Add a class APInt to represent arbitrary precision constant integral values.
It is a functional replacement for common case integer type like "unsigned",
"uint64_t", but also allows non-byte-width integer type and large integer
value types such as 3-bits, 15-bits, or more than 64-bits of precision. For
more details, see pr1043.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33951 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
new file mode 100644
index 0000000..1b2edef
--- /dev/null
+++ b/lib/Support/APInt.cpp
@@ -0,0 +1,1113 @@
+//===-- APInt.cpp - Implement APInt class ---------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Sheng Zhou and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision integral
+// constant values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Support/MathExtras.h"
+#include <strings.h>
+#include <iostream>
+#include <sstream>
+#include <iomanip>
+#include <cstdlib>
+using namespace llvm;
+
+APInt::APInt(uint64_t val, unsigned numBits, bool sign)
+  : bitsnum(numBits), isSigned(sign) {
+  assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+  assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+  if (isSingleWord()) 
+    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum));
+  else {
+    // Memory allocation and check if successful.
+    assert((pVal = new uint64_t[numWords()]) && 
+            "APInt memory allocation fails!");
+    bzero(pVal, numWords() * 8);
+    pVal[0] = val;
+  }
+}
+
+APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign)
+  : bitsnum(numBits), isSigned(sign) {
+  assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
+  assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
+  assert(bigVal && "Null pointer detected!");
+  if (isSingleWord())
+    VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum));
+  else {
+    // Memory allocation and check if successful.
+    assert((pVal = new uint64_t[numWords()]) && 
+           "APInt memory allocation fails!");
+    // Calculate the actual length of bigVal[].
+    unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
+    unsigned maxN = std::max<unsigned>(n, numWords());
+    unsigned minN = std::min<unsigned>(n, numWords());
+    memcpy(pVal, bigVal, (minN - 1) * 8);
+    pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - bitsnum % 64));
+    if (maxN == numWords())
+      bzero(pVal+n, (numWords() - n) * 8);
+  }
+}
+
+APInt::APInt(std::string& Val, uint8_t radix, bool sign)
+  : isSigned(sign) {
+  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+         "Radix should be 2, 8, 10, or 16!");
+  assert(!Val.empty() && "String empty?");
+  unsigned slen = Val.size();
+  unsigned size = 0;
+  // If the radix is a power of 2, read the input
+  // from most significant to least significant.
+  if ((radix & (radix - 1)) == 0) {
+    unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
+    uint64_t resDigit = 0;
+    bitsnum = slen * bits_per_digit;
+    if (numWords() > 1)
+      assert((pVal = new uint64_t[numWords()]) && 
+             "APInt memory allocation fails!");
+    for (int i = slen - 1; i >= 0; --i) {
+      uint64_t digit = Val[i] - 48;             // '0' == 48.
+      resDigit |= digit << nextBitPos;
+      nextBitPos += bits_per_digit;
+      if (nextBitPos >= 64) {
+        if (isSingleWord()) {
+          VAL = resDigit;
+           break;
+        }
+        pVal[size++] = resDigit;
+        nextBitPos -= 64;
+        resDigit = digit >> (bits_per_digit - nextBitPos);
+      }
+    }
+    if (!isSingleWord() && size <= numWords()) 
+      pVal[size] = resDigit;
+  } else {   // General case.  The radix is not a power of 2.
+    // For 10-radix, the max value of 64-bit integer is 18446744073709551615,
+    // and its digits number is 14.
+    const unsigned chars_per_word = 20;
+    if (slen < chars_per_word || 
+        (Val <= "18446744073709551615" && 
+         slen == chars_per_word)) { // In case Val <= 2^64 - 1
+      bitsnum = 64;
+      VAL = strtoull(Val.c_str(), 0, 10);
+    } else { // In case Val > 2^64 - 1
+      bitsnum = (slen / chars_per_word + 1) * 64;
+      assert((pVal = new uint64_t[numWords()]) && 
+             "APInt memory allocation fails!");
+      bzero(pVal, numWords() * 8);
+      unsigned str_pos = 0;
+      while (str_pos < slen) {
+        unsigned chunk = slen - str_pos;
+        if (chunk > chars_per_word - 1)
+          chunk = chars_per_word - 1;
+        uint64_t resDigit = Val[str_pos++] - 48;  // 48 == '0'.
+        uint64_t big_base = radix;
+        while (--chunk > 0) {
+          resDigit = resDigit * radix + Val[str_pos++] - 48;
+          big_base *= radix;
+        }
+       
+        uint64_t carry;
+        if (!size)
+          carry = resDigit;
+        else {
+          carry = mul_1(pVal, pVal, size, big_base);
+          carry += add_1(pVal, pVal, size, resDigit);
+        }
+        
+        if (carry) pVal[size++] = carry;
+      }
+    }
+  }
+}
+
+APInt::APInt(const APInt& APIVal)
+  : bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) {
+  if (isSingleWord()) VAL = APIVal.VAL;
+  else {
+    // Memory allocation and check if successful.
