blob: 22c44e56c3019488f6d66111a25e44d1e386bc21 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000017#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000018#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000019#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000022#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000023#include "llvm/Target/MRegisterInfo.h"
24#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000025
Chris Lattner06925362002-11-17 21:56:38 +000026using namespace MOTy; // Get Use, Def, UseAndDef
27
Chris Lattner72614082002-10-25 22:55:53 +000028namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000029 struct ISel : public FunctionPass, InstVisitor<ISel> {
30 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000031 MachineFunction *F; // The function we are compiling into
32 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000033
34 unsigned CurReg;
35 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
36
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000037 ISel(TargetMachine &tm)
38 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000039
40 /// runOnFunction - Top level implementation of instruction selection for
41 /// the entire function.
42 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000043 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000044 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000045 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000046 RegMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000047 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000048 return false; // We never modify the LLVM itself.
49 }
50
51 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000052 /// block. This simply creates a new MachineBasicBlock to emit code into
53 /// and adds it to the current MachineFunction. Subsequent visit* for
54 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000055 ///
56 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000057 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000058 // FIXME: Use the auto-insert form when it's available
59 F->getBasicBlockList().push_back(BB);
60 }
61
62 // Visitation methods for various instructions. These methods simply emit
63 // fixed X86 code for each instruction.
64 //
65 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000066 void visitBranchInst(BranchInst &BI);
Chris Lattnere2954c82002-11-02 20:04:26 +000067
68 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000069 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000070 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
71 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000072 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000073
Chris Lattnerf01729e2002-11-02 20:54:46 +000074 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
75 void visitRem(BinaryOperator &B) { visitDivRem(B); }
76 void visitDivRem(BinaryOperator &B);
77
Chris Lattnere2954c82002-11-02 20:04:26 +000078 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000079 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
80 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
81 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000082
83 // Binary comparison operators
Chris Lattner6fc3c522002-11-17 21:11:55 +000084 void visitSetCondInst(SetCondInst &I);
85
86 // Memory Instructions
87 void visitLoadInst(LoadInst &I);
88 void visitStoreInst(StoreInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000089
90 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +000091 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000092 void visitPHINode(PHINode &I);
Chris Lattner72614082002-10-25 22:55:53 +000093
94 void visitInstruction(Instruction &I) {
95 std::cerr << "Cannot instruction select: " << I;
96 abort();
97 }
98
Chris Lattnerc5291f52002-10-27 21:16:59 +000099
100 /// copyConstantToRegister - Output the instructions required to put the
101 /// specified constant into the specified register.
102 ///
103 void copyConstantToRegister(Constant *C, unsigned Reg);
104
Chris Lattner72614082002-10-25 22:55:53 +0000105 /// getReg - This method turns an LLVM value into a register number. This
106 /// is guaranteed to produce the same register number for a particular value
107 /// every time it is queried.
108 ///
109 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
110 unsigned getReg(Value *V) {
111 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000112 if (Reg == 0) {
Chris Lattner72614082002-10-25 22:55:53 +0000113 Reg = CurReg++;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000114 RegMap[V] = Reg;
115
116 // Add the mapping of regnumber => reg class to MachineFunction
117 F->addRegMap(Reg,
118 TM.getRegisterInfo()->getRegClassForType(V->getType()));
119 }
Chris Lattner72614082002-10-25 22:55:53 +0000120
Chris Lattner6f8fd252002-10-27 21:23:43 +0000121 // If this operand is a constant, emit the code to copy the constant into
122 // the register here...
123 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000124 if (Constant *C = dyn_cast<Constant>(V))
125 copyConstantToRegister(C, Reg);
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 return Reg;
128 }
Chris Lattner72614082002-10-25 22:55:53 +0000129 };
130}
131
Chris Lattner43189d12002-11-17 20:07:45 +0000132/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
133/// Representation.
