| //===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Nate Begeman and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for 32 bit PowerPC. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PowerPC.h" |
| #include "PowerPCInstrBuilder.h" |
| #include "PowerPCInstrInfo.h" |
| #include "PPC32RegisterInfo.h" |
| #include "llvm/Constants.h" // FIXME: REMOVE |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <set> |
| #include <algorithm> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface |
| namespace { |
| class PPC32TargetLowering : public TargetLowering { |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area. |
| int ReturnAddrIndex; // FrameIndex for return slot. |
| public: |
| PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) { |
| // Set up the TargetLowering object. |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass); |
| addRegisterClass(MVT::f32, PPC32::FPRCRegisterClass); |
| addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass); |
| |
| computeRegisterProperties(); |
| } |
| |
| /// LowerArguments - This hook must be implemented to indicate how we should |
| /// lower the arguments for the specified function, into the specified DAG. |
| virtual std::vector<SDOperand> |
| LowerArguments(Function &F, SelectionDAG &DAG); |
| |
| /// LowerCallTo - This hook lowers an abstract call to a function into an |
| /// actual call. |
| virtual std::pair<SDOperand, SDOperand> |
| LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerVAStart(SDOperand Chain, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand,SDOperand> |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG); |
| }; |
| } |
| |
| |
| std::vector<SDOperand> |
| PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| // |
| // add beautiful description of PPC stack frame format, or at least some docs |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MachineBasicBlock& BB = MF.front(); |
| std::vector<SDOperand> ArgValues; |
| |
| // Due to the rather complicated nature of the PowerPC ABI, rather than a |
| // fixed size array of physical args, for the sake of simplicity let the STL |
| // handle tracking them for us. |
| std::vector<unsigned> argVR, argPR, argOp; |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on PPC, |
| // the arguments start at offset 24, although they are likely to be passed |
| // in registers. |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| SDOperand newroot, argt; |
| unsigned ObjSize; |
| bool needsLoad = false; |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| ObjSize = 4; |
| if (GPR_remaining > 0) { |
| BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, |
| DAG.getRoot()); |
| if (ObjectVT != MVT::i32) |
| argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot); |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::i64: ObjSize = 8; |
| // FIXME: can split 64b load between reg/mem if it is last arg in regs |
| if (GPR_remaining > 1) { |
| BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); |
| BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]); |
| // Copy the extracted halves into the virtual registers |
| SDOperand argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, |
| DAG.getRoot()); |
| SDOperand argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi); |
| // Build the outgoing arg thingy |
| argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi); |
| newroot = argLo; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::f32: ObjSize = 4; |
| case MVT::f64: ObjSize = 8; |
| if (FPR_remaining > 0) { |
| BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); |
| argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT, |
| DAG.getRoot()); |
| --FPR_remaining; |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined above |
| // that we ran out of physical registers of the appropriate type |
| if (needsLoad) { |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN); |
| } |
| |
| // Every 4 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_remaining > 0) { |
| unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; |
| GPR_remaining -= delta; |
| GPR_idx += delta; |
| } |
| ArgOffset += ObjSize; |
| |
| DAG.setRoot(newroot.getValue(1)); |
| ArgValues.push_back(argt); |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (F.isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| PPC32TargetLowering::LowerCallTo(SDOperand Chain, |
| const Type *RetTy, bool isVarArg, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { |
| // args_to_use will accumulate outgoing args for the ISD::CALL case in |
| // SelectExpr to use to put the arguments in the appropriate registers. |
| std::vector<SDOperand> args_to_use; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. |
| unsigned NumBytes = 24; |
| |
| if (Args.empty()) { |
| NumBytes = 0; // Save zero bytes. |
| } else { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| // Just to be safe, we'll always reserve the full 24 bytes of linkage area |
| // plus 32 bytes of argument space in case any called code gets funky on us. |
