| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the SplitAnalysis class as well as mutator functions for | 
 | // live range splitting. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "SplitKit.h" | 
 | #include "LiveRangeEdit.h" | 
 | #include "VirtRegMap.h" | 
 | #include "llvm/CodeGen/CalcSpillWeights.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> | 
 | AllowSplit("spiller-splits-edges", | 
 |            cl::desc("Allow critical edge splitting during spilling")); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                 Split Analysis | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | SplitAnalysis::SplitAnalysis(const MachineFunction &mf, | 
 |                              const LiveIntervals &lis, | 
 |                              const MachineLoopInfo &mli) | 
 |   : mf_(mf), | 
 |     lis_(lis), | 
 |     loops_(mli), | 
 |     tii_(*mf.getTarget().getInstrInfo()), | 
 |     curli_(0) {} | 
 |  | 
 | void SplitAnalysis::clear() { | 
 |   usingInstrs_.clear(); | 
 |   usingBlocks_.clear(); | 
 |   usingLoops_.clear(); | 
 |   curli_ = 0; | 
 | } | 
 |  | 
 | bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { | 
 |   MachineBasicBlock *T, *F; | 
 |   SmallVector<MachineOperand, 4> Cond; | 
 |   return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); | 
 | } | 
 |  | 
 | /// analyzeUses - Count instructions, basic blocks, and loops using curli. | 
 | void SplitAnalysis::analyzeUses() { | 
 |   const MachineRegisterInfo &MRI = mf_.getRegInfo(); | 
 |   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); | 
 |        MachineInstr *MI = I.skipInstruction();) { | 
 |     if (MI->isDebugValue() || !usingInstrs_.insert(MI)) | 
 |       continue; | 
 |     MachineBasicBlock *MBB = MI->getParent(); | 
 |     if (usingBlocks_[MBB]++) | 
 |       continue; | 
 |     for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; | 
 |          Loop = Loop->getParentLoop()) | 
 |       usingLoops_[Loop]++; | 
 |   } | 
 |   DEBUG(dbgs() << "  counted " | 
 |                << usingInstrs_.size() << " instrs, " | 
 |                << usingBlocks_.size() << " blocks, " | 
 |                << usingLoops_.size()  << " loops.\n"); | 
 | } | 
 |  | 
 | void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { | 
 |   for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { | 
 |     unsigned count = usingBlocks_.lookup(*I); | 
 |     OS << " BB#" << (*I)->getNumber(); | 
 |     if (count) | 
 |       OS << '(' << count << ')'; | 
 |   } | 
 | } | 
 |  | 
 | // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, | 
 | // predecessor blocks, and exit blocks. | 
 | void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { | 
 |   Blocks.clear(); | 
 |  | 
 |   // Blocks in the loop. | 
 |   Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); | 
 |  | 
 |   // Predecessor blocks. | 
 |   const MachineBasicBlock *Header = Loop->getHeader(); | 
 |   for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), | 
 |        E = Header->pred_end(); I != E; ++I) | 
 |     if (!Blocks.Loop.count(*I)) | 
 |       Blocks.Preds.insert(*I); | 
 |  | 
 |   // Exit blocks. | 
 |   for (MachineLoop::block_iterator I = Loop->block_begin(), | 
 |        E = Loop->block_end(); I != E; ++I) { | 
 |     const MachineBasicBlock *MBB = *I; | 
 |     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), | 
 |        SE = MBB->succ_end(); SI != SE; ++SI) | 
 |       if (!Blocks.Loop.count(*SI)) | 
 |         Blocks.Exits.insert(*SI); | 
 |   } | 
 | } | 
 |  | 
 | void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { | 
 |   OS << "Loop:"; | 
 |   print(B.Loop, OS); | 
 |   OS << ", preds:"; | 
 |   print(B.Preds, OS); | 
 |   OS << ", exits:"; | 
 |   print(B.Exits, OS); | 
 | } | 
 |  | 
 | /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in | 
 | /// and around the Loop. | 
 | SplitAnalysis::LoopPeripheralUse SplitAnalysis:: | 
 | analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { | 
 |   LoopPeripheralUse use = ContainedInLoop; | 
 |   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); | 
 |        I != E; ++I) { | 
 |     const MachineBasicBlock *MBB = I->first; | 
 |     // Is this a peripheral block? | 
 |     if (use < MultiPeripheral && | 
 |         (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { | 
 |       if (I->second > 1) use = MultiPeripheral; | 
 |       else               use = SinglePeripheral; | 
 |       continue; | 
 |     } | 
 |     // Is it a loop block? | 
 |     if (Blocks.Loop.count(MBB)) | 
 |       continue; | 
 |     // It must be an unrelated block. | 
 |     DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); | 
 |     return OutsideLoop; | 
 |   } | 
 |   return use; | 
 | } | 
 |  | 
 | /// getCriticalExits - It may be necessary to partially break critical edges | 
 | /// leaving the loop if an exit block has predecessors from outside the loop | 
 | /// periphery. | 
 | void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, | 
 |                                      BlockPtrSet &CriticalExits) { | 
 |   CriticalExits.clear(); | 
 |  | 
 |   // A critical exit block has curli live-in, and has a predecessor that is not | 
 |   // in the loop nor a loop predecessor. For such an exit block, the edges | 
 |   // carrying the new variable must be moved to a new pre-exit block. | 
 |   for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); | 
 |        I != E; ++I) { | 
 |     const MachineBasicBlock *Exit = *I; | 
 |     // A single-predecessor exit block is definitely not a critical edge. | 
 |     if (Exit->pred_size() == 1) | 
 |       continue; | 
 |     // This exit may not have curli live in at all. No need to split. | 
 |     if (!lis_.isLiveInToMBB(*curli_, Exit)) | 
 |       continue; | 
 |     // Does this exit block have a predecessor that is not a loop block or loop | 
 |     // predecessor? | 
 |     for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), | 
 |          PE = Exit->pred_end(); PI != PE; ++PI) { | 
 |       const MachineBasicBlock *Pred = *PI; | 
 |       if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) | 
 |         continue; | 
 |       // This is a critical exit block, and we need to split the exit edge. | 
