| //===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Nate Begeman and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for 32 bit PowerPC. |
| // Magic number generation for integer divide from the PowerPC Compiler Writer's |
| // Guide, section 3.2.3.5 |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PowerPC.h" |
| #include "PowerPCInstrBuilder.h" |
| #include "PowerPCInstrInfo.h" |
| #include "PPC32TargetMachine.h" |
| #include "llvm/Constants.h" // FIXME: REMOVE |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <set> |
| #include <algorithm> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface |
| namespace { |
| class PPC32TargetLowering : public TargetLowering { |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area. |
| int ReturnAddrIndex; // FrameIndex for return slot. |
| public: |
| PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) { |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass); |
| addRegisterClass(MVT::f32, PPC32::FPRCRegisterClass); |
| addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass); |
| |
| // PowerPC has no intrinsics for these particular operations |
| setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); |
| setOperationAction(ISD::MEMSET, MVT::Other, Expand); |
| setOperationAction(ISD::MEMCPY, MVT::Other, Expand); |
| |
| // PowerPC has an i16 but no i8 (or i1) SEXTLOAD |
| setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand); |
| |
| // PowerPC has no SREM/UREM instructions |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| addLegalFPImmediate(+0.0); // Necessary for FSEL |
| addLegalFPImmediate(-0.0); // |
| |
| computeRegisterProperties(); |
| } |
| |
| /// LowerArguments - This hook must be implemented to indicate how we should |
| /// lower the arguments for the specified function, into the specified DAG. |
| virtual std::vector<SDOperand> |
| LowerArguments(Function &F, SelectionDAG &DAG); |
| |
| /// LowerCallTo - This hook lowers an abstract call to a function into an |
| /// actual call. |
| virtual std::pair<SDOperand, SDOperand> |
| LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerVAStart(SDOperand Chain, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand,SDOperand> |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG); |
| }; |
| } |
| |
| |
| std::vector<SDOperand> |
| PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| // |
| // add beautiful description of PPC stack frame format, or at least some docs |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MachineBasicBlock& BB = MF.front(); |
| std::vector<SDOperand> ArgValues; |
| |
| // Due to the rather complicated nature of the PowerPC ABI, rather than a |
| // fixed size array of physical args, for the sake of simplicity let the STL |
| // handle tracking them for us. |
| std::vector<unsigned> argVR, argPR, argOp; |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on PPC, |
| // the arguments start at offset 24, although they are likely to be passed |
| // in registers. |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| SDOperand newroot, argt; |
| unsigned ObjSize; |
| bool needsLoad = false; |
| bool ArgLive = !I->use_empty(); |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| ObjSize = 4; |
| if (!ArgLive) break; |
| if (GPR_remaining > 0) { |
| MF.addLiveIn(GPR[GPR_idx]); |
| argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, |
| DAG.getRoot()); |
| if (ObjectVT != MVT::i32) |
| argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot); |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::i64: ObjSize = 8; |
| if (!ArgLive) break; |
| if (GPR_remaining > 0) { |
| SDOperand argHi, argLo; |
| MF.addLiveIn(GPR[GPR_idx]); |
| argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot()); |
| // If we have two or more remaining argument registers, then both halves |
| // of the i64 can be sourced from there. Otherwise, the lower half will |
| // have to come off the stack. This can happen when an i64 is preceded |
| // by 28 bytes of arguments. |
| if (GPR_remaining > 1) { |
| MF.addLiveIn(GPR[GPR_idx+1]); |
| argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi); |
| } else { |
| int FI = MFI->CreateFixedObject(4, ArgOffset+4); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN); |
| } |
| // Build the outgoing arg thingy |
| argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi); |
| newroot = argLo; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| ObjSize = (ObjectVT == MVT::f64) ? 8 : 4; |
| if (!ArgLive) break; |
| if (FPR_remaining > 0) { |
| MF.addLiveIn(FPR[FPR_idx]); |
| argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT, |
| DAG.getRoot()); |
| --FPR_remaining; |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined above |
| // that we ran out of physical registers of the appropriate type |
| if (needsLoad) { |
| unsigned SubregOffset = 0; |
| if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3; |
| if (ObjectVT == MVT::i16) SubregOffset = 2; |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, |
| DAG.getConstant(SubregOffset, MVT::i32)); |
| argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN); |
| } |
| |
| // Every 4 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_remaining > 0) { |
| unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; |
| GPR_remaining -= delta; |
| GPR_idx += delta; |
| } |
| ArgOffset += ObjSize; |
| if (newroot.Val) |
| DAG.setRoot(newroot.getValue(1)); |
| |
| ArgValues.push_back(argt); |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (F.isVarArg()) { |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing the |
| // result of va_next. |
| std::vector<SDOperand> MemOps; |
| for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) { |
| MF.addLiveIn(GPR[GPR_idx]); |
| SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot()); |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), |
| Val, FIN); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDOperand PtrOff = DAG.getConstant(4, getPointerTy()); |
| FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff); |
| } |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps)); |
| } |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(PPC::R3); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(PPC::R3); |
| MF.addLiveOut(PPC::R4); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(PPC::F1); |
| break; |
| } |
| |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| PPC32TargetLowering::LowerCallTo(SDOperand Chain, |
| const Type *RetTy, bool isVarArg, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { |
| // args_to_use will accumulate outgoing args for the ISD::CALL case in |
| // SelectExpr to use to put the arguments in the appropriate registers. |
| std::vector<SDOperand> args_to_use; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. |
| unsigned NumBytes = 24; |
| |
| if (Args.empty()) { |
| Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| } else { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| // Just to be safe, we'll always reserve the full 24 bytes of linkage area |
| // plus 32 bytes of argument space in case any called code gets funky on us. |
| if (NumBytes < 56) NumBytes = 56; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32, |
| DAG.getEntryNode()); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| |
| std::vector<SDOperand> MemOps; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MVT::ValueType ArgVT = getValueType(Args[i].second); |
| |
| switch (ArgVT) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| if (Args[i].second->isSigned()) |
| Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); |
| else |
| Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); |
| // FALL THROUGH |
| case MVT::i32: |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(Args[i].first); |
| --GPR_remaining; |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += 4; |
| break; |
| case MVT::i64: |
| // If we have one free GPR left, we can place the upper half of the i64 |
| // in it, and store the other half to the stack. If we have two or more |
| // free GPRs, then we can pass both halves of the i64 in registers. |
| if (GPR_remaining > 0) { |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(1, MVT::i32)); |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(0, MVT::i32)); |
| args_to_use.push_back(Hi); |
| --GPR_remaining; |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(Lo); |
| --GPR_remaining; |
| } else { |
| SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Lo, PtrOff)); |