+    assert((pVal = new uint64_t[numWords()]) && 
+           "APInt memory allocation fails!");
+    memcpy(pVal, APIVal.pVal, numWords() * 8);
+  }
+}
+
+APInt::~APInt() {
+  if (!isSingleWord() && pVal) delete[] pVal;
+}
+
+/// whichByte - This function returns the word position 
+/// for the specified bit position.
+inline unsigned APInt::whichByte(unsigned bitPosition)
+{ return (bitPosition % APINT_BITS_PER_WORD) / 8; }
+
+/// getWord - returns the corresponding word for the specified bit position.
+inline uint64_t& APInt::getWord(unsigned bitPosition)
+{ return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; }
+
+/// getWord - returns the corresponding word for the specified bit position.
+/// This is a constant version.
+inline uint64_t APInt::getWord(unsigned bitPosition) const
+{ return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; }
+
+/// mul_1 - This function multiplies the integer array x[] by a integer y and 
+/// returns the carry.
+uint64_t APInt::mul_1(uint64_t dest[], uint64_t x[],
+                     unsigned len, uint64_t y) {
+  // Split y into high 32-bit part and low 32-bit part.
+  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
+  uint64_t carry = 0, lx, hx;
+  for (unsigned i = 0; i < len; ++i) {
+    lx = x[i] & 0xffffffffULL;
+    hx = x[i] >> 32;
+    // hasCarry - A flag to indicate if has carry.
+    // hasCarry == 0, no carry
+    // hasCarry == 1, has carry
+    // hasCarry == 2, no carry and the calculation result == 0.
+    uint8_t hasCarry = 0;
+    dest[i] = carry + lx * ly;
+    // Determine if the add above introduces carry.
+    hasCarry = (dest[i] < carry) ? 1 : 0;
+    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
+    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 
+    // (2^32 - 1) + 2^32 = 2^64.
+    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+    carry += (lx * hy) & 0xffffffffULL;
+    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
+    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 
+            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
+  }
+
+  return carry;
+}
+
+/// mul - This function multiplies integer array x[] by integer array y[] and
+/// stores the result into integer array dest[].
+/// Note the array dest[]'s size should no less than xlen + ylen.
+void APInt::mul(uint64_t dest[], uint64_t x[], unsigned xlen,
+               uint64_t y[], unsigned ylen) {
+  dest[xlen] = mul_1(dest, x, xlen, y[0]);
+
+  for (unsigned i = 1; i < ylen; ++i) {
+    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
+    uint64_t carry = 0, lx, hx;
+    for (unsigned j = 0; j < xlen; ++j) {
+      lx = x[j] & 0xffffffffULL;
+      hx = x[j] >> 32;
+      // hasCarry - A flag to indicate if has carry.
+      // hasCarry == 0, no carry
+      // hasCarry == 1, has carry
+      // hasCarry == 2, no carry and the calculation result == 0.
+      uint8_t hasCarry = 0;
+      uint64_t resul = carry + lx * ly;
+      hasCarry = (resul < carry) ? 1 : 0;
+      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
+      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+      carry += (lx * hy) & 0xffffffffULL;
+      resul = (carry << 32) | (resul & 0xffffffffULL);
+      dest[i+j] += resul;
+      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
+              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 
+              ((lx * hy) >> 32) + hx * hy;
+    }
+    dest[i+xlen] = carry;
+  }
+}
+
+/// add_1 - This function adds the integer array x[] by integer y and
+/// returns the carry.
+uint64_t APInt::add_1(uint64_t dest[], uint64_t x[],
+                      unsigned len, uint64_t y) {
+  uint64_t carry = y;
+
+  for (unsigned i = 0; i < len; ++i) {
+    dest[i] = carry + x[i];
+    carry = (dest[i] < carry) ? 1 : 0;
+  }
+  return carry;
+}
+
+/// add - This function adds the integer array x[] by integer array
+/// y[] and returns the carry.
+uint64_t APInt::add(uint64_t dest[], uint64_t x[],
+                    uint64_t y[], unsigned len) {
+  unsigned carry = 0;
+  
+  for (unsigned i = 0; i< len; ++i) {
+    carry += x[i];
+    dest[i] = carry + y[i];
+    carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
+  }
+  return carry;
+}
+
+/// sub_1 - This function subtracts the integer array x[] by
+/// integer y and returns the borrow-out carry.