 |       CriticalExits.insert(Exit); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, | 
 |                                      BlockPtrSet &CriticalPreds) { | 
 |   CriticalPreds.clear(); | 
 |  | 
 |   // A critical predecessor block has curli live-out, and has a successor that | 
 |   // has curli live-in and is not in the loop nor a loop exit block. For such a | 
 |   // predecessor block, we must carry the value in both the 'inside' and | 
 |   // 'outside' registers. | 
 |   for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); | 
 |        I != E; ++I) { | 
 |     const MachineBasicBlock *Pred = *I; | 
 |     // Definitely not a critical edge. | 
 |     if (Pred->succ_size() == 1) | 
 |       continue; | 
 |     // This block may not have curli live out at all if there is a PHI. | 
 |     if (!lis_.isLiveOutOfMBB(*curli_, Pred)) | 
 |       continue; | 
 |     // Does this block have a successor outside the loop? | 
 |     for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), | 
 |          SE = Pred->succ_end(); SI != SE; ++SI) { | 
 |       const MachineBasicBlock *Succ = *SI; | 
 |       if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) | 
 |         continue; | 
 |       if (!lis_.isLiveInToMBB(*curli_, Succ)) | 
 |         continue; | 
 |       // This is a critical predecessor block. | 
 |       CriticalPreds.insert(Pred); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// canSplitCriticalExits - Return true if it is possible to insert new exit | 
 | /// blocks before the blocks in CriticalExits. | 
 | bool | 
 | SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, | 
 |                                      BlockPtrSet &CriticalExits) { | 
 |   // If we don't allow critical edge splitting, require no critical exits. | 
 |   if (!AllowSplit) | 
 |     return CriticalExits.empty(); | 
 |  | 
 |   for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); | 
 |        I != E; ++I) { | 
 |     const MachineBasicBlock *Succ = *I; | 
 |     // We want to insert a new pre-exit MBB before Succ, and change all the | 
 |     // in-loop blocks to branch to the pre-exit instead of Succ. | 
 |     // Check that all the in-loop predecessors can be changed. | 
 |     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), | 
 |          PE = Succ->pred_end(); PI != PE; ++PI) { | 
 |       const MachineBasicBlock *Pred = *PI; | 
 |       // The external predecessors won't be altered. | 
 |       if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) | 
 |         continue; | 
 |       if (!canAnalyzeBranch(Pred)) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // If Succ's layout predecessor falls through, that too must be analyzable. | 
 |     // We need to insert the pre-exit block in the gap. | 
 |     MachineFunction::const_iterator MFI = Succ; | 
 |     if (MFI == mf_.begin()) | 
 |       continue; | 
 |     if (!canAnalyzeBranch(--MFI)) | 
 |       return false; | 
 |   } | 
 |   // No problems found. | 
 |   return true; | 
 | } | 
 |  | 
 | void SplitAnalysis::analyze(const LiveInterval *li) { | 
 |   clear(); | 
 |   curli_ = li; | 
 |   analyzeUses(); | 
 | } | 
 |  | 
 | void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) { | 
 |   assert(curli_ && "Call analyze() before getSplitLoops"); | 
 |   if (usingLoops_.empty()) | 
 |     return; | 
 |  | 
 |   LoopBlocks Blocks; | 
 |   BlockPtrSet CriticalExits; | 
 |  | 
 |   // We split around loops where curli is used outside the periphery. | 
 |   for (LoopCountMap::const_iterator I = usingLoops_.begin(), | 
 |        E = usingLoops_.end(); I != E; ++I) { | 
 |     const MachineLoop *Loop = I->first; | 
 |     getLoopBlocks(Loop, Blocks); | 
 |     DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); }); | 
 |  | 
 |     switch(analyzeLoopPeripheralUse(Blocks)) { | 
 |     case OutsideLoop: | 
 |       break; | 
 |     case MultiPeripheral: | 
 |       // FIXME: We could split a live range with multiple uses in a peripheral | 
 |       // block and still make progress. However, it is possible that splitting | 
 |       // another live range will insert copies into a peripheral block, and | 
 |       // there is a small chance we can enter an infinite loop, inserting copies | 
 |       // forever. | 
 |       // For safety, stick to splitting live ranges with uses outside the | 
 |       // periphery. | 
 |       DEBUG(dbgs() << ": multiple peripheral uses"); | 
 |       break; | 
 |     case ContainedInLoop: | 
 |       DEBUG(dbgs() << ": fully contained\n"); | 
 |       continue; | 
 |     case SinglePeripheral: | 
 |       DEBUG(dbgs() << ": single peripheral use\n"); | 
 |       continue; | 
 |     } | 
 |     // Will it be possible to split around this loop? | 
 |     getCriticalExits(Blocks, CriticalExits); | 
 |     DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); | 
 |     if (!canSplitCriticalExits(Blocks, CriticalExits)) | 
 |       continue; | 
 |     // This is a possible split. | 
 |     Loops.insert(Loop); | 
 |   } | 
 |  | 
 |   DEBUG(dbgs() << "  getSplitLoops found " << Loops.size() | 
 |                << " candidate loops.\n"); | 
 | } | 
 |  | 
 | const MachineLoop *SplitAnalysis::getBestSplitLoop() { | 
 |   LoopPtrSet Loops; | 
 |   getSplitLoops(Loops); | 
 |   if (Loops.empty()) | 
 |     return 0; | 
 |  | 
 |   // Pick the earliest loop. | 
 |   // FIXME: Are there other heuristics to consider? | 
 |   const MachineLoop *Best = 0; | 
 |   SlotIndex BestIdx; | 
 |   for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; | 
 |        ++I) { | 
 |     SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); | 
 |     if (!Best || Idx < BestIdx) | 
 |       Best = *I, BestIdx = Idx; | 
 |   } | 
 |   DEBUG(dbgs() << "  getBestSplitLoop found " << *Best); | 
 |   return Best; | 
 | } | 
 |  | 
 | /// isBypassLoop - Return true if curli is live through Loop and has no uses | 
 | /// inside the loop. Bypass loops are candidates for splitting because it can | 
 | /// prevent interference inside the loop. | 
 | bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) { | 
 |   // If curli is live into the loop header and there are no uses in the loop, it | 
 |   // must be live in the entire loop and live on at least one exiting edge. | 
 |   return !usingLoops_.count(Loop) && | 