134///
135enum TypeClass {
136 cByte, cShort, cInt, cLong, cFloat, cDouble
137};
138
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000139/// getClass - Turn a primitive type into a "class" number which is based on the
140/// size of the type, and whether or not it is floating point.
141///
Chris Lattner43189d12002-11-17 20:07:45 +0000142static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000143 switch (Ty->getPrimitiveID()) {
144 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000145 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000146 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000147 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000148 case Type::IntTyID:
149 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000150 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000151
152 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000153 case Type::ULongTyID: return cLong; // Longs are class #3
154 case Type::FloatTyID: return cFloat; // Float is class #4
155 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000156 default:
157 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000158 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000159 }
160}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000161
Chris Lattner06925362002-11-17 21:56:38 +0000162
Chris Lattnerc5291f52002-10-27 21:16:59 +0000163/// copyConstantToRegister - Output the instructions required to put the
164/// specified constant into the specified register.
165///
166void ISel::copyConstantToRegister(Constant *C, unsigned R) {
167 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
168
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000169 if (C->getType()->isIntegral()) {
170 unsigned Class = getClass(C->getType());
171 assert(Class != 3 && "Type not handled yet!");
172
173 static const unsigned IntegralOpcodeTab[] = {
174 X86::MOVir8, X86::MOVir16, X86::MOVir32
175 };
176
177 if (C->getType()->isSigned()) {
178 ConstantSInt *CSI = cast<ConstantSInt>(C);
179 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
180 } else {
181 ConstantUInt *CUI = cast<ConstantUInt>(C);
182 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
183 }
184 } else {
185 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000186 }
187}
188
Chris Lattner06925362002-11-17 21:56:38 +0000189
Brian Gaeke1749d632002-11-07 17:59:21 +0000190/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
191/// register, then move it to wherever the result should be.
192/// We handle FP setcc instructions by pushing them, doing a
193/// compare-and-pop-twice, and then copying the concodes to the main
194/// processor's concodes (I didn't make this up, it's in the Intel manual)
195///
196void
197ISel::visitSetCondInst (SetCondInst & I)
198{
199 // The arguments are already supposed to be of the same type.
200 Value *var1 = I.getOperand (0);
201 Value *var2 = I.getOperand (1);
202 unsigned reg1 = getReg (var1);
203 unsigned reg2 = getReg (var2);
204 unsigned resultReg = getReg (I);
205 unsigned comparisonWidth = var1->getType ()->getPrimitiveSize ();
206 unsigned unsignedComparison = var1->getType ()->isUnsigned ();
207 unsigned resultWidth = I.getType ()->getPrimitiveSize ();
208 bool fpComparison = var1->getType ()->isFloatingPoint ();
209 if (fpComparison)
210 {
211 // Push the variables on the stack with fldl opcodes.
212 // FIXME: assuming var1, var2 are in memory, if not, spill to
213 // stack first
214 switch (comparisonWidth)
215 {
216 case 4:
217 BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg1);
218 break;
219 case 8:
220 BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg1);
221 break;
222 default:
223 visitInstruction (I);
224 break;
225 }
226 switch (comparisonWidth)
227 {
228 case 4:
229 BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg2);
230 break;
231 case 8:
232 BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg2);
233 break;
234 default:
235 visitInstruction (I);
236 break;
237 }
238 // (Non-trapping) compare and pop twice.
Brian Gaeke1749d632002-11-07 17:59:21 +0000239 BuildMI (BB, X86::FUCOMPP, 0);
240 // Move fp status word (concodes) to ax.
241 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
242 // Load real concodes from ax.
Chris Lattner97ad9e12002-11-21 01:59:50 +0000243 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
Brian Gaeke1749d632002-11-07 17:59:21 +0000244 }
245 else
246 { // integer comparison
247 // Emit: cmp <var1>, <var2> (do the comparison). We can
248 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
249 // 32-bit.
