLeaf()) return this; // nothing to do.
+ Record *Op = getOperator();
+
+ if (!Op->isSubClassOf("PatFrag")) {
+ // Just recursively inline children nodes.
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ setChild(i, getChild(i)->InlinePatternFragments(TP));
+ return this;
+ }
+
+ // Otherwise, we found a reference to a fragment. First, look up its
+ // TreePattern record.
+ TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
+
+ // Verify that we are passing the right number of operands.
+ if (Frag->getNumArgs() != Children.size())
+ TP.error("'" + Op->getName() + "' fragment requires " +
+ utostr(Frag->getNumArgs()) + " operands!");
+
+ TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
+
+ // Resolve formal arguments to their actual value.
+ if (Frag->getNumArgs()) {
+ // Compute the map of formal to actual arguments.
+ std::map<std::string, TreePatternNode*> ArgMap;
+ for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
+ ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
+
+ FragTree->SubstituteFormalArguments(ArgMap);
+ }
+
+ FragTree->setName(getName());
+ FragTree->UpdateNodeType(getExtTypes(), TP);
+
+ // Get a new copy of this fragment to stitch into here.
+ //delete this; // FIXME: implement refcounting!
+ return FragTree;
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it. This infer the type of register
+/// references from the register file information, for example.
+///
+static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
+ TreePattern &TP) {
+ // Some common return values
+ std::vector<unsigned char> Unknown(1, MVT::isUnknown);
+ std::vector<unsigned char> Other(1, MVT::Other);
+
+ // Check to see if this is a register or a register class...
+ if (R->isSubClassOf("RegisterClass")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenRegisterClass &RC =
+ TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
+ return ConvertVTs(RC.getValueTypes());
+ } else if (R->isSubClassOf("PatFrag")) {
+ // Pattern fragment types will be resolved when they are inlined.
+ return Unknown;
+ } else if (R->isSubClassOf("Register")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
+ return T.getRegisterVTs(R);
+ } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ // Using a VTSDNode or CondCodeSDNode.
+ return Other;
+ } else if (R->isSubClassOf("ComplexPattern")) {
+ if (NotRegisters)
+ return Unknown;
+ std::vector<unsigned char>
+ ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
+ return ComplexPat;
+ } else if (R->getName() == "ptr_rc") {
+ Other[0] = MVT::iPTR;
+ return Other;
+ } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg") {
+ // Placeholder.
+ return Unknown;
+ }
+
+ TP.error("Unknown node flavor used in pattern: " + R->getName());
+ return Other;
+}
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevent to
+/// this node and its children in the tree. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+ DAGISelEmitter &ISE = TP.getDAGISelEmitter();
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ // If it's a regclass or something else known, include the type.
+ return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+ // Int inits are always integers. :)
+ bool MadeChange = UpdateNodeType(MVT::isInt, TP);
+
+ if (hasTypeSet()) {
+ // At some point, it may make sense for this tree pattern to have
+ // multiple types. Assert here that it does not, so we revisit this
+ // code when appropriate.
+ assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
+ MVT::ValueType VT = getTypeNum(0);
+ for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
+ assert(getTypeNum(i) == VT && "TreePattern has too many types!");
+
+ VT = getTypeNum(0);
+ if (VT != MVT::iPTR) {
+ unsigned Size = MVT::getSizeInBits(VT);
+ // Make sure that the value is representable for this type.
+ if (Size < 32) {
+ int Val = (II->getValue() << (32-Size)) >> (32-Size);
+ if (Val != II->getValue())
+ TP.error("Sign-extended integer value '" + itostr(II->getValue())+
+ "' is out of range for type '" +
+ getEnumName(getTypeNum(0)) + "'!");
+ }
+ }
+ }
+
+ return MadeChange;
+ }
+ return false;
+ }
+
+ // special handling for set, which isn't really an SDNode.
+ if (getOperator()->getName() == "set") {
+ assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
+ bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ // Types of operands must match.
+ MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
+ MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ return MadeChange;
+ } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
+ getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
+ getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
+ unsigned IID =
+ dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
+ const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
+ bool MadeChange = false;
+
+ // Apply the result type to the node.
+ MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
+
+ if (getNumChildren() != Int.ArgVTs.size())
+ TP.error("Intrinsic '" + Int.Name + "' expects " +
+ utostr(Int.ArgVTs.size()-1) + " operands, not " +
+ utostr(getNumChildren()-1) + " operands!");
+
+ // Apply type info to the intrinsic ID.
+ MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
+
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ MVT::ValueType OpVT = Int.ArgVTs[i];
+ MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ }
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("SDNode")) {
+ const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
+
+ bool MadeChange = NI.ApplyTypeConstraints(this, TP);
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ // Branch, etc. do not produce results and top-level forms in instr pattern
+ // must have void types.
+ if (NI.getNumResults() == 0)
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+
+ // If this is a vector_shuffle operation, apply types to the build_vector
+ // operation. The types of the integers don't matter, but this ensures they
+ // won't get checked.
+ if (getOperator()->getName() == "vector_shuffle" &&
+ getChild(2)->getOperator()->getName() == "build_vector") {
+ TreePatternNode *BV = getChild(2);
+ const std::vector<MVT::ValueType> &LegalVTs
+ = ISE.getTargetInfo().getLegalValueTypes();
+ MVT::ValueType LegalIntVT = MVT::Other;
+ for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
+ if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
+ LegalIntVT = LegalVTs[i];
+ break;
+ }
+ assert(LegalIntVT != MVT::Other && "No legal integer VT?");
+
+ for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
+ MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
+ }
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = ISE.getInstruction(getOperator());
+ bool MadeChange = false;
+ unsigned NumResults = Inst.getNumResults();
+
+ assert(NumResults <= 1 &&
+ "Only supports zero or one result instrs!");
+
+ CodeGenInstruction &InstInfo =
+ ISE.getTargetInfo().getInstruction(getOperator()->getName());
+ // Apply the result type to the node
+ if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack.
+ MadeChange = UpdateNodeType(MVT::isVoid, TP);
+ } else {
+ Record *ResultNode = Inst.getResult(0);
+
+ if (ResultNode->getName() == "ptr_rc") {
+ std::vector<unsigned char> VT;
+ VT.push_back(MVT::iPTR);
+ MadeChange = UpdateNodeType(VT, TP);
+ } else {
+ assert(ResultNode->isSubClassOf("RegisterClass") &&
+ "Operands should be register classes!");
+
+ const CodeGenRegisterClass &RC =
+ ISE.getTargetInfo().getRegisterClass(ResultNode);
+ MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ }
+ }
+
+ unsigned ChildNo = 0;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
+ Record *OperandNode = Inst.getOperand(i);
+
+ // If the instruction expects a predicate or optional def operand, we
+ // codegen this by setting the operand to it's default value if it has a
+ // non-empty DefaultOps field.
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !ISE.getDefaultOperand(OperandNode).DefaultOps.empty())
+ continue;
+
+ // Verify that we didn't run out of provided operands.
+ if (ChildNo >= getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' expects more operands than were provided.");
+
+ MVT::ValueType VT;
+ TreePatternNode *Child = getChild(ChildNo++);
+ if (OperandNode->isSubClassOf("RegisterClass")) {
+ const CodeGenRegisterClass &RC =
+ ISE.getTargetInfo().getRegisterClass(OperandNode);
+ MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ } else if (OperandNode->isSubClassOf("Operand")) {
+ VT = getValueType(OperandNode->getValueAsDef("Type"));
+ MadeChange |= Child->UpdateNodeType(VT, TP);
+ } else if (OperandNode->getName() == "ptr_rc") {
+ MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
+ } else {
+ assert(0 && "Unknown operand type!");
+ abort();
+ }
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+ }
+
+ if (ChildNo != getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' was provided too many operands!");
+
+ return MadeChange;
+ } else {
+ assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+
+ // Node transforms always take one operand.
+ if (getNumChildren() != 1)
+ TP.error("Node transform '" + getOperator()->getName() +
+ "' requires one operand!");
+
+ // If either the output or input of the xform does not have exact
+ // type info. We assume they must be the same. Otherwise, it is perfectly
+ // legal to transform from one type to a completely different type.
+ if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
+ bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
+ return MadeChange;
+ }
+ return false;
+ }
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+ return true;
+ if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
+ return true;
+ return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false. Otherwise, return true. This is
+/// used as a santity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
+ if (isLeaf()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->canPatternMatch(Reason, ISE))
+ return false;
+
+ // If this is an intrinsic, handle cases that would make it not match. For
+ // example, if an operand is required to be an immediate.
+ if (getOperator()->isSubClassOf("Intrinsic")) {
+ // TODO:
+ return true;
+ }
+
+ // If this node is a commutative operator, check that the LHS isn't an
+ // immediate.
+ const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
+ if (NodeInfo.hasProperty(SDNPCommutative)) {
+ // Scan all of the operands of the node and make sure that only the last one
+ // is a constant node, unless the RHS also is.
+ if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+ for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
+ if (OnlyOnRHSOfCommutative(getChild(i))) {
+ Reason="Immediate value must be on the RHS of commutative operators!";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
+ isInputPattern = isInput;
+ for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+ Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
+ isInputPattern = isInput;
+ Trees.push_back(ParseTreePattern(Pat));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
+ isInputPattern = isInput;
+ Trees.push_back(Pat);
+}
+
+
+
+void TreePattern::error(const std::string &Msg) const {
+ dump();
+ throw "In " + TheRecord->getName() + ": " + Msg;
+}
+
+TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
+ DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
+ if (!OpDef) error("Pattern has unexpected operator type!");
+ Record *Operator = OpDef->getDef();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only takes one operand!");
+
+ Init *Arg = Dag->getArg(0);
+ TreePatternNode *New;
+ if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DI->getDef();
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(0, new DagInit(DI,
+ std::vector<std::pair<Init*, std::string> >()));
+ return ParseTreePattern(Dag);
+ }
+ New = new TreePatternNode(DI);
+ } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ New = ParseTreePattern(DI);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ New = new TreePatternNode(II);
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ New = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else {
+ Arg->dump();
+ error("Unknown leaf value for tree pattern!");
+ return 0;
+ }
+
+ // Apply the type cast.
+ New->UpdateNodeType(getValueType(Operator), *this);
+ New->setName(Dag->getArgName(0));
+ return New;
+ }
+
+ // Verify that this is something that makes sense for an operator.
+ if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
+ !Operator->isSubClassOf("Instruction") &&
+ !Operator->isSubClassOf("SDNodeXForm") &&
+ !Operator->isSubClassOf("Intrinsic") &&
+ Operator->getName() != "set")
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ // Check to see if this is something that is illegal in an input pattern.
+ if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm")))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+
+ std::vector<TreePatternNode*> Children;
+
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
+ Init *Arg = Dag->getArg(i);
+ if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ Children.push_back(ParseTreePattern(DI));
+ if (Children.back()->getName().empty())
+ Children.back()->setName(Dag->getArgName(i));
+ } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DefI->getDef();
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode if its own.
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(i, new DagInit(DefI,
+ std::vector<std::pair<Init*, std::string> >()));
+ --i; // Revisit this node...
+ } else {
+ TreePatternNode *Node = new TreePatternNode(DefI);
+ Node->setName(Dag->getArgName(i));
+ Children.push_back(Node);
+
+ // Input argument?
+ if (R->getName() == "node") {
+ if (Dag->getArgName(i).empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(Dag->getArgName(i));
+ }
+ }
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ TreePatternNode *Node = new TreePatternNode(II);
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else {
+ cerr << '"';
+ Arg->dump();
+ cerr << "\": ";
+ error("Unknown leaf value for tree pattern!");
+ }
+ }
+
+ // If the operator is an intrinsic, then this is just syntactic sugar for for
+ // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
+ // convert the intrinsic name to a number.
+ if (Operator->isSubClassOf("Intrinsic")) {
+ const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
+ unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
+
+ // If this intrinsic returns void, it must have side-effects and thus a
+ // chain.
+ if (Int.ArgVTs[0] == MVT::isVoid) {
+ Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
+ } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
+ // Has side-effects, requires chain.
+ Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
+ } else {
+ // Otherwise, no chain.
+ Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
+ }
+
+ TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
+ Children.insert(Children.begin(), IIDNode);
+ }
+
+ return new TreePatternNode(Operator, Children);
+}
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible. Return true if all types are infered, false
+/// otherwise. Throw an exception if a type contradiction is found.
+bool TreePattern::InferAllTypes() {
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+ }
+
+ bool HasUnresolvedTypes = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
+ return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(std::ostream &OS) const {
+ OS << getRecord()->getName();
+ if (!Args.empty()) {
+ OS << "(" << Args[0];
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ OS << ", " << Args[i];
+ OS << ")";
+ }
+ OS << ": ";
+
+ if (Trees.size() > 1)
+ OS << "[\n";
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+ OS << "\t";
+ Trees[i]->print(OS);
+ OS << "\n";
+ }
+
+ if (Trees.size() > 1)
+ OS << "]\n";
+}
+
+void TreePattern::dump() const { print(*cerr.stream()); }
+
+
+
+//===----------------------------------------------------------------------===//
+// DAGISelEmitter implementation
+//
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void DAGISelEmitter::ParseNodeInfo() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+ while (!Nodes.empty()) {
+ SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
+ Nodes.pop_back();
+ }
+
+ // Get the buildin intrinsic nodes.
+ intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
+ intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
+ intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
+ OS << "\n// Node transformations.\n";
+ std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+ while (!Xforms.empty()) {
+ Record *XFormNode = Xforms.back();
+ Record *SDNode = XFormNode->getValueAsDef("Opcode");
+ std::string Code = XFormNode->getValueAsCode("XFormFunction");
+ SDNodeXForms.insert(std::make_pair(XFormNode,
+ std::make_pair(SDNode, Code)));
+
+ if (!Code.empty()) {
+ std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline SDOperand Transform_" << XFormNode->getName()
+ << "(SDNode *" << C2 << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ OS << Code << "\n}\n";
+ }
+
+ Xforms.pop_back();
+ }
+}
+
+void DAGISelEmitter::ParseComplexPatterns() {
+ std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+ while (!AMs.empty()) {
+ ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+ AMs.pop_back();
+ }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map. After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+/// This also emits all of the predicate functions to the output file.
+///
+void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
+ std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
+
+ // First step, parse all of the fragments and emit predicate functions.
+ OS << "\n// Predicate functions.\n";
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
+ TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
+ PatternFragments[Fragments[i]] = P;
+
+ // Validate the argument list, converting it to map, to discard duplicates.
+ std::vector<std::string> &Args = P->getArgList();
+ std::set<std::string> OperandsMap(Args.begin(), Args.end());
+
+ if (OperandsMap.count(""))
+ P->error("Cannot have unnamed 'node' values in pattern fragment!");
+
+ // Parse the operands list.
+ DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
+ DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
+ if (!OpsOp || OpsOp->getDef()->getName() != "ops")
+ P->error("Operands list should start with '(ops ... '!");
+
+ // Copy over the arguments.
+ Args.clear();
+ for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+ if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
+ static_cast<DefInit*>(OpsList->getArg(j))->
+ getDef()->getName() != "node")
+ P->error("Operands list should all be 'node' values.");
+ if (OpsList->getArgName(j).empty())
+ P->error("Operands list should have names for each operand!");
+ if (!OperandsMap.count(OpsList->getArgName(j)))
+ P->error("'" + OpsList->getArgName(j) +
+ "' does not occur in pattern or was multiply specified!");
+ OperandsMap.erase(OpsList->getArgName(j));
+ Args.push_back(OpsList->getArgName(j));
+ }
+
+ if (!OperandsMap.empty())
+ P->error("Operands list does not contain an entry for operand '" +
+ *OperandsMap.begin() + "'!");
+
+ // If there is a code init for this fragment, emit the predicate code and
+ // keep track of the fact that this fragment uses it.
+ std::string Code = Fragments[i]->getValueAsCode("Predicate");
+ if (!Code.empty()) {
+ if (P->getOnlyTree()->isLeaf())
+ OS << "inline bool Predicate_" << Fragments[i]->getName()
+ << "(SDNode *N) {\n";
+ else {
+ std::string ClassName =
+ getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline bool Predicate_" << Fragments[i]->getName()
+ << "(SDNode *" << C2 << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ }
+ OS << Code << "\n}\n";
+ P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
+ }
+
+ // If there is a node transformation corresponding to this, keep track of
+ // it.
+ Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
+ if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
+ P->getOnlyTree()->setTransformFn(Transform);
+ }
+
+ OS << "\n\n";
+
+ // Now that we've parsed all of the tree fragments, do a closure on them so
+ // that there are not references to PatFrags left inside of them.
+ for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I) {
+ TreePattern *ThePat = I->second;
+ ThePat->InlinePatternFragments();
+
+ // Infer as many types as possible. Don't worry about it if we don't infer
+ // all of them, some may depend on the inputs of the pattern.
+ try {
+ ThePat->InferAllTypes();
+ } catch (...) {
+ // If this pattern fragment is not supported by this target (no types can
+ // satisfy its constraints), just ignore it. If the bogus pattern is
+ // actually used by instructions, the type consistency error will be
+ // reported there.
+ }
+
+ // If debugging, print out the pattern fragment result.
+ DEBUG(ThePat->dump());
+ }
+}
+
+void DAGISelEmitter::ParseDefaultOperands() {
+ std::vector<Record*> DefaultOps[2];
+ DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
+ DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
+
+ // Find some SDNode.
+ assert(!SDNodes.empty() && "No SDNodes parsed?");
+ Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
+
+ for (unsigned iter = 0; iter != 2; ++iter) {
+ for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
+ DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
+
+ // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+ // SomeSDnode so that we can parse this.
+ std::vector<std::pair<Init*, std::string> > Ops;
+ for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+ Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+ DefaultInfo->getArgName(op)));
+ DagInit *DI = new DagInit(SomeSDNode, Ops);
+
+ // Create a TreePattern to parse this.
+ TreePattern P(DefaultOps[iter][i], DI, false, *this);
+ assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+ // Copy the operands over into a DAGDefaultOperand.
+ DAGDefaultOperand DefaultOpInfo;
+
+ TreePatternNode *T = P.getTree(0);
+ for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+ TreePatternNode *TPN = T->getChild(op);
+ while (TPN->ApplyTypeConstraints(P, false))
+ /* Resolve all types */;
+
+ if (TPN->ContainsUnresolvedType())
+ if (iter == 0)
+ throw "Value #" + utostr(i) + " of PredicateOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+ else
+ throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+
+ DefaultOpInfo.DefaultOps.push_back(TPN);
+ }
+
+ // Insert it into the DefaultOperands map so we can find it later.
+ DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
+ }
+ }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input. Return true if this is a real use.
+static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::vector<Record*> &InstImpInputs) {
+ // No name -> not interesting.
+ if (Pat->getName().empty()) {
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
+ I->error("Input " + DI->getDef()->getName() + " must be named!");
+ else if (DI && DI->getDef()->isSubClassOf("Register"))
+ InstImpInputs.push_back(DI->getDef());
+ }
+ return false;
+ }
+
+ Record *Rec;
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
+ Rec = DI->getDef();
+ } else {
+ assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
+ Rec = Pat->getOperator();
+ }
+
+ // SRCVALUE nodes are ignored.
+ if (Rec->getName() == "srcvalue")
+ return false;
+
+ TreePatternNode *&Slot = InstInputs[Pat->getName()];
+ if (!Slot) {
+ Slot = Pat;
+ } else {
+ Record *SlotRec;
+ if (Slot->isLeaf()) {
+ SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
+ } else {
+ assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+ SlotRec = Slot->getOperator();
+ }
+
+ // Ensure that the inputs agree if we've already seen this input.
+ if (Rec != SlotRec)
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ if (Slot->getExtTypes() != Pat->getExtTypes())
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ }
+ return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern. Report errors if we see anything naughty.
+void DAGISelEmitter::
+FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::map<std::string, TreePatternNode*>&InstResults,
+ std::vector<Record*> &InstImpInputs,
+ std::vector<Record*> &InstImpResults) {
+ if (Pat->isLeaf()) {
+ bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ } else if (Pat->getOperator()->getName() != "set") {
+ // If this is not a set, verify that the children nodes are not void typed,
+ // and recurse.
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
+ I->error("Cannot have void nodes inside of patterns!");
+ FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // If this is a non-leaf node with no children, treat it basically as if
+ // it were a leaf. This handles nodes like (imm).
+ bool isUse = false;
+ if (Pat->getNumChildren() == 0)
+ isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ // Otherwise, this is a set, validate and collect instruction results.
+ if (Pat->getNumChildren() == 0)
+ I->error("set requires operands!");
+ else if (Pat->getNumChildren() & 1)
+ I->error("set requires an even number of operands");
+
+ if (Pat->getTransformFn())
+ I->error("Cannot specify a transform function on a set node!");
+
+ // Check the set destinations.
+ unsigned NumValues = Pat->getNumChildren()/2;
+ for (unsigned i = 0; i != NumValues; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("set destination should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val)
+ I->error("set destination should be a register!");
+
+ if (Val->getDef()->isSubClassOf("RegisterClass") ||
+ Val->getDef()->getName() == "ptr_rc") {
+ if (Dest->getName().empty())
+ I->error("set destination must have a name!");
+ if (InstResults.count(Dest->getName()))
+ I->error("cannot set '" + Dest->getName() +"' multiple times");
+ InstResults[Dest->getName()] = Dest;
+ } else if (Val->getDef()->isSubClassOf("Register")) {
+ InstImpResults.push_back(Val->getDef());
+ } else {
+ I->error("set destination should be a register!");
+ }
+
+ // Verify and collect info from the computation.
+ FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved. This populates the Instructions list with fully
+/// resolved instructions.
+void DAGISelEmitter::ParseInstructions() {
+ std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+
+ for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+ ListInit *LI = 0;
+
+ if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
+ LI = Instrs[i]->getValueAsListInit("Pattern");
+
+ // If there is no pattern, only collect minimal information about the
+ // instruction for its operand list. We have to assume that there is one
+ // result, as we have no detailed info.
+ if (!LI || LI->getSize() == 0) {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+
+ CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
+
+ if (InstInfo.OperandList.size() != 0) {
+ // FIXME: temporary hack...
+ if (InstInfo.noResults) {
+ // These produce no results
+ for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ } else {
+ // Assume the first operand is the result.
+ Results.push_back(InstInfo.OperandList[0].Rec);
+
+ // The rest are inputs.
+ for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ }
+ }
+
+ // Create and insert the instruction.
+ std::vector<Record*> ImpResults;
+ std::vector<Record*> ImpOperands;
+ Instructions.insert(std::make_pair(Instrs[i],
+ DAGInstruction(0, Results, Operands, ImpResults,
+ ImpOperands)));
+ continue; // no pattern.
+ }
+
+ // Parse the instruction.
+ TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
+ // Inline pattern fragments into it.
+ I->InlinePatternFragments();
+
+ // Infer as many types as possible. If we cannot infer all of them, we can
+ // never do anything with this instruction pattern: report it to the user.
+ if (!I->InferAllTypes())
+ I->error("Could not infer all types in pattern!");
+
+ // InstInputs - Keep track of all of the inputs of the instruction, along
+ // with the record they are declared as.
+ std::map<std::string, TreePatternNode*> InstInputs;
+
+ // InstResults - Keep track of all the virtual registers that are 'set'
+ // in the instruction, including what reg class they are.
+ std::map<std::string, TreePatternNode*> InstResults;
+
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+
+ // Verify that the top-level forms in the instruction are of void type, and
+ // fill in the InstResults map.
+ for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
+ TreePatternNode *Pat = I->getTree(j);
+ if (Pat->getExtTypeNum(0) != MVT::isVoid)
+ I->error("Top-level forms in instruction pattern should have"
+ " void types");
+
+ // Find inputs and outputs, and verify the structure of the uses/defs.
+ FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // Now that we have inputs and outputs of the pattern, inspect the operands
+ // list for the instruction. This determines the order that operands are
+ // added to the machine instruction the node corresponds to.
+ unsigned NumResults = InstResults.size();
+
+ // Parse the operands list from the (ops) list, validating it.
+ assert(I->getArgList().empty() && "Args list should still be empty here!");
+ CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
+
+ // Check that all of the results occur first in the list.
+ std::vector<Record*> Results;
+ TreePatternNode *Res0Node = NULL;
+ for (unsigned i = 0; i != NumResults; ++i) {
+ if (i == CGI.OperandList.size())
+ I->error("'" + InstResults.begin()->first +
+ "' set but does not appear in operand list!");
+ const std::string &OpName = CGI.OperandList[i].Name;
+
+ // Check that it exists in InstResults.
+ TreePatternNode *RNode = InstResults[OpName];
+ if (RNode == 0)
+ I->error("Operand $" + OpName + " does not exist in operand list!");
+
+ if (i == 0)
+ Res0Node = RNode;
+ Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
+ if (R == 0)
+ I->error("Operand $" + OpName + " should be a set destination: all "
+ "outputs must occur before inputs in operand list!");
+
+ if (CGI.OperandList[i].Rec != R)
+ I->error("Operand $" + OpName + " class mismatch!");
+
+ // Remember the return type.
+ Results.push_back(CGI.OperandList[i].Rec);
+
+ // Okay, this one checks out.
+ InstResults.erase(OpName);
+ }
+
+ // Loop over the inputs next. Make a copy of InstInputs so we can destroy
+ // the copy while we're checking the inputs.
+ std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
+
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ std::vector<Record*> Operands;
+ for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
+ CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
+ const std::string &OpName = Op.Name;
+ if (OpName.empty())
+ I->error("Operand #" + utostr(i) + " in operands list has no name!");
+
+ if (!InstInputsCheck.count(OpName)) {
+ // If this is an predicate operand or optional def operand with an
+ // DefaultOps set filled in, we can ignore this. When we codegen it,
+ // we will do so as always executed.
