| // $Id$ |
| //*************************************************************************** |
| // File: |
| // PhyRegAlloc.cpp |
| // |
| // Purpose: |
| // Register allocation for LLVM. |
| // |
| // History: |
| // 9/10/01 - Ruchira Sasanka - created. |
| //**************************************************************************/ |
| |
| #include "llvm/CodeGen/RegisterAllocation.h" |
| #include "llvm/CodeGen/PhyRegAlloc.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/MachineFrameInfo.h" |
| #include <iostream> |
| #include <math.h> |
| using std::cerr; |
| |
| |
| // ***TODO: There are several places we add instructions. Validate the order |
| // of adding these instructions. |
| |
| cl::Enum<RegAllocDebugLevel_t> DEBUG_RA("dregalloc", cl::NoFlags, |
| "enable register allocation debugging information", |
| clEnumValN(RA_DEBUG_None , "n", "disable debug output"), |
| clEnumValN(RA_DEBUG_Normal , "y", "enable debug output"), |
| clEnumValN(RA_DEBUG_Verbose, "v", "enable extra debug output"), 0); |
| |
| |
| //---------------------------------------------------------------------------- |
| // RegisterAllocation pass front end... |
| //---------------------------------------------------------------------------- |
| namespace { |
| class RegisterAllocator : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline RegisterAllocator(TargetMachine &T) : Target(T) {} |
| |
| bool runOnMethod(Method *M) { |
| if (DEBUG_RA) |
| cerr << "\n******************** Method "<< M->getName() |
| << " ********************\n"; |
| |
| MethodLiveVarInfo LVI(M); // Analyze live varaibles |
| LVI.analyze(); |
| |
| PhyRegAlloc PRA(M, Target, &LVI); // allocate registers |
| PRA.allocateRegisters(); |
| |
| if (DEBUG_RA) cerr << "\nRegister allocation complete!\n"; |
| return false; |
| } |
| }; |
| } |
| |
| MethodPass *getRegisterAllocator(TargetMachine &T) { |
| return new RegisterAllocator(T); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Constructor: Init local composite objects and create register classes. |
| //---------------------------------------------------------------------------- |
| PhyRegAlloc::PhyRegAlloc(Method *M, |
| const TargetMachine& tm, |
| MethodLiveVarInfo *const Lvi) |
| : TM(tm), Meth(M), |
| mcInfo(MachineCodeForMethod::get(M)), |
| LVI(Lvi), LRI(M, tm, RegClassList), |
| MRI( tm.getRegInfo() ), |
| NumOfRegClasses(MRI.getNumOfRegClasses()), |
| LoopDepthCalc(M) { |
| |
| // create each RegisterClass and put in RegClassList |
| // |
| for(unsigned int rc=0; rc < NumOfRegClasses; rc++) |
| RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), |
| &ResColList) ); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Destructor: Deletes register classes |
| //---------------------------------------------------------------------------- |
| PhyRegAlloc::~PhyRegAlloc() { |
| for( unsigned int rc=0; rc < NumOfRegClasses; rc++) |
| delete RegClassList[rc]; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method initally creates interference graphs (one in each reg class) |
| // and IGNodeList (one in each IG). The actual nodes will be pushed later. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::createIGNodeListsAndIGs() { |
| if (DEBUG_RA) cerr << "Creating LR lists ...\n"; |
| |
| // hash map iterator |
| LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); |
| |
| // hash map end |
| LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); |
| |
| for (; HMI != HMIEnd ; ++HMI ) { |
| if (HMI->first) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if (!L) { |
| if( DEBUG_RA) { |
| cerr << "\n*?!?Warning: Null liver range found for: "; |
| printValue(HMI->first); cerr << "\n"; |
| } |
| continue; |
| } |
| // if the Value * is not null, and LR |
| // is not yet written to the IGNodeList |
| if( !(L->getUserIGNode()) ) { |
| RegClass *const RC = // RegClass of first value in the LR |
| RegClassList[ L->getRegClass()->getID() ]; |
| |
| RC->addLRToIG(L); // add this LR to an IG |
| } |
| } |
| } |
| |
| // init RegClassList |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[rc]->createInterferenceGraph(); |
| |
| if( DEBUG_RA) |
| cerr << "LRLists Created!\n"; |
| } |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will add all interferences at for a given instruction. |
| // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg |
| // class as that of live var. The live var passed to this function is the |
| // LVset AFTER the instruction |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterference(const Value *const Def, |
| const LiveVarSet *const LVSet, |
| const bool isCallInst) { |
| |
| LiveVarSet::const_iterator LIt = LVSet->begin(); |
| |
| // get the live range of instruction |
| // |
| const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def ); |