 |          lis_.isLiveInToMBB(*curli_, Loop->getHeader()); | 
 | } | 
 |  | 
 | /// getBypassLoops - Get all the maximal bypass loops. These are the bypass | 
 | /// loops whose parent is not a bypass loop. | 
 | void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) { | 
 |   SmallVector<MachineLoop*, 8> Todo(loops_.begin(), loops_.end()); | 
 |   while (!Todo.empty()) { | 
 |     MachineLoop *Loop = Todo.pop_back_val(); | 
 |     if (!usingLoops_.count(Loop)) { | 
 |       // This is either a bypass loop or completely irrelevant. | 
 |       if (lis_.isLiveInToMBB(*curli_, Loop->getHeader())) | 
 |         BypassLoops.insert(Loop); | 
 |       // Either way, skip the child loops. | 
 |       continue; | 
 |     } | 
 |  | 
 |     // The child loops may be bypass loops. | 
 |     Todo.append(Loop->begin(), Loop->end()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                               LiveIntervalMap | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Work around the fact that the std::pair constructors are broken for pointer | 
 | // pairs in some implementations. makeVV(x, 0) works. | 
 | static inline std::pair<const VNInfo*, VNInfo*> | 
 | makeVV(const VNInfo *a, VNInfo *b) { | 
 |   return std::make_pair(a, b); | 
 | } | 
 |  | 
 | void LiveIntervalMap::reset(LiveInterval *li) { | 
 |   li_ = li; | 
 |   valueMap_.clear(); | 
 |   liveOutCache_.clear(); | 
 | } | 
 |  | 
 | bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { | 
 |   ValueMap::const_iterator i = valueMap_.find(ParentVNI); | 
 |   return i != valueMap_.end() && i->second == 0; | 
 | } | 
 |  | 
 | // defValue - Introduce a li_ def for ParentVNI that could be later than | 
 | // ParentVNI->def. | 
 | VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { | 
 |   assert(li_ && "call reset first"); | 
 |   assert(ParentVNI && "Mapping  NULL value"); | 
 |   assert(Idx.isValid() && "Invalid SlotIndex"); | 
 |   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); | 
 |  | 
 |   // Create a new value. | 
 |   VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); | 
 |  | 
 |   // Preserve the PHIDef bit. | 
 |   if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) | 
 |     VNI->setIsPHIDef(true); | 
 |  | 
 |   // Use insert for lookup, so we can add missing values with a second lookup. | 
 |   std::pair<ValueMap::iterator,bool> InsP = | 
 |     valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); | 
 |  | 
 |   // This is now a complex def. Mark with a NULL in valueMap. | 
 |   if (!InsP.second) | 
 |     InsP.first->second = 0; | 
 |  | 
 |   return VNI; | 
 | } | 
 |  | 
 |  | 
 | // mapValue - Find the mapped value for ParentVNI at Idx. | 
 | // Potentially create phi-def values. | 
 | VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, | 
 |                                   bool *simple) { | 
 |   assert(li_ && "call reset first"); | 
 |   assert(ParentVNI && "Mapping  NULL value"); | 
 |   assert(Idx.isValid() && "Invalid SlotIndex"); | 
 |   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); | 
 |  | 
 |   // Use insert for lookup, so we can add missing values with a second lookup. | 
 |   std::pair<ValueMap::iterator,bool> InsP = | 
 |     valueMap_.insert(makeVV(ParentVNI, 0)); | 
 |  | 
 |   // This was an unknown value. Create a simple mapping. | 
 |   if (InsP.second) { | 
 |     if (simple) *simple = true; | 
 |     return InsP.first->second = li_->createValueCopy(ParentVNI, | 
 |                                                      lis_.getVNInfoAllocator()); | 
 |   } | 
 |  | 
 |   // This was a simple mapped value. | 
 |   if (InsP.first->second) { | 
 |     if (simple) *simple = true; | 
 |     return InsP.first->second; | 
 |   } | 
 |  | 
 |   // This is a complex mapped value. There may be multiple defs, and we may need | 
 |   // to create phi-defs. | 
 |   if (simple) *simple = false; | 
 |   MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); | 
 |   assert(IdxMBB && "No MBB at Idx"); | 
 |  | 
 |   // Is there a def in the same MBB we can extend? | 
 |   if (VNInfo *VNI = extendTo(IdxMBB, Idx)) | 
 |     return VNI; | 
 |  | 
 |   // Now for the fun part. We know that ParentVNI potentially has multiple defs, | 
 |   // and we may need to create even more phi-defs to preserve VNInfo SSA form. | 
 |   // Perform a search for all predecessor blocks where we know the dominating | 
 |   // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. | 
 |   DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber() | 
 |                << " at " << Idx << " in " << *li_ << '\n'); | 
 |  | 
 |   // Blocks where li_ should be live-in. | 
 |   SmallVector<MachineDomTreeNode*, 16> LiveIn; | 
 |   LiveIn.push_back(mdt_[IdxMBB]); | 
 |  | 
 |   // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs. | 
 |   for (unsigned i = 0; i != LiveIn.size(); ++i) { | 
 |     MachineBasicBlock *MBB = LiveIn[i]->getBlock(); | 
 |     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |            PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |        MachineBasicBlock *Pred = *PI; | 
 |        // Is this a known live-out block? | 
 |        std::pair<LiveOutMap::iterator,bool> LOIP = | 
 |          liveOutCache_.insert(std::make_pair(Pred, LiveOutPair())); | 
 |        // Yes, we have been here before. | 
 |        if (!LOIP.second) { | 
 |          DEBUG(if (VNInfo *VNI = LOIP.first->second.first) | 
 |                  dbgs() << "    known valno #" << VNI->id | 
 |                         << " at BB#" << Pred->getNumber() << '\n'); | 
 |          continue; | 
 |        } | 
 |  | 
 |        // Does Pred provide a live-out value? | 
 |        SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot(); | 
 |        if (VNInfo *VNI = extendTo(Pred, Last)) { | 
 |          MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def); | 
 |          DEBUG(dbgs() << "    found valno #" << VNI->id | 
 |                       << " from BB#" << DefMBB->getNumber() | 
 |                       << " at BB#" << Pred->getNumber() << '\n'); | 
 |          LiveOutPair &LOP = LOIP.first->second; | 
 |          LOP.first = VNI; | 
 |          LOP.second = mdt_[DefMBB]; | 
 |          continue; | 
 |        } | 
