| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Function.h" |
| #include "llvm/iOther.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| #include <set> |
| |
| using std::vector; |
| |
| namespace { |
| Statistic<> NumFolds ("dsnode", "Number of nodes completely folded"); |
| Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged"); |
| }; |
| |
| namespace DS { // TODO: FIXME |
| extern TargetData TD; |
| } |
| using namespace DS; |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(enum NodeTy NT, const Type *T) |
| : Ty(Type::VoidTy), Size(0), NodeType(NT) { |
| // Add the type entry if it is specified... |
| if (T) mergeTypeInfo(T, 0); |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N) |
| : Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size), |
| NodeType(N.NodeType) { |
| } |
| |
| void DSNode::removeReferrer(DSNodeHandle *H) { |
| // Search backwards, because we depopulate the list from the back for |
| // efficiency (because it's a vector). |
| vector<DSNodeHandle*>::reverse_iterator I = |
| std::find(Referrers.rbegin(), Referrers.rend(), H); |
| assert(I != Referrers.rend() && "Referrer not pointing to node!"); |
| Referrers.erase(I.base()-1); |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // Keep the list sorted. |
| vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| //assert(GV->getType()->getElementType() == Ty); |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| /// foldNodeCompletely - If we determine that this node has some funny |
| /// behavior happening to it that we cannot represent, we fold it down to a |
| /// single, completely pessimistic, node. This node is represented as a |
| /// single byte with a single TypeEntry of "void". |
| /// |
| void DSNode::foldNodeCompletely() { |
| if (isNodeCompletelyFolded()) return; |
| |
| ++NumFolds; |
| |
| // We are no longer typed at all... |
| Ty = DSTypeRec(Type::VoidTy, true); |
| Size = 1; |
| |
| // Loop over all of our referrers, making them point to our zero bytes of |
| // space. |
| for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end(); |
| I != E; ++I) |
| (*I)->setOffset(0); |
| |
| // If we have links, merge all of our outgoing links together... |
| for (unsigned i = 1, e = Links.size(); i < e; ++i) |
| Links[0].mergeWith(Links[i]); |
| Links.resize(1); |
| } |
| |
| /// isNodeCompletelyFolded - Return true if this node has been completely |
| /// folded down to something that can never be expanded, effectively losing |
| /// all of the field sensitivity that may be present in the node. |
| /// |
| bool DSNode::isNodeCompletelyFolded() const { |
| return getSize() == 1 && Ty.Ty == Type::VoidTy && Ty.isArray; |
| } |
| |
| |
| /// mergeTypeInfo - This method merges the specified type into the current node |
| /// at the specified offset. This may update the current node's type record if |
| /// this gives more information to the node, it may do nothing to the node if |
| /// this information is already known, or it may merge the node completely (and |
| /// return true) if the information is incompatible with what is already known. |
| /// |
| /// This method returns true if the node is completely folded, otherwise false. |
| /// |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) { |
| // Check to make sure the Size member is up-to-date. Size can be one of the |
| // following: |
| // Size = 0, Ty = Void: Nothing is known about this node. |
| // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero |
| // Size = 1, Ty = Void, Array = 1: The node is collapsed |
| // Otherwise, sizeof(Ty) = Size |
| // |
| assert(((Size == 0 && Ty.Ty == Type::VoidTy && !Ty.isArray) || |
| (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) || |
| (Size == 1 && Ty.Ty == Type::VoidTy && Ty.isArray) || |
| (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) || |
| (TD.getTypeSize(Ty.Ty) == Size)) && |
| "Size member of DSNode doesn't match the type structure!"); |
| assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); |
| |
| if (Offset == 0 && NewTy == Ty.Ty) |
| return false; // This should be a common case, handle it efficiently |
| |
| // Return true immediately if the node is completely folded. |
| if (isNodeCompletelyFolded()) return true; |
| |
| // Figure out how big the new type we're merging in is... |
| unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0; |
| |
| // Otherwise check to see if we can fold this type into the current node. If |
| // we can't, we fold the node completely, if we can, we potentially update our |
| // internal state. |
| // |
| if (Ty.Ty == Type::VoidTy) { |
| // If this is the first type that this node has seen, just accept it without |
| // question.... |