+ if (Op.Rec->isSubClassOf("PredicateOperand") ||
+ Op.Rec->isSubClassOf("OptionalDefOperand")) {
+ // Does it have a non-empty DefaultOps field? If so, ignore this
+ // operand.
+ if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+ continue;
+ }
+ I->error("Operand $" + OpName +
+ " does not appear in the instruction pattern");
+ }
+ TreePatternNode *InVal = InstInputsCheck[OpName];
+ InstInputsCheck.erase(OpName); // It occurred, remove from map.
+
+ if (InVal->isLeaf() &&
+ dynamic_cast<DefInit*>(InVal->getLeafValue())) {
+ Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+ if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
+ I->error("Operand $" + OpName + "'s register class disagrees"
+ " between the operand and pattern");
+ }
+ Operands.push_back(Op.Rec);
+
+ // Construct the result for the dest-pattern operand list.
+ TreePatternNode *OpNode = InVal->clone();
+
+ // No predicate is useful on the result.
+ OpNode->setPredicateFn("");
+
+ // Promote the xform function to be an explicit node if set.
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+
+ ResultNodeOperands.push_back(OpNode);
+ }
+
+ if (!InstInputsCheck.empty())
+ I->error("Input operand $" + InstInputsCheck.begin()->first +
+ " occurs in pattern but not in operands list!");
+
+ TreePatternNode *ResultPattern =
+ new TreePatternNode(I->getRecord(), ResultNodeOperands);
+ // Copy fully inferred output node type to instruction result pattern.
+ if (NumResults > 0)
+ ResultPattern->setTypes(Res0Node->getExtTypes());
+
+ // Create and insert the instruction.
+ DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
+ Instructions.insert(std::make_pair(I->getRecord(), TheInst));
+
+ // Use a temporary tree pattern to infer all types and make sure that the
+ // constructed result is correct. This depends on the instruction already
+ // being inserted into the Instructions map.
+ TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
+ Temp.InferAllTypes();
+
+ DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
+ TheInsertedInst.setResultPattern(Temp.getOnlyTree());
+
+ DEBUG(I->dump());
+ }
+
+ // If we can, convert the instructions to be patterns that are matched!
+ for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
+ E = Instructions.end(); II != E; ++II) {
+ DAGInstruction &TheInst = II->second;
+ TreePattern *I = TheInst.getPattern();
+ if (I == 0) continue; // No pattern.
+
+ if (I->getNumTrees() != 1) {
+ cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
+ continue;
+ }
+ TreePatternNode *Pattern = I->getTree(0);
+ TreePatternNode *SrcPattern;
+ if (Pattern->getOperator()->getName() == "set") {
+ if (Pattern->getNumChildren() != 2)
+ continue; // Not a set of a single value (not handled so far)
+
+ SrcPattern = Pattern->getChild(1)->clone();
+ } else{
+ // Not a set (store or something?)
+ SrcPattern = Pattern;
+ }
+
+ std::string Reason;
+ if (!SrcPattern->canPatternMatch(Reason, *this))
+ I->error("Instruction can never match: " + Reason);
+
+ Record *Instr = II->first;
+ TreePatternNode *DstPattern = TheInst.getResultPattern();
+ PatternsToMatch.
+ push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
+ SrcPattern, DstPattern,
+ Instr->getValueAsInt("AddedComplexity")));
+ }
+}
+
+void DAGISelEmitter::ParsePatterns() {
+ std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
+ TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
+
+ // Inline pattern fragments into it.
+ Pattern->InlinePatternFragments();
+
+ ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
+ if (LI->getSize() == 0) continue; // no pattern.
+
+ // Parse the instruction.
+ TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
+
+ // Inline pattern fragments into it.
+ Result->InlinePatternFragments();
+
+ if (Result->getNumTrees() != 1)
+ Result->error("Cannot handle instructions producing instructions "
+ "with temporaries yet!");
+
+ bool IterateInference;
+ bool InferredAllPatternTypes, InferredAllResultTypes;
+ do {
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllPatternTypes = Pattern->InferAllTypes();
+
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllResultTypes = Result->InferAllTypes();
+
+ // Apply the type of the result to the source pattern. This helps us
+ // resolve cases where the input type is known to be a pointer type (which
+ // is considered resolved), but the result knows it needs to be 32- or
+ // 64-bits. Infer the other way for good measure.
+ IterateInference = Pattern->getOnlyTree()->
+ UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
+ IterateInference |= Result->getOnlyTree()->
+ UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
+ } while (IterateInference);
+
+ // Verify that we inferred enough types that we can do something with the
+ // pattern and result. If these fire the user has to add type casts.
+ if (!InferredAllPatternTypes)
+ Pattern->error("Could not infer all types in pattern!");
+ if (!InferredAllResultTypes)
+ Result->error("Could not infer all types in pattern result!");
+
+ // Validate that the input pattern is correct.
+ {
+ std::map<std::string, TreePatternNode*> InstInputs;
+ std::map<std::string, TreePatternNode*> InstResults;
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+ FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // Promote the xform function to be an explicit node if set.
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ TreePatternNode *DstPattern = Result->getOnlyTree();
+ for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
+ TreePatternNode *OpNode = DstPattern->getChild(ii);
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+ ResultNodeOperands.push_back(OpNode);
+ }
+ DstPattern = Result->getOnlyTree();
+ if (!DstPattern->isLeaf())
+ DstPattern = new TreePatternNode(DstPattern->getOperator(),
+ ResultNodeOperands);
+ DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
+ TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
+ Temp.InferAllTypes();
+
+ std::string Reason;
+ if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
+ Pattern->error("Pattern can never match: " + Reason);
+
+ PatternsToMatch.
+ push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
+ Pattern->getOnlyTree(),
+ Temp.getOnlyTree(),
+ Patterns[i]->getValueAsInt("AddedComplexity")));
+ }
+}
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
+ std::vector<TreePatternNode*> &OutVariants,
+ DAGISelEmitter &ISE) {
+ // Make sure that each operand has at least one variant to choose from.
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ if (ChildVariants[i].empty())
+ return;
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildVariants.size());
+ bool NotDone = true;
+ while (NotDone) {
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNode*> NewChildren;
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+ TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
+
+ // Copy over properties.
+ R->setName(Orig->getName());
+ R->setPredicateFn(Orig->getPredicateFn());
+ R->setTransformFn(Orig->getTransformFn());
+ R->setTypes(Orig->getExtTypes());
+
+ // If this pattern cannot every match, do not include it as a variant.
+ std::string ErrString;
+ if (!R->canPatternMatch(ErrString, ISE)) {
+ delete R;
+ } else {
+ bool AlreadyExists = false;
+
+ // Scan to see if this pattern has already been emitted. We can get
+ // duplication due to things like commuting:
+ // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+ // which are the same pattern. Ignore the dups.
+ for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
+ if (R->isIsomorphicTo(OutVariants[i])) {
+ AlreadyExists = true;
+ break;
+ }
+
+ if (AlreadyExists)
+ delete R;
+ else
+ OutVariants.push_back(R);
+ }
+
+ // Increment indices to the next permutation.
+ NotDone = false;
+ // Look for something we can increment without causing a wrap-around.
+ for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
+ if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
+ NotDone = true; // Found something to increment.
+ break;
+ }
+ Idxs[IdxsIdx] = 0;
+ }
+ }
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<TreePatternNode*> &LHS,
+ const std::vector<TreePatternNode*> &RHS,
+ std::vector<TreePatternNode*> &OutVariants,
+ DAGISelEmitter &ISE) {
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.push_back(LHS);
+ ChildVariants.push_back(RHS);
+ CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
+}
+
+
+static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
+ std::vector<TreePatternNode *> &Children) {
+ assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+ Record *Operator = N->getOperator();
+
+ // Only permit raw nodes.
+ if (!N->getName().empty() || !N->getPredicateFn().empty() ||
+ N->getTransformFn()) {
+ Children.push_back(N);
+ return;
+ }
+
+ if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+ Children.push_back(N->getChild(0));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
+
+ if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+ Children.push_back(N->getChild(1));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNode *N,
+ std::vector<TreePatternNode*> &OutVariants,
+ DAGISelEmitter &ISE) {
+ // We cannot permute leaves.
+ if (N->isLeaf()) {
+ OutVariants.push_back(N);
+ return;
+ }
+
+ // Look up interesting info about the node.
+ const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
+
+ // If this node is associative, reassociate.
+ if (NodeInfo.hasProperty(SDNPAssociative)) {
+ // Reassociate by pulling together all of the linked operators
+ std::vector<TreePatternNode*> MaximalChildren;
+ GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+ // Only handle child sizes of 3. Otherwise we'll end up trying too many
+ // permutations.
+ if (MaximalChildren.size() == 3) {
+ // Find the variants of all of our maximal children.
+ std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
+ GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
+ GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
+ GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
+
+ // There are only two ways we can permute the tree:
+ // (A op B) op C and A op (B op C)
+ // Within these forms, we can also permute A/B/C.
+
+ // Generate legal pair permutations of A/B/C.
+ std::vector<TreePatternNode*> ABVariants;
+ std::vector<TreePatternNode*> BAVariants;
+ std::vector<TreePatternNode*> ACVariants;
+ std::vector<TreePatternNode*> CAVariants;
+ std::vector<TreePatternNode*> BCVariants;
+ std::vector<TreePatternNode*> CBVariants;
+ CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
+ CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
+ CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
+ CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
+ CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
+ CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
+
+ // Combine those into the result: (x op x) op x
+ CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
+ CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
+ CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
+ CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
+ CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
+ CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
+
+ // Combine those into the result: x op (x op x)
+ CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
+ CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
+ CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
+ CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
+ CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
+ CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
+ return;
+ }
+ }
+
+ // Compute permutations of all children.
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.resize(N->getNumChildren());
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
+
+ // Build all permutations based on how the children were formed.
+ CombineChildVariants(N, ChildVariants, OutVariants, ISE);
+
+ // If this node is commutative, consider the commuted order.
+ if (NodeInfo.hasProperty(SDNPCommutative)) {
+ assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
+ // Don't count children which are actually register references.
+ unsigned NC = 0;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (Child->isLeaf())
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register"))
+ continue;
+ }
+ NC++;
+ }
+ // Consider the commuted order.
+ if (NC == 2)
+ CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
+ OutVariants, ISE);
+ }
+}
+
+
+// GenerateVariants - Generate variants. For example, commutative patterns can
+// match multiple ways. Add them to PatternsToMatch as well.
+void DAGISelEmitter::GenerateVariants() {
+
+ DOUT << "Generating instruction variants.\n";
+
+ // Loop over all of the patterns we've collected, checking to see if we can
+ // generate variants of the instruction, through the exploitation of
+ // identities. This permits the target to provide agressive matching without
+ // the .td file having to contain tons of variants of instructions.
+ //
+ // Note that this loop adds new patterns to the PatternsToMatch list, but we
+ // intentionally do not reconsider these. Any variants of added patterns have
+ // already been added.
+ //
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ std::vector<TreePatternNode*> Variants;
+ GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
+
+ assert(!Variants.empty() && "Must create at least original variant!");
+ Variants.erase(Variants.begin()); // Remove the original pattern.
+
+ if (Variants.empty()) // No variants for this pattern.
+ continue;
+
+ DOUT << "FOUND VARIANTS OF: ";
+ DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
+ DOUT << "\n";
+
+ for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+ TreePatternNode *Variant = Variants[v];
+
+ DOUT << " VAR#" << v << ": ";
+ DEBUG(Variant->dump());
+ DOUT << "\n";
+
+ // Scan to see if an instruction or explicit pattern already matches this.
+ bool AlreadyExists = false;
+ for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+ // Check to see if this variant already exists.
+ if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
+ DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
+ AlreadyExists = true;
+ break;
+ }
+ }
+ // If we already have it, ignore the variant.
+ if (AlreadyExists) continue;
+
+ // Otherwise, add it to the list of patterns we have.
+ PatternsToMatch.
+ push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
+ Variant, PatternsToMatch[i].getDstPattern(),
+ PatternsToMatch[i].getAddedComplexity()));
+ }
+
+ DOUT << "\n";
+ }
+}
+
+// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
+// ComplexPattern.
+static bool NodeIsComplexPattern(TreePatternNode *N)
+{
+ return (N->isLeaf() &&
+ dynamic_cast<DefInit*>(N->getLeafValue()) &&
+ static_cast<DefInit*>(N->getLeafValue())->getDef()->
+ isSubClassOf("ComplexPattern"));
+}
+
+// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
+// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
+static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
+ DAGISelEmitter &ISE)
+{
+ if (N->isLeaf() &&
+ dynamic_cast<DefInit*>(N->getLeafValue()) &&
+ static_cast<DefInit*>(N->getLeafValue())->getDef()->
+ isSubClassOf("ComplexPattern")) {
+ return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
+ ->getDef());
+ }
+ return NULL;
+}
+
+/// getPatternSize - Return the 'size' of this pattern. We want to match large
+/// patterns before small ones. This is used to determine the size of a
+/// pattern.