 |        // No, we need a live-in value for Pred as well | 
 |        if (Pred != IdxMBB) | 
 |          LiveIn.push_back(mdt_[Pred]); | 
 |     } | 
 |   } | 
 |  | 
 |   // We may need to add phi-def values to preserve the SSA form. | 
 |   // This is essentially the same iterative algorithm that SSAUpdater uses, | 
 |   // except we already have a dominator tree, so we don't have to recompute it. | 
 |   VNInfo *IdxVNI = 0; | 
 |   unsigned Changes; | 
 |   do { | 
 |     Changes = 0; | 
 |     DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n"); | 
 |     // Propagate live-out values down the dominator tree, inserting phi-defs when | 
 |     // necessary. Since LiveIn was created by a BFS, going backwards makes it more | 
 |     // likely for us to visit immediate dominators before their children. | 
 |     for (unsigned i = LiveIn.size(); i; --i) { | 
 |       MachineDomTreeNode *Node = LiveIn[i-1]; | 
 |       MachineBasicBlock *MBB = Node->getBlock(); | 
 |       MachineDomTreeNode *IDom = Node->getIDom(); | 
 |       LiveOutPair IDomValue; | 
 |       // We need a live-in value to a block with no immediate dominator? | 
 |       // This is probably an unreachable block that has survived somehow. | 
 |       bool needPHI = !IDom; | 
 |  | 
 |       // Get the IDom live-out value. | 
 |       if (!needPHI) { | 
 |         LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock()); | 
 |         if (I != liveOutCache_.end()) | 
 |           IDomValue = I->second; | 
 |         else | 
 |           // If IDom is outside our set of live-out blocks, there must be new | 
 |           // defs, and we need a phi-def here. | 
 |           needPHI = true; | 
 |       } | 
 |  | 
 |       // IDom dominates all of our predecessors, but it may not be the immediate | 
 |       // dominator. Check if any of them have live-out values that are properly | 
 |       // dominated by IDom. If so, we need a phi-def here. | 
 |       if (!needPHI) { | 
 |         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |                PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |           LiveOutPair Value = liveOutCache_[*PI]; | 
 |           if (!Value.first || Value.first == IDomValue.first) | 
 |             continue; | 
 |           // This predecessor is carrying something other than IDomValue. | 
 |           // It could be because IDomValue hasn't propagated yet, or it could be | 
 |           // because MBB is in the dominance frontier of that value. | 
 |           if (mdt_.dominates(IDom, Value.second)) { | 
 |             needPHI = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Create a phi-def if required. | 
 |       if (needPHI) { | 
 |         ++Changes; | 
 |         SlotIndex Start = lis_.getMBBStartIdx(MBB); | 
 |         VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); | 
 |         VNI->setIsPHIDef(true); | 
 |         DEBUG(dbgs() << "    - BB#" << MBB->getNumber() | 
 |                      << " phi-def #" << VNI->id << " at " << Start << '\n'); | 
 |         // We no longer need li_ to be live-in. | 
 |         LiveIn.erase(LiveIn.begin()+(i-1)); | 
 |         // Blocks in LiveIn are either IdxMBB, or have a value live-through. | 
 |         if (MBB == IdxMBB) | 
 |           IdxVNI = VNI; | 
 |         // Check if we need to update live-out info. | 
 |         LiveOutMap::iterator I = liveOutCache_.find(MBB); | 
 |         if (I == liveOutCache_.end() || I->second.second == Node) { | 
 |           // We already have a live-out defined in MBB, so this must be IdxMBB. | 
 |           assert(MBB == IdxMBB && "Adding phi-def to known live-out"); | 
 |           li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); | 
 |         } else { | 
 |           // This phi-def is also live-out, so color the whole block. | 
 |           li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); | 
 |           I->second = LiveOutPair(VNI, Node); | 
 |         } | 
 |       } else if (IDomValue.first) { | 
 |         // No phi-def here. Remember incoming value for IdxMBB. | 
 |         if (MBB == IdxMBB) | 
 |           IdxVNI = IDomValue.first; | 
 |         // Propagate IDomValue if needed: | 
 |         // MBB is live-out and doesn't define its own value. | 
 |         LiveOutMap::iterator I = liveOutCache_.find(MBB); | 
 |         if (I != liveOutCache_.end() && I->second.second != Node && | 
 |             I->second.first != IDomValue.first) { | 
 |           ++Changes; | 
 |           I->second = IDomValue; | 
 |           DEBUG(dbgs() << "    - BB#" << MBB->getNumber() | 
 |                        << " idom valno #" << IDomValue.first->id | 
 |                        << " from BB#" << IDom->getBlock()->getNumber() << '\n'); | 
 |         } | 
 |       } | 
 |     } | 
 |     DEBUG(dbgs() << "  - made " << Changes << " changes.\n"); | 
 |   } while (Changes); | 
 |  | 
 |   assert(IdxVNI && "Didn't find value for Idx"); | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Check the liveOutCache_ invariants. | 
 |   for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end(); | 
 |          I != E; ++I) { | 
 |     assert(I->first && "Null MBB entry in cache"); | 
 |     assert(I->second.first && "Null VNInfo in cache"); | 
 |     assert(I->second.second && "Null DomTreeNode in cache"); | 
 |     if (I->second.second->getBlock() == I->first) | 
 |       continue; | 
 |     for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), | 
 |            PE = I->first->pred_end(); PI != PE; ++PI) | 
 |       assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant"); | 
 |   } | 
 | #endif | 
 |  | 
 |   // Since we went through the trouble of a full BFS visiting all reaching defs, | 
 |   // the values in LiveIn are now accurate. No more phi-defs are needed | 
 |   // for these blocks, so we can color the live ranges. | 
 |   // This makes the next mapValue call much faster. | 
 |   for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { | 
 |     MachineBasicBlock *MBB = LiveIn[i]->getBlock(); | 
 |     SlotIndex Start = lis_.getMBBStartIdx(MBB); | 
 |     if (MBB == IdxMBB) { | 
 |       li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); | 
 |       continue; | 
 |     } | 
 |     // Anything in LiveIn other than IdxMBB is live-through. | 
