Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 1 | //===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===// |
| 2 | // |
| 3 | // This file defines the pass which converts floating point instructions from |
| 4 | // virtual registers into register stack instructions. |
| 5 | // |
| 6 | //===----------------------------------------------------------------------===// |
| 7 | |
Chris Lattner | cb53358 | 2003-08-03 21:14:38 +0000 | [diff] [blame] | 8 | #define DEBUG_TYPE "fp" |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 9 | #include "X86.h" |
| 10 | #include "X86InstrInfo.h" |
| 11 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 12 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 13 | #include "llvm/CodeGen/LiveVariables.h" |
Chris Lattner | 3501fea | 2003-01-14 22:00:31 +0000 | [diff] [blame] | 14 | #include "llvm/Target/TargetInstrInfo.h" |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 15 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | a11136b | 2003-08-01 22:21:34 +0000 | [diff] [blame] | 16 | #include "Support/Debug.h" |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 17 | #include "Support/Statistic.h" |
| 18 | #include <algorithm> |
| 19 | #include <iostream> |
| 20 | |
| 21 | namespace { |
| 22 | Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted"); |
| 23 | Statistic<> NumFP ("x86-codegen", "Number of floating point instructions"); |
| 24 | |
| 25 | struct FPS : public MachineFunctionPass { |
| 26 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 27 | |
| 28 | virtual const char *getPassName() const { return "X86 FP Stackifier"; } |
| 29 | |
| 30 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 31 | AU.addRequired<LiveVariables>(); |
| 32 | MachineFunctionPass::getAnalysisUsage(AU); |
| 33 | } |
| 34 | private: |
| 35 | LiveVariables *LV; // Live variable info for current function... |
| 36 | MachineBasicBlock *MBB; // Current basic block |
| 37 | unsigned Stack[8]; // FP<n> Registers in each stack slot... |
| 38 | unsigned RegMap[8]; // Track which stack slot contains each register |
| 39 | unsigned StackTop; // The current top of the FP stack. |
| 40 | |
| 41 | void dumpStack() const { |
| 42 | std::cerr << "Stack contents:"; |
| 43 | for (unsigned i = 0; i != StackTop; ++i) { |
| 44 | std::cerr << " FP" << Stack[i]; |
| 45 | assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); |
| 46 | } |
| 47 | std::cerr << "\n"; |
| 48 | } |
| 49 | private: |
| 50 | // getSlot - Return the stack slot number a particular register number is |
| 51 | // in... |
| 52 | unsigned getSlot(unsigned RegNo) const { |
| 53 | assert(RegNo < 8 && "Regno out of range!"); |
| 54 | return RegMap[RegNo]; |
| 55 | } |
| 56 | |
| 57 | // getStackEntry - Return the X86::FP<n> register in register ST(i) |
| 58 | unsigned getStackEntry(unsigned STi) const { |
| 59 | assert(STi < StackTop && "Access past stack top!"); |
| 60 | return Stack[StackTop-1-STi]; |
| 61 | } |
| 62 | |
| 63 | // getSTReg - Return the X86::ST(i) register which contains the specified |
| 64 | // FP<RegNo> register |
| 65 | unsigned getSTReg(unsigned RegNo) const { |
| 66 | return StackTop - 1 - getSlot(RegNo) + X86::ST0; |
| 67 | } |
| 68 | |
| 69 | // pushReg - Push the specifiex FP<n> register onto the stack |
| 70 | void pushReg(unsigned Reg) { |
| 71 | assert(Reg < 8 && "Register number out of range!"); |
| 72 | assert(StackTop < 8 && "Stack overflow!"); |
| 73 | Stack[StackTop] = Reg; |
| 74 | RegMap[Reg] = StackTop++; |
| 75 | } |
| 76 | |
| 77 | bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } |
| 78 | void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) { |
| 79 | if (!isAtTop(RegNo)) { |
| 80 | unsigned Slot = getSlot(RegNo); |
| 81 | unsigned STReg = getSTReg(RegNo); |