| |
| IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); |
| assert( IGNodeOfDef ); |
| |
| RegClass *const RCOfDef = LROfDef->getRegClass(); |
| |
| // for each live var in live variable set |
| // |
| for( ; LIt != LVSet->end(); ++LIt) { |
| |
| if( DEBUG_RA > 1) { |
| cerr << "< Def="; printValue(Def); |
| cerr << ", Lvar="; printValue( *LIt); cerr << "> "; |
| } |
| |
| // get the live range corresponding to live var |
| // |
| LiveRange *const LROfVar = LRI.getLiveRangeForValue(*LIt ); |
| |
| // LROfVar can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| // |
| if (LROfVar) { |
| if(LROfDef == LROfVar) // do not set interf for same LR |
| continue; |
| |
| // if 2 reg classes are the same set interference |
| // |
| if(RCOfDef == LROfVar->getRegClass()) { |
| RCOfDef->setInterference( LROfDef, LROfVar); |
| } else if(DEBUG_RA > 1) { |
| // we will not have LRs for values not explicitly allocated in the |
| // instruction stream (e.g., constants) |
| cerr << " warning: no live range for " ; |
| printValue(*LIt); cerr << "\n"; |
| } |
| } |
| } |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // For a call instruction, this method sets the CallInterference flag in |
| // the LR of each variable live int the Live Variable Set live after the |
| // call instruction (except the return value of the call instruction - since |
| // the return value does not interfere with that call itself). |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, |
| const LiveVarSet *const LVSetAft ) { |
| |
| // Now find the LR of the return value of the call |
| // We do this because, we look at the LV set *after* the instruction |
| // to determine, which LRs must be saved across calls. The return value |
| // of the call is live in this set - but it does not interfere with call |
| // (i.e., we can allocate a volatile register to the return value) |
| // |
| LiveRange *RetValLR = NULL; |
| const Value *RetVal = MRI.getCallInstRetVal( MInst ); |
| |
| if( RetVal ) { |
| RetValLR = LRI.getLiveRangeForValue( RetVal ); |
| assert( RetValLR && "No LR for RetValue of call"); |
| } |
| |
| if( DEBUG_RA) |
| cerr << "\n For call inst: " << *MInst; |
| |
| LiveVarSet::const_iterator LIt = LVSetAft->begin(); |
| |
| // for each live var in live variable set after machine inst |
| // |
| for( ; LIt != LVSetAft->end(); ++LIt) { |
| |
| // get the live range corresponding to live var |
| // |
| LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); |
| |
| if( LR && DEBUG_RA) { |
| cerr << "\n\tLR Aft Call: "; |
| LR->printSet(); |
| } |
| |
| |
| // LR can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| // |
| if( LR && (LR != RetValLR) ) { |
| LR->setCallInterference(); |
| if( DEBUG_RA) { |
| cerr << "\n ++Added call interf for LR: " ; |
| LR->printSet(); |
| } |
| } |
| |
| } |
| |
| } |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will walk thru code and create interferences in the IG of |
| // each RegClass. Also, this method calculates the spill cost of each |
| // Live Range (it is done in this method to save another pass over the code). |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::buildInterferenceGraphs() |
| { |
| |
| if(DEBUG_RA) cerr << "Creating interference graphs ...\n"; |
| |
| unsigned BBLoopDepthCost; |
| Method::const_iterator BBI = Meth->begin(); // random iterator for BBs |
| |
| for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order |
| |
| // find the 10^(loop_depth) of this BB |
| // |
| BBLoopDepthCost = (unsigned) pow( 10.0, LoopDepthCalc.getLoopDepth(*BBI)); |
| |
| // get the iterator for machine instructions |
| // |
| const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); |
| MachineCodeForBasicBlock::const_iterator |
| MInstIterator = MIVec.begin(); |
| |
| // iterate over all the machine instructions in BB |
| // |
| for( ; MInstIterator != MIVec.end(); ++MInstIterator) { |
| |
| const MachineInstr * MInst = *MInstIterator; |
| |
| // get the LV set after the instruction |
| // |
| const LiveVarSet *const LVSetAI = |
| LVI->getLiveVarSetAfterMInst(MInst, *BBI); |
| |
| const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); |
| |
| if( isCallInst ) { |
| // set the isCallInterference flag of each live range wich extends |
| // accross this call instruction. This information is used by graph |
| // coloring algo to avoid allocating volatile colors to live ranges |
| // that span across calls (since they have to be saved/restored) |
| // |
| setCallInterferences( MInst, LVSetAI); |
| } |
| |
| |
| // iterate over all MI operands to find defs |
| // |
| for( MachineInstr::val_const_op_iterator OpI(MInst);!OpI.done(); ++OpI) { |
| |
| if( OpI.isDef() ) { |
| // create a new LR iff this operand is a def |
| // |
| addInterference(*OpI, LVSetAI, isCallInst ); |