 |     VNInfo *VNI = liveOutCache_.lookup(MBB).first; | 
 |     assert(VNI && "Missing block value"); | 
 |     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); | 
 |   } | 
 |  | 
 |   return IdxVNI; | 
 | } | 
 |  | 
 | // extendTo - Find the last li_ value defined in MBB at or before Idx. The | 
 | // parentli_ is assumed to be live at Idx. Extend the live range to Idx. | 
 | // Return the found VNInfo, or NULL. | 
 | VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { | 
 |   assert(li_ && "call reset first"); | 
 |   LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); | 
 |   if (I == li_->begin()) | 
 |     return 0; | 
 |   --I; | 
 |   if (I->end <= lis_.getMBBStartIdx(MBB)) | 
 |     return 0; | 
 |   if (I->end <= Idx) | 
 |     I->end = Idx.getNextSlot(); | 
 |   return I->valno; | 
 | } | 
 |  | 
 | // addSimpleRange - Add a simple range from parentli_ to li_. | 
 | // ParentVNI must be live in the [Start;End) interval. | 
 | void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, | 
 |                                      const VNInfo *ParentVNI) { | 
 |   assert(li_ && "call reset first"); | 
 |   bool simple; | 
 |   VNInfo *VNI = mapValue(ParentVNI, Start, &simple); | 
 |   // A simple mapping is easy. | 
 |   if (simple) { | 
 |     li_->addRange(LiveRange(Start, End, VNI)); | 
 |     return; | 
 |   } | 
 |  | 
 |   // ParentVNI is a complex value. We must map per MBB. | 
 |   MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); | 
 |   MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); | 
 |  | 
 |   if (MBB == MBBE) { | 
 |     li_->addRange(LiveRange(Start, End, VNI)); | 
 |     return; | 
 |   } | 
 |  | 
 |   // First block. | 
 |   li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); | 
 |  | 
 |   // Run sequence of full blocks. | 
 |   for (++MBB; MBB != MBBE; ++MBB) { | 
 |     Start = lis_.getMBBStartIdx(MBB); | 
 |     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), | 
 |                             mapValue(ParentVNI, Start))); | 
 |   } | 
 |  | 
 |   // Final block. | 
 |   Start = lis_.getMBBStartIdx(MBB); | 
 |   if (Start != End) | 
 |     li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); | 
 | } | 
 |  | 
 | /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. | 
 | /// All needed values whose def is not inside [Start;End) must be defined | 
 | /// beforehand so mapValue will work. | 
 | void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { | 
 |   assert(li_ && "call reset first"); | 
 |   LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); | 
 |   LiveInterval::const_iterator I = std::lower_bound(B, E, Start); | 
 |  | 
 |   // Check if --I begins before Start and overlaps. | 
 |   if (I != B) { | 
 |     --I; | 
 |     if (I->end > Start) | 
 |       addSimpleRange(Start, std::min(End, I->end), I->valno); | 
 |     ++I; | 
 |   } | 
 |  | 
 |   // The remaining ranges begin after Start. | 
 |   for (;I != E && I->start < End; ++I) | 
 |     addSimpleRange(I->start, std::min(End, I->end), I->valno); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                               Split Editor | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. | 
 | SplitEditor::SplitEditor(SplitAnalysis &sa, | 
 |                          LiveIntervals &lis, | 
 |                          VirtRegMap &vrm, | 
 |                          MachineDominatorTree &mdt, | 
 |                          LiveRangeEdit &edit) | 
 |   : sa_(sa), lis_(lis), vrm_(vrm), | 
 |     mri_(vrm.getMachineFunction().getRegInfo()), | 
 |     tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), | 
 |     tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()), | 
 |     edit_(edit), | 
 |     dupli_(lis_, mdt, edit.getParent()), | 
 |     openli_(lis_, mdt, edit.getParent()) | 
 | { | 
 |   // We don't need an AliasAnalysis since we will only be performing | 
 |   // cheap-as-a-copy remats anyway. | 
 |   edit_.anyRematerializable(lis_, tii_, 0); | 
 | } | 
 |  | 
 | bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { | 
 |   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) | 
 |     if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg, | 
 |                                    VNInfo *ParentVNI, | 
 |                                    SlotIndex UseIdx, | 
 |                                    MachineBasicBlock &MBB, | 
 |                                    MachineBasicBlock::iterator I) { | 
 |   VNInfo *VNI = 0; | 
 |   MachineInstr *CopyMI = 0; | 
 |   SlotIndex Def; | 
 |  | 
 |   // Attempt cheap-as-a-copy rematerialization. | 
 |   LiveRangeEdit::Remat RM(ParentVNI); | 
 |   if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) { | 
 |     Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM, | 
 |                                           lis_, tii_, tri_); | 
 |   } else { | 
 |     // Can't remat, just insert a copy from parent. | 
 |     CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), | 
 |                      Reg.getLI()->reg).addReg(edit_.getReg()); | 
 |     Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex(); | 
 |   } | 
 |  | 
 |   // Define the value in Reg. | 
 |   VNI = Reg.defValue(ParentVNI, Def); | 
 |   VNI->setCopy(CopyMI); | 
 |  | 
 |   // Add minimal liveness for the new value. | 
 |   if (UseIdx < Def) | 
 |     UseIdx = Def; | 
 |   Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI)); | 
 |   return VNI; | 
 | } | 
 |  | 
 | /// Create a new virtual register and live interval. | 
 | void SplitEditor::openIntv() { | 
 |   assert(!openli_.getLI() && "Previous LI not closed before openIntv"); | 
 |   if (!dupli_.getLI()) | 
 |     dupli_.reset(&edit_.create(mri_, lis_, vrm_)); | 
 |  | 
 |   openli_.reset(&edit_.create(mri_, lis_, vrm_)); | 
 | } | 
 |  | 
 | /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is | 
 | /// not live before Idx, a COPY is not inserted. | 
 | void SplitEditor::enterIntvBefore(SlotIndex Idx) { | 
 |   assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); | 
 |   Idx = Idx.getUseIndex(); | 
 |   DEBUG(dbgs() << "    enterIntvBefore " << Idx); | 
 |   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return; | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id); | 
 |   truncatedValues.insert(ParentVNI); | 