| assert(Offset == 0 && "Cannot have an offset into a void node!"); |
| assert(Ty.isArray == false && "This shouldn't happen!"); |
| Ty.Ty = NewTy; |
| Size = NewTySize; |
| |
| // Calculate the number of outgoing links from this node. |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| return false; |
| } |
| |
| // Handle node expansion case here... |
| if (Offset+NewTySize > Size) { |
| // It is illegal to grow this node if we have treated it as an array of |
| // objects... |
| if (Ty.isArray) { |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| if (Offset) { // We could handle this case, but we don't for now... |
| DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into " |
| << "offset != 0: Collapsing!\n"); |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| // Okay, the situation is nice and simple, we are trying to merge a type in |
| // at offset 0 that is bigger than our current type. Implement this by |
| // switching to the new type and then merge in the smaller one, which should |
| // hit the other code path here. If the other code path decides it's not |
| // ok, it will collapse the node as appropriate. |
| // |
| const Type *OldTy = Ty.Ty; |
| Ty.Ty = NewTy; |
| Size = NewTySize; |
| |
| // Must grow links to be the appropriate size... |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| |
| // Merge in the old type now... which is guaranteed to be smaller than the |
| // "current" type. |
| return mergeTypeInfo(OldTy, 0); |
| } |
| |
| assert(Offset <= Size && |
| "Cannot merge something into a part of our type that doesn't exist!"); |
| |
| // Find the section of Ty.Ty that NewTy overlaps with... first we find the |
| // type that starts at offset Offset. |
| // |
| unsigned O = 0; |
| const Type *SubType = Ty.Ty; |
| while (O < Offset) { |
| assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); |
| |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| |
| unsigned i = 0, e = SL.MemberOffsets.size(); |
| for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i) |
| /* empty */; |
| |
| // The offset we are looking for must be in the i'th element... |
| SubType = STy->getElementTypes()[i]; |
| O += SL.MemberOffsets[i]; |
| break; |
| } |
| case Type::ArrayTyID: { |
| SubType = cast<ArrayType>(SubType)->getElementType(); |
| unsigned ElSize = TD.getTypeSize(SubType); |
| unsigned Remainder = (Offset-O) % ElSize; |
| O = Offset-Remainder; |
| break; |
| } |
| default: |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| assert(O == Offset && "Could not achieve the correct offset!"); |
| |
| // If we found our type exactly, early exit |
| if (SubType == NewTy) return false; |
| |
| // Okay, so we found the leader type at the offset requested. Search the list |
| // of types that starts at this offset. If SubType is currently an array or |
| // structure, the type desired may actually be the first element of the |
| // composite type... |
| // |
| unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0; |
| while (SubType != NewTy) { |
| const Type *NextSubType = 0; |
| unsigned NextSubTypeSize; |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: |
| NextSubType = cast<StructType>(SubType)->getElementTypes()[0]; |
| NextSubTypeSize = TD.getTypeSize(SubType); |
| break; |
| case Type::ArrayTyID: |
| NextSubType = cast<ArrayType>(SubType)->getElementType(); |
| NextSubTypeSize = TD.getTypeSize(SubType); |
| break; |
| default: ; |
| // fall out |
| } |
| |
| if (NextSubType == 0) |
| break; // In the default case, break out of the loop |
| |
| if (NextSubTypeSize < NewTySize) |
| break; // Don't allow shrinking to a smaller type than NewTySize |
| SubType = NextSubType; |
| SubTypeSize = NextSubTypeSize; |
| } |
| |
| // If we found the type exactly, return it... |
| if (SubType == NewTy) |
| return false; |
| |
| // Check to see if we have a compatible, but different type... |
| if (NewTySize == SubTypeSize) { |
| // Check to see if this type is obviously convertable... int -> uint f.e. |
| if (NewTy->isLosslesslyConvertableTo(SubType)) |
| return false; |
| |
| // Check to see if we have a pointer & integer mismatch going on here, |
| // loading a pointer as a long, for example. |
| // |
| if (SubType->isInteger() && isa<PointerType>(NewTy) || |
| NewTy->isInteger() && isa<PointerType>(SubType)) |
| return false; |
| |
| } |
| |
| |
| DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty.Ty |
| << "\n due to:" << NewTy << " @ " << Offset << "!\n" |
| << "SubType: " << SubType << "\n\n"); |
| |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| |
| |
| // addEdgeTo - Add an edge from the current node to the specified node. This |
| // can cause merging of nodes in the graph. |