| } |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += 8; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_remaining > 0) { |
| args_to_use.push_back(Args[i].first); |
| --FPR_remaining; |
| if (isVarArg) { |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff); |
| MemOps.push_back(Store); |
| // Float varargs are always shadowed in available integer registers |
| if (GPR_remaining > 0) { |
| SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff); |
| MemOps.push_back(Load); |
| args_to_use.push_back(Load); |
| --GPR_remaining; |
| } |
| if (GPR_remaining > 0 && MVT::f64 == ArgVT) { |
| SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); |
| SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff); |
| MemOps.push_back(Load); |
| args_to_use.push_back(Load); |
| --GPR_remaining; |
| } |
| } else { |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| // Args passed in FPRs consume either 1 (f32) or 2 (f64) available |
| // GPRs. |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| --GPR_remaining; |
| } |
| if (GPR_remaining > 0 && MVT::f64 == ArgVT) { |
| args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| --GPR_remaining; |
| } |
| } |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff)); |
| } |
| ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; |
| break; |
| } |
| } |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| if (RetTyVT != MVT::isVoid) |
| RetVals.push_back(RetTyVT); |
| RetVals.push_back(MVT::Other); |
| |
| SDOperand TheCall = SDOperand(DAG.getCall(RetVals, |
| Chain, Callee, args_to_use), 0); |
| Chain = TheCall.getValue(RetTyVT != MVT::isVoid); |
| Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| return std::make_pair(TheCall, Chain); |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { |
| //vastart just returns the address of the VarArgsFrameIndex slot. |
| return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain); |
| } |
| |
| std::pair<SDOperand,SDOperand> PPC32TargetLowering:: |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG) { |
| MVT::ValueType ArgVT = getValueType(ArgTy); |
| SDOperand Result; |
| if (!isVANext) { |
| Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList); |
| } else { |
| unsigned Amt; |
| if (ArgVT == MVT::i32 || ArgVT == MVT::f32) |
| Amt = 4; |
| else { |
| assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && |
| "Other types should have been promoted for varargs!"); |
| Amt = 8; |
| } |
| Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, |
| DAG.getConstant(Amt, VAList.getValueType())); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| |
| std::pair<SDOperand, SDOperand> PPC32TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| assert(0 && "LowerFrameReturnAddress unimplemented"); |
| abort(); |
| } |
| |
| namespace { |
| Statistic<>Recorded("ppc-codegen", "Number of recording ops emitted"); |
| Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations"); |
| Statistic<>MultiBranch("ppc-codegen", "Number of setcc logical ops collapsed"); |
| //===--------------------------------------------------------------------===// |
| /// ISel - PPC32 specific code to select PPC32 machine instructions for |
| /// SelectionDAG operations. |
| //===--------------------------------------------------------------------===// |
| class ISel : public SelectionDAGISel { |
| PPC32TargetLowering PPC32Lowering; |
| SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform |
| // for sdiv and udiv until it is put into the future |
| // dag combiner. |
| |
| /// ExprMap - As shared expressions are codegen'd, we keep track of which |
| /// vreg the value is produced in, so we only emit one copy of each compiled |
| /// tree. |
| std::map<SDOperand, unsigned> ExprMap; |
| |
| unsigned GlobalBaseReg; |
| bool GlobalBaseInitialized; |
| bool RecordSuccess; |
| public: |
| ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM), |
| ISelDAG(0) {} |
| |
| /// runOnFunction - Override this function in order to reset our per-function |
| /// variables. |
| virtual bool runOnFunction(Function &Fn) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseInitialized = false; |
| return SelectionDAGISel::runOnFunction(Fn); |
| } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| DEBUG(BB->dump()); |
| // Codegen the basic block. |
| ISelDAG = &DAG; |
| Select(DAG.getRoot()); |
| |
| // Clear state used for selection. |
| ExprMap.clear(); |
| ISelDAG = 0; |
| } |
| |
| // dag -> dag expanders for integer divide by constant |
| SDOperand BuildSDIVSequence(SDOperand N); |
| SDOperand BuildUDIVSequence(SDOperand N); |
| |
| unsigned getGlobalBaseReg(); |
| unsigned getConstDouble(double floatVal, unsigned Result); |
| bool SelectBitfieldInsert(SDOperand OR, unsigned Result); |
| unsigned FoldIfWideZeroExtend(SDOperand N); |
| unsigned SelectCC(SDOperand CC, unsigned &Opc); |
| unsigned SelectExpr(SDOperand N, bool Recording=false); |
| unsigned SelectExprFP(SDOperand N, unsigned Result); |
| void Select(SDOperand N); |
| |
| bool SelectAddr(SDOperand N, unsigned& Reg, int& offset); |
| void SelectBranchCC(SDOperand N); |
| }; |
| |
| /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It |
| /// returns zero when the input is not exactly a power of two. |
| static unsigned ExactLog2(unsigned Val) { |
| if (Val == 0 || (Val & (Val-1))) return 0; |
| unsigned Count = 0; |
| while (Val != 1) { |
| Val >>= 1; |
| ++Count; |
| } |
| return Count; |
| } |
| |
| // IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with |
| // any number of 0's on either side. the 1's are allowed to wrap from LSB to |
| // MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is |
| // not, since all 1's are not contiguous. |
| static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { |
| bool isRun = true; |
| MB = 0; |
| ME = 0; |
| |
| // look for first set bit |
| int i = 0; |
| for (; i < 32; i++) { |
| if ((Val & (1 << (31 - i))) != 0) { |
| MB = i; |
| ME = i; |
| break; |
| } |
| } |
| |
| // look for last set bit |
| for (; i < 32; i++) { |
| if ((Val & (1 << (31 - i))) == 0) |
| break; |
| ME = i; |
| } |
| |
| // look for next set bit |
| for (; i < 32; i++) { |
| if ((Val & (1 << (31 - i))) != 0) |
| break; |
| } |
| |
| // if we exhausted all the bits, we found a match at this point for 0*1*0* |
| if (i == 32) |
| return true; |
| |
| // since we just encountered more 1's, if it doesn't wrap around to the |
| // most significant bit of the word, then we did not find a match to 1*0*1* so |
| // exit. |
| if (MB != 0) |
| return false; |
| |
| // look for last set bit |
| for (MB = i; i < 32; i++) { |
| if ((Val & (1 << (31 - i))) == 0) |
| break; |
| } |
| |
| // if we exhausted all the bits, then we found a match for 1*0*1*, otherwise, |
| // the value is not a run of ones. |
| if (i == 32) |
| return true; |
| return false; |
| } |
| |
| /// getImmediateForOpcode - This method returns a value indicating whether |
| /// the ConstantSDNode N can be used as an immediate to Opcode. The return |
| /// values are either 0, 1 or 2. 0 indicates that either N is not a |
| /// ConstantSDNode, or is not suitable for use by that opcode. |
| /// Return value codes for turning into an enum someday: |
| /// 1: constant may be used in normal immediate form. |
| /// 2: constant may be used in shifted immediate form. |
| /// 3: log base 2 of the constant may be used. |
| /// 4: constant is suitable for integer division conversion |
| /// 5: constant is a bitfield mask |
| /// |
| static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode, |
| unsigned& Imm, bool U = false) { |
| if (N.getOpcode() != ISD::Constant) return 0; |
| |
| int v = (int)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| switch(Opcode) { |
| default: return 0; |
| case ISD::ADD: |
| if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } |
| if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } |
| break; |
| case ISD::AND: { |
| unsigned MB, ME; |
| if (IsRunOfOnes(v, MB, ME)) { Imm = MB << 16 | ME & 0xFFFF; return 5; } |
| if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } |
| if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } |
| break; |
| } |
| case ISD::XOR: |
| case ISD::OR: |
| if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } |
| if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } |
| break; |
| case ISD::MUL: |
| case ISD::SUB: |
| if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } |
| break; |
| case ISD::SETCC: |
| if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; } |
| if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; } |
| break; |
| case ISD::SDIV: |
| if ((Imm = ExactLog2(v))) { return 3; } |
