Remove trailing whitespace to reduce later commit patch noise.
(Note: Eventually, commits like this will be handled via a pre-commit hook that
does this automagically, as well as expand tabs to spaces and look for 80-col
violations.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64827 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/PowerPC/PPCISelLowering.cpp b/lib/Target/PowerPC/PPCISelLowering.cpp
index 31f295c..2c97b99 100644
--- a/lib/Target/PowerPC/PPCISelLowering.cpp
+++ b/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -34,30 +34,30 @@
#include "llvm/Support/CommandLine.h"
using namespace llvm;
-static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
+static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
cl::desc("enable preincrement load/store generation on PPC (experimental)"),
cl::Hidden);
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
: TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
-
+
setPow2DivIsCheap();
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
-
+
// Set up the register classes.
addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
-
+
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
-
+
// PowerPC has pre-inc load and store's.
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
@@ -92,7 +92,7 @@
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
-
+
// We don't support sin/cos/sqrt/fmod/pow
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
@@ -104,16 +104,16 @@
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
-
+
// If we're enabling GP optimizations, use hardware square root
if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
}
-
+
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
-
+
// PowerPC does not have BSWAP, CTPOP or CTTZ
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
@@ -121,29 +121,29 @@
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
-
+
// PowerPC does not have ROTR
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
-
+
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
-
+
// PowerPC wants to turn select_cc of FP into fsel when possible.
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
setOperationAction(ISD::SETCC, MVT::i32, Custom);
-
+
// PowerPC does not have BRCOND which requires SetCC
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
-
+
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
@@ -162,14 +162,14 @@
// Support label based line numbers.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
-
+
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
-
-
- // We want to legalize GlobalAddress and ConstantPool nodes into the
+
+
+ // We want to legalize GlobalAddress and ConstantPool nodes into the
// appropriate instructions to materialize the address.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
@@ -179,7 +179,7 @@
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
-
+
// RET must be custom lowered, to meet ABI requirements.
setOperationAction(ISD::RET , MVT::Other, Custom);
@@ -191,24 +191,24 @@
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
-
+
// VAARG is custom lowered with ELF 32 ABI
if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
setOperationAction(ISD::VAARG, MVT::Other, Custom);
else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
-
+
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
- setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
-
+
// Comparisons that require checking two conditions.
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
@@ -222,7 +222,7 @@
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
-
+
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
@@ -230,12 +230,12 @@
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
-
+
// FIXME: disable this lowered code. This generates 64-bit register values,
// and we don't model the fact that the top part is clobbered by calls. We
// need to flag these together so that the value isn't live across a call.
//setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
-
+
// To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
} else {
@@ -269,7 +269,7 @@
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , VT, Legal);
setOperationAction(ISD::SUB , VT, Legal);
-
+
// We promote all shuffles to v16i8.
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
@@ -287,7 +287,7 @@
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
-
+
// No other operations are legal.
setOperationAction(ISD::MUL , VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
@@ -320,12 +320,12 @@
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
-
+
addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
-
+
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
@@ -333,16 +333,16 @@
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
-
+
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
}
-
+
setShiftAmountType(MVT::i32);
setBooleanContents(ZeroOrOneBooleanContent);
-
+
if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
setStackPointerRegisterToSaveRestore(PPC::X1);
setExceptionPointerRegister(PPC::X3);
@@ -352,13 +352,13 @@
setExceptionPointerRegister(PPC::R3);
setExceptionSelectorRegister(PPC::R4);
}
-
+
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
setTargetDAGCombine(ISD::BSWAP);
-
+
// Darwin long double math library functions have $LDBL128 appended.
if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
@@ -457,7 +457,7 @@
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(SDValue Op, unsigned Val) {
- return Op.getOpcode() == ISD::UNDEF ||
+ return Op.getOpcode() == ISD::UNDEF ||
cast<ConstantSDNode>(Op)->getZExtValue() == Val;
}
@@ -498,13 +498,13 @@
/// isVMerge - Common function, used to match vmrg* shuffles.
///
-static bool isVMerge(SDNode *N, unsigned UnitSize,
+static bool isVMerge(SDNode *N, unsigned UnitSize,
unsigned LHSStart, unsigned RHSStart) {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
"Unsupported merge size!");
-
+
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
@@ -542,9 +542,9 @@
unsigned i;
for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
/*search*/;
-
+
if (i == 16) return -1; // all undef.
-
+
// Otherwise, check to see if the rest of the elements are consequtively
// numbered from this value.
unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getZExtValue();
@@ -562,7 +562,7 @@
if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
return -1;
}
-
+
return ShiftAmt;
}
@@ -573,7 +573,7 @@
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
N->getNumOperands() == 16 &&
(EltSize == 1 || EltSize == 2 || EltSize == 4));
-
+
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned ElementBase = 0;
@@ -585,14 +585,14 @@
if (cast<ConstantSDNode>(Elt)->getZExtValue() >= 16)
return false;
-
+
// Check that they are consequtive.
for (unsigned i = 1; i != EltSize; ++i) {
if (!isa<ConstantSDNode>(N->getOperand(i)) ||
cast<ConstantSDNode>(N->getOperand(i))->getZExtValue() != i+ElementBase)
return false;
}
-
+
assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
@@ -639,31 +639,31 @@
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
SDValue UniquedVals[4];
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
-
+
// See if all of the elements in the buildvector agree across.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
// If the element isn't a constant, bail fully out.
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
-
+
if (UniquedVals[i&(Multiple-1)].getNode() == 0)
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
return SDValue(); // no match.
}
-
+
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
// either constant or undef values that are identical for each chunk. See
// if these chunks can form into a larger vspltis*.
-
+
// Check to see if all of the leading entries are either 0 or -1. If
// neither, then this won't fit into the immediate field.
bool LeadingZero = true;
bool LeadingOnes = true;
for (unsigned i = 0; i != Multiple-1; ++i) {
if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
-
+
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
}
@@ -682,10 +682,10 @@
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
return DAG.getTargetConstant(Val, MVT::i32);
}
-
+
return SDValue();
}
-
+
// Check to see if this buildvec has a single non-undef value in its elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
@@ -694,9 +694,9 @@
else if (OpVal != N->getOperand(i))
return SDValue();
}
-
+
if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
-
+
unsigned ValSizeInBytes = 0;
uint64_t Value = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
@@ -712,13 +712,13 @@
// this splat. The only case that we could fit the replicated bits into our
// immediate field for would be zero, and we prefer to use vxor for it.
if (ValSizeInBytes < ByteSize) return SDValue();
-
+
// If the element value is larger than the splat value, cut it in half and
// check to see if the two halves are equal. Continue doing this until we
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
while (ValSizeInBytes > ByteSize) {
ValSizeInBytes >>= 1;
-
+
// If the top half equals the bottom half, we're still ok.
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
(Value & ((1 << (8*ValSizeInBytes))-1)))
@@ -728,7 +728,7 @@
// Properly sign extend the value.
int ShAmt = (4-ByteSize)*8;
int MaskVal = ((int)Value << ShAmt) >> ShAmt;
-
+
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
if (MaskVal == 0) return SDValue();
@@ -749,7 +749,7 @@
static bool isIntS16Immediate(SDNode *N, short &Imm) {
if (N->getOpcode() != ISD::Constant)
return false;
-
+
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
if (N->getValueType(0) == MVT::i32)
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
@@ -773,14 +773,14 @@
return false; // r+i
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
return false; // r+i
-
+
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getOpcode() == ISD::OR) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i can fold it if we can.
-
+
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are provably
// disjoint.
@@ -790,7 +790,7 @@
APInt::getAllOnesValue(N.getOperand(0)
.getValueSizeInBits()),
LHSKnownZero, LHSKnownOne);
-
+
if (LHSKnownZero.getBoolValue()) {
DAG.ComputeMaskedBits(N.getOperand(1),
APInt::getAllOnesValue(N.getOperand(1)
@@ -805,7 +805,7 @@
}
}
}
-
+
return false;
}
@@ -820,7 +820,7 @@
// If this can be more profitably realized as r+r, fail.
if (SelectAddressRegReg(N, Disp, Base, DAG))
return false;
-
+
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm)) {
@@ -864,7 +864,7 @@
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
-
+
// If this address fits entirely in a 16-bit sext immediate field, codegen
// this as "d, 0"
short Imm;
@@ -878,17 +878,17 @@
if (CN->getValueType(0) == MVT::i32 ||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
int Addr = (int)CN->getZExtValue();
-
+
// Otherwise, break this down into an LIS + disp.
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
-
+
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
return true;
}
}
-
+
Disp = DAG.getTargetConstant(0, getPointerTy());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
@@ -907,7 +907,7 @@
// reg+imm, e.g. where imm = 0.
if (SelectAddressRegReg(N, Base, Index, DAG))
return true;
-
+
// If the operand is an addition, always emit this as [r+r], since this is
// better (for code size, and execution, as the memop does the add for free)
// than emitting an explicit add.
@@ -916,7 +916,7 @@
Index = N.getOperand(1);
return true;
}
-
+
// Otherwise, do it the hard way, using R0 as the base register.
Base = DAG.getRegister(PPC::R0, N.getValueType());
Index = N;
@@ -934,7 +934,7 @@
// If this can be more profitably realized as r+r, fail.
if (SelectAddressRegReg(N, Disp, Base, DAG))
return false;
-
+
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
@@ -986,12 +986,12 @@
Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
return true;
}
-
+
// Fold the low-part of 32-bit absolute addresses into addr mode.
if (CN->getValueType(0) == MVT::i32 ||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
int Addr = (int)CN->getZExtValue();
-
+
// Otherwise, break this down into an LIS + disp.
Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
@@ -1001,7 +1001,7 @@
}
}
}
-
+
Disp = DAG.getTargetConstant(0, getPointerTy());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
@@ -1020,13 +1020,13 @@
SelectionDAG &DAG) const {
// Disabled by default for now.
if (!EnablePPCPreinc) return false;
-
+
SDValue Ptr;
MVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
-
+
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ST = ST;
Ptr = ST->getBasePtr();
@@ -1037,9 +1037,9 @@
// PowerPC doesn't have preinc load/store instructions for vectors.
if (VT.isVector())
return false;
-
+
// TODO: Check reg+reg first.
