blob: 2bbf2e2c3505a788ace274d8c3daa5e3ab8c29d5 [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
5.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Jim Laskey <jlaskey@mac.com>
6
7.. contents::
8 :local:
9
10Introduction
11============
12
13This document is the central repository for all information pertaining to debug
14information in LLVM. It describes the :ref:`actual format that the LLVM debug
15information takes <format>`, which is useful for those interested in creating
16front-ends or dealing directly with the information. Further, this document
17provides specific examples of what debug information for C/C++ looks like.
18
19Philosophy behind LLVM debugging information
20--------------------------------------------
21
22The idea of the LLVM debugging information is to capture how the important
23pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
24Several design aspects have shaped the solution that appears here. The
25important ones are:
26
27* Debugging information should have very little impact on the rest of the
28 compiler. No transformations, analyses, or code generators should need to
29 be modified because of debugging information.
30
31* LLVM optimizations should interact in :ref:`well-defined and easily described
32 ways <intro_debugopt>` with the debugging information.
33
34* Because LLVM is designed to support arbitrary programming languages,
35 LLVM-to-LLVM tools should not need to know anything about the semantics of
36 the source-level-language.
37
38* Source-level languages are often **widely** different from one another.
39 LLVM should not put any restrictions of the flavor of the source-language,
40 and the debugging information should work with any language.
41
42* With code generator support, it should be possible to use an LLVM compiler
43 to compile a program to native machine code and standard debugging
44 formats. This allows compatibility with traditional machine-code level
45 debuggers, like GDB or DBX.
46
47The approach used by the LLVM implementation is to use a small set of
48:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
49between LLVM program objects and the source-level objects. The description of
50the source-level program is maintained in LLVM metadata in an
51:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
52currently uses working draft 7 of the `DWARF 3 standard
53<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
54
55When a program is being debugged, a debugger interacts with the user and turns
56the stored debug information into source-language specific information. As
57such, a debugger must be aware of the source-language, and is thus tied to a
58specific language or family of languages.
59
60Debug information consumers
61---------------------------
62
63The role of debug information is to provide meta information normally stripped
64away during the compilation process. This meta information provides an LLVM
65user a relationship between generated code and the original program source
66code.
67
68Currently, debug information is consumed by DwarfDebug to produce dwarf
69information used by the gdb debugger. Other targets could use the same
70information to produce stabs or other debug forms.
71
72It would also be reasonable to use debug information to feed profiling tools
73for analysis of generated code, or, tools for reconstructing the original
74source from generated code.
75
76TODO - expound a bit more.
77
78.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
95* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
96 debugging information, allowing them to update the debugging information
97 as they perform aggressive optimizations. This means that, with effort,
98 the LLVM optimizers could optimize debug code just as well as non-debug
99 code.
100
101* LLVM debug information does not prevent optimizations from
102 happening (for example inlining, basic block reordering/merging/cleanup,
103 tail duplication, etc).
104
105* LLVM debug information is automatically optimized along with the rest of
106 the program, using existing facilities. For example, duplicate
107 information is automatically merged by the linker, and unused information
108 is automatically removed.
109
110Basically, the debug information allows you to compile a program with
111"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
112the program as it executes from a debugger. Compiling a program with
113"``-O3 -g``" gives you full debug information that is always available and
114accurate for reading (e.g., you get accurate stack traces despite tail call
115elimination and inlining), but you might lose the ability to modify the program
116and call functions where were optimized out of the program, or inlined away
117completely.
118
119:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
120optimizer's handling of debugging information. It can be run like this:
121
122.. code-block:: bash
123
124 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
125 % make TEST=dbgopt
126
127This will test impact of debugging information on optimization passes. If
128debugging information influences optimization passes then it will be reported
129as a failure. See :doc:`TestingGuide` for more information on LLVM test
130infrastructure and how to run various tests.
131
132.. _format:
133
134Debugging information format
135============================
136
137LLVM debugging information has been carefully designed to make it possible for
138the optimizer to optimize the program and debugging information without
139necessarily having to know anything about debugging information. In
140particular, the use of metadata avoids duplicated debugging information from
141the beginning, and the global dead code elimination pass automatically deletes
142debugging information for a function if it decides to delete the function.
143
144To do this, most of the debugging information (descriptors for types,
145variables, functions, source files, etc) is inserted by the language front-end
146in the form of LLVM metadata.
147
148Debug information is designed to be agnostic about the target debugger and
149debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
150pass to decode the information that represents variables, types, functions,
151namespaces, etc: this allows for arbitrary source-language semantics and
152type-systems to be used, as long as there is a module written for the target
153debugger to interpret the information.
154
155To provide basic functionality, the LLVM debugger does have to make some
156assumptions about the source-level language being debugged, though it keeps
157these to a minimum. The only common features that the LLVM debugger assumes
158exist are :ref:`source files <format_files>`, and :ref:`program objects
159<format_global_variables>`. These abstract objects are used by a debugger to
160form stack traces, show information about local variables, etc.
161
162This section of the documentation first describes the representation aspects
163common to any source-language. :ref:`ccxx_frontend` describes the data layout
164conventions used by the C and C++ front-ends.
165
166Debug information descriptors
167-----------------------------
168
169In consideration of the complexity and volume of debug information, LLVM
170provides a specification for well formed debug descriptors.
171
172Consumers of LLVM debug information expect the descriptors for program objects
173to start in a canonical format, but the descriptors can include additional
174information appended at the end that is source-language specific. All LLVM
175debugging information is versioned, allowing backwards compatibility in the
176case that the core structures need to change in some way. Also, all debugging
177information objects start with a tag to indicate what type of object it is.
178The source-language is allowed to define its own objects, by using unreserved
179tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
180(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
181
182The fields of debug descriptors used internally by LLVM are restricted to only
183the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
184``mdnode``.
185
186.. code-block:: llvm
187
188 !1 = metadata !{
189 i32, ;; A tag
190 ...
191 }
192
193<a name="LLVMDebugVersion">The first field of a descriptor is always an
194``i32`` containing a tag value identifying the content of the descriptor.
195The remaining fields are specific to the descriptor. The values of tags are
196loosely bound to the tag values of DWARF information entries. However, that
197does not restrict the use of the information supplied to DWARF targets. To
198facilitate versioning of debug information, the tag is augmented with the
199current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
200524288.)
201
202The details of the various descriptors follow.
203
204Compile unit descriptors
205^^^^^^^^^^^^^^^^^^^^^^^^
206
207.. code-block:: llvm
208
209 !0 = metadata !{
210 i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
211 i32, ;; Unused field.
212 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
213 metadata, ;; Source file name
214 metadata, ;; Source file directory (includes trailing slash)
215 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
216 i1, ;; True if this is a main compile unit.
217 i1, ;; True if this is optimized.
218 metadata, ;; Flags
219 i32 ;; Runtime version
220 metadata ;; List of enums types
221 metadata ;; List of retained types
222 metadata ;; List of subprograms
223 metadata ;; List of global variables
224 }
225
226These descriptors contain a source language ID for the file (we use the DWARF
2273.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
228``DW_LANG_Cobol74``, etc), three strings describing the filename, working
229directory of the compiler, and an identifier string for the compiler that
230produced it.
231
232Compile unit descriptors provide the root context for objects declared in a
233specific compilation unit. File descriptors are defined using this context.
234These descriptors are collected by a named metadata ``!llvm.dbg.cu``. Compile
235unit descriptor keeps track of subprograms, global variables and type
236information.
237
238.. _format_files:
239
240File descriptors
241^^^^^^^^^^^^^^^^
242
243.. code-block:: llvm
244
245 !0 = metadata !{
246 i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
247 metadata, ;; Source file name
248 metadata, ;; Source file directory (includes trailing slash)
249 metadata ;; Unused
250 }
251
252These descriptors contain information for a file. Global variables and top
253level functions would be defined using this context. File descriptors also
254provide context for source line correspondence.
255
256Each input file is encoded as a separate file descriptor in LLVM debugging
257information output.
258
259.. _format_global_variables:
260
261Global variable descriptors
262^^^^^^^^^^^^^^^^^^^^^^^^^^^
263
264.. code-block:: llvm
265
266 !1 = metadata !{
267 i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
268 i32, ;; Unused field.
269 metadata, ;; Reference to context descriptor
270 metadata, ;; Name
271 metadata, ;; Display name (fully qualified C++ name)
272 metadata, ;; MIPS linkage name (for C++)
273 metadata, ;; Reference to file where defined
274 i32, ;; Line number where defined
275 metadata, ;; Reference to type descriptor
276 i1, ;; True if the global is local to compile unit (static)
277 i1, ;; True if the global is defined in the compile unit (not extern)
278 {}* ;; Reference to the global variable
279 }
280
281These descriptors provide debug information about globals variables. The
282provide details such as name, type and where the variable is defined. All
283global variables are collected inside the named metadata ``!llvm.dbg.cu``.
284
285.. _format_subprograms:
286
287Subprogram descriptors
288^^^^^^^^^^^^^^^^^^^^^^
289
290.. code-block:: llvm
291
292 !2 = metadata !{
293 i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
294 i32, ;; Unused field.