| if ((Imm = ExactLog2(-v))) { Imm = -Imm; return 3; } |
| if (v <= -2 || v >= 2) { return 4; } |
| break; |
| case ISD::UDIV: |
| if (v > 1) { return 4; } |
| break; |
| } |
| return 0; |
| } |
| |
| /// NodeHasRecordingVariant - If SelectExpr can always produce code for |
| /// NodeOpcode that also sets CR0 as a side effect, return true. Otherwise, |
| /// return false. |
| static bool NodeHasRecordingVariant(unsigned NodeOpcode) { |
| switch(NodeOpcode) { |
| default: return false; |
| case ISD::AND: |
| case ISD::OR: |
| return true; |
| } |
| } |
| |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding |
| /// to Condition. If the Condition is unordered or unsigned, the bool argument |
| /// U is set to true, otherwise it is set to false. |
| static unsigned getBCCForSetCC(unsigned Condition, bool& U) { |
| U = false; |
| switch (Condition) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETEQ: return PPC::BEQ; |
| case ISD::SETNE: return PPC::BNE; |
| case ISD::SETULT: U = true; |
| case ISD::SETLT: return PPC::BLT; |
| case ISD::SETULE: U = true; |
| case ISD::SETLE: return PPC::BLE; |
| case ISD::SETUGT: U = true; |
| case ISD::SETGT: return PPC::BGT; |
| case ISD::SETUGE: U = true; |
| case ISD::SETGE: return PPC::BGE; |
| } |
| return 0; |
| } |
| |
| /// getCROpForOp - Return the condition register opcode (or inverted opcode) |
| /// associated with the SelectionDAG opcode. |
| static unsigned getCROpForSetCC(unsigned Opcode, bool Inv1, bool Inv2) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown opcode!"); abort(); |
| case ISD::AND: |
| if (Inv1 && Inv2) return PPC::CRNOR; // De Morgan's Law |
| if (!Inv1 && !Inv2) return PPC::CRAND; |
| if (Inv1 ^ Inv2) return PPC::CRANDC; |
| case ISD::OR: |
| if (Inv1 && Inv2) return PPC::CRNAND; // De Morgan's Law |
| if (!Inv1 && !Inv2) return PPC::CROR; |
| if (Inv1 ^ Inv2) return PPC::CRORC; |
| } |
| return 0; |
| } |
| |
| /// getCRIdxForSetCC - Return the index of the condition register field |
| /// associated with the SetCC condition, and whether or not the field is |
| /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| static unsigned getCRIdxForSetCC(unsigned Condition, bool& Inv) { |
| switch (Condition) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETULT: |
| case ISD::SETLT: Inv = false; return 0; |
| case ISD::SETUGE: |
| case ISD::SETGE: Inv = true; return 0; |
| case ISD::SETUGT: |
| case ISD::SETGT: Inv = false; return 1; |
| case ISD::SETULE: |
| case ISD::SETLE: Inv = true; return 1; |
| case ISD::SETEQ: Inv = false; return 2; |
| case ISD::SETNE: Inv = true; return 2; |
| } |
| return 0; |
| } |
| |
| /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load |
| /// and store immediate instructions. |
| static unsigned IndexedOpForOp(unsigned Opcode) { |
| switch(Opcode) { |
| default: assert(0 && "Unknown opcode!"); abort(); |
| case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX; |
| case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX; |
| case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX; |
| case PPC::LWZ: return PPC::LWZX; case PPC::STFS: return PPC::STFSX; |
| case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX; |
| case PPC::LFD: return PPC::LFDX; |
| } |
| return 0; |
| } |
| |
| // Structure used to return the necessary information to codegen an SDIV as |
| // a multiply. |
| struct ms { |
| int m; // magic number |
| int s; // shift amount |
| }; |
| |
| struct mu { |
| unsigned int m; // magic number |
| int a; // add indicator |
| int s; // shift amount |
| }; |
| |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| /// or -1. |
| static struct ms magic(int d) { |
| int p; |
| unsigned int ad, anc, delta, q1, r1, q2, r2, t; |
| const unsigned int two31 = 2147483648U; // 2^31 |
| struct ms mag; |
| |
| ad = abs(d); |
| t = two31 + ((unsigned int)d >> 31); |
| anc = t - 1 - t%ad; // absolute value of nc |
| p = 31; // initialize p |
| q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| do { |
| p = p + 1; |
| q1 = 2*q1; // update q1 = 2p/abs(nc) |
| r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| if (r1 >= anc) { // must be unsigned comparison |
| q1 = q1 + 1; |
| r1 = r1 - anc; |
| } |
| q2 = 2*q2; // update q2 = 2p/abs(d) |
| r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| if (r2 >= ad) { // must be unsigned comparison |
| q2 = q2 + 1; |
| r2 = r2 - ad; |
| } |
| delta = ad - r2; |
| } while (q1 < delta || (q1 == delta && r1 == 0)); |
| |
| mag.m = q2 + 1; |
| if (d < 0) mag.m = -mag.m; // resulting magic number |
| mag.s = p - 32; // resulting shift |
| return mag; |
| } |
| |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| static struct mu magicu(unsigned d) |
| { |
| int p; |
| unsigned int nc, delta, q1, r1, q2, r2; |
| struct mu magu; |
| magu.a = 0; // initialize "add" indicator |
| nc = - 1 - (-d)%d; |
| p = 31; // initialize p |
| q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| do { |
| p = p + 1; |
| if (r1 >= nc - r1 ) { |
| q1 = 2*q1 + 1; // update q1 |
| r1 = 2*r1 - nc; // update r1 |
| } |
| else { |
| q1 = 2*q1; // update q1 |
| r1 = 2*r1; // update r1 |
| } |
| if (r2 + 1 >= d - r2) { |
| if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| q2 = 2*q2 + 1; // update q2 |
| r2 = 2*r2 + 1 - d; // update r2 |
| } |
| else { |
| if (q2 >= 0x80000000) magu.a = 1; |
| q2 = 2*q2; // update q2 |
| r2 = 2*r2 + 1; // update r2 |
| } |
| delta = d - 1 - r2; |
| } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| magu.m = q2 + 1; // resulting magic number |
| magu.s = p - 32; // resulting shift |
| return magu; |
| } |
| } |
| |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand ISel::BuildSDIVSequence(SDOperand N) { |
| int d = (int)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended(); |
| ms magics = magic(d); |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0), |
| ISelDAG->getConstant(magics.m, MVT::i32)); |
| // If d > 0 and m < 0, add the numerator |
| if (d > 0 && magics.m < 0) |
| Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0)); |
| // If d < 0 and m > 0, subtract the numerator. |
| if (d < 0 && magics.m > 0) |
| Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0)); |
| // Shift right algebraic if shift value is nonzero |
| if (magics.s > 0) |
| Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q, |
| ISelDAG->getConstant(magics.s, MVT::i32)); |
| // Extract the sign bit and add it to the quotient |
| SDOperand T = |
| ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32)); |
| return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T); |
| } |
| |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand ISel::BuildUDIVSequence(SDOperand N) { |
| unsigned d = |
| (unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended(); |
| mu magics = magicu(d); |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0), |
| ISelDAG->getConstant(magics.m, MVT::i32)); |
| if (magics.a == 0) { |
| Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q, |
| ISelDAG->getConstant(magics.s, MVT::i32)); |
| } else { |
| SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q); |
| NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, |
| ISelDAG->getConstant(1, MVT::i32)); |
| NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q); |
| Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, |
| ISelDAG->getConstant(magics.s-1, MVT::i32)); |
| } |
| return Q; |
| } |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| unsigned ISel::getGlobalBaseReg() { |
| if (!GlobalBaseInitialized) { |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = BB->getParent()->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| GlobalBaseReg = MakeReg(MVT::i32); |
| BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); |
| BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); |
| GlobalBaseInitialized = true; |
| } |
| return GlobalBaseReg; |
| } |
| |
| /// getConstDouble - Loads a floating point value into a register, via the |
| /// Constant Pool. Optionally takes a register in which to load the value. |
| unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) { |
| unsigned Tmp1 = MakeReg(MVT::i32); |
| if (0 == Result) Result = MakeReg(MVT::f64); |
| MachineConstantPool *CP = BB->getParent()->getConstantPool(); |
| ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) |
| .addConstantPoolIndex(CPI); |
| BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); |
| return Result; |
| } |
| |
| /// SelectBitfieldInsert - turn an or of two masked values into |
| /// the rotate left word immediate then mask insert (rlwimi) instruction. |