| // |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { |
| if (NH.getNode() == 0) return; // Nothing to do |
| |
| DSNodeHandle &ExistingEdge = getLink(Offset); |
| if (ExistingEdge.getNode()) { |
| // Merge the two nodes... |
| ExistingEdge.mergeWith(NH); |
| } else { // No merging to perform... |
| setLink(Offset, NH); // Just force a link in there... |
| } |
| } |
| |
| |
| // MergeSortedVectors - Efficiently merge a vector into another vector where |
| // duplicates are not allowed and both are sorted. This assumes that 'T's are |
| // efficiently copyable and have sane comparison semantics. |
| // |
| template<typename T> |
| void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) { |
| // By far, the most common cases will be the simple ones. In these cases, |
| // avoid having to allocate a temporary vector... |
| // |
| if (Src.empty()) { // Nothing to merge in... |
| return; |
| } else if (Dest.empty()) { // Just copy the result in... |
| Dest = Src; |
| } else if (Src.size() == 1) { // Insert a single element... |
| const T &V = Src[0]; |
| typename vector<T>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), V); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| } else if (Dest.size() == 1) { |
| T Tmp = Dest[0]; // Save value in temporary... |
| Dest = Src; // Copy over list... |
| typename vector<T>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(),Tmp); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| |
| } else { |
| // Make a copy to the side of Dest... |
| vector<T> Old(Dest); |
| |
| // Make space for all of the type entries now... |
| Dest.resize(Dest.size()+Src.size()); |
| |
| // Merge the two sorted ranges together... into Dest. |
| std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); |
| |
| // Now erase any duplicate entries that may have accumulated into the |
| // vectors (because they were in both of the input sets) |
| Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); |
| } |
| } |
| |
| |
| // mergeWith - Merge this node and the specified node, moving all links to and |
| // from the argument node into the current node, deleting the node argument. |
| // Offset indicates what offset the specified node is to be merged into the |
| // current node. |
| // |
| // The specified node may be a null pointer (in which case, nothing happens). |
| // |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { |
| DSNode *N = NH.getNode(); |
| if (N == 0 || (N == this && NH.getOffset() == Offset)) |
| return; // Noop |
| |
| if (N == this) { |
| // We cannot merge two pieces of the same node together, collapse the node |
| // completely. |
| DEBUG(std::cerr << "Attempting to merge two chunks of" |
| << " the same node together!\n"); |
| foldNodeCompletely(); |
| return; |
| } |
| |
| // Merge the type entries of the two nodes together... |
| if (N->Ty.Ty != Type::VoidTy) |
| mergeTypeInfo(N->Ty.Ty, Offset); |
| |
| // If we are merging a node with a completely folded node, then both nodes are |
| // now completely folded. |
| // |
| if (isNodeCompletelyFolded()) { |
| if (!N->isNodeCompletelyFolded()) |
| N->foldNodeCompletely(); |
| } else if (N->isNodeCompletelyFolded()) { |
| foldNodeCompletely(); |
| Offset = 0; |
| } |
| N = NH.getNode(); |
| |
| if (this == N || N == 0) return; |
| |
| // If both nodes are not at offset 0, make sure that we are merging the node |
| // at an later offset into the node with the zero offset. |
| // |
| if (Offset > NH.getOffset()) { |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { |
| // If the offsets are the same, merge the smaller node into the bigger node |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } |
| |
| #if 0 |
| std::cerr << "\n\nMerging:\n"; |
| N->print(std::cerr, 0); |
| std::cerr << " and:\n"; |
| print(std::cerr, 0); |
| #endif |
| |
| // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with |
| // respect to NH.Offset) is now zero. |
| // |
| unsigned NOffset = NH.getOffset()-Offset; |
| unsigned NSize = N->getSize(); |
| |
| // Remove all edges pointing at N, causing them to point to 'this' instead. |
| // Make sure to adjust their offset, not just the node pointer. |
| // |
| while (!N->Referrers.empty()) { |
| DSNodeHandle &Ref = *N->Referrers.back(); |
| Ref = DSNodeHandle(this, NOffset+Ref.getOffset()); |
| } |
| |
| // Make all of the outgoing links of N now be outgoing links of this. This |
| // can cause recursive merging! |
| // |
| for (unsigned i = 0; i < NSize; i += DS::PointerSize) { |
| DSNodeHandle &Link = N->getLink(i); |
| if (Link.getNode()) { |
| addEdgeTo((i+NOffset) % getSize(), Link); |
| |
| // It's possible that after adding the new edge that some recursive |