| if (NumBytes < 56) NumBytes = 56; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32, |
| DAG.getEntryNode()); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| std::vector<SDOperand> Stores; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MVT::ValueType ArgVT = getValueType(Args[i].second); |
| |
| switch (ArgVT) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| if (Args[i].second->isSigned()) |
| Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); |
| else |
| Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); |
| // FALL THROUGH |
| case MVT::i32: |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(Args[i].first); |
| --GPR_remaining; |
| } else { |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += 4; |
| break; |
| case MVT::i64: |
| // If we have one free GPR left, we can place the upper half of the i64 |
| // in it, and store the other half to the stack. If we have two or more |
| // free GPRs, then we can pass both halves of the i64 in registers. |
| if (GPR_remaining > 0) { |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(1, MVT::i32)); |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(0, MVT::i32)); |
| args_to_use.push_back(Hi); |
| if (GPR_remaining > 1) { |
| args_to_use.push_back(Lo); |
| GPR_remaining -= 2; |
| } else { |
| SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Lo, PtrOff)); |
| --GPR_remaining; |
| } |
| } else { |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += 8; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_remaining > 0) { |
| if (isVarArg) { |
| // FIXME: Need FunctionType information so we can conditionally |
| // store only the non-fixed arguments in a vararg function. |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| // FIXME: Need a way to communicate to the ISD::CALL select code |
| // that a particular argument is non-fixed so that we can load them |
| // into the correct GPR to shadow the FPR |
| } |
| args_to_use.push_back(Args[i].first); |
| --FPR_remaining; |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| // Args passed in FPRs consume either 1 (f32) or 2 (f64) available |
| // GPRs. |
| if (GPR_remaining > 0) --GPR_remaining; |
| if (GPR_remaining > 0 && MVT::f64 == ArgVT) --GPR_remaining; |
| } else { |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; |
| break; |
| } |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| if (RetTyVT != MVT::isVoid) |
| RetVals.push_back(RetTyVT); |
| RetVals.push_back(MVT::Other); |
| |
| SDOperand TheCall = SDOperand(DAG.getCall(RetVals, |
| Chain, Callee, args_to_use), 0); |
| Chain = TheCall.getValue(RetTyVT != MVT::isVoid); |
| Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| return std::make_pair(TheCall, Chain); |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { |
| //vastart just returns the address of the VarArgsFrameIndex slot. |
| return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain); |
| } |
| |
| std::pair<SDOperand,SDOperand> PPC32TargetLowering:: |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG) { |
| MVT::ValueType ArgVT = getValueType(ArgTy); |
| SDOperand Result; |
| if (!isVANext) { |
| Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList); |
| } else { |
| unsigned Amt; |
| if (ArgVT == MVT::i32 || ArgVT == MVT::f32) |
| Amt = 4; |
| else { |
| assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && |
| "Other types should have been promoted for varargs!"); |
| Amt = 8; |
| } |
| Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, |
| DAG.getConstant(Amt, VAList.getValueType())); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| |
| std::pair<SDOperand, SDOperand> PPC32TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| abort(); |
| } |
| |
| namespace { |
| |
| //===--------------------------------------------------------------------===// |
| /// ISel - PPC32 specific code to select PPC32 machine instructions for |
| /// SelectionDAG operations. |
| //===--------------------------------------------------------------------===// |
| class ISel : public SelectionDAGISel { |
| |
| /// Comment Here. |
| PPC32TargetLowering PPC32Lowering; |
| |
| /// ExprMap - As shared expressions are codegen'd, we keep track of which |
| /// vreg the value is produced in, so we only emit one copy of each compiled |
| /// tree. |
| std::map<SDOperand, unsigned> ExprMap; |
| |
| unsigned GlobalBaseReg; |
| bool GlobalBaseInitialized; |
| |
| public: |
| ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) |
| {} |
| |
| /// runOnFunction - Override this function in order to reset our per-function |
| /// variables. |
| virtual bool runOnFunction(Function &Fn) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseInitialized = false; |
| return SelectionDAGISel::runOnFunction(Fn); |
| } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| DEBUG(BB->dump()); |
| // Codegen the basic block. |
| Select(DAG.getRoot()); |
| |
| // Clear state used for selection. |
| ExprMap.clear(); |
| } |
| |
| unsigned ISel::getGlobalBaseReg(); |
| unsigned SelectExpr(SDOperand N); |