| 82 | unsigned RegOnTop = getStackEntry(0); |
| 83 | |
| 84 | // Swap the slots the regs are in |
| 85 | std::swap(RegMap[RegNo], RegMap[RegOnTop]); |
| 86 | |
| 87 | // Swap stack slot contents |
| 88 | assert(RegMap[RegOnTop] < StackTop); |
| 89 | std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); |
| 90 | |
| 91 | // Emit an fxch to update the runtime processors version of the state |
| 92 | MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg); |
| 93 | I = 1+MBB->insert(I, MI); |
| 94 | NumFXCH++; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | void duplicateToTop(unsigned RegNo, unsigned AsReg, |
| 99 | MachineBasicBlock::iterator &I) { |
| 100 | unsigned STReg = getSTReg(RegNo); |
| 101 | pushReg(AsReg); // New register on top of stack |
| 102 | |
| 103 | MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg); |
| 104 | I = 1+MBB->insert(I, MI); |
| 105 | } |
| 106 | |
| 107 | // popStackAfter - Pop the current value off of the top of the FP stack |
| 108 | // after the specified instruction. |
| 109 | void popStackAfter(MachineBasicBlock::iterator &I); |
| 110 | |
| 111 | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
| 112 | |
| 113 | void handleZeroArgFP(MachineBasicBlock::iterator &I); |
| 114 | void handleOneArgFP(MachineBasicBlock::iterator &I); |
| 115 | void handleTwoArgFP(MachineBasicBlock::iterator &I); |
| 116 | void handleSpecialFP(MachineBasicBlock::iterator &I); |
| 117 | }; |
| 118 | } |
| 119 | |
Brian Gaeke | 19df387 | 2003-08-13 18:18:15 +0000 | [diff] [blame] | 120 | FunctionPass *createX86FloatingPointStackifierPass() { return new FPS(); } |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 121 | |
| 122 | /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP |
| 123 | /// register references into FP stack references. |
| 124 | /// |
| 125 | bool FPS::runOnMachineFunction(MachineFunction &MF) { |
| 126 | LV = &getAnalysis<LiveVariables>(); |
| 127 | StackTop = 0; |
| 128 | |
| 129 | bool Changed = false; |
| 130 | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| 131 | Changed |= processBasicBlock(MF, *I); |
| 132 | return Changed; |
| 133 | } |
| 134 | |
| 135 | /// processBasicBlock - Loop over all of the instructions in the basic block, |
| 136 | /// transforming FP instructions into their stack form. |
| 137 | /// |
| 138 | bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { |
| 139 | const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); |
| 140 | bool Changed = false; |
| 141 | MBB = &BB; |
| 142 | |
| 143 | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { |
| 144 | MachineInstr *MI = *I; |
| 145 | MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1); |
| 146 | unsigned Flags = TII.get(MI->getOpcode()).TSFlags; |
| 147 | |
| 148 | if ((Flags & X86II::FPTypeMask) == 0) continue; // Ignore non-fp insts! |
| 149 | |
| 150 | ++NumFP; // Keep track of # of pseudo instrs |
| 151 | DEBUG(std::cerr << "\nFPInst:\t"; |
| 152 | MI->print(std::cerr, MF.getTarget())); |
| 153 | |
| 154 | // Get dead variables list now because the MI pointer may be deleted as part |
| 155 | // of processing! |
| 156 | LiveVariables::killed_iterator IB = LV->dead_begin(MI); |
| 157 | LiveVariables::killed_iterator IE = LV->dead_end(MI); |
| 158 | |
| 159 | DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo(); |
| 160 | LiveVariables::killed_iterator I = LV->killed_begin(MI); |
| 161 | LiveVariables::killed_iterator E = LV->killed_end(MI); |
| 162 | if (I != E) { |
| 163 | std::cerr << "Killed Operands:"; |
| 164 | for (; I != E; ++I) |
| 165 | std::cerr << " %" << MRI->getName(I->second); |
| 166 | std::cerr << "\n"; |
| 167 | }); |
| 168 | |
| 169 | switch (Flags & X86II::FPTypeMask) { |
| 170 | case X86II::ZeroArgFP: handleZeroArgFP(I); break; |