| } |
| |
| // Calculate the spill cost of each live range |
| // |
| LiveRange *LR = LRI.getLiveRangeForValue( *OpI ); |
| if( LR ) |
| LR->addSpillCost(BBLoopDepthCost); |
| } |
| |
| |
| // if there are multiple defs in this instruction e.g. in SETX |
| // |
| if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) |
| addInterf4PseudoInstr(MInst); |
| |
| |
| // Also add interference for any implicit definitions in a machine |
| // instr (currently, only calls have this). |
| // |
| unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); |
| if( NumOfImpRefs > 0 ) { |
| for(unsigned z=0; z < NumOfImpRefs; z++) |
| if( MInst->implicitRefIsDefined(z) ) |
| addInterference( MInst->getImplicitRef(z), LVSetAI, isCallInst ); |
| } |
| |
| |
| } // for all machine instructions in BB |
| |
| } // for all BBs in method |
| |
| |
| // add interferences for method arguments. Since there are no explict |
| // defs in method for args, we have to add them manually |
| // |
| addInterferencesForArgs(); |
| |
| if( DEBUG_RA) |
| cerr << "Interference graphs calculted!\n"; |
| |
| } |
| |
| |
| |
| //-------------------------------------------------------------------------- |
| // Pseudo instructions will be exapnded to multiple instructions by the |
| // assembler. Consequently, all the opernds must get distinct registers. |
| // Therefore, we mark all operands of a pseudo instruction as they interfere |
| // with one another. |
| //-------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { |
| |
| bool setInterf = false; |
| |
| // iterate over MI operands to find defs |
| // |
| for( MachineInstr::val_const_op_iterator It1(MInst);!It1.done(); ++It1) { |
| |
| const LiveRange *const LROfOp1 = LRI.getLiveRangeForValue( *It1 ); |
| |
| if( !LROfOp1 && It1.isDef() ) |
| assert( 0 && "No LR for Def in PSEUDO insruction"); |
| |
| MachineInstr::val_const_op_iterator It2 = It1; |
| ++It2; |
| |
| for( ; !It2.done(); ++It2) { |
| |
| const LiveRange *const LROfOp2 = LRI.getLiveRangeForValue( *It2 ); |
| |
| if( LROfOp2) { |
| |
| RegClass *const RCOfOp1 = LROfOp1->getRegClass(); |
| RegClass *const RCOfOp2 = LROfOp2->getRegClass(); |
| |
| if( RCOfOp1 == RCOfOp2 ){ |
| RCOfOp1->setInterference( LROfOp1, LROfOp2 ); |
| setInterf = true; |
| } |
| |
| } // if Op2 has a LR |
| |
| } // for all other defs in machine instr |
| |
| } // for all operands in an instruction |
| |
| if( !setInterf && (MInst->getNumOperands() > 2) ) { |
| cerr << "\nInterf not set for any operand in pseudo instr:\n"; |
| cerr << *MInst; |
| assert(0 && "Interf not set for pseudo instr with > 2 operands" ); |
| |
| } |
| |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will add interferences for incoming arguments to a method. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterferencesForArgs() |
| { |
| // get the InSet of root BB |
| const LiveVarSet *const InSet = LVI->getInSetOfBB( Meth->front() ); |
| |
| // get the argument list |
| const Method::ArgumentListType& ArgList = Meth->getArgumentList(); |
| |
| // get an iterator to arg list |
| Method::ArgumentListType::const_iterator ArgIt = ArgList.begin(); |
| |
| |
| for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument |
| addInterference( *ArgIt, InSet, false ); // add interferences between |
| // args and LVars at start |
| if( DEBUG_RA > 1) { |
| cerr << " - %% adding interference for argument "; |
| printValue((const Value *)*ArgIt); cerr << "\n"; |
| } |
| } |
| } |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method is called after register allocation is complete to set the |
| // allocated reisters in the machine code. This code will add register numbers |
| // to MachineOperands that contain a Value. Also it calls target specific |
| // methods to produce caller saving instructions. At the end, it adds all |
| // additional instructions produced by the register allocator to the |
| // instruction stream. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::updateMachineCode() |
| { |
| |
| Method::const_iterator BBI = Meth->begin(); // random iterator for BBs |
| |
| for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order |
| |
| // get the iterator for machine instructions |
| // |
| MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); |
| MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin(); |
| |
| // iterate over all the machine instructions in BB |
| // |
| for( ; MInstIterator != MIVec.end(); ++MInstIterator) { |
| |
| MachineInstr *MInst = *MInstIterator; |
| |
| unsigned Opcode = MInst->getOpCode(); |
| |
| // do not process Phis |
| if (TM.getInstrInfo().isPhi(Opcode)) |
| continue; |
| |
| // Now insert speical instructions (if necessary) for call/return |
| // instructions. |
| // |