295 metadata, ;; Reference to context descriptor
296 metadata, ;; Name
297 metadata, ;; Display name (fully qualified C++ name)
298 metadata, ;; MIPS linkage name (for C++)
299 metadata, ;; Reference to file where defined
300 i32, ;; Line number where defined
301 metadata, ;; Reference to type descriptor
302 i1, ;; True if the global is local to compile unit (static)
303 i1, ;; True if the global is defined in the compile unit (not extern)
304 i32, ;; Line number where the scope of the subprogram begins
305 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
306 i32, ;; Index into a virtual function
307 metadata, ;; indicates which base type contains the vtable pointer for the
308 ;; derived class
309 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
310 i1, ;; isOptimized
311 Function * , ;; Pointer to LLVM function
312 metadata, ;; Lists function template parameters
313 metadata, ;; Function declaration descriptor
314 metadata ;; List of function variables
315 }
316
317These descriptors provide debug information about functions, methods and
318subprograms. They provide details such as name, return types and the source
319location where the subprogram is defined.
320
321Block descriptors
322^^^^^^^^^^^^^^^^^
323
324.. code-block:: llvm
325
326 !3 = metadata !{
327 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
328 metadata,;; Reference to context descriptor
329 i32, ;; Line number
330 i32, ;; Column number
331 metadata,;; Reference to source file
332 i32 ;; Unique ID to identify blocks from a template function
333 }
334
335This descriptor provides debug information about nested blocks within a
336subprogram. The line number and column numbers are used to dinstinguish two
337lexical blocks at same depth.
338
339.. code-block:: llvm
340
341 !3 = metadata !{
342 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
343 metadata ;; Reference to the scope we're annotating with a file change
344 metadata,;; Reference to the file the scope is enclosed in.
345 }
346
347This descriptor provides a wrapper around a lexical scope to handle file
348changes in the middle of a lexical block.
349
350.. _format_basic_type:
351
352Basic type descriptors
353^^^^^^^^^^^^^^^^^^^^^^
354
355.. code-block:: llvm
356
357 !4 = metadata !{
358 i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
359 metadata, ;; Reference to context
360 metadata, ;; Name (may be "" for anonymous types)
361 metadata, ;; Reference to file where defined (may be NULL)
362 i32, ;; Line number where defined (may be 0)
363 i64, ;; Size in bits
364 i64, ;; Alignment in bits
365 i64, ;; Offset in bits
366 i32, ;; Flags
367 i32 ;; DWARF type encoding
368 }
369
370These descriptors define primitive types used in the code. Example ``int``,
371``bool`` and ``float``. The context provides the scope of the type, which is
372usually the top level. Since basic types are not usually user defined the
373context and line number can be left as NULL and 0. The size, alignment and
374offset are expressed in bits and can be 64 bit values. The alignment is used
375to round the offset when embedded in a :ref:`composite type
376<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
377The offset is the bit offset if embedded in a :ref:`composite type
378<format_composite_type>`.
379
380The type encoding provides the details of the type. The values are typically
381one of the following:
382
383.. code-block:: llvm
384
385 DW_ATE_address = 1
386 DW_ATE_boolean = 2
387 DW_ATE_float = 4
388 DW_ATE_signed = 5
389 DW_ATE_signed_char = 6
390 DW_ATE_unsigned = 7
391 DW_ATE_unsigned_char = 8
392
393.. _format_derived_type:
394
395Derived type descriptors
396^^^^^^^^^^^^^^^^^^^^^^^^
397
398.. code-block:: llvm
399
400 !5 = metadata !{
401 i32, ;; Tag (see below)
402 metadata, ;; Reference to context
403 metadata, ;; Name (may be "" for anonymous types)
404 metadata, ;; Reference to file where defined (may be NULL)
405 i32, ;; Line number where defined (may be 0)
406 i64, ;; Size in bits
407 i64, ;; Alignment in bits
408 i64, ;; Offset in bits
409 i32, ;; Flags to encode attributes, e.g. private
410 metadata, ;; Reference to type derived from
411 metadata, ;; (optional) Name of the Objective C property associated with
412 ;; Objective-C an ivar
413 metadata, ;; (optional) Name of the Objective C property getter selector.
414 metadata, ;; (optional) Name of the Objective C property setter selector.
415 i32 ;; (optional) Objective C property attributes.
416 }
417
418These descriptors are used to define types derived from other types. The value
419of the tag varies depending on the meaning. The following are possible tag
420values:
421
422.. code-block:: llvm
423
424 DW_TAG_formal_parameter = 5
425 DW_TAG_member = 13
426 DW_TAG_pointer_type = 15
427 DW_TAG_reference_type = 16
428 DW_TAG_typedef = 22
429 DW_TAG_const_type = 38
430 DW_TAG_volatile_type = 53
431 DW_TAG_restrict_type = 55
432
433``DW_TAG_member`` is used to define a member of a :ref:`composite type
434<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
435of the member is the :ref:`derived type <format_derived_type>`.
436``DW_TAG_formal_parameter`` is used to define a member which is a formal
437argument of a subprogram.
438
439``DW_TAG_typedef`` is used to provide a name for the derived type.
440
441``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
442``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
443:ref:`derived type <format_derived_type>`.
444
445:ref:`Derived type <format_derived_type>` location can be determined from the
446context and line number. The size, alignment and offset are expressed in bits
447and can be 64 bit values. The alignment is used to round the offset when
448embedded in a :ref:`composite type <format_composite_type>` (example to keep
449float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
450in a :ref:`composite type <format_composite_type>`.
451
452Note that the ``void *`` type is expressed as a type derived from NULL.
453
454.. _format_composite_type:
455
456Composite type descriptors
457^^^^^^^^^^^^^^^^^^^^^^^^^^
458
459.. code-block:: llvm
460
461 !6 = metadata !{
462 i32, ;; Tag (see below)
463 metadata, ;; Reference to context
464 metadata, ;; Name (may be "" for anonymous types)
465 metadata, ;; Reference to file where defined (may be NULL)
466 i32, ;; Line number where defined (may be 0)
467 i64, ;; Size in bits
468 i64, ;; Alignment in bits
469 i64, ;; Offset in bits
470 i32, ;; Flags
471 metadata, ;; Reference to type derived from
472 metadata, ;; Reference to array of member descriptors
473 i32 ;; Runtime languages
474 }
475
476These descriptors are used to define types that are composed of 0 or more
477elements. The value of the tag varies depending on the meaning. The following
478are possible tag values:
479
480.. code-block:: llvm
481
482 DW_TAG_array_type = 1
483 DW_TAG_enumeration_type = 4
484 DW_TAG_structure_type = 19
485 DW_TAG_union_type = 23
486 DW_TAG_vector_type = 259
487 DW_TAG_subroutine_type = 21
488 DW_TAG_inheritance = 28
489
490The vector flag indicates that an array type is a native packed vector.
491
492The members of array types (tag = ``DW_TAG_array_type``) or vector types (tag =
493``DW_TAG_vector_type``) are :ref:`subrange descriptors <format_subrange>`, each
494representing the range of subscripts at that level of indexing.
495
496The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
497:ref:`enumerator descriptors <format_enumerator>`, each representing the
498definition of enumeration value for the set. All enumeration type descriptors
499are collected inside the named metadata ``!llvm.dbg.cu``.
500
501The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
502``DW_TAG_union_type``) types are any one of the :ref:`basic
503<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
504<format_composite_type>` type descriptors, each representing a field member of
505the structure or union.
506
507For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
508information about base classes, static members and member functions. If a
509member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
510of ``DW_TAG_inheritance``, then the type represents a base class. If the member
511of is a :ref:`global variable descriptor <format_global_variables>` then it
512represents a static member. And, if the member is a :ref:`subprogram
513descriptor <format_subprograms>` then it represents a member function. For
514static members and member functions, ``getName()`` returns the members link or
515the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
516
517The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
518is the return type for the subroutine. The remaining elements are the formal
519arguments to the subroutine.
520
521:ref:`Composite type <format_composite_type>` location can be determined from
522the context and line number. The size, alignment and offset are expressed in
523bits and can be 64 bit values. The alignment is used to round the offset when
524embedded in a :ref:`composite type <format_composite_type>` (as an example, to
525keep float doubles on 64 bit boundaries). The offset is the bit offset if
526embedded in a :ref:`composite type <format_composite_type>`.
527
528.. _format_subrange:
529
530Subrange descriptors
531^^^^^^^^^^^^^^^^^^^^
532
533.. code-block:: llvm
534
535 !42 = metadata !{
536 i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
537 i64, ;; Low value
538 i64 ;; High value
539 }
540
541These descriptors are used to define ranges of array subscripts for an array
542:ref:`composite type <format_composite_type>`. The low value defines the lower
543bounds typically zero for C/C++. The high value is the upper bounds. Values
544are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
545the array bounds are not included in generated debugging information.
546
547.. _format_enumerator:
548
549Enumerator descriptors
550^^^^^^^^^^^^^^^^^^^^^^
551
552.. code-block:: llvm
553
554 !6 = metadata !{
555 i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
556 metadata, ;; Name
557 i64 ;; Value
558 }
559
560These descriptors are used to define members of an enumeration :ref:`composite
561type <format_composite_type>`, it associates the name to the value.