| 171 | case X86II::OneArgFP: handleOneArgFP(I); break; |
| 172 | |
| 173 | case X86II::OneArgFPRW: // ST(0) = fsqrt(ST(0)) |
| 174 | assert(0 && "FP instr type not handled yet!"); |
| 175 | |
| 176 | case X86II::TwoArgFP: handleTwoArgFP(I); break; |
| 177 | case X86II::SpecialFP: handleSpecialFP(I); break; |
| 178 | default: assert(0 && "Unknown FP Type!"); |
| 179 | } |
| 180 | |
| 181 | // Check to see if any of the values defined by this instruction are dead |
| 182 | // after definition. If so, pop them. |
| 183 | for (; IB != IE; ++IB) { |
| 184 | unsigned Reg = IB->second; |
| 185 | if (Reg >= X86::FP0 && Reg <= X86::FP6) { |
| 186 | DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); |
| 187 | ++I; // Insert fxch AFTER the instruction |
| 188 | moveToTop(Reg-X86::FP0, I); // Insert fxch if neccesary |
| 189 | --I; // Move to fxch or old instruction |
| 190 | popStackAfter(I); // Pop the top of the stack, killing value |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | // Print out all of the instructions expanded to if -debug |
| 195 | DEBUG(if (*I == PrevMI) { |
| 196 | std::cerr<< "Just deleted pseudo instruction\n"; |
| 197 | } else { |
| 198 | MachineBasicBlock::iterator Start = I; |
| 199 | // Rewind to first instruction newly inserted. |
| 200 | while (Start != BB.begin() && *(Start-1) != PrevMI) --Start; |
Brian Gaeke | d7908f6 | 2003-06-27 00:00:48 +0000 | [diff] [blame] | 201 | std::cerr << "Inserted instructions:\n\t"; |
| 202 | (*Start)->print(std::cerr, MF.getTarget()); |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 203 | while (++Start != I+1); |
| 204 | } |
| 205 | dumpStack(); |
| 206 | ); |
| 207 | |
| 208 | Changed = true; |
| 209 | } |
| 210 | |
| 211 | assert(StackTop == 0 && "Stack not empty at end of basic block?"); |
| 212 | return Changed; |
| 213 | } |
| 214 | |
| 215 | //===----------------------------------------------------------------------===// |
| 216 | // Efficient Lookup Table Support |
| 217 | //===----------------------------------------------------------------------===// |
| 218 | |
| 219 | struct TableEntry { |
| 220 | unsigned from; |
| 221 | unsigned to; |
| 222 | bool operator<(const TableEntry &TE) const { return from < TE.from; } |
| 223 | bool operator<(unsigned V) const { return from < V; } |
| 224 | }; |
| 225 | |
| 226 | static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { |
| 227 | for (unsigned i = 0; i != NumEntries-1; ++i) |
| 228 | if (!(Table[i] < Table[i+1])) return false; |
| 229 | return true; |
| 230 | } |
| 231 | |
| 232 | static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { |
| 233 | const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); |
| 234 | if (I != Table+N && I->from == Opcode) |
| 235 | return I->to; |
| 236 | return -1; |
| 237 | } |
| 238 | |
| 239 | #define ARRAY_SIZE(TABLE) \ |
| 240 | (sizeof(TABLE)/sizeof(TABLE[0])) |
| 241 | |
| 242 | #ifdef NDEBUG |
| 243 | #define ASSERT_SORTED(TABLE) |
| 244 | #else |
| 245 | #define ASSERT_SORTED(TABLE) \ |
| 246 | { static bool TABLE##Checked = false; \ |
| 247 | if (!TABLE##Checked) \ |
| 248 | assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ |
| 249 | "All lookup tables must be sorted for efficient access!"); \ |
| 250 | } |
| 251 | #endif |
| 252 | |
| 253 | |
| 254 | //===----------------------------------------------------------------------===// |
| 255 | // Helper Methods |
| 256 | //===----------------------------------------------------------------------===// |
| 257 | |
| 258 | // PopTable - Sorted map of instructions to their popping version. The first |
| 259 | // element is an instruction, the second is the version which pops. |
| 260 | // |
| 261 | static const TableEntry PopTable[] = { |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 262 | { X86::FADDrST0 , X86::FADDPrST0 }, |