| unsigned SelectExprFP(SDOperand N, unsigned Result); |
| void Select(SDOperand N); |
| |
| void SelectAddr(SDOperand N, unsigned& Reg, int& offset); |
| void SelectBranchCC(SDOperand N); |
| }; |
| |
| /// canUseAsImmediateForOpcode - This method returns a value indicating whether |
| /// the ConstantSDNode N can be used as an immediate to Opcode. The return |
| /// values are either 0, 1 or 2. 0 indicates that either N is not a |
| /// ConstantSDNode, or is not suitable for use by that opcode. A return value |
| /// of 1 indicates that the constant may be used in normal immediate form. A |
| /// return value of 2 indicates that the constant may be used in shifted |
| /// immediate form. If the return value is nonzero, the constant value is |
| /// placed in Imm. |
| /// |
| static unsigned canUseAsImmediateForOpcode(SDOperand N, unsigned Opcode, |
| unsigned& Imm) { |
| if (N.getOpcode() != ISD::Constant) return 0; |
| |
| int v = (int)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| switch(Opcode) { |
| default: return 0; |
| case ISD::ADD: |
| if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } |
| if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } |
| break; |
| case ISD::AND: |
| case ISD::XOR: |
| case ISD::OR: |
| if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } |
| if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } |
| break; |
| case ISD::MUL: |
| if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } |
| break; |
| } |
| return 0; |
| } |
| } |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| unsigned ISel::getGlobalBaseReg() { |
| if (!GlobalBaseInitialized) { |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = BB->getParent()->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| GlobalBaseReg = MakeReg(MVT::i32); |
| BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); |
| BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); |
| GlobalBaseInitialized = true; |
| } |
| return GlobalBaseReg; |
| } |
| |
| //Check to see if the load is a constant offset from a base register |
| void ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) |
| { |
| Reg = SelectExpr(N); |
| offset = 0; |
| return; |
| } |
| |
| void ISel::SelectBranchCC(SDOperand N) |
| { |
| assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???"); |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); |
| unsigned Opc; |
| |
| Select(N.getOperand(0)); //chain |
| SDOperand CC = N.getOperand(1); |
| |
| //Giveup and do the stupid thing |
| unsigned Tmp1 = SelectExpr(CC); |
| BuildMI(BB, PPC::BNE, 2).addReg(Tmp1).addMBB(Dest); |
| return; |
| } |
| |
| unsigned ISel::SelectExprFP(SDOperand N, unsigned Result) |
| { |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| SDNode *Node = N.Val; |
| MVT::ValueType DestType = N.getValueType(); |
| unsigned opcode = N.getOpcode(); |
| |
| switch (opcode) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| |
| case ISD::SELECT: |
| abort(); |
| |
| case ISD::FP_ROUND: |
| assert (DestType == MVT::f32 && |
| N.getOperand(0).getValueType() == MVT::f64 && |
| "only f64 to f32 conversion supported here"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::FP_EXTEND: |
| assert (DestType == MVT::f64 && |
| N.getOperand(0).getValueType() == MVT::f32 && |
| "only f32 to f64 conversion supported here"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::CopyFromReg: |
| if (Result == 1) |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| Tmp1 = dyn_cast<RegSDNode>(Node)->getReg(); |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::LOAD: |
| case ISD::EXTLOAD: { |
| MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? |
| Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType(); |
| |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| Select(Chain); |
| |
| switch (TypeBeingLoaded) { |
| default: assert(0 && "Cannot fp load this type!"); |
| case MVT::f32: Opc = PPC::LFS; break; |
| case MVT::f64: Opc = PPC::LFD; break; |
| } |
| |
| if(Address.getOpcode() == ISD::FrameIndex) { |
| BuildMI(BB, Opc, 2, Result) |
| .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex()) |
| .addReg(PPC::R1); |
| } else { |
| int offset; |
| SelectAddr(Address, Tmp1, offset); |
| BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); |
| } |
| return Result; |
| } |
| |
| case ISD::ConstantFP: |
| assert(0 && "ISD::ConstantFP Unimplemented"); |
| abort(); |
| |
| case ISD::MUL: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::SDIV: |
| switch( opcode ) { |
| case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break; |
| case ISD::ADD: Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; break; |
| case ISD::SUB: Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; break; |
| case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break; |
| }; |
| |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: |
| assert(0 && "ISD::U/SINT_TO_FP Unimplemented"); |
| abort(); |
| } |
| assert(0 && "should not get here"); |
| return 0; |
| } |
| |
| unsigned ISel::SelectExpr(SDOperand N) { |