| if (TM.getInstrInfo().isCall(Opcode) || |
| TM.getInstrInfo().isReturn(Opcode)) { |
| |
| AddedInstrns *AI = AddedInstrMap[ MInst]; |
| if ( !AI ) { |
| AI = new AddedInstrns(); |
| AddedInstrMap[ MInst ] = AI; |
| } |
| |
| // Tmp stack poistions are needed by some calls that have spilled args |
| // So reset it before we call each such method |
| // |
| mcInfo.popAllTempValues(TM); |
| |
| if (TM.getInstrInfo().isCall(Opcode)) |
| MRI.colorCallArgs(MInst, LRI, AI, *this, *BBI); |
| else if (TM.getInstrInfo().isReturn(Opcode)) |
| MRI.colorRetValue(MInst, LRI, AI); |
| } |
| |
| |
| /* -- Using above code instead of this |
| |
| // if this machine instr is call, insert caller saving code |
| |
| if( (TM.getInstrInfo()).isCall( MInst->getOpCode()) ) |
| MRI.insertCallerSavingCode(MInst, *BBI, *this ); |
| |
| */ |
| |
| |
| // reset the stack offset for temporary variables since we may |
| // need that to spill |
| // mcInfo.popAllTempValues(TM); |
| // TODO ** : do later |
| |
| //for(MachineInstr::val_const_op_iterator OpI(MInst);!OpI.done();++OpI) { |
| |
| |
| // Now replace set the registers for operands in the machine instruction |
| // |
| for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { |
| |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| |
| if( Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister) { |
| |
| const Value *const Val = Op.getVRegValue(); |
| |
| // delete this condition checking later (must assert if Val is null) |
| if( !Val) { |
| if (DEBUG_RA) |
| cerr << "Warning: NULL Value found for operand\n"; |
| continue; |
| } |
| assert( Val && "Value is NULL"); |
| |
| LiveRange *const LR = LRI.getLiveRangeForValue(Val); |
| |
| if ( !LR ) { |
| |
| // nothing to worry if it's a const or a label |
| |
| if (DEBUG_RA) { |
| cerr << "*NO LR for operand : " << Op ; |
| cerr << " [reg:" << Op.getAllocatedRegNum() << "]"; |
| cerr << " in inst:\t" << *MInst << "\n"; |
| } |
| |
| // if register is not allocated, mark register as invalid |
| if( Op.getAllocatedRegNum() == -1) |
| Op.setRegForValue( MRI.getInvalidRegNum()); |
| |
| |
| continue; |
| } |
| |
| unsigned RCID = (LR->getRegClass())->getID(); |
| |
| if( LR->hasColor() ) { |
| Op.setRegForValue( MRI.getUnifiedRegNum(RCID, LR->getColor()) ); |
| } |
| else { |
| |
| // LR did NOT receive a color (register). Now, insert spill code |
| // for spilled opeands in this machine instruction |
| |
| //assert(0 && "LR must be spilled"); |
| insertCode4SpilledLR(LR, MInst, *BBI, OpNum ); |
| |
| } |
| } |
| |
| } // for each operand |
| |
| |
| // Now add instructions that the register allocator inserts before/after |
| // this machine instructions (done only for calls/rets/incoming args) |
| // We do this here, to ensure that spill for an instruction is inserted |
| // closest as possible to an instruction (see above insertCode4Spill...) |
| // |
| // If there are instructions to be added, *before* this machine |
| // instruction, add them now. |
| // |
| if( AddedInstrMap[ MInst ] ) { |
| std::deque<MachineInstr *> &IBef = AddedInstrMap[MInst]->InstrnsBefore; |
| |
| if( ! IBef.empty() ) { |
| std::deque<MachineInstr *>::iterator AdIt; |
| |
| for( AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt ) { |
| |
| if( DEBUG_RA) { |
| cerr << "For inst " << *MInst; |
| cerr << " PREPENDed instr: " << **AdIt << "\n"; |
| } |
| |
| MInstIterator = MIVec.insert( MInstIterator, *AdIt ); |
| ++MInstIterator; |
| } |
| |
| } |
| |
| } |
| |
| // If there are instructions to be added *after* this machine |
| // instruction, add them now |
| // |
| if(AddedInstrMap[MInst] && |
| !AddedInstrMap[MInst]->InstrnsAfter.empty() ) { |
| |
| // if there are delay slots for this instruction, the instructions |
| // added after it must really go after the delayed instruction(s) |
| // So, we move the InstrAfter of the current instruction to the |
| // corresponding delayed instruction |
| |
| unsigned delay; |
| if ((delay=TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) >0){ |
| move2DelayedInstr(MInst, *(MInstIterator+delay) ); |
| |
| if(DEBUG_RA) cerr<< "\nMoved an added instr after the delay slot"; |
| } |
| |
| else { |
| |
| |
| // Here we can add the "instructions after" to the current |
| // instruction since there are no delay slots for this instruction |
| |
| std::deque<MachineInstr *> &IAft = AddedInstrMap[MInst]->InstrnsAfter; |
| |
| if( ! IAft.empty() ) { |
| |
| std::deque<MachineInstr *>::iterator AdIt; |
| |
| ++MInstIterator; // advance to the next instruction |
| |
| for( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { |
| |
| if(DEBUG_RA) { |
| cerr << "For inst " << *MInst; |
| cerr << " APPENDed instr: " << **AdIt << "\n"; |
| } |
| |
| MInstIterator = MIVec.insert( MInstIterator, *AdIt ); |
| ++MInstIterator; |
| } |