| /// Returns true on success, false if the caller still needs to select OR. |
| /// |
| /// Patterns matched: |
| /// 1. or shl, and 5. or and, and |
| /// 2. or and, shl 6. or shl, shr |
| /// 3. or shr, and 7. or shr, shl |
| /// 4. or and, shr |
| bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) { |
| bool IsRotate = false; |
| unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0; |
| unsigned Op0Opc = OR.getOperand(0).getOpcode(); |
| unsigned Op1Opc = OR.getOperand(1).getOpcode(); |
| |
| // Verify that we have the correct opcodes |
| if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) |
| return false; |
| if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) |
| return false; |
| |
| // Generate Mask value for Target |
| if (ConstantSDNode *CN = |
| dyn_cast<ConstantSDNode>(OR.getOperand(0).getOperand(1).Val)) { |
| switch(Op0Opc) { |
| case ISD::SHL: TgtMask <<= (unsigned)CN->getValue(); break; |
| case ISD::SRL: TgtMask >>= (unsigned)CN->getValue(); break; |
| case ISD::AND: TgtMask &= (unsigned)CN->getValue(); break; |
| } |
| } else { |
| return false; |
| } |
| |
| // Generate Mask value for Insert |
| if (ConstantSDNode *CN = |
| dyn_cast<ConstantSDNode>(OR.getOperand(1).getOperand(1).Val)) { |
| switch(Op1Opc) { |
| case ISD::SHL: |
| Amount = CN->getValue(); |
| InsMask <<= Amount; |
| if (Op0Opc == ISD::SRL) IsRotate = true; |
| break; |
| case ISD::SRL: |
| Amount = CN->getValue(); |
| InsMask >>= Amount; |
| Amount = 32-Amount; |
| if (Op0Opc == ISD::SHL) IsRotate = true; |
| break; |
| case ISD::AND: |
| InsMask &= (unsigned)CN->getValue(); |
| break; |
| } |
| } else { |
| return false; |
| } |
| |
| // Verify that the Target mask and Insert mask together form a full word mask |
| // and that the Insert mask is a run of set bits (which implies both are runs |
| // of set bits). Given that, Select the arguments and generate the rlwimi |
| // instruction. |
| unsigned MB, ME; |
| if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && IsRunOfOnes(InsMask, MB, ME)) { |
| unsigned Tmp1, Tmp2; |
| // Check for rotlwi / rotrwi here, a special case of bitfield insert |
| // where both bitfield halves are sourced from the same value. |
| if (IsRotate && |
| OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) { |
| Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0)); |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount) |
| .addImm(0).addImm(31); |
| return true; |
| } |
| if (Op0Opc == ISD::AND) |
| Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0)); |
| else |
| Tmp1 = SelectExpr(OR.getOperand(0)); |
| Tmp2 = SelectExpr(OR.getOperand(1).getOperand(0)); |
| BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2) |
| .addImm(Amount).addImm(MB).addImm(ME); |
| return true; |
| } |
| return false; |
| } |
| |
| /// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the |
| /// low six bits. If the shift amount is an ISD::AND node with a mask that is |
| /// wider than the implicit mask, then we can get rid of the AND and let the |
| /// shift do the mask. |
| unsigned ISel::FoldIfWideZeroExtend(SDOperand N) { |
| unsigned C; |
| if (N.getOpcode() == ISD::AND && |
| 5 == getImmediateForOpcode(N.getOperand(1), ISD::AND, C) && // isMask |
| 31 == (C & 0xFFFF) && // ME |
| 26 >= (C >> 16)) // MB |
| return SelectExpr(N.getOperand(0)); |
| else |
| return SelectExpr(N); |
| } |
| |
| unsigned ISel::SelectCC(SDOperand CC, unsigned &Opc) { |
| unsigned Result, Tmp1, Tmp2; |
| bool AlreadySelected = false; |
| static const unsigned CompareOpcodes[] = |
| { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW }; |
| |
| // Allocate a condition register for this expression |
| Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass); |
| |
| // If the first operand to the select is a SETCC node, then we can fold it |
| // into the branch that selects which value to return. |
| SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val); |
| if (SetCC && CC.getOpcode() == ISD::SETCC) { |
| bool U; |
| Opc = getBCCForSetCC(SetCC->getCondition(), U); |
| |
| // Pass the optional argument U to getImmediateForOpcode for SETCC, |
| // so that it knows whether the SETCC immediate range is signed or not. |
| if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC, |
| Tmp2, U)) { |
| // For comparisons against zero, we can implicity set CR0 if a recording |
| // variant (e.g. 'or.' instead of 'or') of the instruction that defines |
| // operand zero of the SetCC node is available. |
| if (0 == Tmp2 && |
| NodeHasRecordingVariant(SetCC->getOperand(0).getOpcode()) && |
| SetCC->getOperand(0).Val->hasOneUse()) { |
| RecordSuccess = false; |
| Tmp1 = SelectExpr(SetCC->getOperand(0), true); |
| if (RecordSuccess) { |
| ++Recorded; |
| BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0); |
| return Result; |
| } |
| AlreadySelected = true; |
| } |
| // If we could not implicitly set CR0, then emit a compare immediate |
| // instead. |
| if (!AlreadySelected) Tmp1 = SelectExpr(SetCC->getOperand(0)); |
| if (U) |
| BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| else |
| BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| } else { |
| bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType()); |
| unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U]; |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); |
| Tmp2 = SelectExpr(SetCC->getOperand(1)); |
| BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| } else { |
| if (PPCCRopts) |
| if (CC.getOpcode() == ISD::AND || CC.getOpcode() == ISD::OR) |
| if (CC.getOperand(0).Val->hasOneUse() && |
| CC.getOperand(1).Val->hasOneUse()) { |
| SetCCSDNode* Op0CC = dyn_cast<SetCCSDNode>(CC.getOperand(0).Val); |
| SetCCSDNode* Op1CC = dyn_cast<SetCCSDNode>(CC.getOperand(1).Val); |
| if (Op0CC && Op1CC) { |
| ++MultiBranch; |
| bool Inv0, Inv1; |
| unsigned Opc1; |
| unsigned Idx0 = getCRIdxForSetCC(Op0CC->getCondition(), Inv0); |
| unsigned Idx1 = getCRIdxForSetCC(Op1CC->getCondition(), Inv1); |
| unsigned CROpc = getCROpForSetCC(CC.getOpcode(), Inv0, Inv1); |
| Tmp1 = SelectCC(CC.getOperand(0), Opc); |
| Tmp2 = SelectCC(CC.getOperand(1), Opc1); |
| if (Inv0 && !Inv1) { |
| std::swap(Tmp1, Tmp2); |
| std::swap(Idx0, Idx1); |
| Opc = Opc1; |
| } |
| if (Inv0 && Inv1) Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc); |
| BuildMI(BB, CROpc, 5, Result).addImm(Idx0).addReg(Tmp1).addImm(Idx0) |
| .addReg(Tmp2).addImm(Idx1); |
| return Result; |
| } |
| } |
| Opc = PPC::BNE; |
| Tmp1 = SelectExpr(CC); |
| BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(0); |
| } |
| return Result; |
| } |
| |
| /// Check to see if the load is a constant offset from a base register |
| bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) |
| { |
| unsigned imm = 0, opcode = N.getOpcode(); |
| if (N.getOpcode() == ISD::ADD) { |
| Reg = SelectExpr(N.getOperand(0)); |
| if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) { |
| offset = imm; |
| return false; |
| } |
| offset = SelectExpr(N.getOperand(1)); |
| return true; |
| } |
| Reg = SelectExpr(N); |
| offset = 0; |
| return false; |
| } |
| |
| void ISel::SelectBranchCC(SDOperand N) |
| { |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); |
| |
| unsigned Opc, CCReg; |
| Select(N.getOperand(0)); //chain |
| CCReg = SelectCC(N.getOperand(1), Opc); |
| |
| // Iterate to the next basic block, unless we're already at the end of the |
| ilist<MachineBasicBlock>::iterator It = BB, E = BB->getParent()->end(); |
| if (++It == E) It = BB; |
| |
| // If this is a two way branch, then grab the fallthrough basic block argument |
| // and build a PowerPC branch pseudo-op, suitable for long branch conversion |
| // if necessary by the branch selection pass. Otherwise, emit a standard |
| // conditional branch. |
| if (N.getOpcode() == ISD::BRCONDTWOWAY) { |
| MachineBasicBlock *Fallthrough = |
| cast<BasicBlockSDNode>(N.getOperand(3))->getBasicBlock(); |
| if (Dest != It) { |
| BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) |
| .addMBB(Dest).addMBB(Fallthrough); |
| if (Fallthrough != It) |
| BuildMI(BB, PPC::B, 1).addMBB(Fallthrough); |
| } else { |
| if (Fallthrough != It) { |
| Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc); |
| BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) |
| .addMBB(Fallthrough).addMBB(Dest); |
| } |
| } |
| } else { |
| BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) |
| .addMBB(Dest).addMBB(It); |
| } |
| return; |
| } |
| |
| unsigned ISel::SelectExprFP(SDOperand N, unsigned Result) |
| { |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| SDNode *Node = N.Val; |