-
+
// LDU/STU use reg+imm*4, others use reg+imm.
if (VT != MVT::i64) {
// reg + imm
@@ -1058,8 +1058,8 @@
LD->getExtensionType() == ISD::SEXTLOAD &&
isa<ConstantSDNode>(Offset))
return false;
- }
-
+ }
+
AM = ISD::PRE_INC;
return true;
}
@@ -1068,7 +1068,7 @@
// LowerOperation implementation
//===----------------------------------------------------------------------===//
-SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
+SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) {
MVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
@@ -1079,7 +1079,7 @@
DebugLoc dl = Op.getDebugLoc();
const TargetMachine &TM = DAG.getTarget();
-
+
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
@@ -1091,14 +1091,14 @@
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
}
-
+
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
- DAG.getNode(PPCISD::GlobalBaseReg,
+ DAG.getNode(PPCISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(), PtrVT), Hi);
}
-
+
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
return Lo;
}
@@ -1110,7 +1110,7 @@
SDValue Zero = DAG.getConstant(0, PtrVT);
// FIXME there isn't really any debug loc here
DebugLoc dl = Op.getDebugLoc();
-
+
const TargetMachine &TM = DAG.getTarget();
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
@@ -1124,25 +1124,25 @@
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
}
-
+
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
- DAG.getNode(PPCISD::GlobalBaseReg,
+ DAG.getNode(PPCISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(), PtrVT), Hi);
}
-
+
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
return Lo;
}
-SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
+SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) {
assert(0 && "TLS not implemented for PPC.");
return SDValue(); // Not reached
}
-SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
+SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) {
MVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
@@ -1151,7 +1151,7 @@
SDValue Zero = DAG.getConstant(0, PtrVT);
// FIXME there isn't really any debug info here
DebugLoc dl = GSDN->getDebugLoc();
-
+
const TargetMachine &TM = DAG.getTarget();
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
@@ -1165,19 +1165,19 @@
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
}
-
+
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
- DAG.getNode(PPCISD::GlobalBaseReg,
+ DAG.getNode(PPCISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(), PtrVT), Hi);
}
-
+
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
-
+
if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
return Lo;
-
+
// If the global is weak or external, we have to go through the lazy
// resolution stub.
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
@@ -1186,7 +1186,7 @@
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
DebugLoc dl = Op.getDebugLoc();
-
+
// If we're comparing for equality to zero, expose the fact that this is
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
// fold the new nodes.
@@ -1197,20 +1197,20 @@
if (VT.bitsLT(MVT::i32)) {
VT = MVT::i32;
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
- }
+ }
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
DAG.getConstant(Log2b, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
}
- // Leave comparisons against 0 and -1 alone for now, since they're usually
+ // Leave comparisons against 0 and -1 alone for now, since they're usually
// optimized. FIXME: revisit this when we can custom lower all setcc
// optimizations.
if (C->isAllOnesValue() || C->isNullValue())
return SDValue();
}
-
+
// If we have an integer seteq/setne, turn it into a compare against zero
// by xor'ing the rhs with the lhs, which is faster than setting a
// condition register, reading it back out, and masking the correct bit. The
@@ -1219,7 +1219,7 @@
MVT LHSVT = Op.getOperand(0).getValueType();
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
MVT VT = Op.getValueType();
- SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
+ SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
}
@@ -1232,7 +1232,7 @@
unsigned VarArgsNumGPR,
unsigned VarArgsNumFPR,
const PPCSubtarget &Subtarget) {
-
+
assert(0 && "VAARG in ELF32 ABI not implemented yet!");
return SDValue(); // Not reached
}
@@ -1249,7 +1249,7 @@
const Type *IntPtrTy =
DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
- TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
@@ -1262,7 +1262,7 @@
Entry.Node = FPtr; Args.push_back(Entry);
Entry.Node = Nest; Args.push_back(Entry);
-
+
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
std::pair<SDValue, SDValue> CallResult =
LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
@@ -1320,13 +1320,13 @@
SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
-
+
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
-
+
SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
-
+
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
@@ -1335,22 +1335,22 @@
uint64_t FPROffset = 1;
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
-
+
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
-
+
// Store first byte : number of int regs
SDValue firstStore = DAG.getStore(Op.getOperand(0), dl, ArgGPR,
Op.getOperand(1), SV, 0);
uint64_t nextOffset = FPROffset;
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
ConstFPROffset);
-
+
// Store second byte : number of float regs
SDValue secondStore =
DAG.getStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset);
nextOffset += StackOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
-
+
// Store second word : arguments given on stack
SDValue thirdStore =
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
@@ -1374,8 +1374,8 @@
};
return FPR;
}
-
-
+
+
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
@@ -1397,7 +1397,7 @@
}
SDValue
-PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
+PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
SelectionDAG &DAG,
int &VarArgsFrameIndex,
int &VarArgsStackOffset,
@@ -1413,7 +1413,7 @@
SDValue Root = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
DebugLoc dl = Op.getDebugLoc();
-
+
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
bool isMachoABI = Subtarget.isMachoABI();
@@ -1435,9 +1435,9 @@
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
-
+
static const unsigned *FPR = GetFPR(Subtarget);
-
+
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
@@ -1448,13 +1448,13 @@
const unsigned Num_VR_Regs = array_lengthof( VR);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
-
+
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
-
+
// In 32-bit non-varargs functions, the stack space for vectors is after the
// stack space for non-vectors. We do not use this space unless we have
// too many vectors to fit in registers, something that only occurs in
- // constructed examples:), but we have to walk the arglist to figure
+ // constructed examples:), but we have to walk the arglist to figure
// that out...for the pathological case, compute VecArgOffset as the
// start of the vector parameter area. Computing VecArgOffset is the
// entire point of the following loop.
@@ -1462,7 +1462,7 @@
// to handle Elf here.
unsigned VecArgOffset = ArgOffset;
if (!isVarArg && !isPPC64) {
- for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
+ for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
++ArgNo) {
MVT ObjectVT = Op.getValue(ArgNo).getValueType();
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
@@ -1472,7 +1472,7 @@
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
ObjSize = Flags.getByValSize();
- unsigned ArgSize =
+ unsigned ArgSize =
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
VecArgOffset += ArgSize;
continue;
@@ -1505,7 +1505,7 @@
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
- //
+ //
// In the ELF 32 ABI, GPRs and stack are double word align: an argument
// represented with two words (long long or double) must be copied to an
// even GPR_idx value or to an even ArgOffset value.
@@ -1522,7 +1522,7 @@
ISD::ArgFlagsTy Flags =
cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
// See if next argument requires stack alignment in ELF
- bool Align = Flags.isSplit();
+ bool Align = Flags.isSplit();
unsigned CurArgOffset = ArgOffset;
@@ -1566,7 +1566,7 @@
unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
RegInfo.addLiveIn(GPR[GPR_idx], VReg);
SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
- SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+ SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
MemOps.push_back(Store);
++GPR_idx;
@@ -1615,7 +1615,7 @@
ArgSize = PtrByteSize;
}
// Stack align in ELF
- if (needsLoad && Align && isELF32_ABI)
+ if (needsLoad && Align && isELF32_ABI)
ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
// All int arguments reserve stack space in Macho ABI.
if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
@@ -1649,7 +1649,7 @@
// All int arguments reserve stack space in Macho ABI.
if (isMachoABI || needsLoad) ArgOffset += 8;
break;
-
+
case MVT::f32:
case MVT::f64:
// Every 4 bytes of argument space consumes one of the GPRs available for
@@ -1671,7 +1671,7 @@
} else {
needsLoad = true;
}
-
+
// Stack align in ELF
if (needsLoad && Align && isELF32_ABI)
ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
@@ -1713,7 +1713,7 @@
}
break;
}
-
+
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type.
if (needsLoad) {
@@ -1723,7 +1723,7 @@
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
}
-
+
ArgValues.push_back(ArgVal);
}
@@ -1749,29 +1749,29 @@
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
-
+
int depth;
if (isELF32_ABI) {
VarArgsNumGPR = GPR_idx;
VarArgsNumFPR = FPR_idx;
-
+
// Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
// pointer.
depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
PtrVT.getSizeInBits()/8);
-
+
VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
ArgOffset);
}
else
depth = ArgOffset;
-
+
VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
depth);
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
-
+
// In ELF 32 ABI, the fixed integer arguments of a variadic function are
// stored to the VarArgsFrameIndex on the stack.
if (isELF32_ABI) {
@@ -1832,13 +1832,13 @@
}
}
}
-
+
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl,
+ Root = DAG.getNode(ISD::TokenFactor, dl,
MVT::Other, &MemOps[0], MemOps.size());
ArgValues.push_back(Root);
-
+
// Return the new list of results.
return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
&ArgValues[0], ArgValues.size());
@@ -1973,12 +1973,12 @@
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C) return 0;
-
+
int Addr = C->getZExtValue();
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
(Addr << 6 >> 6) != Addr)
return 0; // Top 6 bits have to be sext of immediate.