+uint64_t APInt::sub_1(uint64_t x[], unsigned len, uint64_t y) {
+  uint64_t cy = y;
+
+  for (unsigned i = 0; i < len; ++i) {
+    uint64_t X = x[i];
+    x[i] -= cy;
+    if (cy > X) 
+      cy = 1;
+    else {
+      cy = 0;
+      break;
+    }
+  }
+
+  return cy;
+}
+
+/// sub - This function subtracts the integer array x[] by
+/// integer array y[], and returns the borrow-out carry.
+uint64_t APInt::sub(uint64_t dest[], uint64_t x[],
+                    uint64_t y[], unsigned len) {
+  // Carry indicator.
+  uint64_t cy = 0;
+  
+  for (unsigned i = 0; i < len; ++i) {
+    uint64_t Y = y[i], X = x[i];
+    Y += cy;
+
+    cy = Y < cy ? 1 : 0;
+    Y = X - Y;
+    cy += Y > X ? 1 : 0;
+    dest[i] = Y;
+  }
+  return cy;
+}
+
+/// UnitDiv - This function divides N by D, 
+/// and returns (remainder << 32) | quotient.
+/// Assumes (N >> 32) < D.
+uint64_t APInt::unitDiv(uint64_t N, unsigned D) {
+  uint64_t q, r;                   // q: quotient, r: remainder.
+  uint64_t a1 = N >> 32;           // a1: high 32-bit part of N.
+  uint64_t a0 = N & 0xffffffffL;   // a0: low 32-bit part of N
+  if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
+      q = N / D;
+      r = N % D;
+  }
+  else {
+    // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
+    uint64_t c = N - ((uint64_t) D << 31);
+    // Divide (c1*2^32 + c0) by d
+    q = c / D;
+    r = c % D;
+    // Add 2^31 to quotient 
+    q += 1 << 31;
+  }
+
+  return (r << 32) | (q & 0xFFFFFFFFl);
+}
+
+/// subMul - This function substracts x[len-1:0] * y from 
+/// dest[offset+len-1:offset], and returns the most significant 
+/// word of the product, minus the borrow-out from the subtraction.
+unsigned APInt::subMul(unsigned dest[], unsigned offset, 
+                        unsigned x[], unsigned len, unsigned y) {
+  uint64_t yl = (uint64_t) y & 0xffffffffL;
+  unsigned carry = 0;
+  unsigned j = 0;
+  do {
+    uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
+    unsigned prod_low = (unsigned) prod;
+    unsigned prod_high = (unsigned) (prod >> 32);
+    prod_low += carry;
+    carry = (prod_low < carry ? 1 : 0) + prod_high;
+    unsigned x_j = dest[offset+j];
+    prod_low = x_j - prod_low;
+    if (prod_low > x_j) ++carry;
+    dest[offset+j] = prod_low;
+  } while (++j < len);
+  return carry;
+}
+
+/// div - This is basically Knuth's formulation of the classical algorithm.
+/// Correspondance with Knuth's notation:
+/// Knuth's u[0:m+n] == zds[nx:0].
+/// Knuth's v[1:n] == y[ny-1:0]
+/// Knuth's n == ny.
+/// Knuth's m == nx-ny.
+/// Our nx == Knuth's m+n.
+/// Could be re-implemented using gmp's mpn_divrem:
+/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
+void APInt::div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
+  unsigned j = nx;
+  do {                          // loop over digits of quotient
+    // Knuth's j == our nx-j.
+    // Knuth's u[j:j+n] == our zds[j:j-ny].
+    unsigned qhat;  // treated as unsigned
+    if (zds[j] == y[ny-1]) qhat = -1U;  // 0xffffffff
+    else {
+      uint64_t w = (((uint64_t)(zds[j])) << 32) + 
+                   ((uint64_t)zds[j-1] & 0xffffffffL);
+      qhat = (unsigned) unitDiv(w, y[ny-1]);
+    }
+    if (qhat) {
+      unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
+      unsigned save = zds[j];
+      uint64_t num = ((uint64_t)save&0xffffffffL) - 
+                     ((uint64_t)borrow&0xffffffffL);
+      while (num) {
+        qhat--;
+        uint64_t carry = 0;
+        for (unsigned i = 0;  i < ny; i++) {
+          carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
+            + ((uint64_t) y[i] & 0xffffffffL);
+          zds[j-ny+i] = (unsigned) carry;
+          carry >>= 32;
+        }
+        zds[j] += carry;
+        num = carry - 1;
+      }
+    }
+    zds[j] = qhat;
+  } while (--j >= ny);
+}
+
+/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and 
+/// store the len least significant words of the result in 
+/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from 
+/// the most significant digit.