| MVT::ValueType DestType = N.getValueType(); |
| unsigned opcode = N.getOpcode(); |
| |
| switch (opcode) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| |
| case ISD::SELECT: { |
| // Attempt to generate FSEL. We can do this whenever we have an FP result, |
| // and an FP comparison in the SetCC node. |
| SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(N.getOperand(0).Val); |
| if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC && |
| !MVT::isInteger(SetCC->getOperand(0).getValueType()) && |
| SetCC->getCondition() != ISD::SETEQ && |
| SetCC->getCondition() != ISD::SETNE) { |
| MVT::ValueType VT = SetCC->getOperand(0).getValueType(); |
| unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE |
| unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE |
| |
| ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)); |
| if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) { |
| switch(SetCC->getCondition()) { |
| default: assert(0 && "Invalid FSEL condition"); abort(); |
| case ISD::SETULT: |
| case ISD::SETLT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETUGE: |
| case ISD::SETGE: |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV); |
| return Result; |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETULE: |
| case ISD::SETLE: { |
| if (SetCC->getOperand(0).getOpcode() == ISD::FNEG) { |
| Tmp2 = SelectExpr(SetCC->getOperand(0).getOperand(0)); |
| } else { |
| Tmp2 = MakeReg(VT); |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against |
| BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1); |
| } |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV); |
| return Result; |
| } |
| } |
| } else { |
| Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS; |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against |
| Tmp2 = SelectExpr(SetCC->getOperand(1)); |
| Tmp3 = MakeReg(VT); |
| switch(SetCC->getCondition()) { |
| default: assert(0 && "Invalid FSEL condition"); abort(); |
| case ISD::SETULT: |
| case ISD::SETLT: |
| BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); |
| return Result; |
| case ISD::SETUGE: |
| case ISD::SETGE: |
| BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); |
| return Result; |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); |
| return Result; |
| case ISD::SETULE: |
| case ISD::SETLE: |
| BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); |
| return Result; |
| } |
| } |
| assert(0 && "Should never get here"); |
| return 0; |
| } |
| |
| unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE |
| unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE |
| unsigned CCReg = SelectCC(N.getOperand(0), Opc); |
| |
| // Create an iterator with which to insert the MBB for copying the false |
| // value and the MBB to hold the PHI instruction for this SetCC. |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) |
| .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); |
| return Result; |
| } |
| |
| case ISD::FNEG: |
| if (!NoExcessFPPrecision && |
| ISD::ADD == N.getOperand(0).getOpcode() && |
| N.getOperand(0).Val->hasOneUse() && |
| ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() && |
| N.getOperand(0).getOperand(0).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(0).getOperand(1)); |
| Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| } else if (!NoExcessFPPrecision && |
| ISD::ADD == N.getOperand(0).getOpcode() && |
| N.getOperand(0).Val->hasOneUse() && |
| ISD::MUL == N.getOperand(0).getOperand(1).getOpcode() && |
| N.getOperand(0).getOperand(1).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| } else if (ISD::FABS == N.getOperand(0).getOpcode()) { |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1); |
| } |
| return Result; |
| |
| case ISD::FABS: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::FP_ROUND: |
| assert (DestType == MVT::f32 && |
| N.getOperand(0).getValueType() == MVT::f64 && |
| "only f64 to f32 conversion supported here"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::FP_EXTEND: |
| assert (DestType == MVT::f64 && |
| N.getOperand(0).getValueType() == MVT::f32 && |
| "only f32 to f64 conversion supported here"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::CopyFromReg: |
| if (Result == 1) |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| Tmp1 = dyn_cast<RegSDNode>(Node)->getReg(); |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); |
| return Result; |
| |
| case ISD::ConstantFP: { |
| ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N); |
| Result = getConstDouble(CN->getValue(), Result); |
| return Result; |
| } |
| |
| case ISD::ADD: |
| if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && |
| N.getOperand(0).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(1)); |
| Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; |
| } |
| if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && |
| N.getOperand(1).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(0)); |
| Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; |
| } |
| Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::SUB: |
| if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && |
| N.getOperand(0).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(1)); |
| Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; |
| } |
| if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && |
| N.getOperand(1).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(0)); |
| Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS; |
| BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; |
| } |
| Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::MUL: |
| case ISD::SDIV: |
| switch( opcode ) { |
| case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break; |
| case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break; |
| }; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: { |
| assert (N.getOperand(0).getValueType() == MVT::i32 |
| && "int to float must operate on i32"); |
| bool IsUnsigned = (ISD::UINT_TO_FP == opcode); |
| Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register |
| Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into |
| Tmp3 = MakeReg(MVT::i32); // temp reg to hold the conversion constant |
| |
| int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8); |
| MachineConstantPool *CP = BB->getParent()->getConstantPool(); |
| |
| if (IsUnsigned) { |
| unsigned ConstF = getConstDouble(0x1.000000p52); |
| // Store the hi & low halves of the fp value, currently in int regs |
| BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330); |
| addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx); |
| addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp1), FrameIdx, 4); |
| addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx); |
| // Generate the return value with a subtract |
| BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF); |
| } else { |
| unsigned ConstF = getConstDouble(0x1.000008p52); |
| unsigned TmpL = MakeReg(MVT::i32); |
| // Store the hi & low halves of the fp value, currently in int regs |
| BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330); |
| addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx); |
| BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000); |
| addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4); |
| addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx); |
| // Generate the return value with a subtract |
| BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF); |
| } |
| return Result; |
| } |
| } |
| assert(0 && "Should never get here"); |
| return 0; |
| } |
| |
| unsigned ISel::SelectExpr(SDOperand N, bool Recording) { |
| unsigned Result; |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| unsigned opcode = N.getOpcode(); |
| |
| SDNode *Node = N.Val; |
| MVT::ValueType DestType = N.getValueType(); |
| |
| unsigned &Reg = ExprMap[N]; |
| if (Reg) return Reg; |
| |
| switch (N.getOpcode()) { |
| default: |
| Reg = Result = (N.getValueType() != MVT::Other) ? |
| MakeReg(N.getValueType()) : 1; |
| break; |
| case ISD::CALL: |
| // If this is a call instruction, make sure to prepare ALL of the result |
| // values as well as the chain. |
| if (Node->getNumValues() == 1) |
| Reg = Result = 1; // Void call, just a chain. |
| else { |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; |
| } |
| break; |
| case ISD::ADD_PARTS: |
| case ISD::SUB_PARTS: |
| case ISD::SHL_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| break; |
| } |
| |
| if (ISD::CopyFromReg == opcode) |
| DestType = N.getValue(0).getValueType(); |
| |
| if (DestType == MVT::f64 || DestType == MVT::f32) |