-
+
return DAG.getConstant((int)C->getZExtValue() >> 2,
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
}
@@ -2087,12 +2087,12 @@
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
-/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
-static SDValue
+static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
unsigned Size, DebugLoc dl) {
@@ -2139,20 +2139,20 @@
SDValue Callee = TheCall->getCallee();
unsigned NumOps = TheCall->getNumArgs();
DebugLoc dl = TheCall->getDebugLoc();
-
+
bool isMachoABI = Subtarget.isMachoABI();
bool isELF32_ABI = Subtarget.isELF32_ABI();
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
-
+
MachineFunction &MF = DAG.getMachineFunction();
// args_to_use will accumulate outgoing args for the PPCISD::CALL case in
// SelectExpr to use to put the arguments in the appropriate registers.
std::vector<SDValue> args_to_use;
-
+
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
@@ -2173,12 +2173,12 @@
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
-
+
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
SDValue CallSeqStart = Chain;
-
+
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
@@ -2192,14 +2192,14 @@
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
-
+
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
-
+
static const unsigned GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
@@ -2209,7 +2209,7 @@
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const unsigned *FPR = GetFPR(Subtarget);
-
+
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
@@ -2217,7 +2217,7 @@
const unsigned NumGPRs = array_lengthof(GPR_32);
const unsigned NumFPRs = isMachoABI ? 13 : 8;
const unsigned NumVRs = array_lengthof( VR);
-
+
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
std::vector<std::pair<unsigned, SDValue> > RegsToPass;
@@ -2234,7 +2234,7 @@
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
-
+
// Stack align in ELF 32
if (isELF32_ABI && Align)
PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
@@ -2261,7 +2261,7 @@
// Everything else is passed left-justified.
MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
if (GPR_idx != NumGPRs) {
- SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
NULL, 0, VT);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
@@ -2271,7 +2271,7 @@
SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
- CallSeqStart.getNode()->getOperand(0),
+ CallSeqStart.getNode()->getOperand(0),
Flags, DAG, Size, dl);
// This must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
@@ -2287,7 +2287,7 @@
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
- CallSeqStart.getNode()->getOperand(0),
+ CallSeqStart.getNode()->getOperand(0),
Flags, DAG, Size, dl);
// This must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
@@ -2392,7 +2392,7 @@
case MVT::v16i8:
if (isVarArg) {
// These go aligned on the stack, or in the corresponding R registers
- // when within range. The Darwin PPC ABI doc claims they also go in
+ // when within range. The Darwin PPC ABI doc claims they also go in
// V registers; in fact gcc does this only for arguments that are
// prototyped, not for those that match the ... We do it for all
// arguments, seems to work.
@@ -2403,7 +2403,7 @@
}
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
MemOpChains.push_back(Store);
@@ -2470,16 +2470,16 @@
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
-
+
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
-
+
// With the ELF 32 ABI, set CR6 to true if this is a vararg call.
if (isVarArg && isELF32_ABI) {
SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
@@ -2517,7 +2517,7 @@
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
-
+
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
@@ -2535,7 +2535,7 @@
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2 + (InFlag.getNode() != 0));
InFlag = Chain.getValue(1);
-
+
// Copy the callee address into R12/X12 on darwin.
if (isMachoABI) {
unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
@@ -2566,7 +2566,7 @@
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
- Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// When performing tail call optimization the callee pops its arguments off
@@ -2601,13 +2601,13 @@
unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
-
+
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
MVT VT = VA.getValVT();
assert(VA.isRegLoc() && "Can only return in registers!");
- Chain = DAG.getCopyFromReg(Chain, dl,
+ Chain = DAG.getCopyFromReg(Chain, dl,
VA.getLocReg(), VT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
InFlag = Chain.getValue(2);
@@ -2616,7 +2616,7 @@
// If the function returns void, just return the chain.
if (RVLocs.empty())
return Chain;
-
+
// Otherwise, merge everything together with a MERGE_VALUES node.
ResultVals.push_back(Chain);
SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
@@ -2624,7 +2624,7 @@
return Res.getValue(Op.getResNo());
}
-SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
+SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
TargetMachine &TM) {
SmallVector<CCValAssign, 16> RVLocs;
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
@@ -2632,7 +2632,7 @@
DebugLoc dl = Op.getDebugLoc();
CCState CCInfo(CC, isVarArg, TM, RVLocs);
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
-
+
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
@@ -2672,12 +2672,12 @@
}
SDValue Flag;
-
+
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
Op.getOperand(i*2+1), Flag);
Flag = Chain.getValue(1);
}
@@ -2692,7 +2692,7 @@
const PPCSubtarget &Subtarget) {
// When we pop the dynamic allocation we need to restore the SP link.
DebugLoc dl = Op.getDebugLoc();
-
+
// Get the corect type for pointers.
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
@@ -2704,13 +2704,13 @@
// Get the operands for the STACKRESTORE.
SDValue Chain = Op.getOperand(0);
SDValue SaveSP = Op.getOperand(1);
-
+
// Load the old link SP.
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
-
+
// Restore the stack pointer.
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
-
+
// Store the old link SP.
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
}
@@ -2757,11 +2757,11 @@
if (!FPSI) {
// Find out what the fix offset of the frame pointer save area.
int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
-
+
// Allocate the frame index for frame pointer save area.
- FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
+ FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
// Save the result.
- FI->setFramePointerSaveIndex(FPSI);
+ FI->setFramePointerSaveIndex(FPSI);
}
return DAG.getFrameIndex(FPSI, PtrVT);
}
@@ -2772,8 +2772,8 @@
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
- DebugLoc dl = Op.getDebugLoc();
-
+ DebugLoc dl = Op.getDebugLoc();
+
// Get the corect type for pointers.
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Negate the size.
@@ -2794,18 +2794,18 @@
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
!Op.getOperand(2).getValueType().isFloatingPoint())
return SDValue();
-
+
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
-
+
// Cannot handle SETEQ/SETNE.
if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
-
+
MVT ResVT = Op.getValueType();
MVT CmpVT = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
DebugLoc dl = Op.getDebugLoc();
-
+
// If the RHS of the comparison is a 0.0, we don't need to do the
// subtraction at all.
if (isFloatingPointZero(RHS))
@@ -2829,7 +2829,7 @@
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
}
-
+
SDValue Cmp;
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
@@ -2901,15 +2901,15 @@
return SDValue();
if (Op.getOperand(0).getValueType() == MVT::i64) {
- SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
+ SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
MVT::f64, Op.getOperand(0));
SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
if (Op.getValueType() == MVT::f32)
- FP = DAG.getNode(ISD::FP_ROUND, dl,
+ FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
-
+
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
"Unhandled SINT_TO_FP type in custom expander!");
// Since we only generate this in 64-bit mode, we can take advantage of
@@ -2920,10 +2920,10 @@
int FrameIdx = FrameInfo->CreateStackObject(8, 8);
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
+
SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
Op.getOperand(0));
-
+
// STD the extended value into the stack slot.
MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
MachineMemOperand::MOStore, 0, 8, 8);
@@ -2932,7 +2932,7 @@
DAG.getMemOperand(MO));
// Load the value as a double.
SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
-
+
// FCFID it and return it.
SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
if (Op.getValueType() == MVT::f32)
@@ -3009,14 +3009,14 @@
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SHL!");
-
+
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
MVT AmtVT = Amt.getValueType();
-
+
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
@@ -3038,14 +3038,14 @@
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRL!");
-
+
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
MVT AmtVT = Amt.getValueType();
-
+
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
@@ -3067,13 +3067,13 @@
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRA!");
-
+
// Expand into a bunch of logical ops, followed by a select_cc.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
MVT AmtVT = Amt.getValueType();
-
+
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
@@ -3094,7 +3094,7 @@
//
// If this is a vector of constants or undefs, get the bits. A bit in
-// UndefBits is set if the corresponding element of the vector is an
+// UndefBits is set if the corresponding element of the vector is an
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
// zero. Return true if this is not an array of constants, false if it is.
//
@@ -3102,11 +3102,11 @@
uint64_t UndefBits[2]) {
// Start with zero'd results.
VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
-
+
unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
SDValue OpVal = BV->getOperand(i);
-
+
unsigned PartNo = i >= e/2; // In the upper 128 bits?
unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
@@ -3125,32 +3125,32 @@
// Nonconstant element.
return true;
}
-
+
VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
}
-
- //printf("%llx %llx %llx %llx\n",
+
+ //printf("%llx %llx %llx %llx\n",
// VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
return false;
}
// If this is a splat (repetition) of a value across the whole vector, return
// the smallest size that splats it. For example, "0x01010101010101..." is a
-// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
+// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
// SplatSize = 1 byte.
-static bool isConstantSplat(const uint64_t Bits128[2],
+static bool isConstantSplat(const uint64_t Bits128[2],
const uint64_t Undef128[2],
unsigned &SplatBits, unsigned &SplatUndef,
unsigned &SplatSize) {
-
+
// Don't let undefs prevent splats from matching. See if the top 64-bits are
// the same as the lower 64-bits, ignoring undefs.
if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
return false; // Can't be a splat if two pieces don't match.
-
+
uint64_t Bits64 = Bits128[0] | Bits128[1];
uint64_t Undef64 = Undef128[0] & Undef128[1];
-
+
// Check that the top 32-bits are the same as the lower 32-bits, ignoring
// undefs.
if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
@@ -3167,7 +3167,7 @@
SplatSize = 4;
return true;
}
-
+
uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
@@ -3179,7 +3179,7 @@
SplatSize = 2;
return true;
}
-
+
// Otherwise, we have an 8-bit splat.
SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
@@ -3198,13 +3198,13 @@
};
MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
-
+
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
if (Val == -1)
SplatSize = 1;
-
+
MVT CanonicalVT = VTys[SplatSize-1];
-
+
// Build a canonical splat for this value.
SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
SmallVector<SDValue, 8> Ops;
@@ -3256,28 +3256,28 @@
// selects to a single instruction, return Op. Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
-SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
+SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) {
// If this is a vector of constants or undefs, get the bits. A bit in
- // UndefBits is set if the corresponding element of the vector is an
+ // UndefBits is set if the corresponding element of the vector is an
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
- // zero.
+ // zero.
uint64_t VectorBits[2];
uint64_t UndefBits[2];
DebugLoc dl = Op.getDebugLoc();
if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
return SDValue(); // Not a constant vector.
-
+
// If this is a splat (repetition) of a value across the whole vector, return
// the smallest size that splats it. For example, "0x01010101010101..." is a
- // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
+ // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
// SplatSize = 1 byte.
unsigned SplatBits, SplatUndef, SplatSize;
if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
-
+
// First, handle single instruction cases.
