| //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Represent a range of possible values that may occur when the program is run |
| // for an integral value. This keeps track of a lower and upper bound for the |
| // constant, which MAY wrap around the end of the numeric range. To do this, it |
| // keeps track of a [lower, upper) bound, which specifies an interval just like |
| // STL iterators. When used with boolean values, the following are important |
| // ranges (other integral ranges use min/max values for special range values): |
| // |
| // [F, F) = {} = Empty set |
| // [T, F) = {T} |
| // [F, T) = {F} |
| // [T, T) = {F, T} = Full set |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Support/Streams.h" |
| #include <ostream> |
| using namespace llvm; |
| |
| /// Initialize a full (the default) or empty set for the specified type. |
| /// |
| ConstantRange::ConstantRange(const Type *Ty, bool Full) : |
| Lower(cast<IntegerType>(Ty)->getBitWidth(), 0), |
| Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) { |
| uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); |
| if (Full) |
| Lower = Upper = APInt::getMaxValue(BitWidth); |
| else |
| Lower = Upper = APInt::getMinValue(BitWidth); |
| } |
| |
| /// Initialize a range to hold the single specified value. |
| /// |
| ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { } |
| |
| ConstantRange::ConstantRange(const APInt &L, const APInt &U) : |
| Lower(L), Upper(U) { |
| assert(L.getBitWidth() == U.getBitWidth() && |
| "ConstantRange with unequal bit widths"); |
| uint32_t BitWidth = L.getBitWidth(); |
| assert((L != U || (L == APInt::getMaxValue(BitWidth) || |
| L == APInt::getMinValue(BitWidth))) && |
| "Lower == Upper, but they aren't min or max value!"); |
| } |
| |
| /// Initialize a set of values that all satisfy the condition with C. |
| /// |
| ConstantRange::ConstantRange(unsigned short ICmpOpcode, const APInt &C) |
| : Lower(C.getBitWidth(), 0), Upper(C.getBitWidth(), 0) { |
| uint32_t BitWidth = C.getBitWidth(); |
| switch (ICmpOpcode) { |
| default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!"); |
| case ICmpInst::ICMP_EQ: Lower = C; Upper = C + 1; return; |
| case ICmpInst::ICMP_NE: Upper = C; Lower = C + 1; return; |
| case ICmpInst::ICMP_ULT: |
| Lower = APInt::getMinValue(BitWidth); |
| Upper = C; |
| return; |
| case ICmpInst::ICMP_SLT: |
| Lower = APInt::getSignedMinValue(BitWidth); |
| Upper = C; |
| return; |
| case ICmpInst::ICMP_UGT: |
| Lower = C + 1; |
| Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) |
| return; |
| case ICmpInst::ICMP_SGT: |
| Lower = C + 1; |
| Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) |
| return; |
| case ICmpInst::ICMP_ULE: |
| Lower = APInt::getMinValue(BitWidth); |
| Upper = C + 1; |
| return; |
| case ICmpInst::ICMP_SLE: |
| Lower = APInt::getSignedMinValue(BitWidth); |
| Upper = C + 1; |
| return; |
| case ICmpInst::ICMP_UGE: |
| Lower = C; |
| Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) |
| return; |
| case ICmpInst::ICMP_SGE: |
| Lower = C; |
| Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) |
| return; |
| } |
| } |
| |
| /// getType - Return the LLVM data type of this range. |
| /// |
| const Type *ConstantRange::getType() const { |
| return IntegerType::get(Lower.getBitWidth()); |
| } |
| |
| ConstantInt *ConstantRange::getLower() const { |
| return ConstantInt::get(getType(), Lower); |
| } |
| |
| ConstantInt *ConstantRange::getUpper() const { |
| return ConstantInt::get(getType(), Upper); |
| } |
| |
| /// isFullSet - Return true if this set contains all of the elements possible |
| /// for this data-type |
| bool ConstantRange::isFullSet() const { |
| return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth()); |
| } |
| |
| /// isEmptySet - Return true if this set contains no members. |
| /// |
| bool ConstantRange::isEmptySet() const { |
| return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth()); |
| } |
| |
| /// isWrappedSet - Return true if this set wraps around the top of the range, |
| /// for example: [100, 8) |
| /// |
| bool ConstantRange::isWrappedSet(bool isSigned) const { |
| if (isSigned) |
| return Lower.sgt(Upper); |
| return Lower.ugt(Upper); |
| } |
| |
| /// getSingleElement - If this set contains a single element, return it, |
| /// otherwise return null. |
| ConstantInt *ConstantRange::getSingleElement() const { |
| if (Upper == Lower + 1) // Is it a single element range? |
| return ConstantInt::get(getType(), Lower); |
| return 0; |
| } |
| |
| /// getSetSize - Return the number of elements in this set. |
| /// |
| APInt ConstantRange::getSetSize() const { |
| if (isEmptySet()) |
| return APInt(Lower.getBitWidth(), 0); |
| if (getType() == Type::Int1Ty) { |
| if (Lower != Upper) // One of T or F in the set... |
| return APInt(Lower.getBitWidth(), 1); |
| return APInt(Lower.getBitWidth(), 2); // Must be full set... |
| } |
| |
| // Simply subtract the bounds... |
| return Upper - Lower; |
| } |
| |
| /// contains - Return true if the specified value is in the set. |
| /// |
| bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const { |
| if (Lower == Upper) { |
| if (isFullSet()) |
| return true; |
| return false; |
| } |
| |
| const APInt &V = Val->getValue(); |
| if (!isWrappedSet(isSigned)) |
| if (isSigned) |
| return Lower.sle(V) && V.slt(Upper); |
| else |
| return Lower.ule(V) && V.ult(Upper); |
| if (isSigned) |
| return Lower.sle(V) || V.slt(Upper); |
| else |
| return Lower.ule(V) || V.ult(Upper); |
| } |
| |
| /// subtract - Subtract the specified constant from the endpoints of this |