| |
| // MInsterator already points to the next instr. Since the |
| // for loop also increments it, decrement it to point to the |
| // instruction added last |
| --MInstIterator; |
| |
| } |
| |
| } // if not delay |
| |
| } |
| |
| } // for each machine instruction |
| } |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method inserts spill code for AN operand whose LR was spilled. |
| // This method may be called several times for a single machine instruction |
| // if it contains many spilled operands. Each time it is called, it finds |
| // a register which is not live at that instruction and also which is not |
| // used by other spilled operands of the same instruction. Then it uses |
| // this register temporarily to accomodate the spilled value. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, |
| MachineInstr *MInst, |
| const BasicBlock *BB, |
| const unsigned OpNum) { |
| |
| assert(! TM.getInstrInfo().isCall(MInst->getOpCode()) && |
| (! TM.getInstrInfo().isReturn(MInst->getOpCode())) && |
| "Arg of a call/ret must be handled elsewhere"); |
| |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| bool isDef = MInst->operandIsDefined(OpNum); |
| unsigned RegType = MRI.getRegType( LR ); |
| int SpillOff = LR->getSpillOffFromFP(); |
| RegClass *RC = LR->getRegClass(); |
| const LiveVarSet *LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); |
| |
| mcInfo.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); |
| |
| MachineInstr *MIBef=NULL, *AdIMid=NULL, *MIAft=NULL; |
| |
| int TmpRegU = getUsableUniRegAtMI(RC, RegType, MInst,LVSetBef, MIBef, MIAft); |
| |
| // get the added instructions for this instruciton |
| AddedInstrns *AI = AddedInstrMap[ MInst ]; |
| if ( !AI ) { |
| AI = new AddedInstrns(); |
| AddedInstrMap[ MInst ] = AI; |
| } |
| |
| |
| if( !isDef ) { |
| |
| // for a USE, we have to load the value of LR from stack to a TmpReg |
| // and use the TmpReg as one operand of instruction |
| |
| // actual loading instruction |
| AdIMid = MRI.cpMem2RegMI(MRI.getFramePointer(), SpillOff, TmpRegU,RegType); |
| |
| if(MIBef) |
| AI->InstrnsBefore.push_back(MIBef); |
| |
| AI->InstrnsBefore.push_back(AdIMid); |
| |
| if(MIAft) |
| AI->InstrnsAfter.push_front(MIAft); |
| |
| |
| } |
| else { // if this is a Def |
| |
| // for a DEF, we have to store the value produced by this instruction |
| // on the stack position allocated for this LR |
| |
| // actual storing instruction |
| AdIMid = MRI.cpReg2MemMI(TmpRegU, MRI.getFramePointer(), SpillOff,RegType); |
| |
| if (MIBef) |
| AI->InstrnsBefore.push_back(MIBef); |
| |
| AI->InstrnsAfter.push_front(AdIMid); |
| |
| if (MIAft) |
| AI->InstrnsAfter.push_front(MIAft); |
| |
| } // if !DEF |
| |
| cerr << "\nFor Inst " << *MInst; |
| cerr << " - SPILLED LR: "; LR->printSet(); |
| cerr << "\n - Added Instructions:"; |
| if( MIBef ) cerr << *MIBef; |
| cerr << *AdIMid; |
| if( MIAft ) cerr << *MIAft; |
| |
| Op.setRegForValue( TmpRegU ); // set the opearnd |
| |
| |
| } |
| |
| |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // We can use the following method to get a temporary register to be used |
| // BEFORE any given machine instruction. If there is a register available, |
| // this method will simply return that register and set MIBef = MIAft = NULL. |
| // Otherwise, it will return a register and MIAft and MIBef will contain |
| // two instructions used to free up this returned register. |
| // Returned register number is the UNIFIED register number |
| //---------------------------------------------------------------------------- |
| |
| int PhyRegAlloc::getUsableUniRegAtMI(RegClass *RC, |
| const int RegType, |
| const MachineInstr *MInst, |
| const LiveVarSet *LVSetBef, |
| MachineInstr *MIBef, |
| MachineInstr *MIAft) { |
| |
| int RegU = getUnusedUniRegAtMI(RC, MInst, LVSetBef); |
| |
| |
| if( RegU != -1) { |
| // we found an unused register, so we can simply use it |
| MIBef = MIAft = NULL; |
| } |
| else { |
| // we couldn't find an unused register. Generate code to free up a reg by |
| // saving it on stack and restoring after the instruction |
| |
| int TmpOff = mcInfo.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); |
| |
| RegU = getUniRegNotUsedByThisInst(RC, MInst); |
| MIBef = MRI.cpReg2MemMI(RegU, MRI.getFramePointer(), TmpOff, RegType ); |
| MIAft = MRI.cpMem2RegMI(MRI.getFramePointer(), TmpOff, RegU, RegType ); |
| } |
| |
| return RegU; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method is called to get a new unused register that can be used to |
| // accomodate a spilled value. |
| // This method may be called several times for a single machine instruction |
| // if it contains many spilled operands. Each time it is called, it finds |
| // a register which is not live at that instruction and also which is not |