 |   MachineInstr *MI = lis_.getInstructionFromIndex(Idx); | 
 |   assert(MI && "enterIntvBefore called with invalid index"); | 
 |  | 
 |   defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI); | 
 |  | 
 |   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); | 
 | } | 
 |  | 
 | /// enterIntvAtEnd - Enter openli at the end of MBB. | 
 | void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { | 
 |   assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); | 
 |   SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot(); | 
 |   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); | 
 |   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return; | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id); | 
 |   truncatedValues.insert(ParentVNI); | 
 |   defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator()); | 
 |   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); | 
 | } | 
 |  | 
 | /// useIntv - indicate that all instructions in MBB should use openli. | 
 | void SplitEditor::useIntv(const MachineBasicBlock &MBB) { | 
 |   useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); | 
 | } | 
 |  | 
 | void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { | 
 |   assert(openli_.getLI() && "openIntv not called before useIntv"); | 
 |   openli_.addRange(Start, End); | 
 |   DEBUG(dbgs() << "    use [" << Start << ';' << End << "): " | 
 |                << *openli_.getLI() << '\n'); | 
 | } | 
 |  | 
 | /// leaveIntvAfter - Leave openli after the instruction at Idx. | 
 | void SplitEditor::leaveIntvAfter(SlotIndex Idx) { | 
 |   assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); | 
 |   DEBUG(dbgs() << "    leaveIntvAfter " << Idx); | 
 |  | 
 |   // The interval must be live beyond the instruction at Idx. | 
 |   Idx = Idx.getBoundaryIndex(); | 
 |   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return; | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id); | 
 |  | 
 |   MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); | 
 |   VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx, | 
 |                               *MII->getParent(), llvm::next(MII)); | 
 |  | 
 |   // Make sure that openli is properly extended from Idx to the new copy. | 
 |   // FIXME: This shouldn't be necessary for remats. | 
 |   openli_.addSimpleRange(Idx, VNI->def, ParentVNI); | 
 |  | 
 |   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); | 
 | } | 
 |  | 
 | /// leaveIntvAtTop - Leave the interval at the top of MBB. | 
 | /// Currently, only one value can leave the interval. | 
 | void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { | 
 |   assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); | 
 |   SlotIndex Start = lis_.getMBBStartIdx(&MBB); | 
 |   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); | 
 |  | 
 |   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return; | 
 |   } | 
 |  | 
 |   VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB, | 
 |                               MBB.SkipPHIsAndLabels(MBB.begin())); | 
 |  | 
 |   // Finally we must make sure that openli is properly extended from Start to | 
 |   // the new copy. | 
 |   openli_.addSimpleRange(Start, VNI->def, ParentVNI); | 
 |   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); | 
 | } | 
 |  | 
 | /// closeIntv - Indicate that we are done editing the currently open | 
 | /// LiveInterval, and ranges can be trimmed. | 
 | void SplitEditor::closeIntv() { | 
 |   assert(openli_.getLI() && "openIntv not called before closeIntv"); | 
 |  | 
 |   DEBUG(dbgs() << "    closeIntv cleaning up\n"); | 
 |   DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n'); | 
 |   openli_.reset(0); | 
 | } | 
 |  | 
 | /// rewrite - Rewrite all uses of reg to use the new registers. | 
 | void SplitEditor::rewrite(unsigned reg) { | 
 |   for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), | 
 |        RE = mri_.reg_end(); RI != RE;) { | 
 |     MachineOperand &MO = RI.getOperand(); | 
 |     unsigned OpNum = RI.getOperandNo(); | 
 |     MachineInstr *MI = MO.getParent(); | 
 |     ++RI; | 
 |     if (MI->isDebugValue()) { | 
 |       DEBUG(dbgs() << "Zapping " << *MI); | 
 |       // FIXME: We can do much better with debug values. | 
 |       MO.setReg(0); | 
 |       continue; | 
 |     } | 
 |     SlotIndex Idx = lis_.getInstructionIndex(MI); | 
 |     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); | 
 |     LiveInterval *LI = 0; | 
 |     for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; | 
 |          ++I) { | 
 |       LiveInterval *testli = *I; | 
 |       if (testli->liveAt(Idx)) { | 
 |         LI = testli; | 
 |         break; | 
 |       } | 
 |     } | 
 |     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); | 
 |     assert(LI && "No register was live at use"); | 
 |     MO.setReg(LI->reg); | 
 |     if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum)) | 
 |       MO.setIsKill(LI->killedAt(Idx.getDefIndex())); | 
 |     DEBUG(dbgs() << '\t' << *MI); | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { | 
 |   // Build vector of iterator pairs from the intervals. | 
 |   typedef std::pair<LiveInterval::const_iterator, | 
 |                     LiveInterval::const_iterator> IIPair; | 
 |   SmallVector<IIPair, 8> Iters; | 
 |   for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; | 
 |        ++LI) { | 
 |     if (*LI == dupli_.getLI()) | 
 |       continue; | 
 |     LiveInterval::const_iterator I = (*LI)->find(Start); | 
 |     LiveInterval::const_iterator E = (*LI)->end(); | 
 |     if (I != E) | 
 |       Iters.push_back(std::make_pair(I, E)); | 
 |   } | 
 |  | 
 |   SlotIndex sidx = Start; | 
 |   // Break [Start;End) into segments that don't overlap any intervals. | 
 |   for (;;) { | 
 |     SlotIndex next = sidx, eidx = End; | 
 |     // Find overlapping intervals. | 
 |     for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { | 
 |       LiveInterval::const_iterator I = Iters[i].first; | 
 |       // Interval I is overlapping [sidx;eidx). Trim sidx. | 
 |       if (I->start <= sidx) { | 
 |         sidx = I->end; | 
 |         // Move to the next run, remove iters when all are consumed. | 
 |         I = ++Iters[i].first; | 
 |         if (I == Iters[i].second) { | 