| 263 | |
| 264 | { X86::FDIVRrST0, X86::FDIVRPrST0 }, |
| 265 | { X86::FDIVrST0 , X86::FDIVPrST0 }, |
| 266 | |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 267 | { X86::FISTr16 , X86::FISTPr16 }, |
| 268 | { X86::FISTr32 , X86::FISTPr32 }, |
| 269 | |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 270 | { X86::FMULrST0 , X86::FMULPrST0 }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 271 | |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 272 | { X86::FSTr32 , X86::FSTPr32 }, |
| 273 | { X86::FSTr64 , X86::FSTPr64 }, |
| 274 | { X86::FSTrr , X86::FSTPrr }, |
| 275 | |
| 276 | { X86::FSUBRrST0, X86::FSUBRPrST0 }, |
| 277 | { X86::FSUBrST0 , X86::FSUBPrST0 }, |
| 278 | |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 279 | { X86::FUCOMPr , X86::FUCOMPPr }, |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 280 | { X86::FUCOMr , X86::FUCOMPr }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 281 | }; |
| 282 | |
| 283 | /// popStackAfter - Pop the current value off of the top of the FP stack after |
| 284 | /// the specified instruction. This attempts to be sneaky and combine the pop |
| 285 | /// into the instruction itself if possible. The iterator is left pointing to |
| 286 | /// the last instruction, be it a new pop instruction inserted, or the old |
| 287 | /// instruction if it was modified in place. |
| 288 | /// |
| 289 | void FPS::popStackAfter(MachineBasicBlock::iterator &I) { |
| 290 | ASSERT_SORTED(PopTable); |
| 291 | assert(StackTop > 0 && "Cannot pop empty stack!"); |
| 292 | RegMap[Stack[--StackTop]] = ~0; // Update state |
| 293 | |
| 294 | // Check to see if there is a popping version of this instruction... |
| 295 | int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode()); |
| 296 | if (Opcode != -1) { |
| 297 | (*I)->setOpcode(Opcode); |
| 298 | if (Opcode == X86::FUCOMPPr) |
| 299 | (*I)->RemoveOperand(0); |
| 300 | |
| 301 | } else { // Insert an explicit pop |
| 302 | MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0); |
| 303 | I = MBB->insert(I+1, MI); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | static unsigned getFPReg(const MachineOperand &MO) { |
| 308 | assert(MO.isPhysicalRegister() && "Expected an FP register!"); |
| 309 | unsigned Reg = MO.getReg(); |
| 310 | assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); |
| 311 | return Reg - X86::FP0; |
| 312 | } |
| 313 | |
| 314 | |
| 315 | //===----------------------------------------------------------------------===// |
| 316 | // Instruction transformation implementation |
| 317 | //===----------------------------------------------------------------------===// |
| 318 | |
| 319 | /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> |
| 320 | // |
| 321 | void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { |
| 322 | MachineInstr *MI = *I; |
| 323 | unsigned DestReg = getFPReg(MI->getOperand(0)); |
| 324 | MI->RemoveOperand(0); // Remove the explicit ST(0) operand |
| 325 | |
| 326 | // Result gets pushed on the stack... |
| 327 | pushReg(DestReg); |
| 328 | } |
| 329 | |
| 330 | /// handleOneArgFP - fst ST(0), <mem> |
| 331 | // |
| 332 | void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { |
| 333 | MachineInstr *MI = *I; |
| 334 | assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!"); |
| 335 | |
| 336 | unsigned Reg = getFPReg(MI->getOperand(4)); |
| 337 | bool KillsSrc = false; |
| 338 | for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), |
| 339 | E = LV->killed_end(MI); KI != E; ++KI) |
| 340 | KillsSrc |= KI->second == X86::FP0+Reg; |
| 341 | |
| 342 | // FSTPr80 and FISTPr64 are strange because there are no non-popping versions. |
| 343 | // If we have one _and_ we don't want to pop the operand, duplicate the value |