-
+
// All zeros?
if (SplatBits == 0) {
// Canonicalize all zero vectors to be v4i32.
@@ -3293,10 +3293,10 @@
int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
if (SextVal >= -16 && SextVal <= 15)
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
-
-
+
+
// Two instruction sequences.
-
+
// If this value is in the range [-32,30] and is even, use:
// tmp = VSPLTI[bhw], result = add tmp, tmp
if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
@@ -3304,18 +3304,18 @@
Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
}
-
- // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
+
+ // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
// for fneg/fabs.
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
// Make -1 and vspltisw -1:
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
-
+
// Make the VSLW intrinsic, computing 0x8000_0000.
- SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
+ SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
OnesV, DAG, dl);
-
+
// xor by OnesV to invert it.
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
@@ -3327,16 +3327,16 @@
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
};
-
+
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
int i = SplatCsts[idx];
-
+
// Figure out what shift amount will be used by altivec if shifted by i in
// this splat size.
unsigned TypeShiftAmt = i & (SplatBitSize-1);
-
+
// vsplti + shl self.
if (SextVal == (i << (int)TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
@@ -3347,7 +3347,7 @@
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
}
-
+
// vsplti + srl self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
@@ -3358,7 +3358,7 @@
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
}
-
+
// vsplti + sra self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
@@ -3369,7 +3369,7 @@
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
}
-
+
// vsplti + rol self.
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
@@ -3398,9 +3398,9 @@
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
}
}
-
+
// Three instruction sequences.
-
+
// Odd, in range [17,31]: (vsplti C)-(vsplti -16).
if (SextVal >= 0 && SextVal <= 31) {
SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
@@ -3416,19 +3416,19 @@
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
}
}
-
+
return SDValue();
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
- SDValue RHS, SelectionDAG &DAG,
+ SDValue RHS, SelectionDAG &DAG,
DebugLoc dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
-
+
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VMRGHW,
@@ -3441,17 +3441,17 @@
OP_VSLDOI8,
OP_VSLDOI12
};
-
+
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
-
+
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
-
+
unsigned ShufIdxs[16];
switch (OpNum) {
default: assert(0 && "Unknown i32 permute!");
@@ -3493,8 +3493,8 @@
SDValue Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
-
- return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, OpLHS.getValueType(),
+
+ return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, OpLHS.getValueType(),
OpLHS, OpRHS,
DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, Ops, 16));
}
@@ -3503,13 +3503,13 @@
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
/// return the code it can be lowered into. Worst case, it can always be
/// lowered into a vperm.
-SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDValue PermMask = Op.getOperand(2);
-
+
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
// selected by the instruction selector.
@@ -3529,7 +3529,7 @@
return Op;
}
}
-
+
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
@@ -3543,7 +3543,7 @@
PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
return Op;
-
+
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
// perfect shuffle table to emit an optimal matching sequence.
unsigned PFIndexes[4];
@@ -3553,14 +3553,14 @@
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
continue; // Undef, ignore it.
-
- unsigned ByteSource =
+
+ unsigned ByteSource =
cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getZExtValue();
if ((ByteSource & 3) != j) {
isFourElementShuffle = false;
break;
}
-
+
if (EltNo == 8) {
EltNo = ByteSource/4;
} else if (EltNo != ByteSource/4) {
@@ -3570,18 +3570,18 @@
}
PFIndexes[i] = EltNo;
}
-
- // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
+
+ // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
if (isFourElementShuffle) {
// Compute the index in the perfect shuffle table.
- unsigned PFTableIndex =
+ unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
-
+
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
-
+
// Determining when to avoid vperm is tricky. Many things affect the cost
// of vperm, particularly how many times the perm mask needs to be computed.
// For example, if the perm mask can be hoisted out of a loop or is already
@@ -3590,35 +3590,35 @@
// the loop requires an extra register.
//
// As a compromise, we only emit discrete instructions if the shuffle can be
- // generated in 3 or fewer operations. When we have loop information
+ // generated in 3 or fewer operations. When we have loop information
// available, if this block is within a loop, we should avoid using vperm
// for 3-operation perms and use a constant pool load instead.
- if (Cost < 3)
+ if (Cost < 3)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
-
+
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
// vector that will get spilled to the constant pool.
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
-
+
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
MVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
-
+
SmallVector<SDValue, 16> ResultMask;
for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
unsigned SrcElt;
if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
SrcElt = 0;
- else
+ else
SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
-
+
for (unsigned j = 0; j != BytesPerElement; ++j)
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
MVT::i8));
}
-
+
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
&ResultMask[0], ResultMask.size());
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
@@ -3649,7 +3649,7 @@
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
-
+
// Normal Comparisons.
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
@@ -3670,7 +3670,7 @@
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
-SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) {
// If this is a lowered altivec predicate compare, CompareOpc is set to the
// opcode number of the comparison.
@@ -3679,7 +3679,7 @@
bool isDot;
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
return SDValue(); // Don't custom lower most intrinsics.
-
+
// If this is a non-dot comparison, make the VCMP node and we are done.
if (!isDot) {
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
@@ -3687,7 +3687,7 @@
DAG.getConstant(CompareOpc, MVT::i32));
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
}
-
+
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
Op.getOperand(2), // LHS
@@ -3698,13 +3698,13 @@
VTs.push_back(Op.getOperand(2).getValueType());
VTs.push_back(MVT::Flag);
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
-
+
// Now that we have the comparison, emit a copy from the CR to a GPR.
// This is flagged to the above dot comparison.
SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
DAG.getRegister(PPC::CR6, MVT::i32),
- CompNode.getValue(1));
-
+ CompNode.getValue(1));
+
// Unpack the result based on how the target uses it.
unsigned BitNo; // Bit # of CR6.
bool InvertBit; // Invert result?
@@ -3723,14 +3723,14 @@
BitNo = 2; InvertBit = true;
break;
}
-
+
// Shift the bit into the low position.
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
DAG.getConstant(8-(3-BitNo), MVT::i32));
// Isolate the bit.
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
-
+
// If we are supposed to, toggle the bit.
if (InvertBit)
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
@@ -3738,7 +3738,7 @@
return Flags;
}
-SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
+SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// Create a stack slot that is 16-byte aligned.
@@ -3746,7 +3746,7 @@
int FrameIdx = FrameInfo->CreateStackObject(16, 16);
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
+
// Store the input value into Value#0 of the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Op.getOperand(0), FIdx, NULL, 0);
@@ -3758,49 +3758,49 @@
DebugLoc dl = Op.getDebugLoc();
if (Op.getValueType() == MVT::v4i32) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
-
+
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
-
+
SDValue RHSSwap = // = vrlw RHS, 16
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
-
+
// Shrinkify inputs to v8i16.
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
-
+
// Low parts multiplied together, generating 32-bit results (we ignore the
// top parts).
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
LHS, RHS, DAG, dl, MVT::v4i32);
-
+
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
// Shift the high parts up 16 bits.
- HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
+ HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
Neg16, DAG, dl);
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
} else if (Op.getValueType() == MVT::v8i16) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
-
+
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
LHS, RHS, Zero, DAG, dl);
} else if (Op.getValueType() == MVT::v16i8) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
-
+
// Multiply the even 8-bit parts, producing 16-bit sums.
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
LHS, RHS, DAG, dl, MVT::v8i16);
EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
-
+
// Multiply the odd 8-bit parts, producing 16-bit sums.
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
LHS, RHS, DAG, dl, MVT::v8i16);
OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
-
+
// Merge the results together.
SDValue Ops[16];
for (unsigned i = 0; i != 8; ++i) {
@@ -3819,23 +3819,23 @@
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- default: assert(0 && "Wasn't expecting to be able to lower this!");
+ default: assert(0 && "Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
- case ISD::VASTART:
+ case ISD::VASTART:
return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
-
- case ISD::VAARG:
+
+ case ISD::VAARG:
return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
case ISD::FORMAL_ARGUMENTS:
- return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
+ return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
VarArgsStackOffset, VarArgsNumGPR,
VarArgsNumFPR, PPCSubTarget);
@@ -3863,7 +3863,7 @@
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
-
+
// Frame & Return address.
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
@@ -3882,7 +3882,7 @@
case ISD::FP_ROUND_INREG: {
assert(N->getValueType(0) == MVT::ppcf128);
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
- SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, N->getOperand(0),
DAG.getIntPtrConstant(0));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
@@ -3936,7 +3936,7 @@
// We know the low half is about to be thrown away, so just use something
// convenient.
- Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
FPreg, FPreg));
return;
}
@@ -3999,7 +3999,7 @@
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
@@ -4010,7 +4010,7 @@
}
MachineBasicBlock *
-PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
+PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *BB,
bool is8bit, // operation
unsigned BinOpcode) const {
@@ -4040,7 +4040,7 @@
exitMBB->transferSuccessors(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
+ const TargetRegisterClass *RC =
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
(const TargetRegisterClass *) &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
@@ -4125,7 +4125,7 @@
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
@@ -4180,15 +4180,15 @@
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
-
+
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
-
+
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
-
+
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
@@ -4315,7 +4315,7 @@
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
-
+
BB = midMBB;
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
.addReg(dest).addReg(ptrA).addReg(ptrB);
@@ -4350,7 +4350,7 @@
exitMBB->transferSuccessors(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
+ const TargetRegisterClass *RC =
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
(const TargetRegisterClass *) &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
@@ -4459,7 +4459,7 @@
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
-
+
BB = midMBB;
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
.addReg(PPC::R0).addReg(PtrReg);
@@ -4507,7 +4507,7 @@
return N->getOperand(0);
}
break;
-
+
case ISD::SINT_TO_FP:
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
@@ -4521,13 +4521,13 @@
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
}
-
+
Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
if (N->getValueType(0) == MVT::f32) {
- Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
+ Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
DAG.getIntPtrConstant(0));
DCI.AddToWorklist(Val.getNode());
}
@@ -4559,7 +4559,7 @@
DCI.AddToWorklist(Val.getNode());
return Val;
}
-
+
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
N->getOperand(1).getNode()->hasOneUse() &&
@@ -4595,11 +4595,11 @@
};
SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
- // If this is an i16 load, insert the truncate.