| // merging just occured, causing THIS node to get merged into oblivion. |
| // If that happens, we must not try to merge any more edges into it! |
| // |
| if (Size == 0) return; |
| } |
| } |
| |
| // Now that there are no outgoing edges, all of the Links are dead. |
| N->Links.clear(); |
| N->Size = 0; |
| N->Ty.Ty = Type::VoidTy; |
| N->Ty.isArray = false; |
| |
| // Merge the node types |
| NodeType |= N->NodeType; |
| N->NodeType = DEAD; // N is now a dead node. |
| |
| // Merge the globals list... |
| if (!N->Globals.empty()) { |
| MergeSortedVectors(Globals, N->Globals); |
| |
| // Delete the globals from the old node... |
| N->Globals.clear(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSCallSite Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h |
| Function &DSCallSite::getCaller() const { |
| return *Inst->getParent()->getParent(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) { |
| std::map<const DSNode*, DSNodeHandle> NodeMap; |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::DSGraph(const DSGraph &G, |
| std::map<const DSNode*, DSNodeHandle> &NodeMap) |
| : Func(G.Func) { |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| ScalarMap.clear(); |
| RetNode.setNode(0); |
| |
| #ifndef NDEBUG |
| // Drop all intra-node references, so that assertions don't fail... |
| std::for_each(Nodes.begin(), Nodes.end(), |
| std::mem_fun(&DSNode::dropAllReferences)); |
| #endif |
| |
| // Delete all of the nodes themselves... |
| std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| /// remapLinks - Change all of the Links in the current node according to the |
| /// specified mapping. |
| /// |
| void DSNode::remapLinks(std::map<const DSNode*, DSNodeHandle> &OldNodeMap) { |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) { |
| DSNodeHandle &H = OldNodeMap[Links[i].getNode()]; |
| Links[i].setNode(H.getNode()); |
| Links[i].setOffset(Links[i].getOffset()+H.getOffset()); |
| } |
| } |
| |
| |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the |
| // Return node of the graph. The translated ScalarMap for the old function is |
| // filled into the OldValMap member. If StripAllocas is set to true, Alloca |
| // markers are removed from the graph, as the graph is being cloned into a |
| // calling function's graph. |
| // |
| DSNodeHandle DSGraph::cloneInto(const DSGraph &G, |
| std::map<Value*, DSNodeHandle> &OldValMap, |
| std::map<const DSNode*, DSNodeHandle> &OldNodeMap, |
| AllocaBit StripAllocas) { |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| |
| unsigned FN = Nodes.size(); // First new node... |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i]; |
| DSNode *New = new DSNode(*Old); |
| Nodes.push_back(New); |
| OldNodeMap[Old] = New; |
| } |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->remapLinks(OldNodeMap); |
| |
| // Remove alloca markers as specified |
| if (StripAllocas == StripAllocaBit) |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= ~DSNode::AllocaNode; |
| |
| // Copy the value map... and merge all of the global nodes... |
| for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(), |
| E = G.ScalarMap.end(); I != E; ++I) { |
| DSNodeHandle &H = OldValMap[I->first]; |
| DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; |
| H.setNode(MappedNode.getNode()); |
| H.setOffset(I->second.getOffset()+MappedNode.getOffset()); |
| |
| if (isa<GlobalValue>(I->first)) { // Is this a global? |
| std::map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first); |
| if (GVI != ScalarMap.end()) { // Is the global value in this fn already? |
| GVI->second.mergeWith(H); |
| } else { |
| ScalarMap[I->first] = H; // Add global pointer to this graph |
| } |
| } |
| } |
| |
| // Copy the function calls list... |
| unsigned FC = FunctionCalls.size(); // FirstCall |
| FunctionCalls.reserve(FC+G.FunctionCalls.size()); |
| for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i) |
| FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap)); |
| |
| // Return the returned node pointer... |
| DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()]; |
| return DSNodeHandle(MappedRet.getNode(), |
| MappedRet.getOffset()+G.RetNode.getOffset()); |
| } |
| |
| /// mergeInGraph - The method is used for merging graphs together. If the |
| /// argument graph is not *this, it makes a clone of the specified graph, then |
| /// merges the nodes specified in the call site with the formal arguments in the |
| /// graph. |
| /// |
| void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph, |
| AllocaBit StripAllocas) { |
| std::map<Value*, DSNodeHandle> OldValMap; |
| DSNodeHandle RetVal; |
| std::map<Value*, DSNodeHandle> *ScalarMap = &OldValMap; |
| |