+static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
+ assert((isExtIntegerInVTs(P->getExtTypes()) ||
+ isExtFloatingPointInVTs(P->getExtTypes()) ||
+ P->getExtTypeNum(0) == MVT::isVoid ||
+ P->getExtTypeNum(0) == MVT::Flag ||
+ P->getExtTypeNum(0) == MVT::iPTR) &&
+ "Not a valid pattern node to size!");
+ unsigned Size = 3; // The node itself.
+ // If the root node is a ConstantSDNode, increases its size.
+ // e.g. (set R32:$dst, 0).
+ if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
+ Size += 2;
+
+ // FIXME: This is a hack to statically increase the priority of patterns
+ // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
+ // Later we can allow complexity / cost for each pattern to be (optionally)
+ // specified. To get best possible pattern match we'll need to dynamically
+ // calculate the complexity of all patterns a dag can potentially map to.
+ const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
+ if (AM)
+ Size += AM->getNumOperands() * 3;
+
+ // If this node has some predicate function that must match, it adds to the
+ // complexity of this node.
+ if (!P->getPredicateFn().empty())
+ ++Size;
+
+ // Count children in the count if they are also nodes.
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = P->getChild(i);
+ if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
+ Size += getPatternSize(Child, ISE);
+ else if (Child->isLeaf()) {
+ if (dynamic_cast<IntInit*>(Child->getLeafValue()))
+ Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
+ else if (NodeIsComplexPattern(Child))
+ Size += getPatternSize(Child, ISE);
+ else if (!Child->getPredicateFn().empty())
+ ++Size;
+ }
+ }
+
+ return Size;
+}
+
+/// getResultPatternCost - Compute the number of instructions for this pattern.
+/// This is a temporary hack. We should really include the instruction
+/// latencies in this calculation.
+static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
+ if (P->isLeaf()) return 0;
+
+ unsigned Cost = 0;
+ Record *Op = P->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ Cost++;
+ CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
+ if (II.usesCustomDAGSchedInserter)
+ Cost += 10;
+ }
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ Cost += getResultPatternCost(P->getChild(i), ISE);
+ return Cost;
+}
+
+/// getResultPatternCodeSize - Compute the code size of instructions for this
+/// pattern.
+static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
+ if (P->isLeaf()) return 0;
+
+ unsigned Cost = 0;
+ Record *Op = P->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ Cost += Op->getValueAsInt("CodeSize");
+ }
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ Cost += getResultPatternSize(P->getChild(i), ISE);
+ return Cost;
+}
+
+// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
+// In particular, we want to match maximal patterns first and lowest cost within
+// a particular complexity first.
+struct PatternSortingPredicate {
+ PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
+ DAGISelEmitter &ISE;
+
+ bool operator()(PatternToMatch *LHS,
+ PatternToMatch *RHS) {
+ unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
+ unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
+ LHSSize += LHS->getAddedComplexity();
+ RHSSize += RHS->getAddedComplexity();
+ if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
+ if (LHSSize < RHSSize) return false;
+
+ // If the patterns have equal complexity, compare generated instruction cost
+ unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
+ unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
+ if (LHSCost < RHSCost) return true;
+ if (LHSCost > RHSCost) return false;
+
+ return getResultPatternSize(LHS->getDstPattern(), ISE) <
+ getResultPatternSize(RHS->getDstPattern(), ISE);
+ }
+};
+
+/// getRegisterValueType - Look up and return the first ValueType of specified
+/// RegisterClass record
+static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
+ if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
+ return RC->getValueTypeNum(0);
+ return MVT::Other;
+}
+
+
+/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
+/// type information from it.
+static void RemoveAllTypes(TreePatternNode *N) {
+ N->removeTypes();
+ if (!N->isLeaf())
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ RemoveAllTypes(N->getChild(i));
+}
+
+Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
+ Record *N = Records.getDef(Name);
+ if (!N || !N->isSubClassOf("SDNode")) {
+ cerr << "Error getting SDNode '" << Name << "'!\n";
+ exit(1);
+ }
+ return N;
+}
+
+/// NodeHasProperty - return true if TreePatternNode has the specified
+/// property.
+static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
+ DAGISelEmitter &ISE)
+{
+ if (N->isLeaf()) {
+ const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
+ if (CP)
+ return CP->hasProperty(Property);
+ return false;
+ }
+ Record *Operator = N->getOperator();
+ if (!Operator->isSubClassOf("SDNode")) return false;
+
+ const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
+ return NodeInfo.hasProperty(Property);
+}
+
+static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
+ DAGISelEmitter &ISE)
+{
+ if (NodeHasProperty(N, Property, ISE))
+ return true;
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (PatternHasProperty(Child, Property, ISE))
+ return true;
+ }
+
+ return false;
+}
+
+class PatternCodeEmitter {
+private:
+ DAGISelEmitter &ISE;
+
+ // Predicates.
+ ListInit *Predicates;
+ // Pattern cost.
+ unsigned Cost;
+ // Instruction selector pattern.
+ TreePatternNode *Pattern;
+ // Matched instruction.
+ TreePatternNode *Instruction;
+
+ // Node to name mapping
+ std::map<std::string, std::string> VariableMap;
+ // Node to operator mapping
+ std::map<std::string, Record*> OperatorMap;
+ // Names of all the folded nodes which produce chains.
+ std::vector<std::pair<std::string, unsigned> > FoldedChains;
+ // Original input chain(s).
+ std::vector<std::pair<std::string, std::string> > OrigChains;
+ std::set<std::string> Duplicates;
+
+ /// GeneratedCode - This is the buffer that we emit code to. The first int
+ /// indicates whether this is an exit predicate (something that should be
+ /// tested, and if true, the match fails) [when 1], or normal code to emit
+ /// [when 0], or initialization code to emit [when 2].
+ std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
+ /// GeneratedDecl - This is the set of all SDOperand declarations needed for
+ /// the set of patterns for each top-level opcode.
+ std::set<std::string> &GeneratedDecl;
+ /// TargetOpcodes - The target specific opcodes used by the resulting
+ /// instructions.
+ std::vector<std::string> &TargetOpcodes;
+ std::vector<std::string> &TargetVTs;
+
+ std::string ChainName;
+ unsigned TmpNo;
+ unsigned OpcNo;
+ unsigned VTNo;
+
+ void emitCheck(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(1, S));
+ }
+ void emitCode(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(0, S));
+ }
+ void emitInit(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(2, S));
+ }
+ void emitDecl(const std::string &S) {
+ assert(!S.empty() && "Invalid declaration");
+ GeneratedDecl.insert(S);
+ }
+ void emitOpcode(const std::string &Opc) {
+ TargetOpcodes.push_back(Opc);
+ OpcNo++;
+ }
+ void emitVT(const std::string &VT) {
+ TargetVTs.push_back(VT);
+ VTNo++;
+ }
+public:
+ PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
+ TreePatternNode *pattern, TreePatternNode *instr,
+ std::vector<std::pair<unsigned, std::string> > &gc,
+ std::set<std::string> &gd,
+ std::vector<std::string> &to,
+ std::vector<std::string> &tv)
+ : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
+ GeneratedCode(gc), GeneratedDecl(gd),
+ TargetOpcodes(to), TargetVTs(tv),
+ TmpNo(0), OpcNo(0), VTNo(0) {}
+
+ /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
+ /// if the match fails. At this point, we already know that the opcode for N
+ /// matches, and the SDNode for the result has the RootName specified name.
+ void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
+ const std::string &RootName, const std::string &ChainSuffix,
+ bool &FoundChain) {
+ bool isRoot = (P == NULL);
+ // Emit instruction predicates. Each predicate is just a string for now.
+ if (isRoot) {
+ std::string PredicateCheck;
+ for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
+ if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
+ Record *Def = Pred->getDef();
+ if (!Def->isSubClassOf("Predicate")) {
+#ifndef NDEBUG
+ Def->dump();
+#endif
+ assert(0 && "Unknown predicate type!");
+ }
+ if (!PredicateCheck.empty())
+ PredicateCheck += " && ";
+ PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
+ }
+ }
+
+ emitCheck(PredicateCheck);
+ }
+
+ if (N->isLeaf()) {
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ emitCheck("cast<ConstantSDNode>(" + RootName +
+ ")->getSignExtended() == " + itostr(II->getValue()));
+ return;
+ } else if (!NodeIsComplexPattern(N)) {
+ assert(0 && "Cannot match this as a leaf value!");
+ abort();
+ }
+ }
+
+ // If this node has a name associated with it, capture it in VariableMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ if (!N->getName().empty()) {
+ std::string &VarMapEntry = VariableMap[N->getName()];
+ if (VarMapEntry.empty()) {
+ VarMapEntry = RootName;
+ } else {
+ // If we get here, this is a second reference to a specific name. Since
+ // we already have checked that the first reference is valid, we don't
+ // have to recursively match it, just check that it's the same as the
+ // previously named thing.
+ emitCheck(VarMapEntry + " == " + RootName);
+ return;
+ }
+
+ if (!N->isLeaf())
+ OperatorMap[N->getName()] = N->getOperator();
+ }
+
+
+ // Emit code to load the child nodes and match their contents recursively.
+ unsigned OpNo = 0;
+ bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE);
+ bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE);
+ bool EmittedUseCheck = false;
+ if (HasChain) {
+ if (NodeHasChain)
+ OpNo = 1;
+ if (!isRoot) {
+ // Multiple uses of actual result?
+ emitCheck(RootName + ".hasOneUse()");
+ EmittedUseCheck = true;
+ if (NodeHasChain) {
+ // If the immediate use can somehow reach this node through another
+ // path, then can't fold it either or it will create a cycle.
+ // e.g. In the following diagram, XX can reach ld through YY. If
+ // ld is folded into XX, then YY is both a predecessor and a successor
+ // of XX.
+ //
+ // [ld]
+ // ^ ^
+ // | |
+ // / \---
+ // / [YY]
+ // | ^
+ // [XX]-------|
+ bool NeedCheck = false;
+ if (P != Pattern)
+ NeedCheck = true;
+ else {
+ const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
+ NeedCheck =
+ P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
+ P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
+ P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
+ PInfo.getNumOperands() > 1 ||
+ PInfo.hasProperty(SDNPHasChain) ||
+ PInfo.hasProperty(SDNPInFlag) ||
+ PInfo.hasProperty(SDNPOptInFlag);
+ }
+
+ if (NeedCheck) {
+ std::string ParentName(RootName.begin(), RootName.end()-1);
+ emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
+ ".Val, N.Val)");
+ }
+ }
+ }
+
+ if (NodeHasChain) {
+ if (FoundChain) {
+ emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
+ "IsChainCompatible(" + ChainName + ".Val, " +
+ RootName + ".Val))");
+ OrigChains.push_back(std::make_pair(ChainName, RootName));
+ } else
+ FoundChain = true;
+ ChainName = "Chain" + ChainSuffix;
+ emitInit("SDOperand " + ChainName + " = " + RootName +
+ ".getOperand(0);");
+ }
+ }
+
+ // Don't fold any node which reads or writes a flag and has multiple uses.
+ // FIXME: We really need to separate the concepts of flag and "glue". Those
+ // real flag results, e.g. X86CMP output, can have multiple uses.
+ // FIXME: If the optional incoming flag does not exist. Then it is ok to
+ // fold it.
+ if (!isRoot &&
+ (PatternHasProperty(N, SDNPInFlag, ISE) ||
+ PatternHasProperty(N, SDNPOptInFlag, ISE) ||
+ PatternHasProperty(N, SDNPOutFlag, ISE))) {
+ if (!EmittedUseCheck) {
+ // Multiple uses of actual result?
+ emitCheck(RootName + ".hasOneUse()");
+ }
+ }
+
+ // If there is a node predicate for this, emit the call.
+ if (!N->getPredicateFn().empty())
+ emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
+
+
+ // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
+ // a constant without a predicate fn that has more that one bit set, handle
+ // this as a special case. This is usually for targets that have special
+ // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
+ // handling stuff). Using these instructions is often far more efficient
+ // than materializing the constant. Unfortunately, both the instcombiner
+ // and the dag combiner can often infer that bits are dead, and thus drop
+ // them from the mask in the dag. For example, it might turn 'AND X, 255'
+ // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
+ // to handle this.
+ if (!N->isLeaf() &&
+ (N->getOperator()->getName() == "and" ||
+ N->getOperator()->getName() == "or") &&
+ N->getChild(1)->isLeaf() &&
+ N->getChild(1)->getPredicateFn().empty()) {
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
+ if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
+ emitInit("SDOperand " + RootName + "0" + " = " +
+ RootName + ".getOperand(" + utostr(0) + ");");
+ emitInit("SDOperand " + RootName + "1" + " = " +
+ RootName + ".getOperand(" + utostr(1) + ");");
+
+ emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
+ const char *MaskPredicate = N->getOperator()->getName() == "or"
+ ? "CheckOrMask(" : "CheckAndMask(";
+ emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
+ RootName + "1), " + itostr(II->getValue()) + ")");
+
+ EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
+ ChainSuffix + utostr(0), FoundChain);
+ return;
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
+ RootName + ".getOperand(" +utostr(OpNo) + ");");
+
+ EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
+ ChainSuffix + utostr(OpNo), FoundChain);
+ }
+
+ // Handle cases when root is a complex pattern.