+ // If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
-
+
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
@@ -4607,11 +4607,11 @@
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
-
+
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
-
+
break;
case PPCISD::VCMP: {
// If a VCMPo node already exists with exactly the same operands as this
@@ -4621,10 +4621,10 @@
if (!N->getOperand(0).hasOneUse() &&
!N->getOperand(1).hasOneUse() &&
!N->getOperand(2).hasOneUse()) {
-
+
// Scan all of the users of the LHS, looking for VCMPo's that match.
SDNode *VCMPoNode = 0;
-
+
SDNode *LHSN = N->getOperand(0).getNode();
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
UI != E; ++UI)
@@ -4635,17 +4635,17 @@
VCMPoNode = *UI;
break;
}
-
+
// If there is no VCMPo node, or if the flag value has a single use, don't
// transform this.
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
break;
-
- // Look at the (necessarily single) use of the flag value. If it has a
+
+ // Look at the (necessarily single) use of the flag value. If it has a
// chain, this transformation is more complex. Note that multiple things
// could use the value result, which we should ignore.
SDNode *FlagUser = 0;
- for (SDNode::use_iterator UI = VCMPoNode->use_begin();
+ for (SDNode::use_iterator UI = VCMPoNode->use_begin();
FlagUser == 0; ++UI) {
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
SDNode *User = *UI;
@@ -4656,7 +4656,7 @@
}
}
}
-
+
// If the user is a MFCR instruction, we know this is safe. Otherwise we
// give up for right now.
if (FlagUser->getOpcode() == PPCISD::MFCR)
@@ -4673,12 +4673,12 @@
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
int CompareOpc;
bool isDot;
-
+
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
assert(isDot && "Can't compare against a vector result!");
-
+
// If this is a comparison against something other than 0/1, then we know
// that the condition is never/always true.
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
@@ -4689,9 +4689,9 @@
return DAG.getNode(ISD::BR, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
-
+
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
-
+
// Create the PPCISD altivec 'dot' comparison node.
std::vector<MVT> VTs;
SDValue Ops[] = {
@@ -4702,7 +4702,7 @@
VTs.push_back(LHS.getOperand(2).getValueType());
VTs.push_back(MVT::Flag);
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
-
+
// Unpack the result based on how the target uses it.
PPC::Predicate CompOpc;
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
@@ -4729,7 +4729,7 @@
break;
}
}
-
+
return SDValue();
}
@@ -4739,7 +4739,7 @@
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
- APInt &KnownZero,
+ APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
@@ -4770,7 +4770,7 @@
case Intrinsic::ppc_altivec_vcmpgtuw_p:
KnownZero = ~1U; // All bits but the low one are known to be zero.
break;
- }
+ }
}
}
}
@@ -4778,7 +4778,7 @@
/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
-PPCTargetLowering::ConstraintType
+PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
@@ -4794,7 +4794,7 @@
return TargetLowering::getConstraintType(Constraint);
}
-std::pair<unsigned, const TargetRegisterClass*>
+std::pair<unsigned, const TargetRegisterClass*>
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
@@ -4811,13 +4811,13 @@
else if (VT == MVT::f64)
return std::make_pair(0U, PPC::F8RCRegisterClass);
break;
- case 'v':
+ case 'v':
return std::make_pair(0U, PPC::VRRCRegisterClass);
case 'y': // crrc
return std::make_pair(0U, PPC::CRRCRegisterClass);
}
}
-
+
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
@@ -4867,7 +4867,7 @@
if ((int)Value > 0 && isPowerOf2_32(Value))
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
- case 'O': // "O" is the constant zero.
+ case 'O': // "O" is the constant zero.
if (Value == 0)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
@@ -4879,31 +4879,31 @@
break;
}
}
-
+
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
-
+
// Handle standard constraint letters.
TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
-bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
// FIXME: PPC does not allow r+i addressing modes for vectors!
-
+
// PPC allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
-
+
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
-
- // PPC only support r+r,
+
+ // PPC only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
@@ -4921,7 +4921,7 @@
// No other scales are supported.
return false;
}
-
+
return true;
}
@@ -4934,12 +4934,12 @@
}
bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
- return false;
+ return false;
}
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
- // Depths > 0 not supported yet!
+ // Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
@@ -4952,22 +4952,22 @@
// Make sure the function really does not optimize away the store of the RA
// to the stack.
FuncInfo->setLRStoreRequired();
- return DAG.getLoad(getPointerTy(), dl,
+ return DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), RetAddrFI, NULL, 0);
}
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
- // Depths > 0 not supported yet!
+ // Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
-
+
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
-
+
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
+ bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
&& MFI->getStackSize();
if (isPPC64)
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 6bcaade..85a6c0b 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -80,7 +80,7 @@
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
}
-
+
// Set up the register classes.
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
addRegisterClass(MVT::i16, X86::GR16RegisterClass);
@@ -90,7 +90,7 @@
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- // We don't accept any truncstore of integer registers.
+ // We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
@@ -234,7 +234,7 @@
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
-
+
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
@@ -448,7 +448,7 @@
if (Fast) {
setConvertAction(MVT::f32, MVT::f64, Expand);
setConvertAction(MVT::f32, MVT::f80, Expand);
- setConvertAction(MVT::f80, MVT::f32, Expand);
+ setConvertAction(MVT::f80, MVT::f32, Expand);
setConvertAction(MVT::f64, MVT::f32, Expand);
// And x87->x87 truncations also.
setConvertAction(MVT::f80, MVT::f64, Expand);
@@ -473,7 +473,7 @@
// this though and handle it in InstructionSelectPreprocess so that
// dagcombine2 can hack on these.
if (Fast) {
- setConvertAction(MVT::f80, MVT::f32, Expand);
+ setConvertAction(MVT::f80, MVT::f32, Expand);
setConvertAction(MVT::f64, MVT::f32, Expand);
setConvertAction(MVT::f80, MVT::f64, Expand);
}
@@ -512,7 +512,7 @@
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
-
+
if (!UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f80 , Expand);
setOperationAction(ISD::FCOS , MVT::f80 , Expand);
@@ -761,7 +761,7 @@
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
-
+
}
if (Subtarget->hasSSE41()) {
@@ -791,7 +791,7 @@
if (Subtarget->hasSSE42()) {
setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
}
-
+
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
@@ -926,13 +926,13 @@
SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
-
+
SmallVector<CCValAssign, 16> RVLocs;
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
-
+
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
@@ -941,7 +941,7 @@
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Chain = Op.getOperand(0);
-
+
// Handle tail call return.
Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
if (Chain.getOpcode() == X86ISD::TAILCALL) {
@@ -952,7 +952,7 @@
(cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
- TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
+ TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
"Expecting an global address, external symbol, or register");
assert(StackAdjustment.getOpcode() == ISD::Constant &&
"Expecting a const value");
@@ -966,10 +966,10 @@
for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Operands.push_back(Chain.getOperand(i));
}
- return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
+ return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
Operands.size());
}
-
+
// Regular return.
SDValue Flag;
@@ -977,13 +977,13 @@
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
-
+
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue ValToCopy = Op.getOperand(i*2+1);
-
+
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (VA.getLocReg() == X86::ST0 ||
@@ -1019,14 +1019,14 @@
Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
Flag = Chain.getValue(1);
}
-
+
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
-
- return DAG.getNode(X86ISD::RET_FLAG, dl,
+
+ return DAG.getNode(X86ISD::RET_FLAG, dl,
MVT::Other, &RetOps[0], RetOps.size());
}
@@ -1037,10 +1037,10 @@
/// being lowered. The returns a SDNode with the same number of values as the
/// ISD::CALL.
SDNode *X86TargetLowering::
-LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
+LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
unsigned CallingConv, SelectionDAG &DAG) {
- DebugLoc dl = TheCall->getDebugLoc();
+ DebugLoc dl = TheCall->getDebugLoc();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool isVarArg = TheCall->isVarArg();
@@ -1049,14 +1049,14 @@
CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
SmallVector<SDValue, 8> ResultVals;
-
+
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
MVT CopyVT = VA.getValVT();
-
+
// If this is x86-64, and we disabled SSE, we can't return FP values
- if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
cerr << "SSE register return with SSE disabled\n";
exit(1);
@@ -1070,7 +1070,7 @@
isScalarFPTypeInSSEReg(VA.getValVT())) {
CopyVT = MVT::f80;
}
-
+
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
CopyVT, InFlag).getValue(1);
SDValue Val = Chain.getValue(0);
@@ -1083,7 +1083,7 @@
// This truncation won't change the value.
DAG.getIntPtrConstant(1));
}
-
+
ResultVals.push_back(Val);
}
@@ -1197,9 +1197,9 @@
/// CallRequiresFnAddressInReg - Check whether the call requires the function
/// address to be loaded in a register.
-bool
+bool
X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
- return !Is64Bit && IsTailCall &&
+ return !Is64Bit && IsTailCall &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT();
}
@@ -1208,7 +1208,7 @@
/// by "Src" to address "Dst" with size and alignment information specified by
/// the specific parameter attribute. The copy will be passed as a byval
/// function parameter.
-static SDValue
+static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
DebugLoc dl) {
@@ -1229,7 +1229,7 @@
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
// FIXME: For now, all byval parameter objects are marked mutable. This can be
- // changed with more analysis.
+ // changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
@@ -1246,7 +1246,7 @@
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
DebugLoc dl = Op.getDebugLoc();
-
+
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
Subtarget->isTargetCygMing() &&
@@ -1255,7 +1255,7 @@
// Decorate the function name.
FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
-
+
MachineFrameInfo *MFI = MF.getFrameInfo();
SDValue Root = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
@@ -1270,7 +1270,7 @@
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
-
+
SmallVector<SDValue, 8> ArgValues;
unsigned LastVal = ~0U;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
@@ -1280,7 +1280,7 @@
assert(VA.getValNo() != LastVal &&
"Don't support value assigned to multiple locs yet");
LastVal = VA.getValNo();
-
+
if (VA.isRegLoc()) {
MVT RegVT = VA.getLocVT();
TargetRegisterClass *RC = NULL;
@@ -1315,7 +1315,7 @@
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
-
+
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
@@ -1325,10 +1325,10 @@
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
-
+
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
-
+
// Handle MMX values passed in GPRs.
if (Is64Bit && RegVT != VA.getLocVT()) {
if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
@@ -1339,7 +1339,7 @@
ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
}
}
-
+
ArgValues.push_back(ArgValue);
} else {
assert(VA.isMemLoc());
@@ -1459,7 +1459,7 @@
&MemOps[0], MemOps.size());
}
}
-
+
ArgValues.push_back(Root);
// Some CCs need callee pop.
@@ -1470,7 +1470,7 @@
BytesToPopOnReturn = 0; // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
- BytesToPopOnReturn = 4;
+ BytesToPopOnReturn = 4;
BytesCallerReserves = StackSize;
}
@@ -1506,12 +1506,12 @@
/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
/// optimization is performed and it is required.
-SDValue
-X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
+SDValue
+X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
SDValue &OutRetAddr,
- SDValue Chain,
- bool IsTailCall,
- bool Is64Bit,
+ SDValue Chain,
+ bool IsTailCall,
+ bool Is64Bit,
int FPDiff,
DebugLoc dl) {
if (!IsTailCall || FPDiff==0) return Chain;
@@ -1527,19 +1527,19 @@
/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
/// optimization is performed and it is required (FPDiff!=0).
-static SDValue
-EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
+static SDValue
+EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
bool Is64Bit, int FPDiff, DebugLoc dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int SlotSize = Is64Bit ? 8 : 4;
- int NewReturnAddrFI =
+ int NewReturnAddrFI =
MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
- Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
+ Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
return Chain;
}
@@ -1564,7 +1564,7 @@
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
-
+
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (PerformTailCallOpt && CC == CallingConv::Fast)
@@ -1573,7 +1573,7 @@
int FPDiff = 0;
if (IsTailCall) {
// Lower arguments at fp - stackoffset + fpdiff.
- unsigned NumBytesCallerPushed =
+ unsigned NumBytesCallerPushed =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
@@ -1601,7 +1601,7 @@
SDValue Arg = TheCall->getArg(i);
ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
bool isByVal = Flags.isByVal();
-
+
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
@@ -1616,7 +1616,7 @@
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
-
+
if (VA.isRegLoc()) {
if (Is64Bit) {
MVT RegVT = VA.getLocVT();
@@ -1648,13 +1648,13 @@
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
-
+
MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
Chain, Arg, Flags));
}
}
}
-
+
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
@@ -1666,17 +1666,17 @@
// tail call optimization the copies to registers are lowered later.
if (!IsTailCall)
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// ELF / PIC requires GOT in the EBX register before function calls via PLT
- // GOT pointer.
+ // GOT pointer.
if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
- DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc::getUnknownLoc(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc::getUnknownLoc(),
getPointerTy()),
InFlag);
InFlag = Chain.getValue(1);
@@ -1713,9 +1713,9 @@
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
- assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
-
+
Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
InFlag = Chain.getValue(1);
@@ -1745,7 +1745,7 @@
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
if (StackPtr.getNode() == 0)
- StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
+ StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
getPointerTy());
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
@@ -1756,7 +1756,7 @@
MemOpChains2.push_back(
DAG.getStore(Chain, dl, Arg, FIN,
PseudoSourceValue::getFixedStack(FI), 0));
- }
+ }
}
}
@@ -1766,7 +1766,7 @@
// Copy arguments to their registers.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
@@ -1792,13 +1792,13 @@
unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl,
- DAG.getRegister(Opc, getPointerTy()),
+ DAG.getRegister(Opc, getPointerTy()),
Callee,InFlag);
Callee = DAG.getRegister(Opc, getPointerTy());
// Add register as live out.
DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
}
-
+
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
@@ -1807,12 +1807,12 @@
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
-
+
// Returns a chain & a flag for retval copy to use.
NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
Ops.clear();
}
-
+
Ops.push_back(Chain);
Ops.push_back(Callee);
@@ -1824,7 +1824,7 @@
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
-
+
// Add an implicit use GOT pointer in EBX.
if (!IsTailCall && !Is64Bit &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
@@ -1839,11 +1839,11 @@
Ops.push_back(InFlag);
if (IsTailCall) {
- assert(InFlag.getNode() &&
+ assert(InFlag.getNode() &&
"Flag must be set. Depend on flag being set in LowerRET");
Chain = DAG.getNode(X86ISD::TAILCALL, dl,
TheCall->getVTList(), &Ops[0], Ops.size());
-
+
return SDValue(Chain.getNode(), Op.getResNo());
}
@@ -1861,7 +1861,7 @@
NumBytesForCalleeToPush = 4;
else
NumBytesForCalleeToPush = 0; // Callee pops nothing.
-
+
// Returns a flag for retval copy to use.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytes, true),
@@ -1901,7 +1901,7 @@
// arg1
// arg2
// RETADDR
-// [ new RETADDR
+// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
@@ -1910,13 +1910,13 @@
/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
/// for a 16 byte align requirement.
-unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
+unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) {
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
const TargetFrameInfo &TFI = *TM.getFrameInfo();
unsigned StackAlignment = TFI.getStackAlignment();
- uint64_t AlignMask = StackAlignment - 1;
+ uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
uint64_t SlotSize = TD->getPointerSize();
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
@@ -1924,7 +1924,7 @@
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
} else {
// Mask out lower bits, add stackalignment once plus the 12 bytes.
- Offset = ((~AlignMask) & Offset) + StackAlignment +
+ Offset = ((~AlignMask) & Offset) + StackAlignment +
(StackAlignment-SlotSize);
}
return Offset;
@@ -2038,7 +2038,7 @@
case ISD::SETUGE: return X86::COND_AE;
}
}
-
+
// First determine if it is required or is profitable to flip the operands.
// If LHS is a foldable load, but RHS is not, flip the condition.
@@ -2896,7 +2896,7 @@
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF)
continue;
-
+
unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Idx < NumElems) {
unsigned Opc = V1.getNode()->getOpcode();
@@ -2922,7 +2922,7 @@
static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
-
+
// Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
SDValue Vec;
@@ -2943,7 +2943,7 @@
///
static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
-
+
// Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
@@ -2993,13 +2993,13 @@
MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
for (unsigned i = 1; i != NumElems; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
- return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
&MaskVec[0], MaskVec.size());
}
/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
/// of specified width.
-static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG,
+static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG,
DebugLoc dl) {
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT BaseVT = MaskVT.getVectorElementType();
@@ -3008,7 +3008,7 @@
MaskVec.push_back(DAG.getConstant(i, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
}
- return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
&MaskVec[0], MaskVec.size());
}
@@ -3024,7 +3024,7 @@
MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
}
- return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
&MaskVec[0], MaskVec.size());
}
@@ -3040,7 +3040,7 @@
MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
for (unsigned i = 1; i != NumElems; ++i)
MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
- return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
&MaskVec[0], MaskVec.size());
}
@@ -3113,7 +3113,7 @@
assert(NumElems == 4);
SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
- Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
+ Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
Cst0, Cst1, Cst0, Cst1);
}
@@ -3237,7 +3237,7 @@
SDValue ThisElt(0, 0), LastElt(0, 0);
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
- LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
+ LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
@@ -3279,7 +3279,7 @@
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
- V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
MVT::v8i16, V, Op.getOperand(i),
DAG.getIntPtrConstant(i));
}
@@ -3354,7 +3354,7 @@
if (NumNonZero == 1 && NumElems <= 4) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue Item = Op.getOperand(Idx);
-
+
// If this is an insertion of an i64 value on x86-32, and if the top bits of
// the value are obviously zero, truncate the value to i32 and do the
// insertion that way. Only do this if the value is non-constant or if the
@@ -3366,18 +3366,18 @@
// Handle MMX and SSE both.
MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
-
+
// Truncate the value (which may itself be a constant) to i32, and
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
-
+
// Now we have our 32-bit value zero extended in the low element of
// a vector. If Idx != 0, swizzle it into place.
if (Idx != 0) {
- SDValue Ops[] = {
+ SDValue Ops[] = {
Item, DAG.getUNDEF(Item.getValueType()),
getSwapEltZeroMask(VecElts, Idx, DAG, dl)
};
@@ -3386,7 +3386,7 @@
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
}
}
-
+
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
@@ -3406,11 +3406,11 @@
isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
- DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
NumBits/2, DAG, *this, dl);
}
-
+
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
@@ -3421,7 +3421,7 @@
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
-
+
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
@@ -3440,7 +3440,7 @@
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1)
return SDValue();
-
+
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
@@ -3647,9 +3647,9 @@
if (AnyOutOrder) {
for (unsigned i = 4; i != 8; ++i)
MaskVec.push_back(DAG.getConstant(i, MaskEVT));
- SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
&MaskVec[0], 8);
- NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16,
+ NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16,
NewV, NewV, Mask);
}
}
@@ -3682,9 +3682,9 @@
}
if (AnyOutOrder) {
- SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl,
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl,
MaskVT, &MaskVec[0], 8);
- NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16,
+ NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16,
NewV, NewV, Mask);
}
}
@@ -3894,7 +3894,7 @@
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
- DAG.getNode(ISD::BIT_CONVERT, dl,
+ DAG.getNode(ISD::BIT_CONVERT, dl,
OpVT, SrcOp)));
}
@@ -3992,7 +3992,7 @@
Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
- DAG.getNode(ISD::BUILD_VECTOR, dl,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
MaskVT, &Mask1[0], 4));
} else {
Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
@@ -4008,7 +4008,7 @@
DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
MaskEVT);
return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V2, V1,
- DAG.getNode(ISD::BUILD_VECTOR, dl,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
MaskVT, &Mask1[0], 4));
}
}
@@ -4105,7 +4105,7 @@
SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG,
*this, dl);
if (NewOp.getNode())
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
LowerVECTOR_SHUFFLE(NewOp, DAG));
} else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
// FIXME: Figure out a cleaner way to do this.