| if (ISD::LOAD != opcode && ISD::EXTLOAD != opcode && |
| ISD::UNDEF != opcode && ISD::CALL != opcode) |
| return SelectExprFP(N, Result); |
| |
| switch (opcode) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| case ISD::UNDEF: |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result); |
| return Result; |
| case ISD::DYNAMIC_STACKALLOC: |
| // Generate both result values. FIXME: Need a better commment here? |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| // FIXME: We are currently ignoring the requested alignment for handling |
| // greater than the stack alignment. This will need to be revisited at some |
| // point. Align = N.getOperand(2); |
| if (!isa<ConstantSDNode>(N.getOperand(2)) || |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { |
| std::cerr << "Cannot allocate stack object with greater alignment than" |
| << " the stack alignment yet!"; |
| abort(); |
| } |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); |
| // Put a pointer to the space into the result register by copying the SP |
| BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1); |
| return Result; |
| |
| case ISD::ConstantPool: |
| Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex(); |
| Tmp2 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg()) |
| .addConstantPoolIndex(Tmp1); |
| BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1); |
| return Result; |
| |
| case ISD::FrameIndex: |
| Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); |
| addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false); |
| return Result; |
| |
| case ISD::GlobalAddress: { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); |
| Tmp1 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) |
| .addGlobalAddress(GV); |
| if (GV->hasWeakLinkage() || GV->isExternal()) { |
| BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); |
| } else { |
| BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); |
| } |
| return Result; |
| } |
| |
| case ISD::LOAD: |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::SEXTLOAD: { |
| MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? |
| Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType(); |
| bool sext = (ISD::SEXTLOAD == opcode); |
| |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| Select(Chain); |
| |
| switch (TypeBeingLoaded) { |
| default: Node->dump(); assert(0 && "Cannot load this type!"); |
| case MVT::i1: Opc = PPC::LBZ; break; |
| case MVT::i8: Opc = PPC::LBZ; break; |
| case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break; |
| case MVT::i32: Opc = PPC::LWZ; break; |
| case MVT::f32: Opc = PPC::LFS; break; |
| case MVT::f64: Opc = PPC::LFD; break; |
| } |
| |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) { |
| Tmp1 = MakeReg(MVT::i32); |
| int CPI = CP->getIndex(); |
| BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) |
| .addConstantPoolIndex(CPI); |
| BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); |
| } |
| else if(Address.getOpcode() == ISD::FrameIndex) { |
| Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex(); |
| addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1); |
| } else { |
| int offset; |
| bool idx = SelectAddr(Address, Tmp1, offset); |
| if (idx) { |
| Opc = IndexedOpForOp(Opc); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset); |
| } else { |
| BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); |
| } |
| } |
| return Result; |
| } |
| |
| case ISD::CALL: { |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| // Lower the chain for this call. |
| Select(N.getOperand(0)); |
| ExprMap[N.getValue(Node->getNumValues()-1)] = 1; |
| |
| MachineInstr *CallMI; |
| // Emit the correct call instruction based on the type of symbol called. |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { |
| CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), |
| true); |
| } else if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { |
| CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), |
| true); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); |
| BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); |
| CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0) |
| .addReg(PPC::R12); |
| } |
| |
| // Load the register args to virtual regs |
| std::vector<unsigned> ArgVR; |
| for(int i = 2, e = Node->getNumOperands(); i < e; ++i) |
| ArgVR.push_back(SelectExpr(N.getOperand(i))); |
| |
| // Copy the virtual registers into the appropriate argument register |
| for(int i = 0, e = ArgVR.size(); i < e; ++i) { |
| switch(N.getOperand(i+2).getValueType()) { |
| default: Node->dump(); assert(0 && "Unknown value type for call"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| assert(GPR_idx < 8 && "Too many int args"); |
| if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) { |
| BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]); |
| CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); |
| } |
| ++GPR_idx; |
| break; |
| case MVT::f64: |
| case MVT::f32: |
| assert(FPR_idx < 13 && "Too many fp args"); |
| BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]); |
| CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); |
| ++FPR_idx; |
| break; |
| } |
| } |
| |
| // Put the call instruction in the correct place in the MachineBasicBlock |
| BB->push_back(CallMI); |
| |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Unknown value type for call result!"); |
| case MVT::Other: return 1; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (Node->getValueType(1) == MVT::i32) { |
| BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3); |
| BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R4).addReg(PPC::R4); |
| } else { |
| BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3); |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1); |
| break; |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::SIGN_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break; |
| case MVT::i16: |
| BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); |
| break; |
| case MVT::i8: |
| BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1); |
| break; |
| case MVT::i1: |
| BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0); |
| break; |
| } |
| return Result; |
| |
| case ISD::CopyFromReg: |
| if (Result == 1) |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| Tmp1 = dyn_cast<RegSDNode>(Node)->getReg(); |
| BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1); |
| return Result; |
| |
| case ISD::SHL: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) |
| .addImm(31-Tmp2); |
| } else { |
| Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); |
| BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::SRL: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2) |
| .addImm(Tmp2).addImm(31); |
| } else { |
| Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); |
| BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::SRA: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue() & 0x1F; |
| BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| } else { |
| Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); |
| BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::ADD: |
| assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| break; |
| } |
| return Result; |
| |
| case ISD::AND: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| // FIXME: should add check in getImmediateForOpcode to return a value |
| // indicating the immediate is a run of set bits so we can emit a bitfield |
| // clear with RLWINM instead. |
| switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Opc = Recording ? PPC::ANDo : PPC::AND; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| case 5: // Bitfield mask |
| Opc = Recording ? PPC::RLWINMo : PPC::RLWINM; |
| Tmp3 = Tmp2 >> 16; // MB |
| Tmp2 &= 0xFFFF; // ME |
| BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(0) |
| .addImm(Tmp3).addImm(Tmp2); |
| break; |
| } |
| RecordSuccess = true; |
| return Result; |
| |
| case ISD::OR: |
| if (SelectBitfieldInsert(N, Result)) |
| return Result; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Opc = Recording ? PPC::ORo : PPC::OR; |
| RecordSuccess = true; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| BuildMI(BB, PPC::ORIS, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| } |
| return Result; |
| |
| case ISD::XOR: { |
| // Check for EQV: xor, (xor a, -1), b |
| if (N.getOperand(0).getOpcode() == ISD::XOR && |
| N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) { |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| } |