Brian Gaeke1749d632002-11-07 17:59:21 +0000250 switch (comparisonWidth)
251 {
252 case 1:
Chris Lattner97ad9e12002-11-21 01:59:50 +0000253 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000254 break;
255 case 2:
Chris Lattner97ad9e12002-11-21 01:59:50 +0000256 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000257 break;
258 case 4:
Chris Lattner97ad9e12002-11-21 01:59:50 +0000259 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000260 break;
261 case 8:
262 default:
263 visitInstruction (I);
264 break;
265 }
266 }
267 // Emit setOp instruction (extract concode; clobbers ax),
268 // using the following mapping:
269 // LLVM -> X86 signed X86 unsigned
270 // ----- ----- -----
271 // seteq -> sete sete
272 // setne -> setne setne
273 // setlt -> setl setb
274 // setgt -> setg seta
275 // setle -> setle setbe
276 // setge -> setge setae
277 switch (I.getOpcode ())
278 {
279 case Instruction::SetEQ:
280 BuildMI (BB, X86::SETE, 0, X86::AL);
281 break;
282 case Instruction::SetGE:
283 if (unsignedComparison)
284 BuildMI (BB, X86::SETAE, 0, X86::AL);
285 else
286 BuildMI (BB, X86::SETGE, 0, X86::AL);
287 break;
288 case Instruction::SetGT:
289 if (unsignedComparison)
290 BuildMI (BB, X86::SETA, 0, X86::AL);
291 else
292 BuildMI (BB, X86::SETG, 0, X86::AL);
293 break;
294 case Instruction::SetLE:
295 if (unsignedComparison)
296 BuildMI (BB, X86::SETBE, 0, X86::AL);
297 else
298 BuildMI (BB, X86::SETLE, 0, X86::AL);
299 break;
300 case Instruction::SetLT:
301 if (unsignedComparison)
302 BuildMI (BB, X86::SETB, 0, X86::AL);
303 else
304 BuildMI (BB, X86::SETL, 0, X86::AL);
305 break;
306 case Instruction::SetNE:
307 BuildMI (BB, X86::SETNE, 0, X86::AL);
308 break;
309 default:
310 visitInstruction (I);
311 break;
312 }
313 // Put it in the result using a move.
314 switch (resultWidth)
315 {
316 case 1:
317 BuildMI (BB, X86::MOVrr8, 1, resultReg).addReg (X86::AL);
318 break;
Brian Gaeke1749d632002-11-07 17:59:21 +0000319 case 2:
Brian Gaeke6559bb92002-11-14 22:32:30 +0000320 BuildMI (BB, X86::MOVZXr16r8, 1, resultReg).addReg (X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000321 break;
322 case 4:
Brian Gaeke6559bb92002-11-14 22:32:30 +0000323 BuildMI (BB, X86::MOVZXr32r8, 1, resultReg).addReg (X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000324 break;
325 case 8:
326 default:
327 visitInstruction (I);
328 break;
329 }
330}
Chris Lattner51b49a92002-11-02 19:45:49 +0000331
Chris Lattnerc5291f52002-10-27 21:16:59 +0000332
Chris Lattner72614082002-10-25 22:55:53 +0000333/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
334/// we have the following possibilities:
335///
336/// ret void: No return value, simply emit a 'ret' instruction
337/// ret sbyte, ubyte : Extend value into EAX and return
338/// ret short, ushort: Extend value into EAX and return
339/// ret int, uint : Move value into EAX and return
340/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000341/// ret long, ulong : Move value into EAX/EDX and return
342/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000343///
Chris Lattner6fc3c522002-11-17 21:11:55 +0000344void ISel::visitReturnInst (ReturnInst &I) {
Chris Lattner43189d12002-11-17 20:07:45 +0000345 if (I.getNumOperands() == 0) {
346 // Emit a 'ret' instruction
347 BuildMI(BB, X86::RET, 0);
348 return;
349 }
350
351 unsigned val = getReg(I.getOperand(0));
Chris Lattner6fc3c522002-11-17 21:11:55 +0000352 unsigned Class = getClass(I.getOperand(0)->getType());
Chris Lattner43189d12002-11-17 20:07:45 +0000353 bool isUnsigned = I.getOperand(0)->getType()->isUnsigned();
354 switch (Class) {
355 case cByte:
356 // ret sbyte, ubyte: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000357 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000358 BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000359 else
Chris Lattner43189d12002-11-17 20:07:45 +0000360 BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000361 break;
362 case cShort:
363 // ret short, ushort: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000364 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000365 BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000366 else