@@ -4138,7 +4138,7 @@
SDValue ShVal;
bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
if (isShift && ShVal.hasOneUse()) {
- // If the shifted value has multiple uses, it may be cheaper to use
+ // If the shifted value has multiple uses, it may be cheaper to use
// v_set0 + movlhps or movhlps, etc.
MVT EVT = VT.getVectorElementType();
ShAmt *= EVT.getSizeInBits();
@@ -4177,7 +4177,7 @@
// 1,1,1,1 -> v8i16 though.
V1IsSplat = isSplatVector(V1.getNode());
V2IsSplat = isSplatVector(V2.getNode());
-
+
// Canonicalize the splat or undef, if present, to be on the RHS.
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
@@ -4328,7 +4328,7 @@
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1));
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
@@ -4361,7 +4361,7 @@
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BIT_CONVERT, dl,
+ DAG.getNode(ISD::BIT_CONVERT, dl,
MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
@@ -4413,7 +4413,7 @@
&IdxVec[0], IdxVec.size());
SDValue Vec = Op.getOperand(0);
Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
- Vec, DAG.getUNDEF(Vec.getValueType()),
+ Vec, DAG.getUNDEF(Vec.getValueType()),
Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
@@ -4448,9 +4448,9 @@
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
// the '3' into bits [7:6] of X86ISD::INSERTPS.
- // Bits [5:4] of the constant are the destination select. This is the
+ // Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
- // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
@@ -4564,7 +4564,7 @@
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
Result);
}
-
+
// For Darwin & Mingw32, external and weak symbols are indirect, so we want to
// load the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address, not
@@ -4718,7 +4718,7 @@
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
- DAG.getNode(X86ISD::GlobalBaseReg,
+ DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
Result);
@@ -4747,7 +4747,7 @@
}
/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
-/// take a 2 x i32 value to shift plus a shift amount.
+/// take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getValueType();
@@ -4758,7 +4758,7 @@
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue Tmp1 = isSRA ?
- DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, MVT::i8)) :
DAG.getConstant(0, VT);
@@ -4797,14 +4797,14 @@
MVT SrcVT = Op.getOperand(0).getValueType();
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
-
+
// These are really Legal; caller falls through into that case.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return SDValue();
- if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
+ if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
Subtarget->is64Bit())
return SDValue();
-
+
DebugLoc dl = Op.getDebugLoc();
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
@@ -4911,12 +4911,12 @@
MaskVec.push_back(DAG.getConstant(4, MVT::i32));
MaskVec.push_back(DAG.getConstant(1, MVT::i32));
MaskVec.push_back(DAG.getConstant(5, MVT::i32));
- SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
+ SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
&MaskVec[0], MaskVec.size());
SmallVector<SDValue, 4> MaskVec2;
MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
- SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32,
+ SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32,
&MaskVec2[0], MaskVec2.size());
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
@@ -5027,7 +5027,7 @@
"Unknown FP_TO_SINT to lower!");
// These are really Legal.
- if (Op.getValueType() == MVT::i32 &&
+ if (Op.getValueType() == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
if (Subtarget->is64Bit() &&
@@ -5076,7 +5076,7 @@
std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode() == 0) return SDValue();
-
+
// Load the result.
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
FIST, StackSlot, NULL, 0);
@@ -5137,7 +5137,7 @@
if (VT.isVector()) {
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
DAG.getNode(ISD::XOR, dl, MVT::v2i64,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
Op.getOperand(0)),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
} else {
@@ -5223,7 +5223,7 @@
SDValue Op1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
-
+
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
@@ -5278,7 +5278,7 @@
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
-
+
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), Cond);
@@ -5305,7 +5305,7 @@
default: break;
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
- case ISD::SETOGT:
+ case ISD::SETOGT:
case ISD::SETGT: Swap = true; // Fallthrough
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
@@ -5344,13 +5344,13 @@
// Handle all other FP comparisons here.
return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
}
-
+
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
bool Swap = false, Invert = false, FlipSigns = false;
-
+
switch (VT.getSimpleVT()) {
default: break;
case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
@@ -5358,7 +5358,7 @@
case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
}
-
+
switch (SetCCOpcode) {
default: break;
case ISD::SETNE: Invert = true;
@@ -5374,7 +5374,7 @@
}
if (Swap)
std::swap(Op0, Op1);
-
+
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
@@ -5387,7 +5387,7 @@
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
}
-
+
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
@@ -5419,12 +5419,12 @@
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
MVT VT = Op.getValueType();
-
+
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
-
+
if ((isX86LogicalCmp(Opc) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME
Cond = Cmp;
addTest = false;
@@ -5433,7 +5433,7 @@
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
- Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
+ Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
DAG.getConstant(0, MVT::i8));
}
@@ -5493,7 +5493,7 @@
Cond.getOpcode() == X86ISD::UMUL)
Cond = LowerXALUO(Cond, DAG);
#endif
-
+
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
if (Cond.getOpcode() == X86ISD::SETCC) {
@@ -5585,7 +5585,7 @@
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
- Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
+ Cond= DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond,
DAG.getConstant(0, MVT::i8));
}
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
@@ -5665,7 +5665,7 @@
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
MVT IntPtr = getPointerTy();
const Type *IntPtrTy = TD->getIntPtrType();
- TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
@@ -5673,8 +5673,8 @@
Entry.Node = Size;
Args.push_back(Entry);
std::pair<SDValue,SDValue> CallResult =
- LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
- CallingConv::C, false,
+ LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
+ CallingConv::C, false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
return CallResult.second;
}
@@ -5735,11 +5735,11 @@
InFlag = Chain.getValue(1);
}
- Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
@@ -5757,7 +5757,7 @@
MVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
- Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
+ Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
@@ -5791,7 +5791,7 @@
SDValue Size, unsigned Align,
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
- const Value *SrcSV, uint64_t SrcSVOff) {
+ const Value *SrcSV, uint64_t SrcSVOff) {
// This requires the copy size to be a constant, preferrably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
@@ -5816,15 +5816,15 @@
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag(0, 0);
- Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
@@ -5844,7 +5844,7 @@
MVT DstVT = Dst.getValueType();
MVT SrcVT = Src.getValueType();
MVT SizeVT = Size.getValueType();
- Results.push_back(DAG.getMemcpy(Chain, dl,
+ Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
@@ -5855,7 +5855,7 @@
SrcSV, SrcSVOff + Offset));
}
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&Results[0], Results.size());
}
@@ -5884,7 +5884,7 @@
MemOps.push_back(Store);
// Store fp_offset
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
FIN, DAG.getIntPtrConstant(4));
Store = DAG.getStore(Op.getOperand(0), dl,
DAG.getConstant(VarArgsFPOffset, MVT::i32),
@@ -5892,19 +5892,19 @@
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
FIN, DAG.getIntPtrConstant(4));
SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
MemOps.push_back(Store);
// Store ptr to reg_save_area.
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
FIN, DAG.getIntPtrConstant(8));
SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
MemOps.push_back(Store);
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOps[0], MemOps.size());
}
@@ -6142,14 +6142,14 @@
DAG.getConstant(TD->getPointerSize(),
Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
- DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getNode(ISD::ADD, dl, getPointerTy(),
FrameAddr, Offset),
NULL, 0);
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
- return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
RetAddrFI, NULL, 0);
}
@@ -6227,31 +6227,31 @@
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, TrmpAddr, 0);
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(2, MVT::i64));
OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(10, MVT::i64));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, TrmpAddr, 10);
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(12, MVT::i64));
OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(20, MVT::i64));
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, TrmpAddr, 20);
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(22, MVT::i64));
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
TrmpAddr, 22);
@@ -6306,27 +6306,27 @@
SDValue OutChains[4];
SDValue Addr, Disp;
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(10, MVT::i32));
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
- OutChains[0] = DAG.getStore(Root, dl,
+ OutChains[0] = DAG.getStore(Root, dl,
DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Trmp, TrmpAddr, 0);
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(1, MVT::i32));
OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(5, MVT::i32));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
TrmpAddr, 5, false, 1);
- Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(6, MVT::i32));
OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
@@ -6463,7 +6463,7 @@
MVT VT = Op.getValueType();
assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
DebugLoc dl = Op.getDebugLoc();
-
+
// ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
// ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
// ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
@@ -6476,7 +6476,7 @@
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
-
+
SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
A, DAG.getConstant(32, MVT::i32));
@@ -6567,7 +6567,7 @@
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
- case MVT::i64:
+ case MVT::i64:
assert(Subtarget->is64Bit() && "Node not type legal!");
Reg = X86::RAX; size = 8;
break;
@@ -6581,7 +6581,7 @@
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
- SDValue cpOut =
+ SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
return cpOut;
}
@@ -6725,7 +6725,7 @@
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue TheChain = N->getOperand(0);
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
- SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
+ SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
rd.getValue(1));
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
eax.getValue(2));
@@ -6871,14 +6871,14 @@
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
-bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
// X86 supports extremely general addressing modes.