| unsigned Result; |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| unsigned opcode = N.getOpcode(); |
| |
| SDNode *Node = N.Val; |
| MVT::ValueType DestType = N.getValueType(); |
| |
| unsigned &Reg = ExprMap[N]; |
| if (Reg) return Reg; |
| |
| if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::ADD_PARTS && |
| N.getOpcode() != ISD::SUB_PARTS) |
| Reg = Result = (N.getValueType() != MVT::Other) ? |
| MakeReg(N.getValueType()) : 1; |
| else { |
| // If this is a call instruction, make sure to prepare ALL of the result |
| // values as well as the chain. |
| if (N.getOpcode() == ISD::CALL) { |
| if (Node->getNumValues() == 1) |
| Reg = Result = 1; // Void call, just a chain. |
| else { |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; |
| } |
| } else { |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| } |
| } |
| |
| if (DestType == MVT::f64 || DestType == MVT::f32) |
| return SelectExprFP(N, Result); |
| |
| switch (opcode) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| |
| case ISD::DYNAMIC_STACKALLOC: |
| // Generate both result values. FIXME: Need a better commment here? |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| // FIXME: We are currently ignoring the requested alignment for handling |
| // greater than the stack alignment. This will need to be revisited at some |
| // point. Align = N.getOperand(2); |
| if (!isa<ConstantSDNode>(N.getOperand(2)) || |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { |
| std::cerr << "Cannot allocate stack object with greater alignment than" |
| << " the stack alignment yet!"; |
| abort(); |
| } |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); |
| // Put a pointer to the space into the result register by copying the SP |
| BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1); |
| return Result; |
| |
| case ISD::ConstantPool: |
| Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex(); |
| Tmp2 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg()) |
| .addConstantPoolIndex(Tmp1); |
| BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1); |
| return Result; |
| |
| case ISD::FrameIndex: |
| Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); |
| addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1); |
| return Result; |
| |
| case ISD::GlobalAddress: { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); |
| Tmp1 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) |
| .addGlobalAddress(GV); |
| if (GV->hasWeakLinkage() || GV->isExternal()) { |
| BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); |
| } else { |
| BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); |
| } |
| return Result; |
| } |
| |
| case ISD::LOAD: |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::SEXTLOAD: { |
| bool sext = (ISD::SEXTLOAD == opcode); |
| bool byte = (MVT::i8 == Node->getValueType(0)); |
| MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? |
| Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType(); |
| |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| Select(Chain); |
| |
| switch (TypeBeingLoaded) { |
| default: assert(0 && "Cannot load this type!"); |
| case MVT::i1: Opc = PPC::LBZ; break; |
| case MVT::i8: Opc = PPC::LBZ; break; |
| case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break; |
| case MVT::i32: Opc = PPC::LWZ; break; |
| } |
| |
| // Since there's no load byte & sign extend instruction we have to split |
| // byte SEXTLOADs into lbz + extsb. This requires we make a temp register. |
| if (sext && byte) { |
| Tmp3 = Result; |
| Result = MakeReg(MVT::i32); |
| } |
| if(Address.getOpcode() == ISD::FrameIndex) { |
| BuildMI(BB, Opc, 2, Result) |
| .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex()) |
| .addReg(PPC::R1); |
| } else { |
| int offset; |
| SelectAddr(Address, Tmp1, offset); |
| BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); |
| } |
| if (sext && byte) { |
| BuildMI(BB, PPC::EXTSB, 1, Tmp3).addReg(Result); |
| Result = Tmp3; |
| } |
| return Result; |
| } |
| |
| case ISD::CALL: { |
| // Lower the chain for this call. |
| Select(N.getOperand(0)); |
| ExprMap[N.getValue(Node->getNumValues()-1)] = 1; |
| |
| // get the virtual reg for each argument |
| std::vector<unsigned> VRegs; |
| for(int i = 2, e = Node->getNumOperands(); i < e; ++i) |
| VRegs.push_back(SelectExpr(N.getOperand(i))); |
| |
| // The ABI specifies that the first 32 bytes of args may be passed in GPRs, |
| // and that 13 FPRs may also be used for passing any floating point args. |
| int GPR_remaining = 8, FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, |
| PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, |
| PPC::F13 |
| }; |
| |
| // move the vregs into the appropriate architected register or stack slot |
| for(int i = 0, e = VRegs.size(); i < e; ++i) { |
| unsigned OperandType = N.getOperand(i+2).getValueType(); |
| switch(OperandType) { |
| default: |
| Node->dump(); |
| N.getOperand(i).Val->dump(); |
| std::cerr << "Type for " << i << " is: " << |
| N.getOperand(i+2).getValueType() << "\n"; |