+ const ComplexPattern *CP;
+ if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
+ std::string Fn = CP->getSelectFunc();
+ unsigned NumOps = CP->getNumOperands();
+ for (unsigned i = 0; i < NumOps; ++i) {
+ emitDecl("CPTmp" + utostr(i));
+ emitCode("SDOperand CPTmp" + utostr(i) + ";");
+ }
+ if (CP->hasProperty(SDNPHasChain)) {
+ emitDecl("CPInChain");
+ emitDecl("Chain" + ChainSuffix);
+ emitCode("SDOperand CPInChain;");
+ emitCode("SDOperand Chain" + ChainSuffix + ";");
+ }
+
+ std::string Code = Fn + "(" + RootName + ", " + RootName;
+ for (unsigned i = 0; i < NumOps; i++)
+ Code += ", CPTmp" + utostr(i);
+ if (CP->hasProperty(SDNPHasChain)) {
+ ChainName = "Chain" + ChainSuffix;
+ Code += ", CPInChain, Chain" + ChainSuffix;
+ }
+ emitCheck(Code + ")");
+ }
+ }
+
+ void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
+ const std::string &RootName,
+ const std::string &ChainSuffix, bool &FoundChain) {
+ if (!Child->isLeaf()) {
+ // If it's not a leaf, recursively match.
+ const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
+ emitCheck(RootName + ".getOpcode() == " +
+ CInfo.getEnumName());
+ EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
+ if (NodeHasProperty(Child, SDNPHasChain, ISE))
+ FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
+ } else {
+ // If this child has a name associated with it, capture it in VarMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ if (!Child->getName().empty()) {
+ std::string &VarMapEntry = VariableMap[Child->getName()];
+ if (VarMapEntry.empty()) {
+ VarMapEntry = RootName;
+ } else {
+ // If we get here, this is a second reference to a specific name.
+ // Since we already have checked that the first reference is valid,
+ // we don't have to recursively match it, just check that it's the
+ // same as the previously named thing.
+ emitCheck(VarMapEntry + " == " + RootName);
+ Duplicates.insert(RootName);
+ return;
+ }
+ }
+
+ // Handle leaves of various types.
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *LeafRec = DI->getDef();
+ if (LeafRec->isSubClassOf("RegisterClass") ||
+ LeafRec->getName() == "ptr_rc") {
+ // Handle register references. Nothing to do here.
+ } else if (LeafRec->isSubClassOf("Register")) {
+ // Handle register references.
+ } else if (LeafRec->isSubClassOf("ComplexPattern")) {
+ // Handle complex pattern.
+ const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
+ std::string Fn = CP->getSelectFunc();
+ unsigned NumOps = CP->getNumOperands();
+ for (unsigned i = 0; i < NumOps; ++i) {
+ emitDecl("CPTmp" + utostr(i));
+ emitCode("SDOperand CPTmp" + utostr(i) + ";");
+ }
+ if (CP->hasProperty(SDNPHasChain)) {
+ const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
+ FoldedChains.push_back(std::make_pair("CPInChain",
+ PInfo.getNumResults()));
+ ChainName = "Chain" + ChainSuffix;
+ emitDecl("CPInChain");
+ emitDecl(ChainName);
+ emitCode("SDOperand CPInChain;");
+ emitCode("SDOperand " + ChainName + ";");
+ }
+
+ std::string Code = Fn + "(N, ";
+ if (CP->hasProperty(SDNPHasChain)) {
+ std::string ParentName(RootName.begin(), RootName.end()-1);
+ Code += ParentName + ", ";
+ }
+ Code += RootName;
+ for (unsigned i = 0; i < NumOps; i++)
+ Code += ", CPTmp" + utostr(i);
+ if (CP->hasProperty(SDNPHasChain))
+ Code += ", CPInChain, Chain" + ChainSuffix;
+ emitCheck(Code + ")");
+ } else if (LeafRec->getName() == "srcvalue") {
+ // Place holder for SRCVALUE nodes. Nothing to do here.
+ } else if (LeafRec->isSubClassOf("ValueType")) {
+ // Make sure this is the specified value type.
+ emitCheck("cast<VTSDNode>(" + RootName +
+ ")->getVT() == MVT::" + LeafRec->getName());
+ } else if (LeafRec->isSubClassOf("CondCode")) {
+ // Make sure this is the specified cond code.
+ emitCheck("cast<CondCodeSDNode>(" + RootName +
+ ")->get() == ISD::" + LeafRec->getName());
+ } else {
+#ifndef NDEBUG
+ Child->dump();
+ cerr << " ";
+#endif
+ assert(0 && "Unknown leaf type!");
+ }
+
+ // If there is a node predicate for this, emit the call.
+ if (!Child->getPredicateFn().empty())
+ emitCheck(Child->getPredicateFn() + "(" + RootName +
+ ".Val)");
+ } else if (IntInit *II =
+ dynamic_cast<IntInit*>(Child->getLeafValue())) {
+ emitCheck("isa<ConstantSDNode>(" + RootName + ")");
+ unsigned CTmp = TmpNo++;
+ emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
+ RootName + ")->getSignExtended();");
+
+ emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
+ } else {
+#ifndef NDEBUG
+ Child->dump();
+#endif
+ assert(0 && "Unknown leaf type!");
+ }
+ }
+ }
+
+ /// EmitResultCode - Emit the action for a pattern. Now that it has matched
+ /// we actually have to build a DAG!
+ std::vector<std::string>
+ EmitResultCode(TreePatternNode *N, bool RetSelected,
+ bool InFlagDecled, bool ResNodeDecled,
+ bool LikeLeaf = false, bool isRoot = false) {
+ // List of arguments of getTargetNode() or SelectNodeTo().
+ std::vector<std::string> NodeOps;
+ // This is something selected from the pattern we matched.
+ if (!N->getName().empty()) {
+ std::string &Val = VariableMap[N->getName()];
+ assert(!Val.empty() &&
+ "Variable referenced but not defined and not caught earlier!");
+ if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
+ // Already selected this operand, just return the tmpval.
+ NodeOps.push_back(Val);
+ return NodeOps;
+ }
+
+ const ComplexPattern *CP;
+ unsigned ResNo = TmpNo++;
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
+ assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
+ std::string CastType;
+ switch (N->getTypeNum(0)) {
+ default:
+ cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
+ << " type as an immediate constant. Aborting\n";
+ abort();
+ case MVT::i1: CastType = "bool"; break;
+ case MVT::i8: CastType = "unsigned char"; break;
+ case MVT::i16: CastType = "unsigned short"; break;
+ case MVT::i32: CastType = "unsigned"; break;
+ case MVT::i64: CastType = "uint64_t"; break;
+ }
+ emitCode("SDOperand Tmp" + utostr(ResNo) +
+ " = CurDAG->getTargetConstant(((" + CastType +
+ ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
+ // value if used multiple times by this pattern result.
+ Val = "Tmp"+utostr(ResNo);
+ } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
+ Record *Op = OperatorMap[N->getName()];
+ // Transform ExternalSymbol to TargetExternalSymbol
+ if (Op && Op->getName() == "externalsym") {
+ emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
+ "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
+ Val + ")->getSymbol(), " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
+ // this value if used multiple times by this pattern result.
+ Val = "Tmp"+utostr(ResNo);
+ } else {
+ NodeOps.push_back(Val);
+ }
+ } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
+ || N->getOperator()->getName() == "tglobaltlsaddr")) {
+ Record *Op = OperatorMap[N->getName()];
+ // Transform GlobalAddress to TargetGlobalAddress
+ if (Op && (Op->getName() == "globaladdr" ||
+ Op->getName() == "globaltlsaddr")) {
+ emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
+ "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
+ ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
+ ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
+ // this value if used multiple times by this pattern result.
+ Val = "Tmp"+utostr(ResNo);
+ } else {
+ NodeOps.push_back(Val);
+ }
+ } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
+ NodeOps.push_back(Val);
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
+ // value if used multiple times by this pattern result.
+ Val = "Tmp"+utostr(ResNo);
+ } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
+ NodeOps.push_back(Val);
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
+ // value if used multiple times by this pattern result.
+ Val = "Tmp"+utostr(ResNo);
+ } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
+ for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
+ emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
+ NodeOps.push_back("CPTmp" + utostr(i));
+ }
+ } else {
+ // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
+ // node even if it isn't one. Don't select it.
+ if (!LikeLeaf) {
+ emitCode("AddToISelQueue(" + Val + ");");
+ if (isRoot && N->isLeaf()) {
+ emitCode("ReplaceUses(N, " + Val + ");");
+ emitCode("return NULL;");
+ }
+ }
+ NodeOps.push_back(Val);
+ }
+ return NodeOps;
+ }
+ if (N->isLeaf()) {
+ // If this is an explicit register reference, handle it.
+ if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ unsigned ResNo = TmpNo++;
+ if (DI->getDef()->isSubClassOf("Register")) {
+ emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
+ ISE.getQualifiedName(DI->getDef()) + ", " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ } else if (DI->getDef()->getName() == "zero_reg") {
+ emitCode("SDOperand Tmp" + utostr(ResNo) +
+ " = CurDAG->getRegister(0, " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ }
+ } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ unsigned ResNo = TmpNo++;
+ assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
+ emitCode("SDOperand Tmp" + utostr(ResNo) +
+ " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
+ ", " + getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ }
+
+#ifndef NDEBUG
+ N->dump();
+#endif
+ assert(0 && "Unknown leaf type!");
+ return NodeOps;
+ }
+
+ Record *Op = N->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ const CodeGenTarget &CGT = ISE.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(Op->getName());
+ const DAGInstruction &Inst = ISE.getInstruction(Op);
+ TreePattern *InstPat = Inst.getPattern();
+ TreePatternNode *InstPatNode =
+ isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
+ : (InstPat ? InstPat->getOnlyTree() : NULL);
+ if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
+ InstPatNode = InstPatNode->getChild(1);
+ }
+ bool HasVarOps = isRoot && II.hasVariableNumberOfOperands;
+ bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
+ bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
+ bool NodeHasOptInFlag = isRoot &&
+ PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
+ bool NodeHasInFlag = isRoot &&
+ PatternHasProperty(Pattern, SDNPInFlag, ISE);
+ bool NodeHasOutFlag = HasImpResults || (isRoot &&
+ PatternHasProperty(Pattern, SDNPOutFlag, ISE));
+ bool NodeHasChain = InstPatNode &&
+ PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
+ bool InputHasChain = isRoot &&
+ NodeHasProperty(Pattern, SDNPHasChain, ISE);
+ unsigned NumResults = Inst.getNumResults();
+
+ if (NodeHasOptInFlag) {
+ emitCode("bool HasInFlag = "
+ "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
+ }
+ if (HasVarOps)
+ emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
+
+ // How many results is this pattern expected to produce?
+ unsigned PatResults = 0;
+ for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
+ MVT::ValueType VT = Pattern->getTypeNum(i);
+ if (VT != MVT::isVoid && VT != MVT::Flag)
+ PatResults++;
+ }
+
+ if (OrigChains.size() > 0) {
+ // The original input chain is being ignored. If it is not just
+ // pointing to the op that's being folded, we should create a
+ // TokenFactor with it and the chain of the folded op as the new chain.
+ // We could potentially be doing multiple levels of folding, in that
+ // case, the TokenFactor can have more operands.
+ emitCode("SmallVector<SDOperand, 8> InChains;");
+ for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
+ emitCode("if (" + OrigChains[i].first + ".Val != " +
+ OrigChains[i].second + ".Val) {");
+ emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
+ emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
+ emitCode("}");
+ }
+ emitCode("AddToISelQueue(" + ChainName + ");");
+ emitCode("InChains.push_back(" + ChainName + ");");
+ emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
+ "&InChains[0], InChains.size());");
+ }
+
+ // Loop over all of the operands of the instruction pattern, emitting code
+ // to fill them all in. The node 'N' usually has number children equal to
+ // the number of input operands of the instruction. However, in cases
+ // where there are predicate operands for an instruction, we need to fill
+ // in the 'execute always' values. Match up the node operands to the
+ // instruction operands to do this.
+ std::vector<std::string> AllOps;
+ unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs.
+ for (unsigned ChildNo = 0, InstOpNo = NumResults;
+ InstOpNo != II.OperandList.size(); ++InstOpNo) {
+ std::vector<std::string> Ops;
+
+ // If this is a normal operand or a predicate operand without
+ // 'execute always', emit it.
+ Record *OperandNode = II.OperandList[InstOpNo].Rec;
+ if ((!OperandNode->isSubClassOf("PredicateOperand") &&
+ !OperandNode->isSubClassOf("OptionalDefOperand")) ||
+ ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) {
+ Ops = EmitResultCode(N->getChild(ChildNo), RetSelected,
+ InFlagDecled, ResNodeDecled);
+ AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
+ ++ChildNo;
+ } else {
+ // Otherwise, this is a predicate or optional def operand, emit the
+ // 'default ops' operands.