562
563Local variables
564^^^^^^^^^^^^^^^
565
566.. code-block:: llvm
567
568 !7 = metadata !{
569 i32, ;; Tag (see below)
570 metadata, ;; Context
571 metadata, ;; Name
572 metadata, ;; Reference to file where defined
573 i32, ;; 24 bit - Line number where defined
574 ;; 8 bit - Argument number. 1 indicates 1st argument.
575 metadata, ;; Type descriptor
576 i32, ;; flags
577 metadata ;; (optional) Reference to inline location
578 }
579
580These descriptors are used to define variables local to a sub program. The
581value of the tag depends on the usage of the variable:
582
583.. code-block:: llvm
584
585 DW_TAG_auto_variable = 256
586 DW_TAG_arg_variable = 257
587 DW_TAG_return_variable = 258
588
589An auto variable is any variable declared in the body of the function. An
590argument variable is any variable that appears as a formal argument to the
591function. A return variable is used to track the result of a function and has
592no source correspondent.
593
594The context is either the subprogram or block where the variable is defined.
595Name the source variable name. Context and line indicate where the variable
596was defined. Type descriptor defines the declared type of the variable.
597
598.. _format_common_intrinsics:
599
600Debugger intrinsic functions
601^^^^^^^^^^^^^^^^^^^^^^^^^^^^
602
603LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
604provide debug information at various points in generated code.
605
606``llvm.dbg.declare``
607^^^^^^^^^^^^^^^^^^^^
608
609.. code-block:: llvm
610
611 void %llvm.dbg.declare(metadata, metadata)
612
613This intrinsic provides information about a local element (e.g., variable).
614The first argument is metadata holding the alloca for the variable. The second
615argument is metadata containing a description of the variable.
616
617``llvm.dbg.value``
618^^^^^^^^^^^^^^^^^^
619
620.. code-block:: llvm
621
622 void %llvm.dbg.value(metadata, i64, metadata)
623
624This intrinsic provides information when a user source variable is set to a new
625value. The first argument is the new value (wrapped as metadata). The second
626argument is the offset in the user source variable where the new value is
627written. The third argument is metadata containing a description of the user
628source variable.
629
630Object lifetimes and scoping
631============================
632
633In many languages, the local variables in functions can have their lifetimes or
634scopes limited to a subset of a function. In the C family of languages, for
635example, variables are only live (readable and writable) within the source
636block that they are defined in. In functional languages, values are only
637readable after they have been defined. Though this is a very obvious concept,
638it is non-trivial to model in LLVM, because it has no notion of scoping in this
639sense, and does not want to be tied to a language's scoping rules.
640
641In order to handle this, the LLVM debug format uses the metadata attached to
642llvm instructions to encode line number and scoping information. Consider the
643following C fragment, for example:
644
645.. code-block:: c
646
647 1. void foo() {
648 2. int X = 21;
649 3. int Y = 22;
650 4. {
651 5. int Z = 23;
652 6. Z = X;
653 7. }
654 8. X = Y;
655 9. }
656
657Compiled to LLVM, this function would be represented like this:
658
659.. code-block:: llvm
660
661 define void @foo() nounwind ssp {
662 entry:
663 %X = alloca i32, align 4 ; <i32*> [#uses=4]
664 %Y = alloca i32, align 4 ; <i32*> [#uses=4]
665 %Z = alloca i32, align 4 ; <i32*> [#uses=3]
666 %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
667 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
668 store i32 21, i32* %X, !dbg !8
669 %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
670 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
671 store i32 22, i32* %Y, !dbg !11
672 %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
673 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
674 store i32 23, i32* %Z, !dbg !15
675 %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
676 %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
677 %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
678 store i32 %add, i32* %Z, !dbg !16
679 %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
680 store i32 %tmp2, i32* %X, !dbg !17
681 ret void, !dbg !18
682 }
683
684 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
685
686 !0 = metadata !{i32 459008, metadata !1, metadata !"X",
687 metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
688 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
689 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
690 metadata !"foo", metadata !3, i32 1, metadata !4,
691 i1 false, i1 true}; [DW_TAG_subprogram ]
692 !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
693 metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
694 i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
695 !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
696 i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
697 !5 = metadata !{null}
698 !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
699 i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
700 !7 = metadata !{i32 2, i32 7, metadata !1, null}
701 !8 = metadata !{i32 2, i32 3, metadata !1, null}
702 !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
703 metadata !6}; [ DW_TAG_auto_variable ]
704 !10 = metadata !{i32 3, i32 7, metadata !1, null}
705 !11 = metadata !{i32 3, i32 3, metadata !1, null}
706 !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
707 metadata !6}; [ DW_TAG_auto_variable ]
708 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
709 !14 = metadata !{i32 5, i32 9, metadata !13, null}
710 !15 = metadata !{i32 5, i32 5, metadata !13, null}
711 !16 = metadata !{i32 6, i32 5, metadata !13, null}
712 !17 = metadata !{i32 8, i32 3, metadata !1, null}
713 !18 = metadata !{i32 9, i32 1, metadata !2, null}
714
715This example illustrates a few important details about LLVM debugging
716information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
717location information, which are attached to an instruction, are applied
718together to allow a debugger to analyze the relationship between statements,
719variable definitions, and the code used to implement the function.
720
721.. code-block:: llvm
722
723 call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
724
725The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
726variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
727scope information for the variable ``X``.
728
729.. code-block:: llvm
730
731 !7 = metadata !{i32 2, i32 7, metadata !1, null}
732 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
733 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
734 metadata !"foo", metadata !"foo", metadata !3, i32 1,
735 metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
736
737Here ``!7`` is metadata providing location information. It has four fields:
738line number, column number, scope, and original scope. The original scope
739represents inline location if this instruction is inlined inside a caller, and
740is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
741represents a lexical block inside the scope ``!2``, where ``!2`` is a
742:ref:`subprogram descriptor <format_subprograms>`. This way the location
743information attached to the intrinsics indicates that the variable ``X`` is
744declared at line number 2 at a function level scope in function ``foo``.
745
746Now lets take another example.
747
748.. code-block:: llvm
749
750 call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
751
752The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
753variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
754scope information for the variable ``Z``.
755
756.. code-block:: llvm
757
758 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
759 !14 = metadata !{i32 5, i32 9, metadata !13, null}
760
761Here ``!14`` indicates that ``Z`` is declared at line number 5 and
762column number 9 inside of lexical scope ``!13``. The lexical scope itself
763resides inside of lexical scope ``!1`` described above.
764
765The scope information attached with each instruction provides a straightforward
766way to find instructions covered by a scope.
767
768.. _ccxx_frontend:
769
770C/C++ front-end specific debug information
771==========================================
772
773The C and C++ front-ends represent information about the program in a format
774that is effectively identical to `DWARF 3.0
775<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
776content. This allows code generators to trivially support native debuggers by
777generating standard dwarf information, and contains enough information for
778non-dwarf targets to translate it as needed.
779
780This section describes the forms used to represent C and C++ programs. Other
781languages could pattern themselves after this (which itself is tuned to
782representing programs in the same way that DWARF 3 does), or they could choose
783to provide completely different forms if they don't fit into the DWARF model.
784As support for debugging information gets added to the various LLVM
785source-language front-ends, the information used should be documented here.
786
787The following sections provide examples of various C/C++ constructs and the
788debug information that would best describe those constructs.
789
790C/C++ source file information
791-----------------------------
792
793Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
794directory ``/Users/mine/sources``, the following code:
795
796.. code-block:: c
797
798 #include "MyHeader.h"
799
800 int main(int argc, char *argv[]) {
801 return 0;
802 }
803
804a C/C++ front-end would generate the following descriptors:
805
806.. code-block:: llvm
807
808 ...
809 ;;
810 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
811 ;;
812 !2 = metadata !{
813 i32 524305, ;; Tag
814 i32 0, ;; Unused
815 i32 4, ;; Language Id
816 metadata !"MySource.cpp",
817 metadata !"/Users/mine/sources",
818 metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
819 i1 true, ;; Main Compile Unit
820 i1 false, ;; Optimized compile unit
821 metadata !"", ;; Compiler flags
822 i32 0} ;; Runtime version
823
824 ;;
825 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
826 ;;
827 !1 = metadata !{
828 i32 524329, ;; Tag
829 metadata !"MySource.cpp",
830 metadata !"/Users/mine/sources",
831 metadata !2 ;; Compile unit
832 }
833
834 ;;
835 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
836 ;;
837 !3 = metadata !{
838 i32 524329, ;; Tag
839 metadata !"Myheader.h"
840 metadata !"/Users/mine/sources",
841 metadata !2 ;; Compile unit
842 }
843
844 ...
845
846``llvm::Instruction`` provides easy access to metadata attached with an
847instruction. One can extract line number information encoded in LLVM IR using
848``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
849
850.. code-block:: c++
851
852 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
853 DILocation Loc(N); // DILocation is in DebugInfo.h
854 unsigned Line = Loc.getLineNumber();
855 StringRef File = Loc.getFilename();
856 StringRef Dir = Loc.getDirectory();
857 }
858
859C/C++ global variable information
860---------------------------------
861
862Given an integer global variable declared as follows:
863
864.. code-block:: c
865
866 int MyGlobal = 100;
867
868a C/C++ front-end would generate the following descriptors:
869
870.. code-block:: llvm
871
872 ;;
873 ;; Define the global itself.