-
+
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
return false;
-
+
if (AM.BaseGV) {
// We can only fold this if we don't need an extra load.
if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
@@ -6897,7 +6897,7 @@
return false;
}
}
-
+
switch (AM.Scale) {
case 0:
case 1:
@@ -6917,7 +6917,7 @@
default: // Other stuff never works.
return false;
}
-
+
return true;
}
@@ -6971,7 +6971,7 @@
if (NumElts == 4) {
return (isMOVLMask(&BVOps[0], 4) ||
isCommutedMOVL(&BVOps[0], 4, true) ||
- isSHUFPMask(&BVOps[0], 4) ||
+ isSHUFPMask(&BVOps[0], 4) ||
isCommutedSHUFP(&BVOps[0], 4));
}
return false;
@@ -7007,7 +7007,7 @@
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
-
+
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
@@ -7015,17 +7015,17 @@
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
-
+
// Move all successors to thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
-
+
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
-
+
// newMBB jumps to itself and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
-
+
// Insert instructions into newMBB based on incoming instruction
assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
DebugLoc dl = bInstr->getDebugLoc();
@@ -7038,7 +7038,7 @@
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = 3; // [0,3]
int valArgIndx = 4;
-
+
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
for (int i=0; i <= lastAddrIndx; ++i)
@@ -7048,7 +7048,7 @@
if (invSrc) {
MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
}
- else
+ else
tt = t1;
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
@@ -7064,7 +7064,7 @@
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
MIB.addReg(t1);
-
+
MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
@@ -7074,7 +7074,7 @@
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
MIB.addReg(EAXreg);
-
+
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
@@ -7114,7 +7114,7 @@
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
-
+
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
@@ -7122,17 +7122,17 @@
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
-
+
// Move all successors to thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
-
+
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
-
+
// newMBB jumps to itself and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
-
+
DebugLoc dl = bInstr->getDebugLoc();
// Insert instructions into newMBB based on incoming instruction
// There are 8 "real" operands plus 9 implicit def/uses, ignored here.
@@ -7145,7 +7145,7 @@
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = 3; // [0,3]
-
+
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
for (int i=0; i <= lastAddrIndx; ++i)
@@ -7172,7 +7172,7 @@
unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
- if (invSrc) {
+ if (invSrc) {
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
} else {
@@ -7210,7 +7210,7 @@
MIB.addReg(t5);
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
MIB.addReg(t6);
-
+
MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
@@ -7222,7 +7222,7 @@
MIB.addReg(X86::EAX);
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
MIB.addReg(X86::EDX);
-
+
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
@@ -7239,7 +7239,7 @@
// thisMBB:
// newMBB:
// ld t1 = [min/max.addr]
- // mov t2 = [min/max.val]
+ // mov t2 = [min/max.val]
// cmp t1, t2
// cmov[cond] t2 = t1
// mov EAX = t1
@@ -7251,7 +7251,7 @@
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
-
+
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
@@ -7259,17 +7259,17 @@
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
-
+
// Move all successors to thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
-
+
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
-
+
// newMBB jumps to newMBB and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
-
+
DebugLoc dl = mInstr->getDebugLoc();
// Insert instructions into newMBB based on incoming instruction
assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
@@ -7278,11 +7278,11 @@
int numArgs = mInstr->getNumOperands() - 1;
for (int i=0; i < numArgs; ++i)
argOpers[i] = &mInstr->getOperand(i+1);
-
+
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = 3; // [0,3]
int valArgIndx = 4;
-
+
unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
for (int i=0; i <= lastAddrIndx; ++i)
@@ -7292,11 +7292,11 @@
assert((argOpers[valArgIndx]->isReg() ||
argOpers[valArgIndx]->isImm()) &&
"invalid operand");
-
- unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
+
+ unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
if (argOpers[valArgIndx]->isReg())
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
- else
+ else
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
(*MIB).addOperand(*argOpers[valArgIndx]);
@@ -7320,10 +7320,10 @@
MIB.addReg(t3);
assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
-
+
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
MIB.addReg(X86::EAX);
-
+
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
@@ -7414,7 +7414,7 @@
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
- addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
+ addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
CWFrameIdx);
// Set the high part to be round to zero...
@@ -7475,19 +7475,19 @@
}
case X86::ATOMAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
- X86::AND32ri, X86::MOV32rm,
+ X86::AND32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMOR32:
- return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
- X86::OR32ri, X86::MOV32rm,
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
+ X86::OR32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMXOR32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
- X86::XOR32ri, X86::MOV32rm,
+ X86::XOR32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
@@ -7513,7 +7513,7 @@
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMOR16:
- return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
X86::OR16ri, X86::MOV16rm,
X86::LCMPXCHG16, X86::MOV16rr,
X86::NOT16r, X86::AX,
@@ -7546,7 +7546,7 @@
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMOR8:
- return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
X86::OR8ri, X86::MOV8rm,
X86::LCMPXCHG8, X86::MOV8rr,
X86::NOT8r, X86::AL,
@@ -7567,19 +7567,19 @@
// This group is for 64-bit host.
case X86::ATOMAND64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
- X86::AND64ri32, X86::MOV64rm,
+ X86::AND64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMOR64:
- return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
- X86::OR64ri32, X86::MOV64rm,
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
+ X86::OR64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMXOR64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
- X86::XOR64ri32, X86::MOV64rm,
+ X86::XOR64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
@@ -7600,37 +7600,37 @@
// This group does 64-bit operations on a 32-bit host.
case X86::ATOMAND6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::AND32rr, X86::AND32rr,
X86::AND32ri, X86::AND32ri,
false);
case X86::ATOMOR6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::OR32rr, X86::OR32rr,
X86::OR32ri, X86::OR32ri,
false);
case X86::ATOMXOR6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::XOR32rr, X86::XOR32rr,
X86::XOR32ri, X86::XOR32ri,
false);
case X86::ATOMNAND6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::AND32rr, X86::AND32rr,
X86::AND32ri, X86::AND32ri,
true);
case X86::ATOMADD6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::ADD32rr, X86::ADC32rr,
X86::ADD32ri, X86::ADC32ri,
false);
case X86::ATOMSUB6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::SUB32rr, X86::SBB32rr,
X86::SUB32ri, X86::SBB32ri,
false);
case X86::ATOMSWAP6432:
- return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::MOV32rr, X86::MOV32rr,
X86::MOV32ri, X86::MOV32ri,
false);
@@ -7751,7 +7751,7 @@
LoadSDNode *LD = cast<LoadSDNode>(Base);
if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
- LD->getSrcValue(), LD->getSrcValueOffset(),
+ LD->getSrcValue(), LD->getSrcValueOffset(),
LD->isVolatile());
return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
@@ -7794,7 +7794,7 @@
// Transform it into VZEXT_LOAD addr.
LoadSDNode *LD = cast<LoadSDNode>(Base);
-
+
// Load must not be an extload.
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
return SDValue();
@@ -7810,7 +7810,7 @@
TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
DCI.CommitTargetLoweringOpt(TLO);
return ResNode;
-}
+}
/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
@@ -7895,11 +7895,11 @@
// so we have no knowledge of the shift amount.
if (!Subtarget->hasSSE2())
return SDValue();
-
+
MVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
return SDValue();
-
+
SDValue ShAmtOp = N->getOperand(1);
MVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
@@ -8017,14 +8017,14 @@
DebugLoc dl = N->getDebugLoc();
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
if (Subtarget->is64Bit()) {
- SDValue NewLd = DAG.getLoad(MVT::i64, dl, Ld->getChain(),
- Ld->getBasePtr(), Ld->getSrcValue(),
+ SDValue NewLd = DAG.getLoad(MVT::i64, dl, Ld->getChain(),
+ Ld->getBasePtr(), Ld->getSrcValue(),
Ld->getSrcValueOffset(), Ld->isVolatile(),
Ld->getAlignment());
SDValue NewChain = NewLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(NewChain);
- NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
+ NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
Ops.size());
}
return DAG.getStore(NewChain, dl, NewLd, St->getBasePtr(),
@@ -8042,14 +8042,14 @@
Ld->isVolatile(), Ld->getAlignment());
SDValue HiLd = DAG.getLoad(MVT::i32, dl, Ld->getChain(), HiAddr,
Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
- Ld->isVolatile(),
+ Ld->isVolatile(),
MinAlign(Ld->getAlignment(), 4));
SDValue NewChain = LoLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(LoLd);
Ops.push_back(HiLd);
- NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
+ NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Ops[0],
Ops.size());
}
@@ -8063,7 +8063,7 @@
SDValue HiSt = DAG.getStore(NewChain, dl, HiLd, HiAddr,
St->getSrcValue(),
St->getSrcValueOffset() + 4,
- St->isVolatile(),
+ St->isVolatile(),
MinAlign(St->getAlignment(), 4));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoSt, HiSt);
}
@@ -8184,7 +8184,7 @@
if (Subtarget->hasSSE1())
return "x";
}
-
+
return TargetLowering::LowerXConstraint(ConstraintVT);
}
@@ -8196,7 +8196,7 @@
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
-
+
switch (Constraint) {
default: break;
case 'I':
@@ -8262,7 +8262,7 @@
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
int64_t Offset = 0;
-
+
// Match either (GA) or (GA+C)
if (GA) {
Offset = GA->getOffset();
@@ -8280,9 +8280,9 @@
C = 0, GA = 0;
}
}
-
+
if (GA) {
- if (hasMemory)
+ if (hasMemory)
Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
Offset, DAG);
else
@@ -8296,7 +8296,7 @@
return;
}
}
-
+
if (Result.getNode()) {
Ops.push_back(Result);
return;
@@ -8346,7 +8346,7 @@
if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16RegisterClass);
if (VT == MVT::i32 || !Subtarget->is64Bit())
- return std::make_pair(0U, X86::GR32RegisterClass);
+ return std::make_pair(0U, X86::GR32RegisterClass);
return std::make_pair(0U, X86::GR64RegisterClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
@@ -8386,7 +8386,7 @@
break;
}
}
-
+
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
@@ -8498,24 +8498,24 @@
assert(VT.isVector());
if (isTypeLegal(VT))
return VT;
-
+
// TODO: In computeRegisterProperty, we can compute the list of legal vector
// type based on element type. This would speed up our search (though
// it may not be worth it since the size of the list is relatively
// small).
MVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
-
+
// On X86, it make sense to widen any vector wider than 1
if (NElts <= 1)
return MVT::Other;
-
- for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
+
+ for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType)nVT;
-
- if (isTypeLegal(SVT) &&
- SVT.getVectorElementType() == EltVT &&
+
+ if (isTypeLegal(SVT) &&
+ SVT.getVectorElementType() == EltVT &&
SVT.getVectorNumElements() > NElts)
return SVT;
}