+ const DAGDefaultOperand &DefaultOp =
+ ISE.getDefaultOperand(II.OperandList[InstOpNo].Rec);
+ for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
+ Ops = EmitResultCode(DefaultOp.DefaultOps[i], RetSelected,
+ InFlagDecled, ResNodeDecled);
+ AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
+ NumEAInputs += Ops.size();
+ }
+ }
+ }
+
+ // Emit all the chain and CopyToReg stuff.
+ bool ChainEmitted = NodeHasChain;
+ if (NodeHasChain)
+ emitCode("AddToISelQueue(" + ChainName + ");");
+ if (NodeHasInFlag || HasImpInputs)
+ EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
+ InFlagDecled, ResNodeDecled, true);
+ if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
+ if (!InFlagDecled) {
+ emitCode("SDOperand InFlag(0, 0);");
+ InFlagDecled = true;
+ }
+ if (NodeHasOptInFlag) {
+ emitCode("if (HasInFlag) {");
+ emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
+ emitCode(" AddToISelQueue(InFlag);");
+ emitCode("}");
+ }
+ }
+
+ unsigned ResNo = TmpNo++;
+ if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
+ NodeHasOptInFlag) {
+ std::string Code;
+ std::string Code2;
+ std::string NodeName;
+ if (!isRoot) {
+ NodeName = "Tmp" + utostr(ResNo);
+ Code2 = "SDOperand " + NodeName + " = SDOperand(";
+ } else {
+ NodeName = "ResNode";
+ if (!ResNodeDecled) {
+ Code2 = "SDNode *" + NodeName + " = ";
+ ResNodeDecled = true;
+ } else
+ Code2 = NodeName + " = ";
+ }
+
+ Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
+ unsigned OpsNo = OpcNo;
+ emitOpcode(II.Namespace + "::" + II.TheDef->getName());
+
+ // Output order: results, chain, flags
+ // Result types.
+ if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
+ Code += ", VT" + utostr(VTNo);
+ emitVT(getEnumName(N->getTypeNum(0)));
+ }
+ if (NodeHasChain)
+ Code += ", MVT::Other";
+ if (NodeHasOutFlag)
+ Code += ", MVT::Flag";
+
+ // Figure out how many fixed inputs the node has. This is important to
+ // know which inputs are the variable ones if present.
+ unsigned NumInputs = AllOps.size();
+ NumInputs += NodeHasChain;
+
+ // Inputs.
+ if (HasVarOps) {
+ for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
+ AllOps.clear();
+ }
+
+ if (HasVarOps) {
+ // Figure out whether any operands at the end of the op list are not
+ // part of the variable section.
+ std::string EndAdjust;
+ if (NodeHasInFlag || HasImpInputs)
+ EndAdjust = "-1"; // Always has one flag.
+ else if (NodeHasOptInFlag)
+ EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
+
+ emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) +
+ ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
+
+ emitCode(" AddToISelQueue(N.getOperand(i));");
+ emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
+ emitCode("}");
+ }
+
+ if (NodeHasChain) {
+ if (HasVarOps)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
+ else
+ AllOps.push_back(ChainName);
+ }
+
+ if (HasVarOps) {
+ if (NodeHasInFlag || HasImpInputs)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
+ else if (NodeHasOptInFlag) {
+ emitCode("if (HasInFlag)");
+ emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
+ }
+ Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
+ ".size()";
+ } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
+ AllOps.push_back("InFlag");
+
+ unsigned NumOps = AllOps.size();
+ if (NumOps) {
+ if (!NodeHasOptInFlag && NumOps < 4) {
+ for (unsigned i = 0; i != NumOps; ++i)
+ Code += ", " + AllOps[i];
+ } else {
+ std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
+ for (unsigned i = 0; i != NumOps; ++i) {
+ OpsCode += AllOps[i];
+ if (i != NumOps-1)
+ OpsCode += ", ";
+ }
+ emitCode(OpsCode + " };");
+ Code += ", Ops" + utostr(OpsNo) + ", ";
+ if (NodeHasOptInFlag) {
+ Code += "HasInFlag ? ";
+ Code += utostr(NumOps) + " : " + utostr(NumOps-1);
+ } else
+ Code += utostr(NumOps);
+ }
+ }
+
+ if (!isRoot)
+ Code += "), 0";
+ emitCode(Code2 + Code + ");");
+
+ if (NodeHasChain)
+ // Remember which op produces the chain.
+ if (!isRoot)
+ emitCode(ChainName + " = SDOperand(" + NodeName +
+ ".Val, " + utostr(PatResults) + ");");
+ else
+ emitCode(ChainName + " = SDOperand(" + NodeName +
+ ", " + utostr(PatResults) + ");");
+
+ if (!isRoot) {
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ }
+
+ bool NeedReplace = false;
+ if (NodeHasOutFlag) {
+ if (!InFlagDecled) {
+ emitCode("SDOperand InFlag = SDOperand(ResNode, " +
+ utostr(NumResults + (unsigned)NodeHasChain) + ");");
+ InFlagDecled = true;
+ } else
+ emitCode("InFlag = SDOperand(ResNode, " +
+ utostr(NumResults + (unsigned)NodeHasChain) + ");");
+ }
+
+ if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
+ emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
+ NumResults = 1;
+ }
+
+ if (FoldedChains.size() > 0) {
+ std::string Code;
+ for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
+ emitCode("ReplaceUses(SDOperand(" +
+ FoldedChains[j].first + ".Val, " +
+ utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
+ utostr(NumResults) + "));");
+ NeedReplace = true;
+ }
+
+ if (NodeHasOutFlag) {
+ emitCode("ReplaceUses(SDOperand(N.Val, " +
+ utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
+ NeedReplace = true;
+ }
+
+ if (NeedReplace) {
+ for (unsigned i = 0; i < NumResults; i++)
+ emitCode("ReplaceUses(SDOperand(N.Val, " +
+ utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
+ if (InputHasChain)
+ emitCode("ReplaceUses(SDOperand(N.Val, " +
+ utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
+ + ChainName + ".ResNo" + "));");
+ } else
+ RetSelected = true;
+
+ // User does not expect the instruction would produce a chain!
+ if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
+ ;
+ } else if (InputHasChain && !NodeHasChain) {
+ // One of the inner node produces a chain.
+ if (NodeHasOutFlag)
+ emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
+ "), SDOperand(ResNode, N.ResNo-1));");
+ for (unsigned i = 0; i < PatResults; ++i)
+ emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
+ "), SDOperand(ResNode, " + utostr(i) + "));");
+ emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
+ "), " + ChainName + ");");
+ RetSelected = false;
+ }
+
+ if (RetSelected)
+ emitCode("return ResNode;");
+ else
+ emitCode("return NULL;");
+ } else {
+ std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
+ utostr(OpcNo);
+ if (N->getTypeNum(0) != MVT::isVoid)
+ Code += ", VT" + utostr(VTNo);
+ if (NodeHasOutFlag)
+ Code += ", MVT::Flag";
+
+ if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
+ AllOps.push_back("InFlag");
+
+ unsigned NumOps = AllOps.size();
+ if (NumOps) {
+ if (!NodeHasOptInFlag && NumOps < 4) {
+ for (unsigned i = 0; i != NumOps; ++i)
+ Code += ", " + AllOps[i];
+ } else {
+ std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
+ for (unsigned i = 0; i != NumOps; ++i) {
+ OpsCode += AllOps[i];
+ if (i != NumOps-1)
+ OpsCode += ", ";
+ }
+ emitCode(OpsCode + " };");
+ Code += ", Ops" + utostr(OpcNo) + ", ";
+ Code += utostr(NumOps);
+ }
+ }
+ emitCode(Code + ");");
+ emitOpcode(II.Namespace + "::" + II.TheDef->getName());
+ if (N->getTypeNum(0) != MVT::isVoid)
+ emitVT(getEnumName(N->getTypeNum(0)));
+ }
+
+ return NodeOps;
+ } else if (Op->isSubClassOf("SDNodeXForm")) {
+ assert(N->getNumChildren() == 1 && "node xform should have one child!");
+ // PatLeaf node - the operand may or may not be a leaf node. But it should
+ // behave like one.
+ std::vector<std::string> Ops =
+ EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
+ ResNodeDecled, true);
+ unsigned ResNo = TmpNo++;
+ emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
+ + "(" + Ops.back() + ".Val);");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ if (isRoot)
+ emitCode("return Tmp" + utostr(ResNo) + ".Val;");
+ return NodeOps;
+ } else {
+ N->dump();
+ cerr << "\n";
+ throw std::string("Unknown node in result pattern!");
+ }
+ }
+
+ /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
+ /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
+ /// 'Pat' may be missing types. If we find an unresolved type to add a check
+ /// for, this returns true otherwise false if Pat has all types.
+ bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
+ const std::string &Prefix, bool isRoot = false) {
+ // Did we find one?
+ if (Pat->getExtTypes() != Other->getExtTypes()) {
+ // Move a type over from 'other' to 'pat'.
+ Pat->setTypes(Other->getExtTypes());
+ // The top level node type is checked outside of the select function.
+ if (!isRoot)
+ emitCheck(Prefix + ".Val->getValueType(0) == " +
+ getName(Pat->getTypeNum(0)));
+ return true;
+ }
+
+ unsigned OpNo =
+ (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
+ if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
+ Prefix + utostr(OpNo)))
+ return true;
+ return false;
+ }
+
+private:
+ /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
+ /// being built.
+ void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
+ bool &ChainEmitted, bool &InFlagDecled,
+ bool &ResNodeDecled, bool isRoot = false) {
+ const CodeGenTarget &T = ISE.getTargetInfo();
+ unsigned OpNo =
+ (unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
+ bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ TreePatternNode *Child = N->getChild(i);
+ if (!Child->isLeaf()) {
+ EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
+ InFlagDecled, ResNodeDecled);
+ } else {
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ if (!Child->getName().empty()) {
+ std::string Name = RootName + utostr(OpNo);
+ if (Duplicates.find(Name) != Duplicates.end())
+ // A duplicate! Do not emit a copy for this node.
+ continue;
+ }
+
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register")) {
+ MVT::ValueType RVT = getRegisterValueType(RR, T);
+ if (RVT == MVT::Flag) {
+ if (!InFlagDecled) {
+ emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
+ InFlagDecled = true;
+ } else
+ emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
+ emitCode("AddToISelQueue(InFlag);");
+ } else {
+ if (!ChainEmitted) {
+ emitCode("SDOperand Chain = CurDAG->getEntryNode();");
+ ChainName = "Chain";
+ ChainEmitted = true;
+ }
+ emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
+ if (!InFlagDecled) {
+ emitCode("SDOperand InFlag(0, 0);");
+ InFlagDecled = true;
+ }
+ std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
+ emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
+ ", " + ISE.getQualifiedName(RR) +
+ ", " + RootName + utostr(OpNo) + ", InFlag).Val;");
+ ResNodeDecled = true;
+ emitCode(ChainName + " = SDOperand(ResNode, 0);");
+ emitCode("InFlag = SDOperand(ResNode, 1);");
+ }
+ }
+ }
+ }
+ }
+
+ if (HasInFlag) {
+ if (!InFlagDecled) {
+ emitCode("SDOperand InFlag = " + RootName +
+ ".getOperand(" + utostr(OpNo) + ");");
+ InFlagDecled = true;
+ } else
+ emitCode("InFlag = " + RootName +
+ ".getOperand(" + utostr(OpNo) + ");");
+ emitCode("AddToISelQueue(InFlag);");
+ }
+ }
+
+ /// EmitCopyFromRegs - Emit code to copy result to physical registers
+ /// as specified by the instruction. It returns true if any copy is
+ /// emitted.
+ bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
+ bool &ChainEmitted) {
+ bool RetVal = false;
+ Record *Op = N->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = ISE.getInstruction(Op);
+ const CodeGenTarget &CGT = ISE.getTargetInfo();
+ unsigned NumImpResults = Inst.getNumImpResults();
+ for (unsigned i = 0; i < NumImpResults; i++) {
+ Record *RR = Inst.getImpResult(i);
+ if (RR->isSubClassOf("Register")) {
+ MVT::ValueType RVT = getRegisterValueType(RR, CGT);
+ if (RVT != MVT::Flag) {
+ if (!ChainEmitted) {
+ emitCode("SDOperand Chain = CurDAG->getEntryNode();");
+ ChainEmitted = true;
+ ChainName = "Chain";
+ }
+ std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
+ emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
+ ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
+ ", InFlag).Val;");
+ ResNodeDecled = true;
+ emitCode(ChainName + " = SDOperand(ResNode, 1);");
+ emitCode("InFlag = SDOperand(ResNode, 2);");
+ RetVal = true;
+ }
+ }
+ }
+ }
+ return RetVal;
+ }
+};
+
+/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
+/// stream to match the pattern, and generate the code for the match if it
+/// succeeds. Returns true if the pattern is not guaranteed to match.