874 ;;
875 %MyGlobal = global int 100
876 ...
877 ;;
878 ;; List of debug info of globals
879 ;;
880 !llvm.dbg.cu = !{!0}
881
882 ;; Define the compile unit.
883 !0 = metadata !{
884 i32 786449, ;; Tag
885 i32 0, ;; Context
886 i32 4, ;; Language
887 metadata !"foo.cpp", ;; File
888 metadata !"/Volumes/Data/tmp", ;; Directory
889 metadata !"clang version 3.1 ", ;; Producer
890 i1 true, ;; Deprecated field
891 i1 false, ;; "isOptimized"?
892 metadata !"", ;; Flags
893 i32 0, ;; Runtime Version
894 metadata !1, ;; Enum Types
895 metadata !1, ;; Retained Types
896 metadata !1, ;; Subprograms
897 metadata !3 ;; Global Variables
898 } ; [ DW_TAG_compile_unit ]
899
900 ;; The Array of Global Variables
901 !3 = metadata !{
902 metadata !4
903 }
904
905 !4 = metadata !{
906 metadata !5
907 }
908
909 ;;
910 ;; Define the global variable itself.
911 ;;
912 !5 = metadata !{
913 i32 786484, ;; Tag
914 i32 0, ;; Unused
915 null, ;; Unused
916 metadata !"MyGlobal", ;; Name
917 metadata !"MyGlobal", ;; Display Name
918 metadata !"", ;; Linkage Name
919 metadata !6, ;; File
920 i32 1, ;; Line
921 metadata !7, ;; Type
922 i32 0, ;; IsLocalToUnit
923 i32 1, ;; IsDefinition
924 i32* @MyGlobal ;; LLVM-IR Value
925 } ; [ DW_TAG_variable ]
926
927 ;;
928 ;; Define the file
929 ;;
930 !6 = metadata !{
931 i32 786473, ;; Tag
932 metadata !"foo.cpp", ;; File
933 metadata !"/Volumes/Data/tmp", ;; Directory
934 null ;; Unused
935 } ; [ DW_TAG_file_type ]
936
937 ;;
938 ;; Define the type
939 ;;
940 !7 = metadata !{
941 i32 786468, ;; Tag
942 null, ;; Unused
943 metadata !"int", ;; Name
944 null, ;; Unused
945 i32 0, ;; Line
946 i64 32, ;; Size in Bits
947 i64 32, ;; Align in Bits
948 i64 0, ;; Offset
949 i32 0, ;; Flags
950 i32 5 ;; Encoding
951 } ; [ DW_TAG_base_type ]
952
953C/C++ function information
954--------------------------
955
956Given a function declared as follows:
957
958.. code-block:: c
959
960 int main(int argc, char *argv[]) {
961 return 0;
962 }
963
964a C/C++ front-end would generate the following descriptors:
965
966.. code-block:: llvm
967
968 ;;
969 ;; Define the anchor for subprograms. Note that the second field of the
970 ;; anchor is 46, which is the same as the tag for subprograms
971 ;; (46 = DW_TAG_subprogram.)
972 ;;
973 !6 = metadata !{
974 i32 524334, ;; Tag
975 i32 0, ;; Unused
976 metadata !1, ;; Context
977 metadata !"main", ;; Name
978 metadata !"main", ;; Display name
979 metadata !"main", ;; Linkage name
980 metadata !1, ;; File
981 i32 1, ;; Line number
982 metadata !4, ;; Type
983 i1 false, ;; Is local
984 i1 true, ;; Is definition
985 i32 0, ;; Virtuality attribute, e.g. pure virtual function
986 i32 0, ;; Index into virtual table for C++ methods
987 i32 0, ;; Type that holds virtual table.
988 i32 0, ;; Flags
989 i1 false, ;; True if this function is optimized
990 Function *, ;; Pointer to llvm::Function
991 null ;; Function template parameters
992 }
993 ;;
994 ;; Define the subprogram itself.
995 ;;
996 define i32 @main(i32 %argc, i8** %argv) {
997 ...
998 }
999
1000C/C++ basic types
1001-----------------
1002
1003The following are the basic type descriptors for C/C++ core types:
1004
1005bool
1006^^^^
1007
1008.. code-block:: llvm
1009
1010 !2 = metadata !{
1011 i32 524324, ;; Tag
1012 metadata !1, ;; Context
1013 metadata !"bool", ;; Name
1014 metadata !1, ;; File
1015 i32 0, ;; Line number
1016 i64 8, ;; Size in Bits
1017 i64 8, ;; Align in Bits
1018 i64 0, ;; Offset in Bits
1019 i32 0, ;; Flags
1020 i32 2 ;; Encoding
1021 }
1022
1023char
1024^^^^
1025
1026.. code-block:: llvm
1027
1028 !2 = metadata !{
1029 i32 524324, ;; Tag
1030 metadata !1, ;; Context
1031 metadata !"char", ;; Name
1032 metadata !1, ;; File
1033 i32 0, ;; Line number
1034 i64 8, ;; Size in Bits
1035 i64 8, ;; Align in Bits
1036 i64 0, ;; Offset in Bits
1037 i32 0, ;; Flags
1038 i32 6 ;; Encoding
1039 }
1040
1041unsigned char
1042^^^^^^^^^^^^^
1043
1044.. code-block:: llvm
1045
1046 !2 = metadata !{
1047 i32 524324, ;; Tag
1048 metadata !1, ;; Context
1049 metadata !"unsigned char",
1050 metadata !1, ;; File
1051 i32 0, ;; Line number
1052 i64 8, ;; Size in Bits
1053 i64 8, ;; Align in Bits
1054 i64 0, ;; Offset in Bits
1055 i32 0, ;; Flags
1056 i32 8 ;; Encoding
1057 }
1058
1059short
1060^^^^^
1061
1062.. code-block:: llvm
1063
1064 !2 = metadata !{
1065 i32 524324, ;; Tag
1066 metadata !1, ;; Context
1067 metadata !"short int",
1068 metadata !1, ;; File
1069 i32 0, ;; Line number
1070 i64 16, ;; Size in Bits
1071 i64 16, ;; Align in Bits
1072 i64 0, ;; Offset in Bits
1073 i32 0, ;; Flags
1074 i32 5 ;; Encoding
1075 }
1076
1077unsigned short
1078^^^^^^^^^^^^^^
1079
1080.. code-block:: llvm
1081
1082 !2 = metadata !{
1083 i32 524324, ;; Tag
1084 metadata !1, ;; Context
1085 metadata !"short unsigned int",
1086 metadata !1, ;; File
1087 i32 0, ;; Line number
1088 i64 16, ;; Size in Bits
1089 i64 16, ;; Align in Bits
1090 i64 0, ;; Offset in Bits
1091 i32 0, ;; Flags
1092 i32 7 ;; Encoding
1093 }
1094
1095int
1096^^^
1097
1098.. code-block:: llvm
1099
1100 !2 = metadata !{
1101 i32 524324, ;; Tag
1102 metadata !1, ;; Context
1103 metadata !"int", ;; Name
1104 metadata !1, ;; File
1105 i32 0, ;; Line number
1106 i64 32, ;; Size in Bits
1107 i64 32, ;; Align in Bits
1108 i64 0, ;; Offset in Bits
1109 i32 0, ;; Flags
1110 i32 5 ;; Encoding
1111 }
1112
1113unsigned int
1114^^^^^^^^^^^^
1115
1116.. code-block:: llvm
1117
1118 !2 = metadata !{
1119 i32 524324, ;; Tag
1120 metadata !1, ;; Context
1121 metadata !"unsigned int",
1122 metadata !1, ;; File
1123 i32 0, ;; Line number
1124 i64 32, ;; Size in Bits
1125 i64 32, ;; Align in Bits
1126 i64 0, ;; Offset in Bits
1127 i32 0, ;; Flags
1128 i32 7 ;; Encoding
1129 }
1130
1131long long
1132^^^^^^^^^
1133
1134.. code-block:: llvm
1135
1136 !2 = metadata !{
1137 i32 524324, ;; Tag
1138 metadata !1, ;; Context
1139 metadata !"long long int",
1140 metadata !1, ;; File
1141 i32 0, ;; Line number
1142 i64 64, ;; Size in Bits
1143 i64 64, ;; Align in Bits
1144 i64 0, ;; Offset in Bits
1145 i32 0, ;; Flags
1146 i32 5 ;; Encoding
1147 }
1148
1149unsigned long long
1150^^^^^^^^^^^^^^^^^^
1151
1152.. code-block:: llvm
1153
1154 !2 = metadata !{
1155 i32 524324, ;; Tag
1156 metadata !1, ;; Context
1157 metadata !"long long unsigned int",
1158 metadata !1, ;; File
1159 i32 0, ;; Line number
1160 i64 64, ;; Size in Bits
1161 i64 64, ;; Align in Bits
1162 i64 0, ;; Offset in Bits
1163 i32 0, ;; Flags
1164 i32 7 ;; Encoding
1165 }
1166
1167float
1168^^^^^
1169
1170.. code-block:: llvm
1171
1172 !2 = metadata !{
1173 i32 524324, ;; Tag
1174 metadata !1, ;; Context
1175 metadata !"float",
1176 metadata !1, ;; File
1177 i32 0, ;; Line number
1178 i64 32, ;; Size in Bits
1179 i64 32, ;; Align in Bits
1180 i64 0, ;; Offset in Bits
1181 i32 0, ;; Flags
1182 i32 4 ;; Encoding
1183 }
1184
1185double
1186^^^^^^
1187
1188.. code-block:: llvm
1189
1190 !2 = metadata !{
1191 i32 524324, ;; Tag
1192 metadata !1, ;; Context
1193 metadata !"double",;; Name
1194 metadata !1, ;; File
1195 i32 0, ;; Line number
1196 i64 64, ;; Size in Bits
1197 i64 64, ;; Align in Bits
1198 i64 0, ;; Offset in Bits
1199 i32 0, ;; Flags
1200 i32 4 ;; Encoding
1201 }
1202
1203C/C++ derived types
1204-------------------
1205
1206Given the following as an example of C/C++ derived type:
1207
1208.. code-block:: c
1209
1210 typedef const int *IntPtr;
1211
1212a C/C++ front-end would generate the following descriptors:
1213
1214.. code-block:: llvm
1215
1216 ;;
1217 ;; Define the typedef "IntPtr".