| // used by other spilled operands of the same instruction. |
| // Return register number is relative to the register class. NOT |
| // unified number |
| //---------------------------------------------------------------------------- |
| int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, |
| const MachineInstr *MInst, |
| const LiveVarSet *LVSetBef) { |
| |
| unsigned NumAvailRegs = RC->getNumOfAvailRegs(); |
| |
| bool *IsColorUsedArr = RC->getIsColorUsedArr(); |
| |
| for(unsigned i=0; i < NumAvailRegs; i++) // Reset array |
| IsColorUsedArr[i] = false; |
| |
| LiveVarSet::const_iterator LIt = LVSetBef->begin(); |
| |
| // for each live var in live variable set after machine inst |
| for( ; LIt != LVSetBef->end(); ++LIt) { |
| |
| // get the live range corresponding to live var |
| LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt ); |
| |
| // LR can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| if( LRofLV ) |
| if( LRofLV->hasColor() ) |
| IsColorUsedArr[ LRofLV->getColor() ] = true; |
| } |
| |
| // It is possible that one operand of this MInst was already spilled |
| // and it received some register temporarily. If that's the case, |
| // it is recorded in machine operand. We must skip such registers. |
| |
| setRelRegsUsedByThisInst(RC, MInst); |
| |
| unsigned c; // find first unused color |
| for( c=0; c < NumAvailRegs; c++) |
| if( ! IsColorUsedArr[ c ] ) break; |
| |
| if(c < NumAvailRegs) |
| return MRI.getUnifiedRegNum(RC->getID(), c); |
| else |
| return -1; |
| |
| |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Get any other register in a register class, other than what is used |
| // by operands of a machine instruction. Returns the unified reg number. |
| //---------------------------------------------------------------------------- |
| int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, |
| const MachineInstr *MInst) { |
| |
| bool *IsColorUsedArr = RC->getIsColorUsedArr(); |
| unsigned NumAvailRegs = RC->getNumOfAvailRegs(); |
| |
| |
| for(unsigned i=0; i < NumAvailRegs ; i++) // Reset array |
| IsColorUsedArr[i] = false; |
| |
| setRelRegsUsedByThisInst(RC, MInst); |
| |
| unsigned c; // find first unused color |
| for( c=0; c < RC->getNumOfAvailRegs(); c++) |
| if( ! IsColorUsedArr[ c ] ) break; |
| |
| if(c < NumAvailRegs) |
| return MRI.getUnifiedRegNum(RC->getID(), c); |
| else |
| assert( 0 && "FATAL: No free register could be found in reg class!!"); |
| return 0; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method modifies the IsColorUsedArr of the register class passed to it. |
| // It sets the bits corresponding to the registers used by this machine |
| // instructions. Both explicit and implicit operands are set. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, |
| const MachineInstr *MInst ) { |
| |
| bool *IsColorUsedArr = RC->getIsColorUsedArr(); |
| |
| for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { |
| |
| const MachineOperand& Op = MInst->getOperand(OpNum); |
| |
| if( Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister ) { |
| |
| const Value *const Val = Op.getVRegValue(); |
| |
| if( Val ) |
| if( MRI.getRegClassIDOfValue(Val) == RC->getID() ) { |
| int Reg; |
| if( (Reg=Op.getAllocatedRegNum()) != -1) { |
| IsColorUsedArr[ Reg ] = true; |
| } |
| else { |
| // it is possilbe that this operand still is not marked with |
| // a register but it has a LR and that received a color |
| |
| LiveRange *LROfVal = LRI.getLiveRangeForValue(Val); |
| if( LROfVal) |
| if( LROfVal->hasColor() ) |
| IsColorUsedArr[ LROfVal->getColor() ] = true; |
| } |
| |
| } // if reg classes are the same |
| } |
| else if (Op.getOperandType() == MachineOperand::MO_MachineRegister) { |
| IsColorUsedArr[ Op.getMachineRegNum() ] = true; |
| } |
| } |
| |
| // If there are implicit references, mark them as well |
| |
| for(unsigned z=0; z < MInst->getNumImplicitRefs(); z++) { |
| |
| LiveRange *const LRofImpRef = |
| LRI.getLiveRangeForValue( MInst->getImplicitRef(z) ); |
| |
| if(LRofImpRef && LRofImpRef->hasColor()) |
| IsColorUsedArr[LRofImpRef->getColor()] = true; |
| } |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // If there are delay slots for an instruction, the instructions |
| // added after it must really go after the delayed instruction(s). |
| // So, we move the InstrAfter of that instruction to the |
| // corresponding delayed instruction using the following method. |
| |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc:: move2DelayedInstr(const MachineInstr *OrigMI, |
| const MachineInstr *DelayedMI) { |
| |
| // "added after" instructions of the original instr |
| std::deque<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI]->InstrnsAfter; |
| |
| // "added instructions" of the delayed instr |