+uint64_t APInt::lshift(uint64_t dest[], unsigned d_offset,
+                       uint64_t x[], unsigned len, unsigned shiftAmt) {
+  unsigned count = 64 - shiftAmt;
+  int i = len - 1;
+  uint64_t high_word = x[i], retVal = high_word >> count;
+  ++d_offset;
+  while (--i >= 0) {
+    uint64_t low_word = x[i];
+    dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
+    high_word = low_word;
+  }
+  dest[d_offset+i] = high_word << shiftAmt;
+  return retVal;
+}
+
+/// @brief Copy assignment operator. Create a new object from the given
+/// APInt one by initialization.
+APInt& APInt::operator=(const APInt& RHS) {
+  if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+  else {
+    unsigned minN = std::min(numWords(), RHS.numWords());
+    memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
+    if (numWords() != minN)
+      bzero(pVal + minN, (numWords() - minN) * 8);
+  }
+  return *this;
+}
+
+/// @brief Assignment operator. Assigns a common case integer value to 
+/// the APInt.
+APInt& APInt::operator=(uint64_t RHS) {
+  if (isSingleWord()) VAL = RHS;
+  else {
+    pVal[0] = RHS;
+    bzero(pVal, (numWords() - 1) * 8);
+  }
+  return *this;
+}
+
+/// @brief Postfix increment operator. Increments the APInt by one.
+const APInt APInt::operator++(int) {
+  APInt API(*this);
+  if (isSingleWord()) ++VAL;
+  else
+    add_1(pVal, pVal, numWords(), 1);
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Prefix increment operator. Increments the APInt by one.
+APInt& APInt::operator++() {
+  if (isSingleWord()) ++VAL;
+  else
+    add_1(pVal, pVal, numWords(), 1);
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Postfix decrement operator. Decrements the APInt by one.
+const APInt APInt::operator--(int) {
+  APInt API(*this);
+  if (isSingleWord()) --VAL;
+  else
+    sub_1(API.pVal, API.numWords(), 1);
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Prefix decrement operator. Decrements the APInt by one.
+APInt& APInt::operator--() {
+  if (isSingleWord()) --VAL;
+  else
+    sub_1(pVal, numWords(), 1);
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Addition assignment operator. Adds this APInt by the given APInt&
+/// RHS and assigns the result to this APInt.
+APInt& APInt::operator+=(const APInt& RHS) {
+  if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+  else {
+    if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL);
+    else {
+      if (numWords() <= RHS.numWords()) 
+        add(pVal, pVal, RHS.pVal, numWords());
+      else {
+        uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords());
+        add_1(pVal + RHS.numWords(), pVal + RHS.numWords(), 
+              numWords() - RHS.numWords(), carry);
+      }
+    }
+  }
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Subtraction assignment operator. Subtracts this APInt by the given
+/// APInt &RHS and assigns the result to this APInt.
+APInt& APInt::operator-=(const APInt& RHS) {
+  if (isSingleWord()) 
+    VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+  else {
+    if (RHS.isSingleWord())
+      sub_1(pVal, numWords(), RHS.VAL);
+    else {
+      if (RHS.numWords() < numWords()) { 
+        uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords());
+        sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(), carry); 
+      }
+      else
+        sub(pVal, pVal, RHS.pVal, numWords());
+    }
+  }
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Multiplication assignment operator. Multiplies this APInt by the 
+/// given APInt& RHS and assigns the result to this APInt.
+APInt& APInt::operator*=(const APInt& RHS) {
+  if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+  else {
+    // one-based first non-zero bit position.
+    unsigned first = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
+    unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
+    if (!xlen) 
+      return *this;
+    else if (RHS.isSingleWord()) 
+      mul_1(pVal, pVal, xlen, RHS.VAL);
+    else {
+      first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
+      unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
+      if (!ylen) {
+        bzero(pVal, numWords() * 8);
+        return *this;
+      }
+      uint64_t *dest = new uint64_t[xlen+ylen];
+      assert(dest && "Memory Allocation Failed!");
+      mul(dest, pVal, xlen, RHS.pVal, ylen);
+      memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords() : xlen + ylen) * 8);
+      delete[] dest;
+    }
+  }
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Division assignment operator. Divides this APInt by the given APInt
+/// &RHS and assigns the result to this APInt.