| assert(0 && "Unknown value type for call"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (GPR_remaining > 0) |
| BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(VRegs[i]) |
| .addReg(VRegs[i]); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(VRegs[i]); |
| ++FPR_idx; |
| --FPR_remaining; |
| } |
| break; |
| } |
| // All arguments consume GPRs available for argument passing |
| if (GPR_remaining > 0) { |
| ++GPR_idx; |
| --GPR_remaining; |
| } |
| if (MVT::f64 == OperandType && GPR_remaining > 0) { |
| ++GPR_idx; |
| --GPR_remaining; |
| } |
| } |
| |
| // Emit the correct call instruction based on the type of symbol called. |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { |
| BuildMI(BB, PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), true); |
| } else if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { |
| BuildMI(BB, PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), true); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); |
| BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); |
| BuildMI(BB, PPC::CALLindirect, 3).addImm(20).addImm(0).addReg(PPC::R12); |
| } |
| |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Unknown value type for call result!"); |
| case MVT::Other: return 1; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3); |
| if (Node->getValueType(1) == MVT::i32) |
| BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R4).addReg(PPC::R4); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1); |
| break; |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::SIGN_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break; |
| case MVT::i16: |
| BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); |
| break; |
| case MVT::i8: |
| BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1); |
| break; |
| } |
| return Result; |
| |
| case ISD::ZERO_EXTEND_INREG: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: Node->dump(); assert(0 && "Unhandled ZERO_EXTEND type"); break; |
| case MVT::i16: Tmp2 = 16; break; |
| case MVT::i8: Tmp2 = 24; break; |
| case MVT::i1: Tmp2 = 31; break; |
| } |
| BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(0).addImm(0) |
| .addImm(Tmp2).addImm(31); |
| return Result; |
| |
| case ISD::CopyFromReg: |
| if (Result == 1) |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| Tmp1 = dyn_cast<RegSDNode>(Node)->getReg(); |
| BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1); |
| return Result; |
| |
| case ISD::SHL: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) |
| .addImm(31-Tmp2); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::SRL: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(32-Tmp2) |
| .addImm(Tmp2).addImm(31); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::SRA: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::ADD: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| break; |
| } |
| return Result; |
| |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| switch (opcode) { |
| case ISD::AND: Opc = PPC::AND; break; |
| case ISD::OR: Opc = PPC::OR; break; |
| case ISD::XOR: Opc = PPC::XOR; break; |
| } |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| switch (opcode) { |
| case ISD::AND: Opc = PPC::ANDIo; break; |
| case ISD::OR: Opc = PPC::ORI; break; |
| case ISD::XOR: Opc = PPC::XORI; break; |
| } |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| switch (opcode) { |
| case ISD::AND: Opc = PPC::ANDISo; break; |
| case ISD::OR: Opc = PPC::ORIS; break; |
| case ISD::XOR: Opc = PPC::XORIS; break; |
| } |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| } |
| return Result; |
| |
| case ISD::SUB: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); |
| return Result; |
| |
| case ISD::MUL: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (1 == canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) |
| BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::SDIV: |
| case ISD::UDIV: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::UREM: |
| case ISD::SREM: { |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp3 = MakeReg(MVT::i32); |
| unsigned Tmp4 = MakeReg(MVT::i32); |
| Opc = (ISD::UREM == opcode) ? PPC::DIVWU : PPC::DIVW; |
| BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); |
| BuildMI(BB, PPC::MULLW, 2, Tmp4).addReg(Tmp3).addReg(Tmp2); |
| BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp4).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::ADD_PARTS: |
| case ISD::SUB_PARTS: { |
| assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && |
| "Not an i64 add/sub!"); |
| // Emit all of the operands. |
| std::vector<unsigned> InVals; |
| for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) |
| InVals.push_back(SelectExpr(N.getOperand(i))); |
| if (N.getOpcode() == ISD::ADD_PARTS) { |
| BuildMI(BB, PPC::ADDC, 2, Result+1).addReg(InVals[0]).addReg(InVals[2]); |
| BuildMI(BB, PPC::ADDE, 2, Result).addReg(InVals[1]).addReg(InVals[3]); |
| } else { |
| BuildMI(BB, PPC::SUBFC, 2, Result+1).addReg(InVals[2]).addReg(InVals[0]); |