1218 ;;
1219 !2 = metadata !{
1220 i32 524310, ;; Tag
1221 metadata !1, ;; Context
1222 metadata !"IntPtr", ;; Name
1223 metadata !3, ;; File
1224 i32 0, ;; Line number
1225 i64 0, ;; Size in bits
1226 i64 0, ;; Align in bits
1227 i64 0, ;; Offset in bits
1228 i32 0, ;; Flags
1229 metadata !4 ;; Derived From type
1230 }
1231 ;;
1232 ;; Define the pointer type.
1233 ;;
1234 !4 = metadata !{
1235 i32 524303, ;; Tag
1236 metadata !1, ;; Context
1237 metadata !"", ;; Name
1238 metadata !1, ;; File
1239 i32 0, ;; Line number
1240 i64 64, ;; Size in bits
1241 i64 64, ;; Align in bits
1242 i64 0, ;; Offset in bits
1243 i32 0, ;; Flags
1244 metadata !5 ;; Derived From type
1245 }
1246 ;;
1247 ;; Define the const type.
1248 ;;
1249 !5 = metadata !{
1250 i32 524326, ;; Tag
1251 metadata !1, ;; Context
1252 metadata !"", ;; Name
1253 metadata !1, ;; File
1254 i32 0, ;; Line number
1255 i64 32, ;; Size in bits
1256 i64 32, ;; Align in bits
1257 i64 0, ;; Offset in bits
1258 i32 0, ;; Flags
1259 metadata !6 ;; Derived From type
1260 }
1261 ;;
1262 ;; Define the int type.
1263 ;;
1264 !6 = metadata !{
1265 i32 524324, ;; Tag
1266 metadata !1, ;; Context
1267 metadata !"int", ;; Name
1268 metadata !1, ;; File
1269 i32 0, ;; Line number
1270 i64 32, ;; Size in bits
1271 i64 32, ;; Align in bits
1272 i64 0, ;; Offset in bits
1273 i32 0, ;; Flags
1274 5 ;; Encoding
1275 }
1276
1277C/C++ struct/union types
1278------------------------
1279
1280Given the following as an example of C/C++ struct type:
1281
1282.. code-block:: c
1283
1284 struct Color {
1285 unsigned Red;
1286 unsigned Green;
1287 unsigned Blue;
1288 };
1289
1290a C/C++ front-end would generate the following descriptors:
1291
1292.. code-block:: llvm
1293
1294 ;;
1295 ;; Define basic type for unsigned int.
1296 ;;
1297 !5 = metadata !{
1298 i32 524324, ;; Tag
1299 metadata !1, ;; Context
1300 metadata !"unsigned int",
1301 metadata !1, ;; File
1302 i32 0, ;; Line number
1303 i64 32, ;; Size in Bits
1304 i64 32, ;; Align in Bits
1305 i64 0, ;; Offset in Bits
1306 i32 0, ;; Flags
1307 i32 7 ;; Encoding
1308 }
1309 ;;
1310 ;; Define composite type for struct Color.
1311 ;;
1312 !2 = metadata !{
1313 i32 524307, ;; Tag
1314 metadata !1, ;; Context
1315 metadata !"Color", ;; Name
1316 metadata !1, ;; Compile unit
1317 i32 1, ;; Line number
1318 i64 96, ;; Size in bits
1319 i64 32, ;; Align in bits
1320 i64 0, ;; Offset in bits
1321 i32 0, ;; Flags
1322 null, ;; Derived From
1323 metadata !3, ;; Elements
1324 i32 0 ;; Runtime Language
1325 }
1326
1327 ;;
1328 ;; Define the Red field.
1329 ;;
1330 !4 = metadata !{
1331 i32 524301, ;; Tag
1332 metadata !1, ;; Context
1333 metadata !"Red", ;; Name
1334 metadata !1, ;; File
1335 i32 2, ;; Line number
1336 i64 32, ;; Size in bits
1337 i64 32, ;; Align in bits
1338 i64 0, ;; Offset in bits
1339 i32 0, ;; Flags
1340 metadata !5 ;; Derived From type
1341 }
1342
1343 ;;
1344 ;; Define the Green field.
1345 ;;
1346 !6 = metadata !{
1347 i32 524301, ;; Tag
1348 metadata !1, ;; Context
1349 metadata !"Green", ;; Name
1350 metadata !1, ;; File
1351 i32 3, ;; Line number
1352 i64 32, ;; Size in bits
1353 i64 32, ;; Align in bits
1354 i64 32, ;; Offset in bits
1355 i32 0, ;; Flags
1356 metadata !5 ;; Derived From type
1357 }
1358
1359 ;;
1360 ;; Define the Blue field.
1361 ;;
1362 !7 = metadata !{
1363 i32 524301, ;; Tag
1364 metadata !1, ;; Context
1365 metadata !"Blue", ;; Name
1366 metadata !1, ;; File
1367 i32 4, ;; Line number
1368 i64 32, ;; Size in bits
1369 i64 32, ;; Align in bits
1370 i64 64, ;; Offset in bits
1371 i32 0, ;; Flags
1372 metadata !5 ;; Derived From type
1373 }
1374
1375 ;;
1376 ;; Define the array of fields used by the composite type Color.
1377 ;;
1378 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1379
1380C/C++ enumeration types
1381-----------------------
1382
1383Given the following as an example of C/C++ enumeration type:
1384
1385.. code-block:: c
1386
1387 enum Trees {
1388 Spruce = 100,
1389 Oak = 200,
1390 Maple = 300
1391 };
1392
1393a C/C++ front-end would generate the following descriptors:
1394
1395.. code-block:: llvm
1396
1397 ;;
1398 ;; Define composite type for enum Trees
1399 ;;
1400 !2 = metadata !{
1401 i32 524292, ;; Tag
1402 metadata !1, ;; Context
1403 metadata !"Trees", ;; Name
1404 metadata !1, ;; File
1405 i32 1, ;; Line number
1406 i64 32, ;; Size in bits
1407 i64 32, ;; Align in bits
1408 i64 0, ;; Offset in bits
1409 i32 0, ;; Flags
1410 null, ;; Derived From type
1411 metadata !3, ;; Elements
1412 i32 0 ;; Runtime language
1413 }
1414
1415 ;;
1416 ;; Define the array of enumerators used by composite type Trees.
1417 ;;
1418 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1419
1420 ;;
1421 ;; Define Spruce enumerator.
1422 ;;
1423 !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
1424
1425 ;;
1426 ;; Define Oak enumerator.
1427 ;;
1428 !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
1429
1430 ;;
1431 ;; Define Maple enumerator.
1432 ;;
1433 !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
1434
1435Debugging information format
1436============================
1437
1438Debugging Information Extension for Objective C Properties
1439----------------------------------------------------------
1440
1441Introduction
1442^^^^^^^^^^^^
1443
1444Objective C provides a simpler way to declare and define accessor methods using
1445declared properties. The language provides features to declare a property and
1446to let compiler synthesize accessor methods.
1447
1448The debugger lets developer inspect Objective C interfaces and their instance
1449variables and class variables. However, the debugger does not know anything
1450about the properties defined in Objective C interfaces. The debugger consumes
1451information generated by compiler in DWARF format. The format does not support
1452encoding of Objective C properties. This proposal describes DWARF extensions to
1453encode Objective C properties, which the debugger can use to let developers
1454inspect Objective C properties.
1455
1456Proposal
1457^^^^^^^^
1458
1459Objective C properties exist separately from class members. A property can be
1460defined only by "setter" and "getter" selectors, and be calculated anew on each
1461access. Or a property can just be a direct access to some declared ivar.
1462Finally it can have an ivar "automatically synthesized" for it by the compiler,
1463in which case the property can be referred to in user code directly using the
1464standard C dereference syntax as well as through the property "dot" syntax, but
1465there is no entry in the ``@interface`` declaration corresponding to this ivar.