+APInt& APInt::operator/=(const APInt& RHS) {
+  unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - 
+                   RHS.CountLeadingZeros();
+  unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
+  assert(ylen && "Divided by zero???");
+  if (isSingleWord()) {
+    if (isSigned && RHS.isSigned)
+      VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) :
+            (ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0]));
+    else
+      VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) : 
+          (ylen > 1 ? 0 : VAL / RHS.pVal[0]);
+  } else {
+    unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
+    unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
+    if (!xlen)
+      return *this;
+    else if ((*this) < RHS)
+      bzero(pVal, numWords() * 8);
+    else if ((*this) == RHS) {
+      bzero(pVal, numWords() * 8);
+      pVal[0] = 1;
+    } else if (xlen == 1)
+      pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+    else {
+      uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
+      assert(xwords && ywords && "Memory Allocation Failed!");
+      memcpy(xwords, pVal, xlen * 8);
+      xwords[xlen] = 0;
+      memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
+      if (unsigned nshift = 63 - (first - 1) % 64) {
+        lshift(ywords, 0, ywords, ylen, nshift);
+        unsigned xlentmp = xlen;
+        xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
+      }
+      div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
+      bzero(pVal, numWords() * 8);
+      memcpy(pVal, xwords + ylen, (xlen - ylen) * 8);
+      delete[] xwords;
+      delete[] ywords;
+    }
+  }
+  return *this;
+}
+
+/// @brief Remainder assignment operator. Yields the remainder from the 
+/// division of this APInt by the given APInt& RHS and assigns the remainder 
+/// to this APInt.
+APInt& APInt::operator%=(const APInt& RHS) {
+  unsigned first = RHS.numWords() * APINT_BITS_PER_WORD -
+                   RHS.CountLeadingZeros();
+  unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
+  assert(ylen && "Performing remainder operation by zero ???");
+  if (isSingleWord()) {
+    if (isSigned && RHS.isSigned)
+      VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) :
+            (ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0]));
+    else
+      VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) : 
+          (ylen > 1 ? VAL : VAL % RHS.pVal[0]);
+  } else {
+    unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
+    unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1;
+    if (!xlen || (*this) < RHS)
+      return *this;
+    else if ((*this) == RHS) 
+      bzero(pVal, numWords() * 8);
+    else if (xlen == 1) 
+      pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+    else {
+      uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
+      assert(xwords && ywords && "Memory Allocation Failed!");
+      memcpy(xwords, pVal, xlen * 8);
+      xwords[xlen] = 0;
+      memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
+      unsigned nshift = 63 - (first - 1) % 64;
+      if (nshift) {
+        lshift(ywords, 0, ywords, ylen, nshift);
+        unsigned xlentmp = xlen;
+        xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
+      }
+      div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
+      bzero(pVal, numWords() * 8);
+      for (unsigned i = 0; i < ylen-1; ++i)
+        pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift));
+      pVal[ylen-1] = xwords[ylen-1] >> nshift;
+      delete[] xwords;
+      delete[] ywords;
+    }
+  }
+  return *this;
+}
+
+/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
+/// this APInt and the given APInt& RHS, assigns the result to this APInt.
+APInt& APInt::operator&=(const APInt& RHS) {
+  if (isSingleWord()) {
+    if (RHS.isSingleWord()) VAL &= RHS.VAL;
+    else VAL &= RHS.pVal[0];
+  } else {
+    if (RHS.isSingleWord()) {
+      bzero(pVal, (numWords() - 1) * 8);
+      pVal[0] &= RHS.VAL;
+    } else {
+      unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
+      for (unsigned i = 0; i < minwords; ++i)
+        pVal[i] &= RHS.pVal[i];
+      if (numWords() > minwords) bzero(pVal+minwords, (numWords() - minwords) * 8);
+    }
+  }
+  return *this;
+}
+
+/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on 
+/// this APInt and the given APInt& RHS, assigns the result to this APInt.
+APInt& APInt::operator|=(const APInt& RHS) {
+  if (isSingleWord()) {
+    if (RHS.isSingleWord()) VAL |= RHS.VAL;
+    else VAL |= RHS.pVal[0];
+  } else {
+    if (RHS.isSingleWord()) {
+      pVal[0] |= RHS.VAL;
+    } else {
+      unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
+      for (unsigned i = 0; i < minwords; ++i)
+        pVal[i] |= RHS.pVal[i];
+    }
+  }
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
+/// this APInt and the given APInt& RHS, assigns the result to this APInt.
+APInt& APInt::operator^=(const APInt& RHS) {
+  if (isSingleWord()) {
+    if (RHS.isSingleWord()) VAL ^= RHS.VAL;
+    else VAL ^= RHS.pVal[0];
+  } else {
+    if (RHS.isSingleWord()) {
+      for (unsigned i = 0; i < numWords(); ++i)
+        pVal[i] ^= RHS.VAL;
+    } else {
+      unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords();
+      for (unsigned i = 0; i < minwords; ++i)
+        pVal[i] ^= RHS.pVal[i];
+      if (numWords() > minwords)
+        for (unsigned i = minwords; i < numWords(); ++i)
+          pVal[i] ^= 0;
+    }
+  }
+  TruncToBits();
+  return *this;
+}
+
+/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
+/// and the given APInt& RHS.