| // Check for NOT, NOR, and NAND: xor (copy, or, and), -1 |
| if (N.getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N.getOperand(1))->isAllOnesValue()) { |
| switch(N.getOperand(0).getOpcode()) { |
| case ISD::OR: |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::AND: |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| default: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1); |
| break; |
| } |
| return Result; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { |
| default: assert(0 && "unhandled result code"); |
| case 0: // No immediate |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case 1: // Low immediate |
| BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| case 2: // Shifted immediate |
| BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| break; |
| } |
| return Result; |
| } |
| |
| case ISD::SUB: |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1)) |
| BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1); |
| else { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); |
| } |
| return Result; |
| |
| case ISD::MUL: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) |
| BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); |
| else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| |
| case ISD::MULHS: |
| case ISD::MULHU: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::SDIV: |
| case ISD::UDIV: |
| switch (getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) { |
| default: break; |
| // If this is an sdiv by a power of two, we can use an srawi/addze pair. |
| case 3: |
| Tmp1 = MakeReg(MVT::i32); |
| Tmp2 = SelectExpr(N.getOperand(0)); |
| if ((int)Tmp3 < 0) { |
| unsigned Tmp4 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(-Tmp3); |
| BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1); |
| BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4); |
| } else { |
| BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); |
| BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1); |
| } |
| return Result; |
| // If this is a divide by constant, we can emit code using some magic |
| // constants to implement it as a multiply instead. |
| case 4: |
| ExprMap.erase(N); |
| if (opcode == ISD::SDIV) |
| return SelectExpr(BuildSDIVSequence(N)); |
| else |
| return SelectExpr(BuildUDIVSequence(N)); |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::ADD_PARTS: |
| case ISD::SUB_PARTS: { |
| assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && |
| "Not an i64 add/sub!"); |
| // Emit all of the operands. |
| std::vector<unsigned> InVals; |
| for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) |
| InVals.push_back(SelectExpr(N.getOperand(i))); |
| if (N.getOpcode() == ISD::ADD_PARTS) { |
| BuildMI(BB, PPC::ADDC, 2, Result).addReg(InVals[0]).addReg(InVals[2]); |
| BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(InVals[1]).addReg(InVals[3]); |
| } else { |
| BuildMI(BB, PPC::SUBFC, 2, Result).addReg(InVals[2]).addReg(InVals[0]); |
| BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(InVals[3]).addReg(InVals[1]); |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: { |
| assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && |
| "Not an i64 shift!"); |
| unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); |
| unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); |
| unsigned SHReg = FoldIfWideZeroExtend(N.getOperand(2)); |
| Tmp1 = MakeReg(MVT::i32); |
| Tmp2 = MakeReg(MVT::i32); |
| Tmp3 = MakeReg(MVT::i32); |
| unsigned Tmp4 = MakeReg(MVT::i32); |
| unsigned Tmp5 = MakeReg(MVT::i32); |
| unsigned Tmp6 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::SUBFIC, 2, Tmp1).addReg(SHReg).addSImm(32); |
| if (ISD::SHL_PARTS == opcode) { |
| BuildMI(BB, PPC::SLW, 2, Tmp2).addReg(ShiftOpHi).addReg(SHReg); |
| BuildMI(BB, PPC::SRW, 2, Tmp3).addReg(ShiftOpLo).addReg(Tmp1); |
| BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); |
| BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); |
| BuildMI(BB, PPC::SLW, 2, Tmp6).addReg(ShiftOpLo).addReg(Tmp5); |
| BuildMI(BB, PPC::OR, 2, Result+1).addReg(Tmp4).addReg(Tmp6); |
| BuildMI(BB, PPC::SLW, 2, Result).addReg(ShiftOpLo).addReg(SHReg); |
| } else if (ISD::SRL_PARTS == opcode) { |
| BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); |
| BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); |
| BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); |
| BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); |
| BuildMI(BB, PPC::SRW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); |
| BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp4).addReg(Tmp6); |
| BuildMI(BB, PPC::SRW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); |
| } else { |
| MachineBasicBlock *TmpMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *OldMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| ilist<MachineBasicBlock>::iterator It = BB; ++It; |
| F->getBasicBlockList().insert(It, TmpMBB); |
| F->getBasicBlockList().insert(It, PhiMBB); |
| BB->addSuccessor(TmpMBB); |
| BB->addSuccessor(PhiMBB); |
| BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); |
| BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); |
| BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); |
| BuildMI(BB, PPC::ADDICo, 2, Tmp5).addReg(SHReg).addSImm(-32); |
| BuildMI(BB, PPC::SRAW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); |
| BuildMI(BB, PPC::SRAW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); |
| BuildMI(BB, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB); |
| // Select correct least significant half if the shift amount > 32 |
| BB = TmpMBB; |
| unsigned Tmp7 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::OR, 2, Tmp7).addReg(Tmp6).addReg(Tmp6); |
| TmpMBB->addSuccessor(PhiMBB); |
| BB = PhiMBB; |
| BuildMI(BB, PPC::PHI, 4, Result).addReg(Tmp4).addMBB(OldMBB) |
| .addReg(Tmp7).addMBB(TmpMBB); |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: { |
| bool U = (ISD::FP_TO_UINT == opcode); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (!U) { |
| Tmp2 = MakeReg(MVT::f64); |
| BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1); |
| int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8); |
| addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx); |
| addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4); |
| return Result; |
| } else { |
| unsigned Zero = getConstDouble(0.0); |
| unsigned MaxInt = getConstDouble((1LL << 32) - 1); |
| unsigned Border = getConstDouble(1LL << 31); |
| unsigned UseZero = MakeReg(MVT::f64); |
| unsigned UseMaxInt = MakeReg(MVT::f64); |
| unsigned UseChoice = MakeReg(MVT::f64); |
| unsigned TmpReg = MakeReg(MVT::f64); |
| unsigned TmpReg2 = MakeReg(MVT::f64); |
| unsigned ConvReg = MakeReg(MVT::f64); |
| unsigned IntTmp = MakeReg(MVT::i32); |
| unsigned XorReg = MakeReg(MVT::i32); |
| MachineFunction *F = BB->getParent(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(8, 8); |
| // Update machine-CFG edges |
| MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); |
| MachineBasicBlock *OldMBB = BB; |
| ilist<MachineBasicBlock>::iterator It = BB; ++It; |
| F->getBasicBlockList().insert(It, XorMBB); |
| F->getBasicBlockList().insert(It, PhiMBB); |
| BB->addSuccessor(XorMBB); |
| BB->addSuccessor(PhiMBB); |
| // Convert from floating point to unsigned 32-bit value |
| // Use 0 if incoming value is < 0.0 |
| BuildMI(BB, PPC::FSEL, 3, UseZero).addReg(Tmp1).addReg(Tmp1).addReg(Zero); |
| // Use 2**32 - 1 if incoming value is >= 2**32 |
| BuildMI(BB, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(Tmp1); |
| BuildMI(BB, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt).addReg(UseZero) |
| .addReg(MaxInt); |
| // Subtract 2**31 |
| BuildMI(BB, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); |
| // Use difference if >= 2**31 |
| BuildMI(BB, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice).addReg(Border); |
| BuildMI(BB, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) |
| .addReg(UseChoice); |
| // Convert to integer |
| BuildMI(BB, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); |
| addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(ConvReg), FrameIdx); |
| addFrameReference(BuildMI(BB, PPC::LWZ, 2, IntTmp), FrameIdx, 4); |
| BuildMI(BB, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); |
| BuildMI(BB, PPC::B, 1).addMBB(XorMBB); |
| |
| // XorMBB: |
| // add 2**31 if input was >= 2**31 |
| BB = XorMBB; |
| BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); |
| XorMBB->addSuccessor(PhiMBB); |
| |
| // PhiMBB: |
| // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] |