| 344 | // on the stack instead of moving it. This ensure that popping the value is |
| 345 | // always ok. |
| 346 | // |
| 347 | if ((MI->getOpcode() == X86::FSTPr80 || |
| 348 | MI->getOpcode() == X86::FISTPr64) && !KillsSrc) { |
| 349 | duplicateToTop(Reg, 7 /*temp register*/, I); |
| 350 | } else { |
| 351 | moveToTop(Reg, I); // Move to the top of the stack... |
| 352 | } |
| 353 | MI->RemoveOperand(4); // Remove explicit ST(0) operand |
| 354 | |
| 355 | if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) { |
| 356 | assert(StackTop > 0 && "Stack empty??"); |
| 357 | --StackTop; |
| 358 | } else if (KillsSrc) { // Last use of operand? |
| 359 | popStackAfter(I); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | //===----------------------------------------------------------------------===// |
| 364 | // Define tables of various ways to map pseudo instructions |
| 365 | // |
| 366 | |
| 367 | // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) |
| 368 | static const TableEntry ForwardST0Table[] = { |
| 369 | { X86::FpADD, X86::FADDST0r }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 370 | { X86::FpDIV, X86::FDIVST0r }, |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 371 | { X86::FpMUL, X86::FMULST0r }, |
| 372 | { X86::FpSUB, X86::FSUBST0r }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 373 | { X86::FpUCOM, X86::FUCOMr }, |
| 374 | }; |
| 375 | |
| 376 | // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) |
| 377 | static const TableEntry ReverseST0Table[] = { |
| 378 | { X86::FpADD, X86::FADDST0r }, // commutative |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 379 | { X86::FpDIV, X86::FDIVRST0r }, |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 380 | { X86::FpMUL, X86::FMULST0r }, // commutative |
| 381 | { X86::FpSUB, X86::FSUBRST0r }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 382 | { X86::FpUCOM, ~0 }, |
| 383 | }; |
| 384 | |
| 385 | // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) |
| 386 | static const TableEntry ForwardSTiTable[] = { |
| 387 | { X86::FpADD, X86::FADDrST0 }, // commutative |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 388 | { X86::FpDIV, X86::FDIVRrST0 }, |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 389 | { X86::FpMUL, X86::FMULrST0 }, // commutative |
| 390 | { X86::FpSUB, X86::FSUBRrST0 }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 391 | { X86::FpUCOM, X86::FUCOMr }, |
| 392 | }; |
| 393 | |
| 394 | // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) |
| 395 | static const TableEntry ReverseSTiTable[] = { |
| 396 | { X86::FpADD, X86::FADDrST0 }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 397 | { X86::FpDIV, X86::FDIVrST0 }, |
Chris Lattner | 113455b | 2003-08-03 21:56:36 +0000 | [diff] [blame] | 398 | { X86::FpMUL, X86::FMULrST0 }, |
| 399 | { X86::FpSUB, X86::FSUBrST0 }, |
Chris Lattner | a960d95 | 2003-01-13 01:01:59 +0000 | [diff] [blame] | 400 | { X86::FpUCOM, ~0 }, |
| 401 | }; |
| 402 | |
| 403 | |
| 404 | /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual |
| 405 | /// instructions which need to be simplified and possibly transformed. |
| 406 | /// |
| 407 | /// Result: ST(0) = fsub ST(0), ST(i) |
| 408 | /// ST(i) = fsub ST(0), ST(i) |
| 409 | /// ST(0) = fsubr ST(0), ST(i) |
| 410 | /// ST(i) = fsubr ST(0), ST(i) |
| 411 | /// |
| 412 | /// In addition to three address instructions, this also handles the FpUCOM |
| 413 | /// instruction which only has two operands, but no destination. This |
| 414 | /// instruction is also annoying because there is no "reverse" form of it |
| 415 | /// available. |
| 416 | /// |
| 417 | void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { |
| 418 | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