| AddedInstrns *DelayAdI = AddedInstrMap[DelayedMI]; |
| |
| if(! DelayAdI ) { // create a new "added after" if necessary |
| DelayAdI = new AddedInstrns(); |
| AddedInstrMap[DelayedMI] = DelayAdI; |
| } |
| |
| // "added after" instructions of the delayed instr |
| std::deque<MachineInstr *> &DelayedAft = DelayAdI->InstrnsAfter; |
| |
| // go thru all the "added after instructions" of the original instruction |
| // and append them to the "addded after instructions" of the delayed |
| // instructions |
| DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); |
| |
| // empty the "added after instructions" of the original instruction |
| OrigAft.clear(); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method prints the code with registers after register allocation is |
| // complete. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::printMachineCode() |
| { |
| |
| cerr << "\n;************** Method " << Meth->getName() |
| << " *****************\n"; |
| |
| Method::const_iterator BBI = Meth->begin(); // random iterator for BBs |
| |
| for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order |
| |
| cerr << "\n"; printLabel( *BBI); cerr << ": "; |
| |
| // get the iterator for machine instructions |
| MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); |
| MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin(); |
| |
| // iterate over all the machine instructions in BB |
| for( ; MInstIterator != MIVec.end(); ++MInstIterator) { |
| |
| MachineInstr *const MInst = *MInstIterator; |
| |
| |
| cerr << "\n\t"; |
| cerr << TargetInstrDescriptors[MInst->getOpCode()].opCodeString; |
| |
| |
| //for(MachineInstr::val_const_op_iterator OpI(MInst);!OpI.done();++OpI) { |
| |
| for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { |
| |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| |
| if( Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister /*|| |
| Op.getOperandType() == MachineOperand::MO_PCRelativeDisp*/ ) { |
| |
| const Value *const Val = Op.getVRegValue () ; |
| // ****this code is temporary till NULL Values are fixed |
| if( ! Val ) { |
| cerr << "\t<*NULL*>"; |
| continue; |
| } |
| |
| // if a label or a constant |
| if(isa<BasicBlock>(Val)) { |
| cerr << "\t"; printLabel( Op.getVRegValue () ); |
| } else { |
| // else it must be a register value |
| const int RegNum = Op.getAllocatedRegNum(); |
| |
| cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum ); |
| if (Val->hasName() ) |
| cerr << "(" << Val->getName() << ")"; |
| else |
| cerr << "(" << Val << ")"; |
| |
| if( Op.opIsDef() ) |
| cerr << "*"; |
| |
| const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val); |
| if( LROfVal ) |
| if( LROfVal->hasSpillOffset() ) |
| cerr << "$"; |
| } |
| |
| } |
| else if(Op.getOperandType() == MachineOperand::MO_MachineRegister) { |
| cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum()); |
| } |
| |
| else |
| cerr << "\t" << Op; // use dump field |
| } |
| |
| |
| |
| unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); |
| if( NumOfImpRefs > 0 ) { |
| |
| cerr << "\tImplicit:"; |
| |
| for(unsigned z=0; z < NumOfImpRefs; z++) { |
| printValue( MInst->getImplicitRef(z) ); |
| cerr << "\t"; |
| } |
| |
| } |
| |
| } // for all machine instructions |
| |
| cerr << "\n"; |
| |
| } // for all BBs |
| |
| cerr << "\n"; |
| } |
| |
| |
| #if 0 |
| |
| //---------------------------------------------------------------------------- |
| // |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::colorCallRetArgs() |
| { |
| |
| CallRetInstrListType &CallRetInstList = LRI.getCallRetInstrList(); |
| CallRetInstrListType::const_iterator It = CallRetInstList.begin(); |
| |
| for( ; It != CallRetInstList.end(); ++It ) { |
| |
| const MachineInstr *const CRMI = *It; |
| unsigned OpCode = CRMI->getOpCode(); |
| |
| // get the added instructions for this Call/Ret instruciton |
| AddedInstrns *AI = AddedInstrMap[ CRMI ]; |
| if ( !AI ) { |
| AI = new AddedInstrns(); |
| AddedInstrMap[ CRMI ] = AI; |
| } |
| |
| // Tmp stack poistions are needed by some calls that have spilled args |
| // So reset it before we call each such method |
| //mcInfo.popAllTempValues(TM); |
| |
| |
| |
| if (TM.getInstrInfo().isCall(OpCode)) |
| MRI.colorCallArgs(CRMI, LRI, AI, *this); |
| else if (TM.getInstrInfo().isReturn(OpCode)) |
| MRI.colorRetValue( CRMI, LRI, AI ); |
| else |
| assert(0 && "Non Call/Ret instrn in CallRetInstrList\n"); |
| } |
| } |
| |
| #endif |
| |
| //---------------------------------------------------------------------------- |
| |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::colorIncomingArgs() |
| { |
| const BasicBlock *const FirstBB = Meth->front(); |
| const MachineInstr *FirstMI = FirstBB->getMachineInstrVec().front(); |
