| //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by James M. Laskey and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a hash set that can be used to remove duplication of |
| // nodes in a graph. This code was originally created by Chris Lattner for use |
| // with SelectionDAGCSEMap, but was isolated to provide use across the llvm code |
| // set. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/FoldingSet.h" |
| |
| #include "llvm/ADT/MathExtras.h" |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetImpl::NodeID Implementation |
| |
| /// Add* - Add various data types to Bit data. |
| /// |
| void FoldingSetImpl::NodeID::AddPointer(const void *Ptr) { |
| // Note: this adds pointers to the hash using sizes and endianness that |
| // depend on the host. It doesn't matter however, because hashing on |
| // pointer values in inherently unstable. Nothing should depend on the |
| // ordering of nodes in the folding set. |
| intptr_t PtrI = (intptr_t)Ptr; |
| Bits.push_back(unsigned(PtrI)); |
| if (sizeof(intptr_t) > sizeof(unsigned)) |
| Bits.push_back(unsigned(uint64_t(PtrI) >> 32)); |
| } |
| void FoldingSetImpl::NodeID::AddInteger(signed I) { |
| Bits.push_back(I); |
| } |
| void FoldingSetImpl::NodeID::AddInteger(unsigned I) { |
| Bits.push_back(I); |
| } |
| void FoldingSetImpl::NodeID::AddInteger(uint64_t I) { |
| Bits.push_back(unsigned(I)); |
| Bits.push_back(unsigned(I >> 32)); |
| } |
| void FoldingSetImpl::NodeID::AddFloat(float F) { |
| Bits.push_back(FloatToBits(F)); |
| } |
| void FoldingSetImpl::NodeID::AddDouble(double D) { |
| Bits.push_back(DoubleToBits(D)); |
| } |
| void FoldingSetImpl::NodeID::AddString(const std::string &String) { |
| // Note: An assumption is made here that strings are composed of one byte |
| // chars. |
| unsigned Size = String.size(); |
| unsigned Units = Size / sizeof(unsigned); |
| const unsigned *Base = (const unsigned *)String.data(); |
| Bits.insert(Bits.end(), Base, Base + Units); |
| if (Size & 3) { |
| unsigned V = 0; |
| for (unsigned i = Units * sizeof(unsigned); i < Size; ++i) |
| V = (V << 8) | String[i]; |
| Bits.push_back(V); |
| } |
| } |
| |
| /// ComputeHash - Compute a strong hash value for this NodeID, used to |
| /// lookup the node in the FoldingSetImpl. |
| unsigned FoldingSetImpl::NodeID::ComputeHash() const { |
| // This is adapted from SuperFastHash by Paul Hsieh. |
| unsigned Hash = Bits.size(); |
| for (const unsigned *BP = &Bits[0], *E = BP+Bits.size(); BP != E; ++BP) { |
| unsigned Data = *BP; |
| Hash += Data & 0xFFFF; |
| unsigned Tmp = ((Data >> 16) << 11) ^ Hash; |
| Hash = (Hash << 16) ^ Tmp; |
| Hash += Hash >> 11; |
| } |
| |
| // Force "avalanching" of final 127 bits. |
| Hash ^= Hash << 3; |
| Hash += Hash >> 5; |
| Hash ^= Hash << 4; |
| Hash += Hash >> 17; |
| Hash ^= Hash << 25; |
| Hash += Hash >> 6; |
| return Hash; |
| } |
| |
| /// operator== - Used to compare two nodes to each other. |
| /// |
| bool FoldingSetImpl::NodeID::operator==(const FoldingSetImpl::NodeID &RHS)const{ |
| if (Bits.size() != RHS.Bits.size()) return false; |
| return memcmp(&Bits[0], &RHS.Bits[0], Bits.size()*sizeof(Bits[0])) == 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // FoldingSetImpl Implementation |
| |
| FoldingSetImpl::FoldingSetImpl() : NumNodes(0) { |
| NumBuckets = 64; |
| Buckets = new void*[NumBuckets]; |
| memset(Buckets, 0, NumBuckets*sizeof(void*)); |
| } |
| FoldingSetImpl::~FoldingSetImpl() { |
| delete [] Buckets; |
| } |
| |
| /// GetNextPtr - In order to save space, each bucket is a |
| /// singly-linked-list. In order to make deletion more efficient, we make |
| /// the list circular, so we can delete a node without computing its hash. |
| /// The problem with this is that the start of the hash buckets are not |
| /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null |
| /// : use GetBucketPtr when this happens. |
| FoldingSetImpl::Node *FoldingSetImpl::GetNextPtr(void *NextInBucketPtr) { |
| if (NextInBucketPtr >= Buckets && NextInBucketPtr < Buckets+NumBuckets) |
| return 0; |
| return static_cast<Node*>(NextInBucketPtr); |
| } |
| |
| /// GetNextPtr - This is just like the previous GetNextPtr implementation, |
| /// but allows a bucket array to be specified. |
| FoldingSetImpl::Node *FoldingSetImpl::GetNextPtr(void *NextInBucketPtr, |
| void **Bucks, |
| unsigned NumBuck) { |
| if (NextInBucketPtr >= Bucks && NextInBucketPtr < Bucks+NumBuck) |
| return 0; |
| return static_cast<Node*>(NextInBucketPtr); |
| } |
| |
| /// GetBucketPtr - Provides a casting of a bucket pointer for isNode |