| // If this is not a recursive call, clone the graph into this graph... |
| if (&Graph != this) { |
| // Clone the callee's graph into the current graph, keeping |
| // track of where scalars in the old graph _used_ to point, |
| // and of the new nodes matching nodes of the old graph. |
| std::map<const DSNode*, DSNodeHandle> OldNodeMap; |
| |
| // The clone call may invalidate any of the vectors in the data |
| // structure graph. Strip locals and don't copy the list of callers |
| RetVal = cloneInto(Graph, OldValMap, OldNodeMap, StripAllocas); |
| ScalarMap = &OldValMap; |
| } else { |
| RetVal = getRetNode(); |
| ScalarMap = &getScalarMap(); |
| } |
| |
| // Merge the return value with the return value of the context... |
| RetVal.mergeWith(CS.getRetVal()); |
| |
| // Resolve all of the function arguments... |
| Function &F = Graph.getFunction(); |
| Function::aiterator AI = F.abegin(); |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) { |
| // Advance the argument iterator to the first pointer argument... |
| while (!isPointerType(AI->getType())) { |
| ++AI; |
| #ifndef NDEBUG |
| if (AI == F.aend()) |
| std::cerr << "Bad call to Function: " << F.getName() << "\n"; |
| #endif |
| assert(AI != F.aend() && "# Args provided is not # Args required!"); |
| } |
| |
| // Add the link from the argument scalar to the provided value |
| DSNodeHandle &NH = (*ScalarMap)[AI]; |
| assert(NH.getNode() && "Pointer argument without scalarmap entry?"); |
| NH.mergeWith(CS.getPtrArg(i)); |
| } |
| } |
| |
| #if 0 |
| // cloneGlobalInto - Clone the given global node and all its target links |
| // (and all their llinks, recursively). |
| // |
| DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) { |
| if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; |
| |
| // If a clone has already been created for GNode, return it. |
| DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]]; |
| if (ValMapEntry != 0) |
| return ValMapEntry; |
| |
| // Clone the node and update the ValMap. |
| DSNode* NewNode = new DSNode(*GNode); |
| ValMapEntry = NewNode; // j=0 case of loop below! |
| Nodes.push_back(NewNode); |
| for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph. |
| for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); |
| |
| return NewNode; |
| } |
| #endif |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; |
| |
| // Actually mark the node |
| N->NodeType |= DSNode::Incomplete; |
| |
| // Recusively process children... |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| markIncompleteNode(DSN); |
| } |
| |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes(bool markFormalArgs) { |
| // Mark any incoming arguments as incomplete... |
| if (markFormalArgs && Func) |
| for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) |
| if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) |
| markIncompleteNode(ScalarMap[I].getNode()); |
| |
| // Mark stuff passed into functions calls as being incomplete... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { |
| DSCallSite &Call = FunctionCalls[i]; |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Call.getRetVal().getNode()); |
| |
| // All objects pointed to by function arguments are incomplete though! |
| for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) |
| markIncompleteNode(Call.getPtrArg(i).getNode()); |
| } |
| |
| // Mark all of the nodes pointed to by global nodes as incomplete... |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & DSNode::GlobalNode) { |
| DSNode *N = Nodes[i]; |
| // FIXME: Make more efficient by looking over Links directly |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| markIncompleteNode(DSN); |
| } |
| } |
| |
| // removeRefsToGlobal - Helper function that removes globals from the |
| // ScalarMap so that the referrer count will go down to zero. |
| static void removeRefsToGlobal(DSNode* N, |
| std::map<Value*, DSNodeHandle> &ScalarMap) { |
| while (!N->getGlobals().empty()) { |
| GlobalValue *GV = N->getGlobals().back(); |
| N->getGlobals().pop_back(); |
| ScalarMap.erase(GV); |
| } |
| } |
| |
| |
| // isNodeDead - This method checks to see if a node is dead, and if it isn't, it |
| // checks to see if there are simple transformations that it can do to make it |
| // dead. |
| // |
| bool DSGraph::isNodeDead(DSNode *N) { |
| // Is it a trivially dead shadow node... |
| if (N->getReferrers().empty() && |
| (N->NodeType == 0 || N->NodeType == DSNode::DEAD)) |
| return true; |
| |
| // Is it a function node or some other trivially unused global? |
| if ((N->NodeType & ~DSNode::GlobalNode) == 0 && N->getSize() == 0 && |
| N->getReferrers().size() == N->getGlobals().size()) { |
| |