| assert(FirstMI && "No machine instruction in entry BB"); |
| |
| AddedInstrns *AI = AddedInstrMap[FirstMI]; |
| if (!AI) |
| AddedInstrMap[FirstMI] = AI = new AddedInstrns(); |
| |
| MRI.colorMethodArgs(Meth, LRI, AI); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Used to generate a label for a basic block |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::printLabel(const Value *const Val) { |
| if (Val->hasName()) |
| cerr << Val->getName(); |
| else |
| cerr << "Label" << Val; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method calls setSugColorUsable method of each live range. This |
| // will determine whether the suggested color of LR is really usable. |
| // A suggested color is not usable when the suggested color is volatile |
| // AND when there are call interferences |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::markUnusableSugColors() |
| { |
| if(DEBUG_RA ) cerr << "\nmarking unusable suggested colors ...\n"; |
| |
| // hash map iterator |
| LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); |
| LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); |
| |
| for(; HMI != HMIEnd ; ++HMI ) { |
| if (HMI->first) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if (L) { |
| if(L->hasSuggestedColor()) { |
| int RCID = L->getRegClass()->getID(); |
| if( MRI.isRegVolatile( RCID, L->getSuggestedColor()) && |
| L->isCallInterference() ) |
| L->setSuggestedColorUsable( false ); |
| else |
| L->setSuggestedColorUsable( true ); |
| } |
| } // if L->hasSuggestedColor() |
| } |
| } // for all LR's in hash map |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // The following method will set the stack offsets of the live ranges that |
| // are decided to be spillled. This must be called just after coloring the |
| // LRs using the graph coloring algo. For each live range that is spilled, |
| // this method allocate a new spill position on the stack. |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::allocateStackSpace4SpilledLRs() |
| { |
| if(DEBUG_RA ) cerr << "\nsetting LR stack offsets ...\n"; |
| |
| // hash map iterator |
| LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); |
| LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); |
| |
| for( ; HMI != HMIEnd ; ++HMI ) { |
| if(HMI->first && HMI->second) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if( ! L->hasColor() ) |
| // NOTE: ** allocating the size of long Type ** |
| L->setSpillOffFromFP(mcInfo.allocateSpilledValue(TM, Type::LongTy)); |
| } |
| } // for all LR's in hash map |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // The entry pont to Register Allocation |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::allocateRegisters() |
| { |
| |
| // make sure that we put all register classes into the RegClassList |
| // before we call constructLiveRanges (now done in the constructor of |
| // PhyRegAlloc class). |
| // |
| LRI.constructLiveRanges(); // create LR info |
| |
| if (DEBUG_RA) |
| LRI.printLiveRanges(); |
| |
| createIGNodeListsAndIGs(); // create IGNode list and IGs |
| |
| buildInterferenceGraphs(); // build IGs in all reg classes |
| |
| |
| if (DEBUG_RA) { |
| // print all LRs in all reg classes |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIGNodeList(); |
| |
| // print IGs in all register classes |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIG(); |
| } |
| |
| |
| LRI.coalesceLRs(); // coalesce all live ranges |
| |
| |
| if( DEBUG_RA) { |
| // print all LRs in all reg classes |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIGNodeList(); |
| |
| // print IGs in all register classes |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIG(); |
| } |
| |
| |
| // mark un-usable suggested color before graph coloring algorithm. |
| // When this is done, the graph coloring algo will not reserve |
| // suggested color unnecessarily - they can be used by another LR |
| // |
| markUnusableSugColors(); |
| |
| // color all register classes using the graph coloring algo |
| for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->colorAllRegs(); |
| |
| // Atter grpah coloring, if some LRs did not receive a color (i.e, spilled) |
| // a poistion for such spilled LRs |
| // |
| allocateStackSpace4SpilledLRs(); |
| |
| mcInfo.popAllTempValues(TM); // TODO **Check |
| |
| // color incoming args - if the correct color was not received |
| // insert code to copy to the correct register |
| // |
| colorIncomingArgs(); |
| |
| // Now update the machine code with register names and add any |
| // additional code inserted by the register allocator to the instruction |
| // stream |
| // |
| updateMachineCode(); |
| |
| if (DEBUG_RA) { |
| MachineCodeForMethod::get(Meth).dump(); |
| printMachineCode(); // only for DEBUGGING |
| } |
| } |
| |
| |
| |