+APInt APInt::operator&(const APInt& RHS) const {
+  APInt API(RHS);
+  return API &= *this;
+}
+
+/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt 
+/// and the given APInt& RHS.
+APInt APInt::operator|(const APInt& RHS) const {
+  APInt API(RHS);
+  API |= *this;
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
+/// and the given APInt& RHS.
+APInt APInt::operator^(const APInt& RHS) const {
+  APInt API(RHS);
+  API ^= *this;
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Logical AND operator. Performs logical AND operation on this APInt
+/// and the given APInt& RHS.
+bool APInt::operator&&(const APInt& RHS) const {
+  if (isSingleWord()) 
+    return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
+  else if (RHS.isSingleWord())
+    return RHS.VAL && pVal[0];
+  else {
+    unsigned minN = std::min(numWords(), RHS.numWords());
+    for (unsigned i = 0; i < minN; ++i)
+      if (pVal[i] && RHS.pVal[i])
+        return true;
+  }
+  return false;
+}
+
+/// @brief Logical OR operator. Performs logical OR operation on this APInt 
+/// and the given APInt& RHS.
+bool APInt::operator||(const APInt& RHS) const {
+  if (isSingleWord()) 
+    return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
+  else if (RHS.isSingleWord())
+    return RHS.VAL || pVal[0];
+  else {
+    unsigned minN = std::min(numWords(), RHS.numWords());
+    for (unsigned i = 0; i < minN; ++i)
+      if (pVal[i] || RHS.pVal[i])
+        return true;
+  }
+  return false;
+}
+
+/// @brief Logical negation operator. Performs logical negation operation on
+/// this APInt.
+bool APInt::operator !() const {
+  if (isSingleWord())
+    return !VAL;
+  else
+    for (unsigned i = 0; i < numWords(); ++i)
+       if (pVal[i]) 
+         return false;
+  return true;
+}
+
+/// @brief Multiplication operator. Multiplies this APInt by the given APInt& 
+/// RHS.
+APInt APInt::operator*(const APInt& RHS) const {
+  APInt API(RHS);
+  API *= *this;
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Division operator. Divides this APInt by the given APInt& RHS.
+APInt APInt::operator/(const APInt& RHS) const {
+  APInt API(*this);
+  return API /= RHS;
+}
+
+/// @brief Remainder operator. Yields the remainder from the division of this
+/// APInt and the given APInt& RHS.
+APInt APInt::operator%(const APInt& RHS) const {
+  APInt API(*this);
+  return API %= RHS;
+}
+
+/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
+APInt APInt::operator+(const APInt& RHS) const {
+  APInt API(*this);
+  API += RHS;
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
+APInt APInt::operator-(const APInt& RHS) const {
+  APInt API(*this);
+  API -= RHS;
+  API.TruncToBits();
+  return API;
+}
+
+/// @brief Array-indexing support.
+bool APInt::operator[](unsigned bitPosition) const {
+  return maskBit(bitPosition) & (isSingleWord() ? 
+         VAL : pVal[whichWord(bitPosition)]) != 0;
+}
+
+/// @brief Equality operator. Compare this APInt with the given APInt& RHS 
+/// for the validity of the equality relationship.
+bool APInt::operator==(const APInt& RHS) const {
+  unsigned n1 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(), 
+           n2 = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
+  if (n1 != n2) return false;
+  else if (isSingleWord()) 
+    return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
+  else {
+    if (n1 <= 64)
+      return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
+    for (int i = whichWord(n1 - 1); i >= 0; --i)
+      if (pVal[i] != RHS.pVal[i]) return false;
+  }
+  return true;
+}
+
+/// @brief Inequality operator. Compare this APInt with the given APInt& RHS
+/// for the validity of the inequality relationship.
+bool APInt::operator!=(const APInt& RHS) const {
+  return !((*this) == RHS);
+}
+
+/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
+/// for the validity of the less-than relationship.
+bool APInt::operator <(const APInt& RHS) const {
+  if (isSigned && RHS.isSigned) {
+    if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1])
+      return false;
+    else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1])
+      return true;
+  }
+  unsigned n1 = numWords() * 64 - CountLeadingZeros(), 
+           n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros();
+  if (n1 < n2) return true;
+  else if (n1 > n2) return false;
+  else if (isSingleWord())
+    return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
+  else {
+    if (n1 <= 64)
+      return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
+    for (int i = whichWord(n1 - 1); i >= 0; --i) {
+      if (pVal[i] > RHS.pVal[i]) return false;
+      else if (pVal[i] < RHS.pVal[i]) return true;
+    }
+  }
+  return false;
+}
+
+/// @brief Less-than-or-equal operator. Compare this APInt with the given 
+/// APInt& RHS for the validity of the less-than-or-equal relationship.