 |           Iters.erase(Iters.begin() + i); | 
 |           --i; | 
 |           continue; | 
 |         } | 
 |       } | 
 |       // Trim eidx too if needed. | 
 |       if (I->start >= eidx) | 
 |         continue; | 
 |       eidx = I->start; | 
 |       next = I->end; | 
 |     } | 
 |     // Now, [sidx;eidx) doesn't overlap anything in intervals_. | 
 |     if (sidx < eidx) | 
 |       dupli_.addSimpleRange(sidx, eidx, VNI); | 
 |     // If the interval end was truncated, we can try again from next. | 
 |     if (next <= sidx) | 
 |       break; | 
 |     sidx = next; | 
 |   } | 
 | } | 
 |  | 
 | void SplitEditor::computeRemainder() { | 
 |   // First we need to fill in the live ranges in dupli. | 
 |   // If values were redefined, we need a full recoloring with SSA update. | 
 |   // If values were truncated, we only need to truncate the ranges. | 
 |   // If values were partially rematted, we should shrink to uses. | 
 |   // If values were fully rematted, they should be omitted. | 
 |   // FIXME: If a single value is redefined, just move the def and truncate. | 
 |   LiveInterval &parent = edit_.getParent(); | 
 |  | 
 |   // Values that are fully contained in the split intervals. | 
 |   SmallPtrSet<const VNInfo*, 8> deadValues; | 
 |   // Map all curli values that should have live defs in dupli. | 
 |   for (LiveInterval::const_vni_iterator I = parent.vni_begin(), | 
 |        E = parent.vni_end(); I != E; ++I) { | 
 |     const VNInfo *VNI = *I; | 
 |     // Don't transfer unused values to the new intervals. | 
 |     if (VNI->isUnused()) | 
 |       continue; | 
 |     // Original def is contained in the split intervals. | 
 |     if (intervalsLiveAt(VNI->def)) { | 
 |       // Did this value escape? | 
 |       if (dupli_.isMapped(VNI)) | 
 |         truncatedValues.insert(VNI); | 
 |       else | 
 |         deadValues.insert(VNI); | 
 |       continue; | 
 |     } | 
 |     // Add minimal live range at the definition. | 
 |     VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); | 
 |     dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); | 
 |   } | 
 |  | 
 |   // Add all ranges to dupli. | 
 |   for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); | 
 |        I != E; ++I) { | 
 |     const LiveRange &LR = *I; | 
 |     if (truncatedValues.count(LR.valno)) { | 
 |       // recolor after removing intervals_. | 
 |       addTruncSimpleRange(LR.start, LR.end, LR.valno); | 
 |     } else if (!deadValues.count(LR.valno)) { | 
 |       // recolor without truncation. | 
 |       dupli_.addSimpleRange(LR.start, LR.end, LR.valno); | 
 |     } | 
 |   } | 
 |  | 
 |   // Extend dupli_ to be live out of any critical loop predecessors. | 
 |   // This means we have multiple registers live out of those blocks. | 
 |   // The alternative would be to split the critical edges. | 
 |   if (criticalPreds_.empty()) | 
 |     return; | 
 |   for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), | 
 |        E = criticalPreds_.end(); I != E; ++I) | 
 |      dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); | 
 |    criticalPreds_.clear(); | 
 | } | 
 |  | 
 | void SplitEditor::finish() { | 
 |   assert(!openli_.getLI() && "Previous LI not closed before rewrite"); | 
 |   assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); | 
 |  | 
 |   // Complete dupli liveness. | 
 |   computeRemainder(); | 
 |  | 
 |   // Get rid of unused values and set phi-kill flags. | 
 |   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) | 
 |     (*I)->RenumberValues(lis_); | 
 |  | 
 |   // Rewrite instructions. | 
 |   rewrite(edit_.getReg()); | 
 |  | 
 |   // Now check if any registers were separated into multiple components. | 
 |   ConnectedVNInfoEqClasses ConEQ(lis_); | 
 |   for (unsigned i = 0, e = edit_.size(); i != e; ++i) { | 
 |     // Don't use iterators, they are invalidated by create() below. | 
 |     LiveInterval *li = edit_.get(i); | 
 |     unsigned NumComp = ConEQ.Classify(li); | 
 |     if (NumComp <= 1) | 
 |       continue; | 
 |     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n'); | 
 |     SmallVector<LiveInterval*, 8> dups; | 
 |     dups.push_back(li); | 
 |     for (unsigned i = 1; i != NumComp; ++i) | 
 |       dups.push_back(&edit_.create(mri_, lis_, vrm_)); | 
 |     ConEQ.Distribute(&dups[0]); | 
 |     // Rewrite uses to the new regs. | 
 |     rewrite(li->reg); | 
 |   } | 
 |  | 
 |   // Calculate spill weight and allocation hints for new intervals. | 
 |   VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); | 
 |   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ | 
 |     LiveInterval &li = **I; | 
 |     vrai.CalculateRegClass(li.reg); | 
 |     vrai.CalculateWeightAndHint(li); | 
 |     DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName() | 
 |                  << ":" << li << '\n'); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                               Loop Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { | 
 |   SplitAnalysis::LoopBlocks Blocks; | 
 |   sa_.getLoopBlocks(Loop, Blocks); | 
 |  | 
 |   DEBUG({ | 
 |     dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; | 
 |   }); | 
 |  | 
 |   // Break critical edges as needed. | 
 |   SplitAnalysis::BlockPtrSet CriticalExits; | 
 |   sa_.getCriticalExits(Blocks, CriticalExits); | 
 |   assert(CriticalExits.empty() && "Cannot break critical exits yet"); | 
 |  | 
 |   // Get critical predecessors so computeRemainder can deal with them. | 
 |   sa_.getCriticalPreds(Blocks, criticalPreds_); | 
 |  | 
 |   // Create new live interval for the loop. | 
 |   openIntv(); | 
 |  | 
 |   // Insert copies in the predecessors if live-in to the header. | 
 |   if (lis_.isLiveInToMBB(edit_.getParent(), Loop->getHeader())) { | 
 |     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), | 
 |            E = Blocks.Preds.end(); I != E; ++I) { | 
 |       MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); | 
 |       enterIntvAtEnd(MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   // Switch all loop blocks. | 
 |   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), | 
 |        E = Blocks.Loop.end(); I != E; ++I) | 
 |      useIntv(**I); | 
 |  | 
 |   // Insert back copies in the exit blocks. | 