| /// constant range. |
| ConstantRange ConstantRange::subtract(ConstantInt *CI) const { |
| assert(CI->getType() == getType() && |
| "Cannot subtract from different type range or non-integer!"); |
| // If the set is empty or full, don't modify the endpoints. |
| if (Lower == Upper) |
| return *this; |
| |
| const APInt &Val = CI->getValue(); |
| return ConstantRange(Lower - Val, Upper - Val); |
| } |
| |
| |
| // intersect1Wrapped - This helper function is used to intersect two ranges when |
| // it is known that LHS is wrapped and RHS isn't. |
| // |
| ConstantRange |
| ConstantRange::intersect1Wrapped(const ConstantRange &LHS, |
| const ConstantRange &RHS, bool isSigned) { |
| assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned)); |
| |
| // Check to see if we overlap on the Left side of RHS... |
| // |
| bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper)); |
| bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower)); |
| if (LT) { |
| // We do overlap on the left side of RHS, see if we overlap on the right of |
| // RHS... |
| if (GT) { |
| // Ok, the result overlaps on both the left and right sides. See if the |
| // resultant interval will be smaller if we wrap or not... |
| // |
| if (LHS.getSetSize().ult(RHS.getSetSize())) |
| return LHS; |
| else |
| return RHS; |
| |
| } else { |
| // No overlap on the right, just on the left. |
| return ConstantRange(RHS.Lower, LHS.Upper); |
| } |
| } else { |
| // We don't overlap on the left side of RHS, see if we overlap on the right |
| // of RHS... |
| if (GT) { |
| // Simple overlap... |
| return ConstantRange(LHS.Lower, RHS.Upper); |
| } else { |
| // No overlap... |
| return ConstantRange(LHS.getType(), false); |
| } |
| } |
| } |
| |
| /// intersectWith - Return the range that results from the intersection of this |
| /// range with another range. |
| /// |
| ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, |
| bool isSigned) const { |
| assert(getType() == CR.getType() && "ConstantRange types don't agree!"); |
| // Handle common special cases |
| if (isEmptySet() || CR.isFullSet()) |
| return *this; |
| if (isFullSet() || CR.isEmptySet()) |
| return CR; |
| |
| if (!isWrappedSet(isSigned)) { |
| if (!CR.isWrappedSet(isSigned)) { |
| using namespace APIntOps; |
| APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower); |
| APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper); |
| |
| if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty... |
| return ConstantRange(L, U); |
| else |
| return ConstantRange(getType(), false); // Otherwise, return empty set |
| } else |
| return intersect1Wrapped(CR, *this, isSigned); |
| } else { // We know "this" is wrapped... |
| if (!CR.isWrappedSet(isSigned)) |
| return intersect1Wrapped(*this, CR, isSigned); |
| else { |
| // Both ranges are wrapped... |
| using namespace APIntOps; |
| APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower); |
| APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper); |
| return ConstantRange(L, U); |
| } |
| } |
| return *this; |
| } |
| |
| /// unionWith - Return the range that results from the union of this range with |
| /// another range. The resultant range is guaranteed to include the elements of |
| /// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, |
| /// 15), which includes 9, 10, and 11, which were not included in either set |
| /// before. |
| /// |
| ConstantRange ConstantRange::unionWith(const ConstantRange &CR, |
| bool isSigned) const { |
| assert(getType() == CR.getType() && "ConstantRange types don't agree!"); |
| |
| assert(0 && "Range union not implemented yet!"); |
| |
| return *this; |
| } |
| |
| /// zeroExtend - Return a new range in the specified integer type, which must |
| /// be strictly larger than the current type. The returned range will |
| /// correspond to the possible range of values as if the source range had been |
| /// zero extended. |
| ConstantRange ConstantRange::zeroExtend(const Type *Ty) const { |
| unsigned SrcTySize = Lower.getBitWidth(); |
| unsigned DstTySize = Ty->getPrimitiveSizeInBits(); |
| assert(SrcTySize < DstTySize && "Not a value extension"); |
| if (isFullSet()) |
| // Change a source full set into [0, 1 << 8*numbytes) |
| return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize)); |
| |
| APInt L = Lower; L.zext(DstTySize); |
| APInt U = Upper; U.zext(DstTySize); |
| return ConstantRange(L, U); |
| } |
| |
| /// truncate - Return a new range in the specified integer type, which must be |
| /// strictly smaller than the current type. The returned range will |
| /// correspond to the possible range of values as if the source range had been |
| /// truncated to the specified type. |
| ConstantRange ConstantRange::truncate(const Type *Ty) const { |
| unsigned SrcTySize = Lower.getBitWidth(); |
| unsigned DstTySize = Ty->getPrimitiveSizeInBits(); |
| assert(SrcTySize > DstTySize && "Not a value truncation"); |
| APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize); |
| if (isFullSet() || getSetSize().ugt(Size)) |
| return ConstantRange(getType()); |
| |
| APInt L = Lower; L.trunc(DstTySize); |
| APInt U = Upper; U.trunc(DstTySize); |
| return ConstantRange(L, U); |
| } |
| |
| /// print - Print out the bounds to a stream... |
| /// |
| void ConstantRange::print(std::ostream &OS) const { |
| OS << "[" << Lower.toStringSigned(10) << "," |
| << Upper.toStringSigned(10) << " )"; |
| } |
| |
| /// dump - Allow printing from a debugger easily... |
| /// |
| void ConstantRange::dump() const { |
| print(cerr); |
| } |