| BuildMI(BB, PPC::SUBFE, 2, Result).addReg(InVals[3]).addReg(InVals[1]); |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| abort(); |
| |
| case ISD::SETCC: |
| abort(); |
| |
| case ISD::SELECT: |
| abort(); |
| |
| case ISD::Constant: |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot use constants of this type!"); |
| case MVT::i1: |
| BuildMI(BB, PPC::LI, 1, Result) |
| .addSImm(!cast<ConstantSDNode>(N)->isNullValue()); |
| break; |
| case MVT::i32: |
| { |
| int v = (int)cast<ConstantSDNode>(N)->getSignExtended(); |
| if (v < 32768 && v >= -32768) { |
| BuildMI(BB, PPC::LI, 1, Result).addSImm(v); |
| } else { |
| Tmp1 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16); |
| BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF); |
| } |
| } |
| } |
| return Result; |
| } |
| |
| return 0; |
| } |
| |
| void ISel::Select(SDOperand N) { |
| unsigned Tmp1, Tmp2, Opc; |
| unsigned opcode = N.getOpcode(); |
| |
| if (!ExprMap.insert(std::make_pair(N, 1)).second) |
| return; // Already selected. |
| |
| SDNode *Node = N.Val; |
| |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); std::cerr << "\n"; |
| assert(0 && "Node not handled yet!"); |
| case ISD::EntryToken: return; // Noop |
| case ISD::TokenFactor: |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Select(Node->getOperand(i)); |
| return; |
| case ISD::ADJCALLSTACKDOWN: |
| case ISD::ADJCALLSTACKUP: |
| Select(N.getOperand(0)); |
| Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); |
| Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN : |
| PPC::ADJCALLSTACKUP; |
| BuildMI(BB, Opc, 1).addImm(Tmp1); |
| return; |
| case ISD::BR: { |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); |
| Select(N.getOperand(0)); |
| BuildMI(BB, PPC::B, 1).addMBB(Dest); |
| return; |
| } |
| case ISD::BRCOND: |
| SelectBranchCC(N); |
| return; |
| case ISD::CopyToReg: |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = cast<RegSDNode>(N)->getReg(); |
| |
| if (Tmp1 != Tmp2) { |
| if (N.getOperand(1).getValueType() == MVT::f64 || |
| N.getOperand(1).getValueType() == MVT::f32) |
| BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1); |
| else |
| BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); |
| } |
| return; |
| case ISD::ImplicitDef: |
| Select(N.getOperand(0)); |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg()); |
| return; |
| case ISD::RET: |
| switch (N.getNumOperands()) { |
| default: |
| assert(0 && "Unknown return instruction!"); |
| case 3: |
| assert(N.getOperand(1).getValueType() == MVT::i32 && |
| N.getOperand(2).getValueType() == MVT::i32 && |
| "Unknown two-register value!"); |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = SelectExpr(N.getOperand(2)); |
| BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); |
| BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp2).addReg(Tmp2); |
| break; |
| case 2: |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| switch (N.getOperand(1).getValueType()) { |
| default: |
| assert(0 && "Unknown return type!"); |
| case MVT::f64: |
| case MVT::f32: |
| BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1); |
| break; |
| case MVT::i32: |
| BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); |
| break; |
| } |
| case 1: |
| Select(N.getOperand(0)); |
| break; |
| } |
| BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction |
| return; |
| case ISD::TRUNCSTORE: |
| case ISD::STORE: |
| { |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Value = N.getOperand(1); |
| SDOperand Address = N.getOperand(2); |
| Select(Chain); |
| |
| Tmp1 = SelectExpr(Value); //value |
| |
| if (opcode == ISD::STORE) { |
| switch(Value.getValueType()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i32: Opc = PPC::STW; break; |
| case MVT::f64: Opc = PPC::STFD; break; |
| case MVT::f32: Opc = PPC::STFS; break; |
| } |
| } else { //ISD::TRUNCSTORE |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i1: //FIXME: DAG does not promote this load |
| case MVT::i8: Opc = PPC::STB; break; |
| case MVT::i16: Opc = PPC::STH; break; |
| } |
| } |
| |
| if (Address.getOpcode() == ISD::GlobalAddress) |
| { |
| BuildMI(BB, Opc, 2).addReg(Tmp1) |
| .addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal()); |
| } |
| else if(Address.getOpcode() == ISD::FrameIndex) |
| { |
| BuildMI(BB, Opc, 2).addReg(Tmp1) |
| .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex()); |
| } |
| else |
| { |
| int offset; |
| SelectAddr(Address, Tmp2, offset); |
| BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2); |
| } |
| return; |
| } |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::LOAD: |
| case ISD::CopyFromReg: |
| case ISD::CALL: |
| case ISD::DYNAMIC_STACKALLOC: |
| ExprMap.erase(N); |
| SelectExpr(N); |
| return; |
| } |
| assert(0 && "Should not be reached!"); |
| } |
| |
| |
| /// createPPC32PatternInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation using pattern matching and a machine |
| /// description file. |
| /// |
| FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) { |
| return new ISel(TM); |
| } |
| |