| // Remove the globals from the ScalarMap, so that the referrer count will go |
| // down to zero. |
| removeRefsToGlobal(N, ScalarMap); |
| assert(N->getReferrers().empty() && "Referrers should all be gone now!"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void removeIdenticalCalls(vector<DSCallSite> &Calls, |
| const std::string &where) { |
| // Remove trivially identical function calls |
| unsigned NumFns = Calls.size(); |
| std::sort(Calls.begin(), Calls.end()); |
| Calls.erase(std::unique(Calls.begin(), Calls.end()), |
| Calls.end()); |
| |
| // Track the number of call nodes merged away... |
| NumCallNodesMerged += NumFns-Calls.size(); |
| |
| DEBUG(if (NumFns != Calls.size()) |
| std::cerr << "Merged " << (NumFns-Calls.size()) |
| << " call nodes in " << where << "\n";); |
| } |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) { |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode)) |
| if (isNodeDead(Nodes[i])) { // This node is dead! |
| delete Nodes[i]; // Free memory... |
| Nodes.erase(Nodes.begin()+i--); // Remove from node list... |
| } |
| |
| removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : ""); |
| } |
| |
| |
| // markAlive - Simple graph walker that recursively traverses the graph, marking |
| // stuff to be alive. |
| // |
| static void markAlive(DSNode *N, std::set<DSNode*> &Alive) { |
| if (N == 0) return; |
| |
| Alive.insert(N); |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| if (!Alive.count(DSN)) |
| markAlive(DSN, Alive); |
| } |
| |
| static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive, |
| std::set<DSNode*> &Visiting) { |
| if (N == 0) return false; |
| |
| if (Visiting.count(N)) return false; // terminate recursion on a cycle |
| Visiting.insert(N); |
| |
| // If any immediate successor is alive, N is alive |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| if (Alive.count(DSN)) { |
| Visiting.erase(N); |
| return true; |
| } |
| |
| // Else if any successor reaches a live node, N is alive |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| if (checkGlobalAlive(DSN, Alive, Visiting)) { |
| Visiting.erase(N); return true; |
| } |
| |
| Visiting.erase(N); |
| return false; |
| } |
| |
| |
| // markGlobalsIteration - Recursive helper function for markGlobalsAlive(). |
| // This would be unnecessary if function calls were real nodes! In that case, |
| // the simple iterative loop in the first few lines below suffice. |
| // |
| static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes, |
| vector<DSCallSite> &Calls, |
| std::set<DSNode*> &Alive, |
| bool FilterCalls) { |
| |
| // Iterate, marking globals or cast nodes alive until no new live nodes |
| // are added to Alive |
| std::set<DSNode*> Visiting; // Used to identify cycles |
| std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); |
| for (size_t liveCount = 0; liveCount < Alive.size(); ) { |
| liveCount = Alive.size(); |
| for ( ; I != E; ++I) |
| if (Alive.count(*I) == 0) { |
| Visiting.clear(); |
| if (checkGlobalAlive(*I, Alive, Visiting)) |
| markAlive(*I, Alive); |
| } |
| } |
| |
| // Find function calls with some dead and some live nodes. |
| // Since all call nodes must be live if any one is live, we have to mark |
| // all nodes of the call as live and continue the iteration (via recursion). |
| if (FilterCalls) { |
| bool Recurse = false; |
| for (unsigned i = 0, ei = Calls.size(); i < ei; ++i) { |
| bool CallIsDead = true, CallHasDeadArg = false; |
| DSCallSite &CS = Calls[i]; |
| for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) |
| if (DSNode *N = CS.getPtrArg(j).getNode()) { |
| bool ArgIsDead = !Alive.count(N); |
| CallHasDeadArg |= ArgIsDead; |
| CallIsDead &= ArgIsDead; |
| } |
| |
| if (DSNode *N = CS.getRetVal().getNode()) { |
| bool RetIsDead = !Alive.count(N); |
| CallHasDeadArg |= RetIsDead; |
| CallIsDead &= RetIsDead; |
| } |
| |
| DSNode *N = CS.getCallee().getNode(); |
| bool FnIsDead = !Alive.count(N); |
| CallHasDeadArg |= FnIsDead; |
| CallIsDead &= FnIsDead; |
| |
| if (!CallIsDead && CallHasDeadArg) { |
| // Some node in this call is live and another is dead. |
| // Mark all nodes of call as live and iterate once more. |
| Recurse = true; |
| for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) |
| markAlive(CS.getPtrArg(j).getNode(), Alive); |
| markAlive(CS.getRetVal().getNode(), Alive); |
| markAlive(CS.getCallee().getNode(), Alive); |
| } |
| } |
| if (Recurse) |
| markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); |
| } |
| } |
| |
| |
| // markGlobalsAlive - Mark global nodes and cast nodes alive if they |
| // can reach any other live node. Since this can produce new live nodes, |
| // we use a simple iterative algorithm. |