| 419 | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
| 420 | MachineInstr *MI = *I; |
| 421 | |
| 422 | unsigned NumOperands = MI->getNumOperands(); |
| 423 | assert(NumOperands == 3 || |
| 424 | (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) && |
| 425 | "Illegal TwoArgFP instruction!"); |
| 426 | unsigned Dest = getFPReg(MI->getOperand(0)); |
| 427 | unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); |
| 428 | unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); |
| 429 | bool KillsOp0 = false, KillsOp1 = false; |
| 430 | |
| 431 | for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), |
| 432 | E = LV->killed_end(MI); KI != E; ++KI) { |
| 433 | KillsOp0 |= (KI->second == X86::FP0+Op0); |
| 434 | KillsOp1 |= (KI->second == X86::FP0+Op1); |
| 435 | } |
| 436 | |
| 437 | // If this is an FpUCOM instruction, we must make sure the first operand is on |
| 438 | // the top of stack, the other one can be anywhere... |
| 439 | if (MI->getOpcode() == X86::FpUCOM) |
| 440 | moveToTop(Op0, I); |
| 441 | |
| 442 | unsigned TOS = getStackEntry(0); |
| 443 | |
| 444 | // One of our operands must be on the top of the stack. If neither is yet, we |
| 445 | // need to move one. |
| 446 | if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? |
| 447 | // We can choose to move either operand to the top of the stack. If one of |
| 448 | // the operands is killed by this instruction, we want that one so that we |
| 449 | // can update right on top of the old version. |
| 450 | if (KillsOp0) { |
| 451 | moveToTop(Op0, I); // Move dead operand to TOS. |
| 452 | TOS = Op0; |
| 453 | } else if (KillsOp1) { |
| 454 | moveToTop(Op1, I); |
| 455 | TOS = Op1; |
| 456 | } else { |
| 457 | // All of the operands are live after this instruction executes, so we |
| 458 | // cannot update on top of any operand. Because of this, we must |
| 459 | // duplicate one of the stack elements to the top. It doesn't matter |
| 460 | // which one we pick. |
| 461 | // |
| 462 | duplicateToTop(Op0, Dest, I); |
| 463 | Op0 = TOS = Dest; |
| 464 | KillsOp0 = true; |
| 465 | } |
| 466 | } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) { |
| 467 | // If we DO have one of our operands at the top of the stack, but we don't |
| 468 | // have a dead operand, we must duplicate one of the operands to a new slot |
| 469 | // on the stack. |
| 470 | duplicateToTop(Op0, Dest, I); |
| 471 | Op0 = TOS = Dest; |
| 472 | KillsOp0 = true; |
| 473 | } |
| 474 | |
| 475 | // Now we know that one of our operands is on the top of the stack, and at |
| 476 | // least one of our operands is killed by this instruction. |
| 477 | assert((TOS == Op0 || TOS == Op1) && |
| 478 | (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) && |
| 479 | "Stack conditions not set up right!"); |
| 480 | |
| 481 | // We decide which form to use based on what is on the top of the stack, and |
| 482 | // which operand is killed by this instruction. |
| 483 | const TableEntry *InstTable; |
| 484 | bool isForward = TOS == Op0; |
| 485 | bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); |
| 486 | if (updateST0) { |
| 487 | if (isForward) |
| 488 | InstTable = ForwardST0Table; |
| 489 | else |
| 490 | InstTable = ReverseST0Table; |
| 491 | } else { |
| 492 | if (isForward) |
| 493 | InstTable = ForwardSTiTable; |
| 494 | else |
| 495 | InstTable = ReverseSTiTable; |
| 496 | } |
| 497 | |
| 498 | int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode()); |
| 499 | assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); |
| 500 | |
| 501 | // NotTOS - The register which is not on the top of stack... |
| 502 | unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; |
| 503 | |
| 504 | // Replace the old instruction with a new instruction |