1466
1467To facilitate debugging, these properties we will add a new DWARF TAG into the
1468``DW_TAG_structure_type`` definition for the class to hold the description of a
1469given property, and a set of DWARF attributes that provide said description.
1470The property tag will also contain the name and declared type of the property.
1471
1472If there is a related ivar, there will also be a DWARF property attribute placed
1473in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1474for that property. And in the case where the compiler synthesizes the ivar
1475directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1476ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1477to access this ivar directly in code, and with the property attribute pointing
1478back to the property it is backing.
1479
1480The following examples will serve as illustration for our discussion:
1481
1482.. code-block:: objc
1483
1484 @interface I1 {
1485 int n2;
1486 }
1487
1488 @property int p1;
1489 @property int p2;
1490 @end
1491
1492 @implementation I1
1493 @synthesize p1;
1494 @synthesize p2 = n2;
1495 @end
1496
1497This produces the following DWARF (this is a "pseudo dwarfdump" output):
1498
1499.. code-block:: none
1500
1501 0x00000100: TAG_structure_type [7] *
1502 AT_APPLE_runtime_class( 0x10 )
1503 AT_name( "I1" )
1504 AT_decl_file( "Objc_Property.m" )
1505 AT_decl_line( 3 )
1506
1507 0x00000110 TAG_APPLE_property
1508 AT_name ( "p1" )
1509 AT_type ( {0x00000150} ( int ) )
1510
1511 0x00000120: TAG_APPLE_property
1512 AT_name ( "p2" )
1513 AT_type ( {0x00000150} ( int ) )
1514
1515 0x00000130: TAG_member [8]
1516 AT_name( "_p1" )
1517 AT_APPLE_property ( {0x00000110} "p1" )
1518 AT_type( {0x00000150} ( int ) )
1519 AT_artificial ( 0x1 )
1520
1521 0x00000140: TAG_member [8]
1522 AT_name( "n2" )
1523 AT_APPLE_property ( {0x00000120} "p2" )
1524 AT_type( {0x00000150} ( int ) )
1525
1526 0x00000150: AT_type( ( int ) )
1527
1528Note, the current convention is that the name of the ivar for an
1529auto-synthesized property is the name of the property from which it derives
1530with an underscore prepended, as is shown in the example. But we actually
1531don't need to know this convention, since we are given the name of the ivar
1532directly.
1533
1534Also, it is common practice in ObjC to have different property declarations in
1535the @interface and @implementation - e.g. to provide a read-only property in
1536the interface,and a read-write interface in the implementation. In that case,
1537the compiler should emit whichever property declaration will be in force in the
1538current translation unit.
1539
1540Developers can decorate a property with attributes which are encoded using
1541``DW_AT_APPLE_property_attribute``.
1542
1543.. code-block:: objc
1544
1545 @property (readonly, nonatomic) int pr;
1546
1547.. code-block:: none
1548
1549 TAG_APPLE_property [8]
1550 AT_name( "pr" )
1551 AT_type ( {0x00000147} (int) )
1552 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1553
1554The setter and getter method names are attached to the property using
1555``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1556
1557.. code-block:: objc
1558
1559 @interface I1
1560 @property (setter=myOwnP3Setter:) int p3;
1561 -(void)myOwnP3Setter:(int)a;
1562 @end
1563
1564 @implementation I1
1565 @synthesize p3;
1566 -(void)myOwnP3Setter:(int)a{ }
1567 @end
1568
1569The DWARF for this would be:
1570
1571.. code-block:: none
1572
1573 0x000003bd: TAG_structure_type [7] *
1574 AT_APPLE_runtime_class( 0x10 )
1575 AT_name( "I1" )
1576 AT_decl_file( "Objc_Property.m" )
1577 AT_decl_line( 3 )
1578
1579 0x000003cd TAG_APPLE_property
1580 AT_name ( "p3" )
1581 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1582 AT_type( {0x00000147} ( int ) )
1583
1584 0x000003f3: TAG_member [8]
1585 AT_name( "_p3" )
1586 AT_type ( {0x00000147} ( int ) )
1587 AT_APPLE_property ( {0x000003cd} )
1588 AT_artificial ( 0x1 )
1589
1590New DWARF Tags
1591^^^^^^^^^^^^^^
1592
1593+-----------------------+--------+
1594| TAG | Value |
1595+=======================+========+
1596| DW_TAG_APPLE_property | 0x4200 |
1597+-----------------------+--------+
1598
1599New DWARF Attributes
1600^^^^^^^^^^^^^^^^^^^^
1601
1602+--------------------------------+--------+-----------+
1603| Attribute | Value | Classes |
1604+================================+========+===========+
1605| DW_AT_APPLE_property | 0x3fed | Reference |
1606+--------------------------------+--------+-----------+
1607| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1608+--------------------------------+--------+-----------+
1609| DW_AT_APPLE_property_setter | 0x3fea | String |
1610+--------------------------------+--------+-----------+
1611| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1612+--------------------------------+--------+-----------+
1613
1614New DWARF Constants
1615^^^^^^^^^^^^^^^^^^^
1616
1617+--------------------------------+-------+
1618| Name | Value |
1619+================================+=======+
1620| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1621+--------------------------------+-------+
1622| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1623+--------------------------------+-------+
1624| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1625+--------------------------------+-------+
1626| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1627+--------------------------------+-------+
1628| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1629+--------------------------------+-------+
1630| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1631+--------------------------------+-------+
1632
1633Name Accelerator Tables
1634-----------------------
1635
1636Introduction
1637^^^^^^^^^^^^
1638
1639The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1640debugger needs. The "``pub``" in the section name indicates that the entries
1641in the table are publicly visible names only. This means no static or hidden
1642functions show up in the "``.debug_pubnames``". No static variables or private
1643class variables are in the "``.debug_pubtypes``". Many compilers add different
1644things to these tables, so we can't rely upon the contents between gcc, icc, or
1645clang.
1646
1647The typical query given by users tends not to match up with the contents of
1648these tables. For example, the DWARF spec states that "In the case of the name
1649of a function member or static data member of a C++ structure, class or union,
1650the name presented in the "``.debug_pubnames``" section is not the simple name
1651given by the ``DW_AT_name attribute`` of the referenced debugging information
1652entry, but rather the fully qualified name of the data or function member."
1653So the only names in these tables for complex C++ entries is a fully
1654qualified name. Debugger users tend not to enter their search strings as
1655"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1656"``a::b::c``". So the name entered in the name table must be demangled in
1657order to chop it up appropriately and additional names must be manually entered
1658into the table to make it effective as a name lookup table for debuggers to
1659se.
1660
1661All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1662its inconsistent and useless public-only name content making it a waste of
1663space in the object file. These tables, when they are written to disk, are not
1664sorted in any way, leaving every debugger to do its own parsing and sorting.
1665These tables also include an inlined copy of the string values in the table
1666itself making the tables much larger than they need to be on disk, especially
1667for large C++ programs.
1668
1669Can't we just fix the sections by adding all of the names we need to this
1670table? No, because that is not what the tables are defined to contain and we
1671won't know the difference between the old bad tables and the new good tables.
1672At best we could make our own renamed sections that contain all of the data we
1673need.
1674
1675These tables are also insufficient for what a debugger like LLDB needs. LLDB
1676uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1677often asked to look for type "``foo``" or namespace "``bar``", or list items in
1678namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1679tables. Since clang asks a lot of questions when it is parsing an expression,
1680we need to be very fast when looking up names, as it happens a lot. Having new
1681accelerator tables that are optimized for very quick lookups will benefit this
1682type of debugging experience greatly.
1683
1684We would like to generate name lookup tables that can be mapped into memory
1685from disk, and used as is, with little or no up-front parsing. We would also
1686be able to control the exact content of these different tables so they contain
1687exactly what we need. The Name Accelerator Tables were designed to fix these
1688issues. In order to solve these issues we need to:
1689
1690* Have a format that can be mapped into memory from disk and used as is
1691* Lookups should be very fast
1692* Extensible table format so these tables can be made by many producers
1693* Contain all of the names needed for typical lookups out of the box
1694* Strict rules for the contents of tables
1695
1696Table size is important and the accelerator table format should allow the reuse
1697of strings from common string tables so the strings for the names are not
1698duplicated. We also want to make sure the table is ready to be used as-is by
1699simply mapping the table into memory with minimal header parsing.
1700
1701The name lookups need to be fast and optimized for the kinds of lookups that
1702debuggers tend to do. Optimally we would like to touch as few parts of the
1703mapped table as possible when doing a name lookup and be able to quickly find
1704the name entry we are looking for, or discover there are no matches. In the
1705case of debuggers we optimized for lookups that fail most of the time.
1706
1707Each table that is defined should have strict rules on exactly what is in the
1708accelerator tables and documented so clients can rely on the content.
1709
1710Hash Tables
1711^^^^^^^^^^^
1712
1713Standard Hash Tables
1714""""""""""""""""""""
1715
1716Typical hash tables have a header, buckets, and each bucket points to the
1717bucket contents:
1718
1719.. code-block:: none
1720
1721 .------------.