| // |
| static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive, |
| bool FilterCalls) { |
| // Add global and cast nodes to a set so we don't walk all nodes every time |
| std::set<DSNode*> GlobalNodes; |
| for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) |
| if (G.getNodes()[i]->NodeType & DSNode::GlobalNode) |
| GlobalNodes.insert(G.getNodes()[i]); |
| |
| // Add all call nodes to the same set |
| vector<DSCallSite> &Calls = G.getFunctionCalls(); |
| if (FilterCalls) { |
| for (unsigned i = 0, e = Calls.size(); i != e; ++i) { |
| for (unsigned j = 0, e = Calls[i].getNumPtrArgs(); j != e; ++j) |
| if (DSNode *N = Calls[i].getPtrArg(j).getNode()) |
| GlobalNodes.insert(N); |
| if (DSNode *N = Calls[i].getRetVal().getNode()) |
| GlobalNodes.insert(N); |
| if (DSNode *N = Calls[i].getCallee().getNode()) |
| GlobalNodes.insert(N); |
| } |
| } |
| |
| // Iterate and recurse until no new live node are discovered. |
| // This would be a simple iterative loop if function calls were real nodes! |
| markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); |
| |
| // Free up references to dead globals from the ScalarMap |
| std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); |
| for( ; I != E; ++I) |
| if (Alive.count(*I) == 0) |
| removeRefsToGlobal(*I, G.getScalarMap()); |
| |
| // Delete dead function calls |
| if (FilterCalls) |
| for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { |
| bool CallIsDead = true; |
| for (unsigned j = 0, ej = Calls[i].getNumPtrArgs(); |
| CallIsDead && j != ej; ++j) |
| CallIsDead = Alive.count(Calls[i].getPtrArg(j).getNode()) == 0; |
| if (CallIsDead) |
| Calls.erase(Calls.begin() + i); // remove the call entirely |
| } |
| } |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) { |
| assert((!KeepAllGlobals || KeepCalls) && // FIXME: This should be an enum! |
| "KeepAllGlobals without KeepCalls is meaningless"); |
| |
| // Reduce the amount of work we have to do... |
| removeTriviallyDeadNodes(KeepAllGlobals); |
| |
| // FIXME: Merge nontrivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| std::set<DSNode*> Alive; |
| |
| // If KeepCalls, mark all nodes reachable by call nodes as alive... |
| if (KeepCalls) |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { |
| for (unsigned j = 0, e = FunctionCalls[i].getNumPtrArgs(); j != e; ++j) |
| markAlive(FunctionCalls[i].getPtrArg(j).getNode(), Alive); |
| markAlive(FunctionCalls[i].getRetVal().getNode(), Alive); |
| markAlive(FunctionCalls[i].getCallee().getNode(), Alive); |
| } |
| |
| // Mark all nodes reachable by scalar nodes as alive... |
| for (std::map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) |
| markAlive(I->second.getNode(), Alive); |
| |
| // The return value is alive as well... |
| markAlive(RetNode.getNode(), Alive); |
| |
| // Mark all globals or cast nodes that can reach a live node as alive. |
| // This also marks all nodes reachable from such nodes as alive. |
| // Of course, if KeepAllGlobals is specified, they would be live already. |
| |
| if (!KeepAllGlobals) |
| markGlobalsAlive(*this, Alive, !KeepCalls); |
| |
| // Loop over all unreachable nodes, dropping their references... |
| vector<DSNode*> DeadNodes; |
| DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!Alive.count(Nodes[i])) { |
| DSNode *N = Nodes[i]; |
| Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. |
| DeadNodes.push_back(N); // Add node to our list of dead nodes |
| N->dropAllReferences(); // Drop all outgoing edges |
| } |
| |
| // Delete all dead nodes... |
| std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>); |
| } |
| |
| |
| |
| // maskNodeTypes - Apply a mask to all of the node types in the graph. This |
| // is useful for clearing out markers like Scalar or Incomplete. |
| // |
| void DSGraph::maskNodeTypes(unsigned char Mask) { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= Mask; |
| } |
| |
| |
| #if 0 |
| //===----------------------------------------------------------------------===// |
| // GlobalDSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) { |
| } |
| |
| GlobalDSGraph::~GlobalDSGraph() { |
| assert(Referrers.size() == 0 && |
| "Deleting global graph while references from other graphs exist"); |
| } |
| |
| void GlobalDSGraph::addReference(const DSGraph* referrer) { |
| if (referrer != this) |
| Referrers.insert(referrer); |
| } |
| |
| void GlobalDSGraph::removeReference(const DSGraph* referrer) { |
| if (referrer != this) { |
| assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!"); |
| Referrers.erase(referrer); |
| if (Referrers.size() == 0) |
| delete this; |
| } |
| } |
| |
| #if 0 |
| // Bits used in the next function |