| /// testing. |
| void **FoldingSetImpl::GetBucketPtr(void *NextInBucketPtr) { |
| return static_cast<void**>(NextInBucketPtr); |
| } |
| |
| /// GetBucketFor - Hash the specified node ID and return the hash bucket for |
| /// the specified ID. |
| void **FoldingSetImpl::GetBucketFor(const NodeID &ID) const { |
| // NumBuckets is always a power of 2. |
| unsigned BucketNum = ID.ComputeHash() & (NumBuckets-1); |
| return Buckets+BucketNum; |
| } |
| |
| /// GrowHashTable - Double the size of the hash table and rehash everything. |
| /// |
| void FoldingSetImpl::GrowHashTable() { |
| void **OldBuckets = Buckets; |
| unsigned OldNumBuckets = NumBuckets; |
| NumBuckets <<= 1; |
| |
| // Reset the node count to zero: we're going to reinsert everything. |
| NumNodes = 0; |
| |
| // Clear out new buckets. |
| Buckets = new void*[NumBuckets]; |
| memset(Buckets, 0, NumBuckets*sizeof(void*)); |
| |
| // Walk the old buckets, rehashing nodes into their new place. |
| for (unsigned i = 0; i != OldNumBuckets; ++i) { |
| void *Probe = OldBuckets[i]; |
| if (!Probe) continue; |
| while (Node *NodeInBucket = GetNextPtr(Probe, OldBuckets, OldNumBuckets)){ |
| // Figure out the next link, remove NodeInBucket from the old link. |
| Probe = NodeInBucket->getNextInBucket(); |
| NodeInBucket->SetNextInBucket(0); |
| |
| // Insert the node into the new bucket, after recomputing the hash. |
| NodeID ID; |
| GetNodeProfile(ID, NodeInBucket); |
| InsertNode(NodeInBucket, GetBucketFor(ID)); |
| } |
| } |
| |
| delete[] OldBuckets; |
| } |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| /// return it. If not, return the insertion token that will make insertion |
| /// faster. |
| FoldingSetImpl::Node *FoldingSetImpl::FindNodeOrInsertPos(const NodeID &ID, |
| void *&InsertPos) { |
| void **Bucket = GetBucketFor(ID); |
| void *Probe = *Bucket; |
| |
| InsertPos = 0; |
| |
| while (Node *NodeInBucket = GetNextPtr(Probe)) { |
| NodeID OtherID; |
| GetNodeProfile(OtherID, NodeInBucket); |
| if (OtherID == ID) |
| return NodeInBucket; |
| |
| Probe = NodeInBucket->getNextInBucket(); |
| } |
| |
| // Didn't find the node, return null with the bucket as the InsertPos. |
| InsertPos = Bucket; |
| return 0; |
| } |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that it |
| /// is not already in the map. InsertPos must be obtained from |
| /// FindNodeOrInsertPos. |
| void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) { |
| ++NumNodes; |
| // Do we need to grow the hashtable? |
| if (NumNodes > NumBuckets*2) { |
| GrowHashTable(); |
| NodeID ID; |
| GetNodeProfile(ID, N); |
| InsertPos = GetBucketFor(ID); |
| } |
| |
| /// The insert position is actually a bucket pointer. |
| void **Bucket = static_cast<void**>(InsertPos); |
| |
| void *Next = *Bucket; |
| |
| // If this is the first insertion into this bucket, its next pointer will be |
| // null. Pretend as if it pointed to itself. |
| if (Next == 0) |
| Next = Bucket; |
| |
| // Set the nodes next pointer, and make the bucket point to the node. |
| N->SetNextInBucket(Next); |
| *Bucket = N; |
| } |
| |
| /// RemoveNode - Remove a node from the folding set, returning true if one was |
| /// removed or false if the node was not in the folding set. |
| bool FoldingSetImpl::RemoveNode(Node *N) { |
| // Because each bucket is a circular list, we don't need to compute N's hash |
| // to remove it. Chase around the list until we find the node (or bucket) |
| // which points to N. |
| void *Ptr = N->getNextInBucket(); |
| if (Ptr == 0) return false; // Not in folding set. |
| |
| --NumNodes; |
| |
| void *NodeNextPtr = Ptr; |
| N->SetNextInBucket(0); |
| while (true) { |
| if (Node *NodeInBucket = GetNextPtr(Ptr)) { |
| // Advance pointer. |
| Ptr = NodeInBucket->getNextInBucket(); |
| |
| // We found a node that points to N, change it to point to N's next node, |
| // removing N from the list. |
| if (Ptr == N) { |
| NodeInBucket->SetNextInBucket(NodeNextPtr); |
| return true; |
| } |
| } else { |
| void **Bucket = GetBucketPtr(Ptr); |
| Ptr = *Bucket; |
| |
| // If we found that the bucket points to N, update the bucket to point to |
| // whatever is next. |
| if (Ptr == N) { |
| *Bucket = NodeNextPtr; |
| return true; |
| } |
| } |
| } |
| } |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' and it |
| /// instead. |
| FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) { |
| NodeID ID; |
| GetNodeProfile(ID, N); |
| void *IP; |
| if (Node *E = FindNodeOrInsertPos(ID, IP)) |
| return E; |
| InsertNode(N, IP); |
| return N; |
| } |