1722 | HEADER |
1723 |------------|
1724 | BUCKETS |
1725 |------------|
1726 | DATA |
1727 `------------'
1728
1729The BUCKETS are an array of offsets to DATA for each hash:
1730
1731.. code-block:: none
1732
1733 .------------.
1734 | 0x00001000 | BUCKETS[0]
1735 | 0x00002000 | BUCKETS[1]
1736 | 0x00002200 | BUCKETS[2]
1737 | 0x000034f0 | BUCKETS[3]
1738 | | ...
1739 | 0xXXXXXXXX | BUCKETS[n_buckets]
1740 '------------'
1741
1742So for ``bucket[3]`` in the example above, we have an offset into the table
17430x000034f0 which points to a chain of entries for the bucket. Each bucket must
1744contain a next pointer, full 32 bit hash value, the string itself, and the data
1745for the current string value.
1746
1747.. code-block:: none
1748
1749 .------------.
1750 0x000034f0: | 0x00003500 | next pointer
1751 | 0x12345678 | 32 bit hash
1752 | "erase" | string value
1753 | data[n] | HashData for this bucket
1754 |------------|
1755 0x00003500: | 0x00003550 | next pointer
1756 | 0x29273623 | 32 bit hash
1757 | "dump" | string value
1758 | data[n] | HashData for this bucket
1759 |------------|
1760 0x00003550: | 0x00000000 | next pointer
1761 | 0x82638293 | 32 bit hash
1762 | "main" | string value
1763 | data[n] | HashData for this bucket
1764 `------------'
1765
1766The problem with this layout for debuggers is that we need to optimize for the
1767negative lookup case where the symbol we're searching for is not present. So
1768if we were to lookup "``printf``" in the table above, we would make a 32 hash
1769for "``printf``", it might match ``bucket[3]``. We would need to go to the
1770offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1771so, we need to read the next pointer, then read the hash, compare it, and skip
1772to the next bucket. Each time we are skipping many bytes in memory and
1773touching new cache pages just to do the compare on the full 32 bit hash. All
1774of these accesses then tell us that we didn't have a match.
1775
1776Name Hash Tables
1777""""""""""""""""
1778
1779To solve the issues mentioned above we have structured the hash tables a bit
1780differently: a header, buckets, an array of all unique 32 bit hash values,
1781followed by an array of hash value data offsets, one for each hash value, then
1782the data for all hash values:
1783
1784.. code-block:: none
1785
1786 .-------------.
1787 | HEADER |
1788 |-------------|
1789 | BUCKETS |
1790 |-------------|
1791 | HASHES |
1792 |-------------|
1793 | OFFSETS |
1794 |-------------|
1795 | DATA |
1796 `-------------'
1797
1798The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1799making all of the full 32 bit hash values contiguous in memory, we allow
1800ourselves to efficiently check for a match while touching as little memory as
1801possible. Most often checking the 32 bit hash values is as far as the lookup
1802goes. If it does match, it usually is a match with no collisions. So for a
1803table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1804values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1805``OFFSETS`` as:
1806
1807.. code-block:: none
1808
1809 .-------------------------.
1810 | HEADER.magic | uint32_t
1811 | HEADER.version | uint16_t
1812 | HEADER.hash_function | uint16_t
1813 | HEADER.bucket_count | uint32_t
1814 | HEADER.hashes_count | uint32_t
1815 | HEADER.header_data_len | uint32_t
1816 | HEADER_DATA | HeaderData
1817 |-------------------------|
1818 | BUCKETS | uint32_t[bucket_count] // 32 bit hash indexes
1819 |-------------------------|
1820 | HASHES | uint32_t[hashes_count] // 32 bit hash values
1821 |-------------------------|
1822 | OFFSETS | uint32_t[hashes_count] // 32 bit offsets to hash value data
1823 |-------------------------|
1824 | ALL HASH DATA |
1825 `-------------------------'
1826
1827So taking the exact same data from the standard hash example above we end up
1828with:
1829
1830.. code-block:: none
1831
1832 .------------.
1833 | HEADER |
1834 |------------|
1835 | 0 | BUCKETS[0]
1836 | 2 | BUCKETS[1]
1837 | 5 | BUCKETS[2]
1838 | 6 | BUCKETS[3]
1839 | | ...
1840 | ... | BUCKETS[n_buckets]
1841 |------------|
1842 | 0x........ | HASHES[0]
1843 | 0x........ | HASHES[1]
1844 | 0x........ | HASHES[2]
1845 | 0x........ | HASHES[3]
1846 | 0x........ | HASHES[4]
1847 | 0x........ | HASHES[5]
1848 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1849 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1850 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1851 | 0x........ | HASHES[9]
1852 | 0x........ | HASHES[10]
1853 | 0x........ | HASHES[11]
1854 | 0x........ | HASHES[12]
1855 | 0x........ | HASHES[13]
1856 | 0x........ | HASHES[n_hashes]
1857 |------------|
1858 | 0x........ | OFFSETS[0]
1859 | 0x........ | OFFSETS[1]
1860 | 0x........ | OFFSETS[2]
1861 | 0x........ | OFFSETS[3]
1862 | 0x........ | OFFSETS[4]
1863 | 0x........ | OFFSETS[5]
1864 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1865 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1866 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1867 | 0x........ | OFFSETS[9]
1868 | 0x........ | OFFSETS[10]
1869 | 0x........ | OFFSETS[11]
1870 | 0x........ | OFFSETS[12]
1871 | 0x........ | OFFSETS[13]
1872 | 0x........ | OFFSETS[n_hashes]
1873 |------------|
1874 | |
1875 | |
1876 | |
1877 | |
1878 | |
1879 |------------|
1880 0x000034f0: | 0x00001203 | .debug_str ("erase")
1881 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1882 | 0x........ | HashData[0]
1883 | 0x........ | HashData[1]
1884 | 0x........ | HashData[2]
1885 | 0x........ | HashData[3]
1886 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1887 |------------|
1888 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1889 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1890 | 0x........ | HashData[0]
1891 | 0x........ | HashData[1]
1892 | 0x00001203 | String offset into .debug_str ("dump")
1893 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1894 | 0x........ | HashData[0]
1895 | 0x........ | HashData[1]
1896 | 0x........ | HashData[2]
1897 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1898 |------------|
1899 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1900 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1901 | 0x........ | HashData[0]
1902 | 0x........ | HashData[1]
1903 | 0x........ | HashData[2]
1904 | 0x........ | HashData[3]
1905 | 0x........ | HashData[4]
1906 | 0x........ | HashData[5]
1907 | 0x........ | HashData[6]
1908 | 0x........ | HashData[7]
1909 | 0x........ | HashData[8]
1910 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1911 `------------'
1912
1913So we still have all of the same data, we just organize it more efficiently for
1914debugger lookup. If we repeat the same "``printf``" lookup from above, we
1915would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1916hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1917is the index into the ``HASHES`` table. We would then compare any consecutive
191832 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1919``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1920``n_buckets`` is still 3. In the case of a failed lookup we would access the
1921memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1922before we know that we have no match. We don't end up marching through
1923multiple words of memory and we really keep the number of processor data cache
1924lines being accessed as small as possible.
1925
1926The string hash that is used for these lookup tables is the Daniel J.
1927Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1928very good hash for all kinds of names in programs with very few hash
1929collisions.
1930
1931Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1932
1933Details
1934^^^^^^^
1935
1936These name hash tables are designed to be generic where specializations of the
1937table get to define additional data that goes into the header ("``HeaderData``"),
1938how the string value is stored ("``KeyType``") and the content of the data for each
1939hash value.
1940
1941Header Layout
1942"""""""""""""
1943
1944The header has a fixed part, and the specialized part. The exact format of the
1945header is:
1946
1947.. code-block:: c
1948
1949 struct Header
1950 {
1951 uint32_t magic; // 'HASH' magic value to allow endian detection
1952 uint16_t version; // Version number
1953 uint16_t hash_function; // The hash function enumeration that was used
1954 uint32_t bucket_count; // The number of buckets in this hash table
1955 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1956 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1957 // Specifically the length of the following HeaderData field - this does not
1958 // include the size of the preceding fields
1959 HeaderData header_data; // Implementation specific header data
1960 };
1961
1962The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1963encoded as an ASCII integer. This allows the detection of the start of the
1964hash table and also allows the table's byte order to be determined so the table
1965can be correctly extracted. The "``magic``" value is followed by a 16 bit
1966``version`` number which allows the table to be revised and modified in the
1967future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1968enumeration that specifies which hash function was used to produce this table.
1969The current values for the hash function enumerations include:
1970
1971.. code-block:: c
1972
1973 enum HashFunctionType
1974 {
1975 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1976 };
1977
1978``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1979are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1980hash values that are in the ``HASHES`` array, and is the same number of offsets
1981are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1982in bytes of the ``HeaderData`` that is filled in by specialized versions of
1983this table.
1984
1985Fixed Lookup
1986""""""""""""
1987
1988The header is followed by the buckets, hashes, offsets, and hash value data.
1989
1990.. code-block:: c
1991
1992 struct FixedTable
1993 {
1994 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1995 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1996 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1997 };
1998
1999``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
2000``hashes`` array contains all of the 32 bit hash values for all names in the
2001hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2002array that points to the data for the hash value.