+bool APInt::operator<=(const APInt& RHS) const {
+  return (*this) == RHS || (*this) < RHS;
+}
+
+/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
+/// for the validity of the greater-than relationship.
+bool APInt::operator >(const APInt& RHS) const {
+  return !((*this) <= RHS);
+}
+
+/// @brief Greater-than-or-equal operator. Compare this APInt with the given 
+/// APInt& RHS for the validity of the greater-than-or-equal relationship.
+bool APInt::operator>=(const APInt& RHS) const {
+  return !((*this) < RHS);
+}  
+
+/// Set the given bit to 1 whose poition is given as "bitPosition".
+/// @brief Set a given bit to 1.
+APInt& APInt::set(unsigned bitPosition) {
+  if (isSingleWord()) VAL |= maskBit(bitPosition);
+  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
+  return *this;
+}
+
+/// @brief Set every bit to 1.
+APInt& APInt::set() {
+  if (isSingleWord()) VAL = -1ULL;
+  else
+    for (unsigned i = 0; i < numWords(); ++i)
+      pVal[i] = -1ULL;
+  return *this;
+}
+
+/// Set the given bit to 0 whose position is given as "bitPosition".
+/// @brief Set a given bit to 0.
+APInt& APInt::clear(unsigned bitPosition) {
+  if (isSingleWord()) VAL &= ~maskBit(bitPosition);
+  else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
+  return *this;
+}
+
+/// @brief Set every bit to 0.
+APInt& APInt::clear() {
+  if (isSingleWord()) VAL = 0;
+  else bzero(pVal, numWords() * 8);
+  return *this;
+}
+
+/// @brief Left-shift assignment operator. Left-shift the APInt by shiftAmt
+/// and assigns the result to this APInt.
+APInt& APInt::operator<<=(unsigned shiftAmt) {
+  if (shiftAmt >= bitsnum) {
+    if (isSingleWord()) VAL = 0;
+    else bzero(pVal, numWords() * 8);
+  } else {
+    for (unsigned i = 0; i < shiftAmt; ++i) clear(i);
+    for (unsigned i = shiftAmt; i < bitsnum; ++i) {
+      if ((*this)[i-shiftAmt]) set(i);
+      else clear(i);
+    }
+  }
+  return *this;
+}
+
+/// @brief Left-shift operator. Left-shift the APInt by shiftAmt.
+APInt APInt::operator<<(unsigned shiftAmt) const {
+  APInt API(*this);
+  API <<= shiftAmt;
+  return API;
+}
+
+/// @brief Right-shift assignment operator. Right-shift the APInt by shiftAmt
+/// and assigns the result to this APInt.
+APInt& APInt::operator>>=(unsigned shiftAmt) {
+  bool isAShr = isSigned && (*this)[bitsnum-1];
+  if (isSingleWord())
+    VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt);
+  else {
+    unsigned i = 0;
+    for (i = 0; i < bitsnum - shiftAmt; ++i)
+      if ((*this)[i+shiftAmt]) set(i);
+      else clear(i);
+    for (; i < bitsnum; ++i)
+      isAShr ? set(i) : clear(i);
+  }
+  return *this;
+}
+
+/// @brief Right-shift operator. Right-shift the APInt by shiftAmt.
+APInt APInt::operator>>(unsigned shiftAmt) const {
+  APInt API(*this);
+  API >>= shiftAmt;
+  return API;
+}
+
+/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
+/// this APInt.
+APInt APInt::operator~() const {
+  APInt API(*this);
+  API.flip();
+  return API;
+}
+
+/// @brief Toggle every bit to its opposite value.
+APInt& APInt::flip() {
+  if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 - bitsnum);
+  else {
+    unsigned i = 0;
+    for (; i < numWords() - 1; ++i)
+      pVal[i] = ~pVal[i];
+    unsigned offset = 64 - (bitsnum - 64 * (i - 1));
+    pVal[i] = (~(pVal[i] << offset)) >> offset;
+  }
+  return *this;
+}
+
+/// Toggle a given bit to its opposite value whose position is given 
+/// as "bitPosition".
+/// @brief Toggles a given bit to its opposite value.
+APInt& APInt::flip(unsigned bitPosition) {
+  assert(bitPosition < bitsnum && "Out of the bit-width range!");
+  if ((*this)[bitPosition]) clear(bitPosition);
+  else set(bitPosition);
+  return *this;
+}
+
+/// to_string - This function translates the APInt into a string.