| BB = PhiMBB; |
| BuildMI(BB, PPC::PHI, 4, Result).addReg(IntTmp).addMBB(OldMBB) |
| .addReg(XorReg).addMBB(XorMBB); |
| return Result; |
| } |
| assert(0 && "Should never get here"); |
| return 0; |
| } |
| |
| case ISD::SETCC: |
| if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) { |
| if (ConstantSDNode *CN = |
| dyn_cast<ConstantSDNode>(SetCC->getOperand(1).Val)) { |
| // We can codegen setcc op, imm very efficiently compared to a brcond. |
| // Check for those cases here. |
| // setcc op, 0 |
| if (CN->getValue() == 0) { |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); |
| switch (SetCC->getCondition()) { |
| default: SetCC->dump(); assert(0 && "Unhandled SetCC condition"); abort(); |
| case ISD::SETEQ: |
| Tmp2 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27) |
| .addImm(5).addImm(31); |
| break; |
| case ISD::SETNE: |
| Tmp2 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1); |
| BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1); |
| break; |
| case ISD::SETLT: |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1) |
| .addImm(31).addImm(31); |
| break; |
| case ISD::SETGT: |
| Tmp2 = MakeReg(MVT::i32); |
| Tmp3 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) |
| .addImm(31).addImm(31); |
| break; |
| } |
| return Result; |
| } |
| // setcc op, -1 |
| if (CN->isAllOnesValue()) { |
| Tmp1 = SelectExpr(SetCC->getOperand(0)); |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unhandled SetCC condition"); abort(); |
| case ISD::SETEQ: |
| Tmp2 = MakeReg(MVT::i32); |
| Tmp3 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1); |
| BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0); |
| BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3); |
| break; |
| case ISD::SETNE: |
| Tmp2 = MakeReg(MVT::i32); |
| Tmp3 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); |
| BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1); |
| BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2); |
| break; |
| case ISD::SETLT: |
| Tmp2 = MakeReg(MVT::i32); |
| Tmp3 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1); |
| BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); |
| BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) |
| .addImm(31).addImm(31); |
| break; |
| case ISD::SETGT: |
| Tmp2 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1) |
| .addImm(31).addImm(31); |
| BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1); |
| break; |
| } |
| return Result; |
| } |
| } |
| |
| unsigned CCReg = SelectCC(N, Opc); |
| unsigned TrueValue = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1); |
| unsigned FalseValue = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0); |
| |
| // Create an iterator with which to insert the MBB for copying the false |
| // value and the MBB to hold the PHI instruction for this SetCC. |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // cmpTY ccX, r1, r2 |
| // %TrueValue = li 1 |
| // bCC sinkMBB |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = li 0 |
| // fallthrough |
| BB = copy0MBB; |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) |
| .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); |
| return Result; |
| } |
| assert(0 && "Is this legal?"); |
| return 0; |
| |
| case ISD::SELECT: { |
| unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE |
| unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE |
| unsigned CCReg = SelectCC(N.getOperand(0), Opc); |
| |
| // Create an iterator with which to insert the MBB for copying the false |
| // value and the MBB to hold the PHI instruction for this SetCC. |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) |
| .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); |
| return Result; |
| } |
| |
| case ISD::Constant: |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot use constants of this type!"); |
| case MVT::i1: |
| BuildMI(BB, PPC::LI, 1, Result) |
| .addSImm(!cast<ConstantSDNode>(N)->isNullValue()); |
| break; |
| case MVT::i32: |
| { |
| int v = (int)cast<ConstantSDNode>(N)->getSignExtended(); |
| if (v < 32768 && v >= -32768) { |
| BuildMI(BB, PPC::LI, 1, Result).addSImm(v); |
| } else { |
| Tmp1 = MakeReg(MVT::i32); |
| BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16); |
| BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF); |
| } |
| } |
| } |
| return Result; |
| } |
| |
| return 0; |
| } |
| |
| void ISel::Select(SDOperand N) { |
| unsigned Tmp1, Tmp2, Opc; |
| unsigned opcode = N.getOpcode(); |
| |
| if (!ExprMap.insert(std::make_pair(N, 1)).second) |
| return; // Already selected. |
| |
| SDNode *Node = N.Val; |
| |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); std::cerr << "\n"; |
| assert(0 && "Node not handled yet!"); |
| case ISD::EntryToken: return; // Noop |
| case ISD::TokenFactor: |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Select(Node->getOperand(i)); |
| return; |
| case ISD::ADJCALLSTACKDOWN: |
| case ISD::ADJCALLSTACKUP: |
| Select(N.getOperand(0)); |
| Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); |
| Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN : |
| PPC::ADJCALLSTACKUP; |
| BuildMI(BB, Opc, 1).addImm(Tmp1); |
| return; |
| case ISD::BR: { |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); |
| Select(N.getOperand(0)); |
| BuildMI(BB, PPC::B, 1).addMBB(Dest); |
| return; |
| } |
| case ISD::BRCOND: |
| case ISD::BRCONDTWOWAY: |
| SelectBranchCC(N); |
| return; |
| case ISD::CopyToReg: |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = cast<RegSDNode>(N)->getReg(); |
| |
| if (Tmp1 != Tmp2) { |
| if (N.getOperand(1).getValueType() == MVT::f64 || |
| N.getOperand(1).getValueType() == MVT::f32) |
| BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1); |
| else |
| BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); |
| } |
| return; |
| case ISD::ImplicitDef: |
| Select(N.getOperand(0)); |
| BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg()); |
| return; |
| case ISD::RET: |
| switch (N.getNumOperands()) { |
| default: |
| assert(0 && "Unknown return instruction!"); |
| case 3: |
| assert(N.getOperand(1).getValueType() == MVT::i32 && |
| N.getOperand(2).getValueType() == MVT::i32 && |
| "Unknown two-register value!"); |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = SelectExpr(N.getOperand(2)); |
| BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2); |
| BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1); |
| break; |
| case 2: |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| switch (N.getOperand(1).getValueType()) { |
| default: |
| assert(0 && "Unknown return type!"); |
| case MVT::f64: |
| case MVT::f32: |
| BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1); |
| break; |
| case MVT::i32: |
| BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); |
| break; |
| } |
| case 1: |
| Select(N.getOperand(0)); |
| break; |
| } |
| BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction |
| return; |
| case ISD::TRUNCSTORE: |
| case ISD::STORE: |
| { |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Value = N.getOperand(1); |
| SDOperand Address = N.getOperand(2); |
| Select(Chain); |
| |
| Tmp1 = SelectExpr(Value); //value |
| |
| if (opcode == ISD::STORE) { |
| switch(Value.getValueType()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i32: Opc = PPC::STW; break; |
| case MVT::f64: Opc = PPC::STFD; break; |
| case MVT::f32: Opc = PPC::STFS; break; |
| } |
| } else { //ISD::TRUNCSTORE |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i1: |
| case MVT::i8: Opc = PPC::STB; break; |
| case MVT::i16: Opc = PPC::STH; break; |
| } |
| } |
| |
| if(Address.getOpcode() == ISD::FrameIndex) |
| { |
| Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex(); |
| addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2); |
| } |
| else |
| { |
| int offset; |
| bool idx = SelectAddr(Address, Tmp2, offset); |
| if (idx) { |
| Opc = IndexedOpForOp(Opc); |
| BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset); |
| } else { |
| BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2); |
| } |
| } |
| return; |
| } |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::LOAD: |
| case ISD::CopyFromReg: |
| case ISD::CALL: |
| case ISD::DYNAMIC_STACKALLOC: |
| ExprMap.erase(N); |
| SelectExpr(N); |
| return; |
| } |
| assert(0 && "Should not be reached!"); |
| } |
| |
| |
| /// createPPC32PatternInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation using pattern matching and a machine |
| /// description file. |
| /// |
| FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) { |
| return new ISel(TM); |
| } |
| |