+void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
+ std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
+ std::set<std::string> &GeneratedDecl,
+ std::vector<std::string> &TargetOpcodes,
+ std::vector<std::string> &TargetVTs) {
+ PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
+ Pattern.getSrcPattern(), Pattern.getDstPattern(),
+ GeneratedCode, GeneratedDecl,
+ TargetOpcodes, TargetVTs);
+
+ // Emit the matcher, capturing named arguments in VariableMap.
+ bool FoundChain = false;
+ Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
+
+ // TP - Get *SOME* tree pattern, we don't care which.
+ TreePattern &TP = *PatternFragments.begin()->second;
+
+ // At this point, we know that we structurally match the pattern, but the
+ // types of the nodes may not match. Figure out the fewest number of type
+ // comparisons we need to emit. For example, if there is only one integer
+ // type supported by a target, there should be no type comparisons at all for
+ // integer patterns!
+ //
+ // To figure out the fewest number of type checks needed, clone the pattern,
+ // remove the types, then perform type inference on the pattern as a whole.
+ // If there are unresolved types, emit an explicit check for those types,
+ // apply the type to the tree, then rerun type inference. Iterate until all
+ // types are resolved.
+ //
+ TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
+ RemoveAllTypes(Pat);
+
+ do {
+ // Resolve/propagate as many types as possible.
+ try {
+ bool MadeChange = true;
+ while (MadeChange)
+ MadeChange = Pat->ApplyTypeConstraints(TP,
+ true/*Ignore reg constraints*/);
+ } catch (...) {
+ assert(0 && "Error: could not find consistent types for something we"
+ " already decided was ok!");
+ abort();
+ }
+
+ // Insert a check for an unresolved type and add it to the tree. If we find
+ // an unresolved type to add a check for, this returns true and we iterate,
+ // otherwise we are done.
+ } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
+
+ Emitter.EmitResultCode(Pattern.getDstPattern(),
+ false, false, false, false, true);
+ delete Pat;
+}
+
+/// EraseCodeLine - Erase one code line from all of the patterns. If removing
+/// a line causes any of them to be empty, remove them and return true when
+/// done.
+static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
+ std::vector<std::pair<unsigned, std::string> > > >
+ &Patterns) {
+ bool ErasedPatterns = false;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ Patterns[i].second.pop_back();
+ if (Patterns[i].second.empty()) {
+ Patterns.erase(Patterns.begin()+i);
+ --i; --e;
+ ErasedPatterns = true;
+ }
+ }
+ return ErasedPatterns;
+}
+
+/// EmitPatterns - Emit code for at least one pattern, but try to group common
+/// code together between the patterns.
+void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
+ std::vector<std::pair<unsigned, std::string> > > >
+ &Patterns, unsigned Indent,
+ std::ostream &OS) {
+ typedef std::pair<unsigned, std::string> CodeLine;
+ typedef std::vector<CodeLine> CodeList;
+ typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
+
+ if (Patterns.empty()) return;
+
+ // Figure out how many patterns share the next code line. Explicitly copy
+ // FirstCodeLine so that we don't invalidate a reference when changing
+ // Patterns.
+ const CodeLine FirstCodeLine = Patterns.back().second.back();
+ unsigned LastMatch = Patterns.size()-1;
+ while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
+ --LastMatch;
+
+ // If not all patterns share this line, split the list into two pieces. The
+ // first chunk will use this line, the second chunk won't.
+ if (LastMatch != 0) {
+ PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
+ PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
+
+ // FIXME: Emit braces?
+ if (Shared.size() == 1) {
+ PatternToMatch &Pattern = *Shared.back().first;
+ OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
+ Pattern.getSrcPattern()->print(OS);
+ OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
+ Pattern.getDstPattern()->print(OS);
+ OS << "\n";
+ unsigned AddedComplexity = Pattern.getAddedComplexity();
+ OS << std::string(Indent, ' ') << "// Pattern complexity = "
+ << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
+ << " cost = "
+ << getResultPatternCost(Pattern.getDstPattern(), *this)
+ << " size = "
+ << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
+ }
+ if (FirstCodeLine.first != 1) {
+ OS << std::string(Indent, ' ') << "{\n";
+ Indent += 2;
+ }
+ EmitPatterns(Shared, Indent, OS);
+ if (FirstCodeLine.first != 1) {
+ Indent -= 2;
+ OS << std::string(Indent, ' ') << "}\n";
+ }
+
+ if (Other.size() == 1) {
+ PatternToMatch &Pattern = *Other.back().first;
+ OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
+ Pattern.getSrcPattern()->print(OS);
+ OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
+ Pattern.getDstPattern()->print(OS);
+ OS << "\n";
+ unsigned AddedComplexity = Pattern.getAddedComplexity();
+ OS << std::string(Indent, ' ') << "// Pattern complexity = "
+ << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
+ << " cost = "
+ << getResultPatternCost(Pattern.getDstPattern(), *this)
+ << " size = "
+ << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
+ }
+ EmitPatterns(Other, Indent, OS);
+ return;
+ }
+
+ // Remove this code from all of the patterns that share it.
+ bool ErasedPatterns = EraseCodeLine(Patterns);
+
+ bool isPredicate = FirstCodeLine.first == 1;
+
+ // Otherwise, every pattern in the list has this line. Emit it.
+ if (!isPredicate) {
+ // Normal code.
+ OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
+ } else {
+ OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
+
+ // If the next code line is another predicate, and if all of the pattern
+ // in this group share the same next line, emit it inline now. Do this
+ // until we run out of common predicates.
+ while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
+ // Check that all of fhe patterns in Patterns end with the same predicate.
+ bool AllEndWithSamePredicate = true;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
+ if (Patterns[i].second.back() != Patterns.back().second.back()) {
+ AllEndWithSamePredicate = false;
+ break;
+ }
+ // If all of the predicates aren't the same, we can't share them.
+ if (!AllEndWithSamePredicate) break;
+
+ // Otherwise we can. Emit it shared now.
+ OS << " &&\n" << std::string(Indent+4, ' ')
+ << Patterns.back().second.back().second;
+ ErasedPatterns = EraseCodeLine(Patterns);
+ }
+
+ OS << ") {\n";
+ Indent += 2;
+ }
+
+ EmitPatterns(Patterns, Indent, OS);
+
+ if (isPredicate)
+ OS << std::string(Indent-2, ' ') << "}\n";
+}
+
+static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
+ const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
+ return OpcodeInfo.getEnumName();
+}
+
+static std::string getLegalCName(std::string OpName) {
+ std::string::size_type pos = OpName.find("::");
+ if (pos != std::string::npos)
+ OpName.replace(pos, 2, "_");
+ return OpName;
+}
+
+void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
+ // Get the namespace to insert instructions into. Make sure not to pick up
+ // "TargetInstrInfo" by accidentally getting the namespace off the PHI
+ // instruction or something.
+ std::string InstNS;
+ for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
+ e = Target.inst_end(); i != e; ++i) {
+ InstNS = i->second.Namespace;
+ if (InstNS != "TargetInstrInfo")
+ break;
+ }
+
+ if (!InstNS.empty()) InstNS += "::";
+
+ // Group the patterns by their top-level opcodes.
+ std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
+ // All unique target node emission functions.
+ std::map<std::string, unsigned> EmitFunctions;
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
+ if (!Node->isLeaf()) {
+ PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
+ push_back(&PatternsToMatch[i]);
+ } else {
+ const ComplexPattern *CP;
+ if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
+ PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
+ push_back(&PatternsToMatch[i]);
+ } else if ((CP = NodeGetComplexPattern(Node, *this))) {
+ std::vector<Record*> OpNodes = CP->getRootNodes();
+ for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
+ PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
+ .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
+ &PatternsToMatch[i]);
+ }
+ } else {
+ cerr << "Unrecognized opcode '";
+ Node->dump();
+ cerr << "' on tree pattern '";
+ cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
+ cerr << "'!\n";
+ exit(1);
+ }
+ }
+ }
+
+ // For each opcode, there might be multiple select functions, one per
+ // ValueType of the node (or its first operand if it doesn't produce a
+ // non-chain result.
+ std::map<std::string, std::vector<std::string> > OpcodeVTMap;
+
+ // Emit one Select_* method for each top-level opcode. We do this instead of
+ // emitting one giant switch statement to support compilers where this will
+ // result in the recursive functions taking less stack space.
+ for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
+ PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
+ PBOI != E; ++PBOI) {
+ const std::string &OpName = PBOI->first;
+ std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
+ assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
+
+ // We want to emit all of the matching code now. However, we want to emit
+ // the matches in order of minimal cost. Sort the patterns so the least
+ // cost one is at the start.
+ std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
+ PatternSortingPredicate(*this));
+
+ // Split them into groups by type.
+ std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
+ for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
+ PatternToMatch *Pat = PatternsOfOp[i];
+ TreePatternNode *SrcPat = Pat->getSrcPattern();
+ MVT::ValueType VT = SrcPat->getTypeNum(0);
+ std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
+ PatternsByType.find(VT);
+ if (TI != PatternsByType.end())
+ TI->second.push_back(Pat);
+ else {
+ std::vector<PatternToMatch*> PVec;
+ PVec.push_back(Pat);
+ PatternsByType.insert(std::make_pair(VT, PVec));
+ }
+ }
+
+ for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
+ II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
+ ++II) {
+ MVT::ValueType OpVT = II->first;
+ std::vector<PatternToMatch*> &Patterns = II->second;
+ typedef std::vector<std::pair<unsigned,std::string> > CodeList;
+ typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
+
+ std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
+ std::vector<std::vector<std::string> > PatternOpcodes;
+ std::vector<std::vector<std::string> > PatternVTs;
+ std::vector<std::set<std::string> > PatternDecls;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ CodeList GeneratedCode;
+ std::set<std::string> GeneratedDecl;
+ std::vector<std::string> TargetOpcodes;
+ std::vector<std::string> TargetVTs;
+ GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
+ TargetOpcodes, TargetVTs);
+ CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
+ PatternDecls.push_back(GeneratedDecl);
+ PatternOpcodes.push_back(TargetOpcodes);
+ PatternVTs.push_back(TargetVTs);
+ }
+
+ // Scan the code to see if all of the patterns are reachable and if it is
+ // possible that the last one might not match.
+ bool mightNotMatch = true;
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ mightNotMatch = false;
+
+ for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
+ if (GeneratedCode[j].first == 1) { // predicate.
+ mightNotMatch = true;
+ break;
+ }
+ }
+
+ // If this pattern definitely matches, and if it isn't the last one, the
+ // patterns after it CANNOT ever match. Error out.
+ if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
+ cerr << "Pattern '";
+ CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
+ cerr << "' is impossible to select!\n";
+ exit(1);
+ }
+ }
+
+ // Factor target node emission code (emitted by EmitResultCode) into
+ // separate functions. Uniquing and share them among all instruction
+ // selection routines.
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
+ std::vector<std::string> &TargetVTs = PatternVTs[i];
+ std::set<std::string> Decls = PatternDecls[i];
+ std::vector<std::string> AddedInits;
+ int CodeSize = (int)GeneratedCode.size();
+ int LastPred = -1;
+ for (int j = CodeSize-1; j >= 0; --j) {
+ if (LastPred == -1 && GeneratedCode[j].first == 1)
+ LastPred = j;
+ else if (LastPred != -1 && GeneratedCode[j].first == 2)
+ AddedInits.push_back(GeneratedCode[j].second);
+ }
+
+ std::string CalleeCode = "(const SDOperand &N";
+ std::string CallerCode = "(N";
+ for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
+ CalleeCode += ", unsigned Opc" + utostr(j);
+ CallerCode += ", " + TargetOpcodes[j];
+ }
+ for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
+ CalleeCode += ", MVT::ValueType VT" + utostr(j);
+ CallerCode += ", " + TargetVTs[j];
+ }
+ for (std::set<std::string>::iterator
+ I = Decls.begin(), E = Decls.end(); I != E; ++I) {
+ std::string Name = *I;
+ CalleeCode += ", SDOperand &" + Name;
+ CallerCode += ", " + Name;
+ }
+ CallerCode += ");";
+ CalleeCode += ") ";
+ // Prevent emission routines from being inlined to reduce selection
+ // routines stack frame sizes.
+ CalleeCode += "DISABLE_INLINE ";
+ CalleeCode += "{\n";
+
+ for (std::vector<std::string>::const_reverse_iterator
+ I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
+ CalleeCode += " " + *I + "\n";
+
+ for (int j = LastPred+1; j < CodeSize; ++j)
+ CalleeCode += " " + GeneratedCode[j].second + "\n";
+ for (int j = LastPred+1; j < CodeSize; ++j)
+ GeneratedCode.pop_back();
+ CalleeCode += "}\n";
+
+ // Uniquing the emission routines.
+ unsigned EmitFuncNum;
+ std::map<std::string, unsigned>::iterator EFI =
+ EmitFunctions.find(CalleeCode);
+ if (EFI != EmitFunctions.end()) {
+ EmitFuncNum = EFI->second;
+ } else {
+ EmitFuncNum = EmitFunctions.size();
+ EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
+ OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
+ }
+
+ // Replace the emission code within selection routines with calls to the
+ // emission functions.
+ CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
+ GeneratedCode.push_back(std::make_pair(false, CallerCode));
+ }
+
+ // Print function.
+ std::string OpVTStr;
+ if (OpVT == MVT::iPTR) {
+ OpVTStr = "_iPTR";
+ } else if (OpVT == MVT::isVoid) {
+ // Nodes with a void result actually have a first result type of either
+ // Other (a chain) or Flag. Since there is no one-to-one mapping from
+ // void to this case, we handle it specially here.
+ } else {
+ OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
+ }
+ std::map<std::string, std::vector<std::string> >::iterator OpVTI =
+ OpcodeVTMap.find(OpName);
+ if (OpVTI == OpcodeVTMap.end()) {
+ std::vector<std::string> VTSet;
+ VTSet.push_back(OpVTStr);
+ OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
+ } else
+ OpVTI->second.push_back(OpVTStr);
+
+ OS << "SDNode *Select_" << getLegalCName(OpName)
+ << OpVTStr << "(const SDOperand &N) {\n";
+
+ // Loop through and reverse all of the CodeList vectors, as we will be
+ // accessing them from their logical front, but accessing the end of a
+ // vector is more efficient.
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ std::reverse(GeneratedCode.begin(), GeneratedCode.end());
+ }
+
+ // Next, reverse the list of patterns itself for the same reason.
+ std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
+
+ // Emit all of the patterns now, grouped together to share code.
+ EmitPatterns(CodeForPatterns, 2, OS);
+
+ // If the last pattern has predicates (which could fail) emit code to
+ // catch the case where nothing handles a pattern.
+ if (mightNotMatch) {
+ OS << " cerr << \"Cannot yet select: \";\n";
+ if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
+ OpName != "ISD::INTRINSIC_WO_CHAIN" &&
+ OpName != "ISD::INTRINSIC_VOID") {
+ OS << " N.Val->dump(CurDAG);\n";
+ } else {
+ OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
+ "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
+ << " cerr << \"intrinsic %\"<< "
+ "Intrinsic::getName((Intrinsic::ID)iid);\n";
+ }
+ OS << " cerr << '\\n';\n"
+ << " abort();\n"
+ << " return NULL;\n";
+ }
+ OS << "}\n\n";
+ }
+ }
+
+ // Emit boilerplate.
+ OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
+ << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
+ << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n"
+
+ << " // Ensure that the asm operands are themselves selected.\n"
+ << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n"
+ << " AddToISelQueue(Ops[j]);\n\n"
+
+ << " std::vector<MVT::ValueType> VTs;\n"
+ << " VTs.push_back(MVT::Other);\n"
+ << " VTs.push_back(MVT::Flag);\n"
+ << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
+ "Ops.size());\n"
+ << " return New.Val;\n"
+ << "}\n\n";
+
+ OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
+ << " SDOperand Chain = N.getOperand(0);\n"
+ << " SDOperand N1 = N.getOperand(1);\n"
+ << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
+ << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
+ << " AddToISelQueue(Chain);\n"
+ << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
+ << " MVT::Other, Tmp, Chain);\n"
+ << "}\n\n";
+
+ OS << "// The main instruction selector code.\n"
+ << "SDNode *SelectCode(SDOperand N) {\n"
+ << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
+ << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
+ << "INSTRUCTION_LIST_END)) {\n"
+ << " return NULL; // Already selected.\n"
+ << " }\n\n"
+ << " MVT::ValueType NVT = N.Val->getValueType(0);\n"
+ << " switch (N.getOpcode()) {\n"
+ << " default: break;\n"
+ << " case ISD::EntryToken: // These leaves remain the same.\n"
+ << " case ISD::BasicBlock:\n"
+ << " case ISD::Register:\n"
+ << " case ISD::HANDLENODE:\n"
+ << " case ISD::TargetConstant:\n"
+ << " case ISD::TargetConstantPool:\n"
+ << " case ISD::TargetFrameIndex:\n"
+ << " case ISD::TargetExternalSymbol:\n"
+ << " case ISD::TargetJumpTable:\n"
+ << " case ISD::TargetGlobalTLSAddress:\n"
+ << " case ISD::TargetGlobalAddress: {\n"
+ << " return NULL;\n"
+ << " }\n"
+ << " case ISD::AssertSext:\n"
+ << " case ISD::AssertZext: {\n"
+ << " AddToISelQueue(N.getOperand(0));\n"
+ << " ReplaceUses(N, N.getOperand(0));\n"
+ << " return NULL;\n"
+ << " }\n"
+ << " case ISD::TokenFactor:\n"
+ << " case ISD::CopyFromReg:\n"
+ << " case ISD::CopyToReg: {\n"
+ << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
+ << " AddToISelQueue(N.getOperand(i));\n"
+ << " return NULL;\n"
+ << " }\n"
+ << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
+ << " case ISD::LABEL: return Select_LABEL(N);\n";
+
+
+ // Loop over all of the case statements, emiting a call to each method we
+ // emitted above.
+ for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
+ PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
+ PBOI != E; ++PBOI) {
+ const std::string &OpName = PBOI->first;
+ // Potentially multiple versions of select for this opcode. One for each
+ // ValueType of the node (or its first true operand if it doesn't produce a
+ // result.
+ std::map<std::string, std::vector<std::string> >::iterator OpVTI =
+ OpcodeVTMap.find(OpName);
+ std::vector<std::string> &OpVTs = OpVTI->second;
+ OS << " case " << OpName << ": {\n";
+ if (OpVTs.size() == 1) {
+ std::string &VTStr = OpVTs[0];
+ OS << " return Select_" << getLegalCName(OpName)
+ << VTStr << "(N);\n";
+ } else {
+ // Keep track of whether we see a pattern that has an iPtr result.
+ bool HasPtrPattern = false;
+ bool HasDefaultPattern = false;
+
+ OS << " switch (NVT) {\n";
+ for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
+ std::string &VTStr = OpVTs[i];
+ if (VTStr.empty()) {
+ HasDefaultPattern = true;
+ continue;
+ }
+
+ // If this is a match on iPTR: don't emit it directly, we need special
+ // code.
+ if (VTStr == "_iPTR") {
+ HasPtrPattern = true;
+ continue;
+ }
+ OS << " case MVT::" << VTStr.substr(1) << ":\n"
+ << " return Select_" << getLegalCName(OpName)
+ << VTStr << "(N);\n";
+ }
+ OS << " default:\n";
+
+ // If there is an iPTR result version of this pattern, emit it here.
+ if (HasPtrPattern) {
+ OS << " if (NVT == TLI.getPointerTy())\n";
+ OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
+ }
+ if (HasDefaultPattern) {
+ OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
+ }
+ OS << " break;\n";
+ OS << " }\n";
+ OS << " break;\n";
+ }
+ OS << " }\n";
+ }
+
+ OS << " } // end of big switch.\n\n"
+ << " cerr << \"Cannot yet select: \";\n"
+ << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
+ << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
+ << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
+ << " N.Val->dump(CurDAG);\n"
+ << " } else {\n"
+ << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
+ "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
+ << " cerr << \"intrinsic %\"<< "
+ "Intrinsic::getName((Intrinsic::ID)iid);\n"
+ << " }\n"
+ << " cerr << '\\n';\n"
+ << " abort();\n"
+ << " return NULL;\n"
+ << "}\n";
+}
+
+void DAGISelEmitter::run(std::ostream &OS) {
+ EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
+ " target", OS);
+
+ OS << "// *** NOTE: This file is #included into the middle of the target\n"
+ << "// *** instruction selector class. These functions are really "
+ << "methods.\n\n";
+
+ OS << "#include \"llvm/Support/Compiler.h\"\n";
+
+ OS << "// Instruction selector priority queue:\n"
+ << "std::vector<SDNode*> ISelQueue;\n";
+ OS << "/// Keep track of nodes which have already been added to queue.\n"
+ << "unsigned char *ISelQueued;\n";
+ OS << "/// Keep track of nodes which have already been selected.\n"
+ << "unsigned char *ISelSelected;\n";
+ OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
+ << "std::vector<SDNode*> ISelKilled;\n\n";
+
+ OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
+ OS << "/// not reach Op.\n";
+ OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
+ OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
+ OS << " return true;\n";
+ OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
+ OS << " return false;\n";
+ OS << " else if (Chain->getNumOperands() > 0) {\n";
+ OS << " SDOperand C0 = Chain->getOperand(0);\n";
+ OS << " if (C0.getValueType() == MVT::Other)\n";
+ OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
+ OS << " }\n";
+ OS << " return true;\n";
+ OS << "}\n";
+
+ OS << "/// Sorting functions for the selection queue.\n"
+ << "struct isel_sort : public std::binary_function"
+ << "<SDNode*, SDNode*, bool> {\n"
+ << " bool operator()(const SDNode* left, const SDNode* right) "
+ << "const {\n"
+ << " return (left->getNodeId() > right->getNodeId());\n"
+ << " }\n"
+ << "};\n\n";
+
+ OS << "inline void setQueued(int Id) {\n";
+ OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
+ OS << "}\n";
+ OS << "inline bool isQueued(int Id) {\n";
+ OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
+ OS << "}\n";
+ OS << "inline void setSelected(int Id) {\n";
+ OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
+ OS << "}\n";
+ OS << "inline bool isSelected(int Id) {\n";
+ OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
+ OS << "}\n\n";
+
+ OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
+ OS << " int Id = N.Val->getNodeId();\n";
+ OS << " if (Id != -1 && !isQueued(Id)) {\n";
+ OS << " ISelQueue.push_back(N.Val);\n";
+ OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
+ OS << " setQueued(Id);\n";
+ OS << " }\n";
+ OS << "}\n\n";
+
+ OS << "inline void RemoveKilled() {\n";
+OS << " unsigned NumKilled = ISelKilled.size();\n";
+ OS << " if (NumKilled) {\n";
+ OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
+ OS << " SDNode *Temp = ISelKilled[i];\n";
+ OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
+ << "Temp), ISelQueue.end());\n";
+ OS << " };\n";
+ OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
+ OS << " ISelKilled.clear();\n";
+ OS << " }\n";
+ OS << "}\n\n";
+
+ OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
+ OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
+ OS << " setSelected(F.Val->getNodeId());\n";
+ OS << " RemoveKilled();\n";
+ OS << "}\n";
+ OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
+ OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
+ OS << " setSelected(F->getNodeId());\n";
+ OS << " RemoveKilled();\n";
+ OS << "}\n\n";
+
+ OS << "// SelectRoot - Top level entry to DAG isel.\n";
+ OS << "SDOperand SelectRoot(SDOperand Root) {\n";
+ OS << " SelectRootInit();\n";
+ OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
+ OS << " ISelQueued = new unsigned char[NumBytes];\n";
+ OS << " ISelSelected = new unsigned char[NumBytes];\n";
+ OS << " memset(ISelQueued, 0, NumBytes);\n";
+ OS << " memset(ISelSelected, 0, NumBytes);\n";
+ OS << "\n";
+ OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
+ << " // a reference to the root node, preventing it from being deleted,\n"
+ << " // and tracking any changes of the root.\n"
+ << " HandleSDNode Dummy(CurDAG->getRoot());\n"
+ << " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
+ OS << " while (!ISelQueue.empty()) {\n";
+ OS << " SDNode *Node = ISelQueue.front();\n";
+ OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
+ OS << " ISelQueue.pop_back();\n";
+ OS << " if (!isSelected(Node->getNodeId())) {\n";
+ OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
+ OS << " if (ResNode != Node) {\n";
+ OS << " if (ResNode)\n";
+ OS << " ReplaceUses(Node, ResNode);\n";
+ OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
+ OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
+ OS << " RemoveKilled();\n";
+ OS << " }\n";
+ OS << " }\n";
+ OS << " }\n";
+ OS << " }\n";
+ OS << "\n";
+ OS << " delete[] ISelQueued;\n";
+ OS << " ISelQueued = NULL;\n";
+ OS << " delete[] ISelSelected;\n";
+ OS << " ISelSelected = NULL;\n";
+ OS << " return Dummy.getValue();\n";
+ OS << "}\n";
+
+ Intrinsics = LoadIntrinsics(Records);
+ ParseNodeInfo();
+ ParseNodeTransforms(OS);
+ ParseComplexPatterns();
+ ParsePatternFragments(OS);
+ ParseDefaultOperands();
+ ParseInstructions();
+ ParsePatterns();
+
+ // Generate variants. For example, commutative patterns can match
+ // multiple ways. Add them to PatternsToMatch as well.
+ GenerateVariants();
+
+ DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
+ DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump());
+ DOUT << "\n";
+ }
+
+ // At this point, we have full information about the 'Patterns' we need to
+ // parse, both implicitly from instructions as well as from explicit pattern
+ // definitions. Emit the resultant instruction selector.
+ EmitInstructionSelector(OS);
+
+ for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I)
+ delete I->second;
+ PatternFragments.clear();
+
+ Instructions.clear();
+}