| 505 | *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS)); |
| 506 | |
| 507 | // If both operands are killed, pop one off of the stack in addition to |
| 508 | // overwriting the other one. |
| 509 | if (KillsOp0 && KillsOp1 && Op0 != Op1) { |
| 510 | assert(!updateST0 && "Should have updated other operand!"); |
| 511 | popStackAfter(I); // Pop the top of stack |
| 512 | } |
| 513 | |
| 514 | // Insert an explicit pop of the "updated" operand for FUCOM |
| 515 | if (MI->getOpcode() == X86::FpUCOM) { |
| 516 | if (KillsOp0 && !KillsOp1) |
| 517 | popStackAfter(I); // If we kill the first operand, pop it! |
| 518 | else if (KillsOp1 && Op0 != Op1) { |
| 519 | if (getStackEntry(0) == Op1) { |
| 520 | popStackAfter(I); // If it's right at the top of stack, just pop it |
| 521 | } else { |
| 522 | // Otherwise, move the top of stack into the dead slot, killing the |
| 523 | // operand without having to add in an explicit xchg then pop. |
| 524 | // |
| 525 | unsigned STReg = getSTReg(Op1); |
| 526 | unsigned OldSlot = getSlot(Op1); |
| 527 | unsigned TopReg = Stack[StackTop-1]; |
| 528 | Stack[OldSlot] = TopReg; |
| 529 | RegMap[TopReg] = OldSlot; |
| 530 | RegMap[Op1] = ~0; |
| 531 | Stack[--StackTop] = ~0; |
| 532 | |
| 533 | MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg); |
| 534 | I = MBB->insert(I+1, MI); |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | // Update stack information so that we know the destination register is now on |
| 540 | // the stack. |
| 541 | if (MI->getOpcode() != X86::FpUCOM) { |
| 542 | unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); |
| 543 | assert(UpdatedSlot < StackTop && Dest < 7); |
| 544 | Stack[UpdatedSlot] = Dest; |
| 545 | RegMap[Dest] = UpdatedSlot; |
| 546 | } |
| 547 | delete MI; // Remove the old instruction |
| 548 | } |
| 549 | |
| 550 | |
| 551 | /// handleSpecialFP - Handle special instructions which behave unlike other |
| 552 | /// floating point instructions. This is primarily inteaded for use by pseudo |
| 553 | /// instructions. |
| 554 | /// |
| 555 | void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { |
| 556 | MachineInstr *MI = *I; |
| 557 | switch (MI->getOpcode()) { |
| 558 | default: assert(0 && "Unknown SpecialFP instruction!"); |
| 559 | case X86::FpGETRESULT: // Appears immediately after a call returning FP type! |
| 560 | assert(StackTop == 0 && "Stack should be empty after a call!"); |
| 561 | pushReg(getFPReg(MI->getOperand(0))); |
| 562 | break; |
| 563 | case X86::FpSETRESULT: |
| 564 | assert(StackTop == 1 && "Stack should have one element on it to return!"); |
| 565 | --StackTop; // "Forget" we have something on the top of stack! |
| 566 | break; |
| 567 | case X86::FpMOV: { |
| 568 | unsigned SrcReg = getFPReg(MI->getOperand(1)); |
| 569 | unsigned DestReg = getFPReg(MI->getOperand(0)); |
| 570 | bool KillsSrc = false; |
| 571 | for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), |
| 572 | E = LV->killed_end(MI); KI != E; ++KI) |
| 573 | KillsSrc |= KI->second == X86::FP0+SrcReg; |
| 574 | |
| 575 | if (KillsSrc) { |
| 576 | // If the input operand is killed, we can just change the owner of the |
| 577 | // incoming stack slot into the result. |
| 578 | unsigned Slot = getSlot(SrcReg); |
| 579 | assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); |
| 580 | Stack[Slot] = DestReg; |
| 581 | RegMap[DestReg] = Slot; |
| 582 | |
| 583 | } else { |
| 584 | // For FMOV we just duplicate the specified value to a new stack slot. |
| 585 | // This could be made better, but would require substantial changes. |
| 586 | duplicateToTop(SrcReg, DestReg, I); |
| 587 | } |
| 588 | break; |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | I = MBB->erase(I)-1; // Remove the pseudo instruction |
| 593 | } |