+std::string APInt::to_string(uint8_t radix) const {
+  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+         "Radix should be 2, 8, 10, or 16!");
+  std::ostringstream buf;
+  buf << std::setbase(radix);
+  // If the radix is a power of 2, set the format of ostringstream,
+  // and output the value into buf.
+  if ((radix & (radix - 1)) == 0) {
+    if (isSingleWord()) buf << VAL;
+    else {
+      buf << pVal[numWords()-1];
+      buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0');
+      for (int i = numWords() - 2; i >= 0; --i)
+        buf << pVal[i];
+    }
+  }
+  else {  // If the radix = 10, need to translate the value into a
+          // string.
+    if (isSingleWord()) buf << VAL;
+    else {
+      // FIXME: To be supported.
+    }
+  }
+  return buf.str();
+}
+
+/// getMaxValue - This function returns the largest value
+/// for an APInt of the specified bit-width and if isSign == true,
+/// it should be largest signed value, otherwise unsigned value.
+APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
+  APInt APIVal(numBits, 1);
+  APIVal.set();
+  return isSign ? APIVal.clear(numBits) : APIVal;
+}
+
+/// getMinValue - This function returns the smallest value for
+/// an APInt of the given bit-width and if isSign == true,
+/// it should be smallest signed value, otherwise zero.
+APInt APInt::getMinValue(unsigned numBits, bool isSign) {
+  APInt APIVal(0, numBits);
+  return isSign ? APIVal : APIVal.set(numBits);
+}
+
+/// getAllOnesValue - This function returns an all-ones value for
+/// an APInt of the specified bit-width.
+APInt APInt::getAllOnesValue(unsigned numBits) {
+  return getMaxValue(numBits, false);
+}
+
+/// getNullValue - This function creates an '0' value for an
+/// APInt of the specified bit-width.
+APInt APInt::getNullValue(unsigned numBits) {
+  return getMinValue(numBits, true);
+}
+
+/// HiBits - This function returns the high "numBits" bits of this APInt.
+APInt APInt::HiBits(unsigned numBits) const {
+  return (*this) >> (bitsnum - numBits); 
+}
+
+/// LoBits - This function returns the low "numBits" bits of this APInt.
+APInt APInt::LoBits(unsigned numBits) const {
+  return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits);
+}
+
+/// CountLeadingZeros - This function is a APInt version corresponding to 
+/// llvm/include/llvm/Support/MathExtras.h's function 
+/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting 
+/// the number of zeros from the most significant bit to the first one bit.
+/// @returns numWord() * 64 if the value is zero.
+unsigned APInt::CountLeadingZeros() const {
+  if (isSingleWord())
+    return CountLeadingZeros_64(VAL);
+  unsigned Count = 0;
+  for (int i = numWords() - 1; i >= 0; --i) {
+    unsigned tmp = CountLeadingZeros_64(pVal[i]);
+    Count += tmp;
+    if (tmp != 64)
+      break;
+  }
+  return Count;
+}
+
+/// CountTrailingZero - This function is a APInt version corresponding to
+/// llvm/include/llvm/Support/MathExtras.h's function 
+/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting 
+/// the number of zeros from the least significant bit to the first one bit.
+/// @returns numWord() * 64 if the value is zero.
+unsigned APInt::CountTrailingZeros() const {
+  if (isSingleWord())
+    return CountTrailingZeros_64(~VAL & (VAL - 1));
+  APInt Tmp = ~(*this) & ((*this) - 1);
+  return numWords() * 64 - Tmp.CountLeadingZeros();
+}
+
+/// CountPopulation - This function is a APInt version corresponding to
+/// llvm/include/llvm/Support/MathExtras.h's function
+/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
+/// @returns 0 if the value is zero.
+unsigned APInt::CountPopulation() const {
+  if (isSingleWord())
+    return CountPopulation_64(VAL);
+  unsigned Count = 0;
+  for (unsigned i = 0; i < numWords(); ++i)
+    Count += CountPopulation_64(pVal[i]);
+  return Count;
+}
+
+
+/// ByteSwap - This function returns a byte-swapped representation of the
+/// APInt argument, APIVal.
+APInt llvm::ByteSwap(const APInt& APIVal) {
+  if (APIVal.bitsnum <= 32)
+    return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL)));
+  else if (APIVal.bitsnum <= 64)
+    return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL));
+  else
+    return APIVal;
+}
+
+/// GreatestCommonDivisor - This function returns the greatest common
+/// divisor of the two APInt values using Enclid's algorithm.
+APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt& API2) {
+  APInt A = API1, B = API2;
+  while (!!B) {
+    APInt T = B;
+    B = A % B;
+    A = T;
+  }
+  return A;
+}