2003
2004This table setup makes it very easy to repurpose these tables to contain
2005different data, while keeping the lookup mechanism the same for all tables.
2006This layout also makes it possible to save the table to disk and map it in
2007later and do very efficient name lookups with little or no parsing.
2008
2009DWARF lookup tables can be implemented in a variety of ways and can store a lot
2010of information for each name. We want to make the DWARF tables extensible and
2011able to store the data efficiently so we have used some of the DWARF features
2012that enable efficient data storage to define exactly what kind of data we store
2013for each name.
2014
2015The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2016We might want to store an offset to all of the debug information entries (DIEs)
2017for each name. To keep things extensible, we create a list of items, or
2018Atoms, that are contained in the data for each name. First comes the type of
2019the data in each atom:
2020
2021.. code-block:: c
2022
2023 enum AtomType
2024 {
2025 eAtomTypeNULL = 0u,
2026 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2027 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2028 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2029 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2030 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2031 };
2032
2033The enumeration values and their meanings are:
2034
2035.. code-block:: none
2036
2037 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2038 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2039 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2040 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2041 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2042 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2043
2044Then we allow each atom type to define the atom type and how the data for each
2045atom type data is encoded:
2046
2047.. code-block:: c
2048
2049 struct Atom
2050 {
2051 uint16_t type; // AtomType enum value
2052 uint16_t form; // DWARF DW_FORM_XXX defines
2053 };
2054
2055The ``form`` type above is from the DWARF specification and defines the exact
2056encoding of the data for the Atom type. See the DWARF specification for the
2057``DW_FORM_`` definitions.
2058
2059.. code-block:: c
2060
2061 struct HeaderData
2062 {
2063 uint32_t die_offset_base;
2064 uint32_t atom_count;
2065 Atoms atoms[atom_count0];
2066 };
2067
2068``HeaderData`` defines the base DIE offset that should be added to any atoms
2069that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2070``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2071what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2072each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2073should be interpreted.
2074
2075For the current implementations of the "``.apple_names``" (all functions +
2076globals), the "``.apple_types``" (names of all types that are defined), and
2077the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2078array to be:
2079
2080.. code-block:: c
2081
2082 HeaderData.atom_count = 1;
2083 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2084 HeaderData.atoms[0].form = DW_FORM_data4;
2085
2086This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2087 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2088 multiple matching DIEs in a single file, which could come up with an inlined
2089 function for instance. Future tables could include more information about the
2090 DIE such as flags indicating if the DIE is a function, method, block,
2091 or inlined.
2092
2093The KeyType for the DWARF table is a 32 bit string table offset into the
2094 ".debug_str" table. The ".debug_str" is the string table for the DWARF which
2095 may already contain copies of all of the strings. This helps make sure, with
2096 help from the compiler, that we reuse the strings between all of the DWARF
2097 sections and keeps the hash table size down. Another benefit to having the
2098 compiler generate all strings as DW_FORM_strp in the debug info, is that
2099 DWARF parsing can be made much faster.
2100
2101After a lookup is made, we get an offset into the hash data. The hash data
2102 needs to be able to deal with 32 bit hash collisions, so the chunk of data
2103 at the offset in the hash data consists of a triple:
2104
2105.. code-block:: c
2106
2107 uint32_t str_offset
2108 uint32_t hash_data_count
2109 HashData[hash_data_count]
2110
2111If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2112 hash data chunks contain a single item (no 32 bit hash collision):
2113
2114.. code-block:: none
2115
2116 .------------.
2117 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2118 | 0x00000004 | uint32_t HashData count
2119 | 0x........ | uint32_t HashData[0] DIE offset
2120 | 0x........ | uint32_t HashData[1] DIE offset
2121 | 0x........ | uint32_t HashData[2] DIE offset
2122 | 0x........ | uint32_t HashData[3] DIE offset
2123 | 0x00000000 | uint32_t KeyType (end of hash chain)
2124 `------------'
2125
2126If there are collisions, you will have multiple valid string offsets:
2127
2128.. code-block:: none
2129
2130 .------------.
2131 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2132 | 0x00000004 | uint32_t HashData count
2133 | 0x........ | uint32_t HashData[0] DIE offset
2134 | 0x........ | uint32_t HashData[1] DIE offset
2135 | 0x........ | uint32_t HashData[2] DIE offset
2136 | 0x........ | uint32_t HashData[3] DIE offset
2137 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2138 | 0x00000002 | uint32_t HashData count
2139 | 0x........ | uint32_t HashData[0] DIE offset
2140 | 0x........ | uint32_t HashData[1] DIE offset
2141 | 0x00000000 | uint32_t KeyType (end of hash chain)
2142 `------------'
2143
2144Current testing with real world C++ binaries has shown that there is around 1
214532 bit hash collision per 100,000 name entries.
2146
2147Contents
2148^^^^^^^^
2149
2150As we said, we want to strictly define exactly what is included in the
2151different tables. For DWARF, we have 3 tables: "``.apple_names``",
2152"``.apple_types``", and "``.apple_namespaces``".
2153
2154"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2155``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2156``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2157``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2158``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2159static variables). All global and static variables should be included,
2160including those scoped within functions and classes. For example using the
2161following code:
2162
2163.. code-block:: c
2164
2165 static int var = 0;
2166
2167 void f ()
2168 {
2169 static int var = 0;
2170 }
2171
2172Both of the static ``var`` variables would be included in the table. All
2173functions should emit both their full names and their basenames. For C or C++,
2174the full name is the mangled name (if available) which is usually in the
2175``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2176function basename. If global or static variables have a mangled name in a
2177``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2178simple name found in the ``DW_AT_name`` attribute.
2179
2180"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2181tag is one of:
2182
2183* DW_TAG_array_type
2184* DW_TAG_class_type
2185* DW_TAG_enumeration_type
2186* DW_TAG_pointer_type
2187* DW_TAG_reference_type
2188* DW_TAG_string_type
2189* DW_TAG_structure_type
2190* DW_TAG_subroutine_type
2191* DW_TAG_typedef
2192* DW_TAG_union_type
2193* DW_TAG_ptr_to_member_type
2194* DW_TAG_set_type
2195* DW_TAG_subrange_type
2196* DW_TAG_base_type
2197* DW_TAG_const_type
2198* DW_TAG_constant
2199* DW_TAG_file_type
2200* DW_TAG_namelist
2201* DW_TAG_packed_type
2202* DW_TAG_volatile_type
2203* DW_TAG_restrict_type
2204* DW_TAG_interface_type
2205* DW_TAG_unspecified_type
2206* DW_TAG_shared_type
2207
2208Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2209not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2210value). For example, using the following code:
2211
2212.. code-block:: c
2213
2214 int main ()
2215 {
2216 int *b = 0;
2217 return *b;
2218 }
2219
2220We get a few type DIEs:
2221
2222.. code-block:: none
2223
2224 0x00000067: TAG_base_type [5]
2225 AT_encoding( DW_ATE_signed )
2226 AT_name( "int" )
2227 AT_byte_size( 0x04 )
2228
2229 0x0000006e: TAG_pointer_type [6]
2230 AT_type( {0x00000067} ( int ) )
2231 AT_byte_size( 0x08 )
2232
2233The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2234
2235"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2236If we run into a namespace that has no name this is an anonymous namespace, and
2237the name should be output as "``(anonymous namespace)``" (without the quotes).
2238Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2239standard C++ library that demangles mangled names.
2240
2241
2242Language Extensions and File Format Changes
2243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2244
2245Objective-C Extensions
2246""""""""""""""""""""""
2247
2248"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2249Objective-C class. The name used in the hash table is the name of the
2250Objective-C class itself. If the Objective-C class has a category, then an
2251entry is made for both the class name without the category, and for the class
2252name with the category. So if we have a DIE at offset 0x1234 with a name of
2253method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2254an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2255"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2256track down all Objective-C methods for an Objective-C class when doing
2257expressions. It is needed because of the dynamic nature of Objective-C where
2258anyone can add methods to a class. The DWARF for Objective-C methods is also
2259emitted differently from C++ classes where the methods are not usually
2260contained in the class definition, they are scattered about across one or more
2261compile units. Categories can also be defined in different shared libraries.
2262So we need to be able to quickly find all of the methods and class functions
2263given the Objective-C class name, or quickly find all methods and class
2264functions for a class + category name. This table does not contain any
2265selector names, it just maps Objective-C class names (or class names +
2266category) to all of the methods and class functions. The selectors are added
2267as function basenames in the "``.debug_names``" section.
2268
2269In the "``.apple_names``" section for Objective-C functions, the full name is
2270the entire function name with the brackets ("``-[NSString
2271stringWithCString:]``") and the basename is the selector only
2272("``stringWithCString:``").
2273
2274Mach-O Changes
2275""""""""""""""
2276
2277The sections names for the apple hash tables are for non mach-o files. For
2278mach-o files, the sections should be contained in the ``__DWARF`` segment with
2279names as follows:
2280
2281* "``.apple_names``" -> "``__apple_names``"
2282* "``.apple_types``" -> "``__apple_types``"
2283* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2284* "``.apple_objc``" -> "``__apple_objc``"
2285