 |   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), | 
 |        E = Blocks.Exits.end(); I != E; ++I) { | 
 |     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); | 
 |     leaveIntvAtTop(MBB); | 
 |   } | 
 |  | 
 |   // Done. | 
 |   closeIntv(); | 
 |   finish(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Single Block Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getMultiUseBlocks - if curli has more than one use in a basic block, it | 
 | /// may be an advantage to split curli for the duration of the block. | 
 | bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { | 
 |   // If curli is local to one block, there is no point to splitting it. | 
 |   if (usingBlocks_.size() <= 1) | 
 |     return false; | 
 |   // Add blocks with multiple uses. | 
 |   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); | 
 |        I != E; ++I) | 
 |     switch (I->second) { | 
 |     case 0: | 
 |     case 1: | 
 |       continue; | 
 |     case 2: { | 
 |       // When there are only two uses and curli is both live in and live out, | 
 |       // we don't really win anything by isolating the block since we would be | 
 |       // inserting two copies. | 
 |       // The remaing register would still have two uses in the block. (Unless it | 
 |       // separates into disconnected components). | 
 |       if (lis_.isLiveInToMBB(*curli_, I->first) && | 
 |           lis_.isLiveOutOfMBB(*curli_, I->first)) | 
 |         continue; | 
 |     } // Fall through. | 
 |     default: | 
 |       Blocks.insert(I->first); | 
 |     } | 
 |   return !Blocks.empty(); | 
 | } | 
 |  | 
 | /// splitSingleBlocks - Split curli into a separate live interval inside each | 
 | /// basic block in Blocks. | 
 | void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { | 
 |   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n"); | 
 |   // Determine the first and last instruction using curli in each block. | 
 |   typedef std::pair<SlotIndex,SlotIndex> IndexPair; | 
 |   typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; | 
 |   IndexPairMap MBBRange; | 
 |   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), | 
 |        E = sa_.usingInstrs_.end(); I != E; ++I) { | 
 |     const MachineBasicBlock *MBB = (*I)->getParent(); | 
 |     if (!Blocks.count(MBB)) | 
 |       continue; | 
 |     SlotIndex Idx = lis_.getInstructionIndex(*I); | 
 |     DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); | 
 |     IndexPair &IP = MBBRange[MBB]; | 
 |     if (!IP.first.isValid() || Idx < IP.first) | 
 |       IP.first = Idx; | 
 |     if (!IP.second.isValid() || Idx > IP.second) | 
 |       IP.second = Idx; | 
 |   } | 
 |  | 
 |   // Create a new interval for each block. | 
 |   for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), | 
 |        E = Blocks.end(); I != E; ++I) { | 
 |     IndexPair &IP = MBBRange[*I]; | 
 |     DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": [" | 
 |                  << IP.first << ';' << IP.second << ")\n"); | 
 |     assert(IP.first.isValid() && IP.second.isValid()); | 
 |  | 
 |     openIntv(); | 
 |     enterIntvBefore(IP.first); | 
 |     useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); | 
 |     leaveIntvAfter(IP.second); | 
 |     closeIntv(); | 
 |   } | 
 |   finish(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Sub Block Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getBlockForInsideSplit - If curli is contained inside a single basic block, | 
 | /// and it wou pay to subdivide the interval inside that block, return it. | 
 | /// Otherwise return NULL. The returned block can be passed to | 
 | /// SplitEditor::splitInsideBlock. | 
 | const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { | 
 |   // The interval must be exclusive to one block. | 
 |   if (usingBlocks_.size() != 1) | 
 |     return 0; | 
 |   // Don't to this for less than 4 instructions. We want to be sure that | 
 |   // splitting actually reduces the instruction count per interval. | 
 |   if (usingInstrs_.size() < 4) | 
 |     return 0; | 
 |   return usingBlocks_.begin()->first; | 
 | } | 
 |  | 
 | /// splitInsideBlock - Split curli into multiple intervals inside MBB. | 
 | void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { | 
 |   SmallVector<SlotIndex, 32> Uses; | 
 |   Uses.reserve(sa_.usingInstrs_.size()); | 
 |   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), | 
 |        E = sa_.usingInstrs_.end(); I != E; ++I) | 
 |     if ((*I)->getParent() == MBB) | 
 |       Uses.push_back(lis_.getInstructionIndex(*I)); | 
 |   DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for " | 
 |                << Uses.size() << " instructions.\n"); | 
 |   assert(Uses.size() >= 3 && "Need at least 3 instructions"); | 
 |   array_pod_sort(Uses.begin(), Uses.end()); | 
 |  | 
 |   // Simple algorithm: Find the largest gap between uses as determined by slot | 
 |   // indices. Create new intervals for instructions before the gap and after the | 
 |   // gap. | 
 |   unsigned bestPos = 0; | 
 |   int bestGap = 0; | 
 |   DEBUG(dbgs() << "    dist (" << Uses[0]); | 
 |   for (unsigned i = 1, e = Uses.size(); i != e; ++i) { | 
 |     int g = Uses[i-1].distance(Uses[i]); | 
 |     DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); | 
 |     if (g > bestGap) | 
 |       bestPos = i, bestGap = g; | 
 |   } | 
 |   DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); | 
 |  | 
 |   // bestPos points to the first use after the best gap. | 
 |   assert(bestPos > 0 && "Invalid gap"); | 
 |  | 
 |   // FIXME: Don't create intervals for low densities. | 
 |  | 
 |   // First interval before the gap. Don't create single-instr intervals. | 
 |   if (bestPos > 1) { | 
 |     openIntv(); | 
 |     enterIntvBefore(Uses.front()); | 
 |     useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); | 
 |     leaveIntvAfter(Uses[bestPos-1]); | 
 |     closeIntv(); | 
 |   } | 
 |  | 
 |   // Second interval after the gap. | 
 |   if (bestPos < Uses.size()-1) { | 
 |     openIntv(); | 
 |     enterIntvBefore(Uses[bestPos]); | 
 |     useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); | 
 |     leaveIntvAfter(Uses.back()); | 
 |     closeIntv(); | 
 |   } | 
 |  | 
 |   finish(); | 
 | } |