| static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode; |
| |
| |
| // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally |
| // visible target links (and recursively their such links) into this graph. |
| // NodeCache maps the node being cloned to its clone in the Globals graph, |
| // in order to track cycles. |
| // GlobalsAreFinal is a flag that says whether it is safe to assume that |
| // an existing global node is complete. This is important to avoid |
| // reinserting all globals when inserting Calls to functions. |
| // This is a helper function for cloneGlobals and cloneCalls. |
| // |
| DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, |
| std::map<const DSNode*, DSNode*> &NodeCache, |
| bool GlobalsAreFinal) { |
| if (OldNode == 0) return 0; |
| |
| // The caller should check this is an external node. Just more efficient... |
| assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); |
| |
| // If a clone has already been created for OldNode, return it. |
| DSNode*& CacheEntry = NodeCache[OldNode]; |
| if (CacheEntry != 0) |
| return CacheEntry; |
| |
| // The result value... |
| DSNode* NewNode = 0; |
| |
| // If nodes already exist for any of the globals of OldNode, |
| // merge all such nodes together since they are merged in OldNode. |
| // If ValueCacheIsFinal==true, look for an existing node that has |
| // an identical list of globals and return it if it exists. |
| // |
| for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j) |
| if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) { |
| if (NewNode == 0) { |
| NewNode = PrevNode; // first existing node found |
| if (GlobalsAreFinal && j == 0) |
| if (OldNode->getGlobals() == PrevNode->getGlobals()) { |
| CacheEntry = NewNode; |
| return NewNode; |
| } |
| } |
| else if (NewNode != PrevNode) { // found another, different from prev |
| // update ValMap *before* merging PrevNode into NewNode |
| for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) |
| ScalarMap[PrevNode->getGlobals()[k]] = NewNode; |
| NewNode->mergeWith(PrevNode); |
| } |
| } else if (NewNode != 0) { |
| ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node |
| } |
| |
| // If no existing node was found, clone the node and update the ValMap. |
| if (NewNode == 0) { |
| NewNode = new DSNode(*OldNode); |
| Nodes.push_back(NewNode); |
| for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, 0); |
| for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| } |
| else |
| NewNode->NodeType |= OldNode->NodeType; // Markers may be different! |
| |
| // Add the entry to NodeCache |
| CacheEntry = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph, |
| // but only for links to external nodes. Set other links to NULL. |
| for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { |
| DSNode* OldTarget = OldNode->getLink(j); |
| if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { |
| DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); |
| if (NewNode->getLink(j)) |
| NewNode->getLink(j)->mergeWith(NewLink); |
| else |
| NewNode->setLink(j, NewLink); |
| } |
| } |
| |
| // Remove all local markers |
| NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); |
| |
| return NewNode; |
| } |
| |
| |
| // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally |
| // visible target links (and recursively their such links) into this graph. |
| // |
| void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { |
| std::map<const DSNode*, DSNode*> NodeCache; |
| #if 0 |
| for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) |
| if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) |
| GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); |
| if (CloneCalls) |
| GlobalsGraph->cloneCalls(Graph); |
| |
| GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); |
| #endif |
| } |
| |
| |
| // GlobalDSGraph::cloneCalls - Clone function calls and their visible target |
| // links (and recursively their such links) into this graph. |
| // |
| void GlobalDSGraph::cloneCalls(DSGraph& Graph) { |
| std::map<const DSNode*, DSNode*> NodeCache; |
| vector<DSCallSite >& FromCalls =Graph.FunctionCalls; |
| |
| FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); |
| |
| for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { |
| DSCallSite& callCopy = FunctionCalls.back(); |
| callCopy.reserve(FromCalls[i].size()); |
| for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) |
| callCopy.push_back |
| ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) |
| ? cloneNodeInto(FromCalls[i][j], NodeCache, true) |
| : 0); |
| } |
| |
| // remove trivially identical function calls |
| removeIdenticalCalls(FunctionCalls, "Globals Graph"); |
| } |
| #endif |
| |
| #endif |