Chris Lattner43189d12002-11-17 20:07:45 +0000367 BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000368 break;
369 case cInt:
370 // ret int, uint, ptr: Move value into EAX and return
371 // MOV EAX, <val>
372 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val);
373 break;
374
375 // ret float/double: top of FP stack
376 // FLD <val>
377 case cFloat: // Floats
378 BuildMI(BB, X86::FLDr4, 1).addReg(val);
379 break;
380 case cDouble: // Doubles
381 BuildMI(BB, X86::FLDr8, 1).addReg(val);
382 break;
383 case cLong:
384 // ret long: use EAX(least significant 32 bits)/EDX (most
385 // significant 32)...uh, I think so Brain, but how do i call
386 // up the two parts of the value from inside this mouse
387 // cage? *zort*
388 default:
389 visitInstruction(I);
390 }
391
392 // Emit a 'ret' instruction
393 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000394}
395
Chris Lattner51b49a92002-11-02 19:45:49 +0000396/// visitBranchInst - Handle conditional and unconditional branches here. Note
397/// that since code layout is frozen at this point, that if we are trying to
398/// jump to a block that is the immediate successor of the current block, we can
399/// just make a fall-through. (but we don't currently).
400///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000401void
402ISel::visitBranchInst (BranchInst & BI)
403{
404 if (BI.isConditional ())
405 {
406 BasicBlock *ifTrue = BI.getSuccessor (0);
407 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000408
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000409 // simplest thing I can think of: compare condition with zero,
410 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
411 // ifTrue
412 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000413 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000414 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
415 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
416 }
417 else // unconditional branch
418 {
419 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
420 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000421}
422
423
Chris Lattner68aad932002-11-02 20:13:22 +0000424/// visitSimpleBinary - Implement simple binary operators for integral types...
425/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
426/// 4 for Xor.
427///
428void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
429 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000430 visitInstruction(B);
431
432 unsigned Class = getClass(B.getType());
433 if (Class > 2) // FIXME: Handle longs
434 visitInstruction(B);
435
436 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000437 // Arithmetic operators
438 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
439 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
440
441 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000442 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
443 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
444 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
445 };
446
447 unsigned Opcode = OpcodeTab[OperatorClass][Class];
448 unsigned Op0r = getReg(B.getOperand(0));
449 unsigned Op1r = getReg(B.getOperand(1));
450 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
451}
452
Chris Lattnerca9671d2002-11-02 20:28:58 +0000453/// visitMul - Multiplies are not simple binary operators because they must deal
454/// with the EAX register explicitly.
455///
456void ISel::visitMul(BinaryOperator &I) {
457 unsigned Class = getClass(I.getType());
458 if (Class > 2) // FIXME: Handle longs
459 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000460
Chris Lattnerca9671d2002-11-02 20:28:58 +0000461 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Chris Lattner06925362002-11-17 21:56:38 +0000462 static const unsigned Clobbers[] ={ X86::AH , X86::DX , X86::EDX };
Chris Lattnerca9671d2002-11-02 20:28:58 +0000463 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
464 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
465
Chris Lattner06925362002-11-17 21:56:38 +0000466 unsigned Reg = Regs[Class];
467 unsigned Clobber = Clobbers[Class];
468 unsigned Op0Reg = getReg(I.getOperand(0));
469 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattnerca9671d2002-11-02 20:28:58 +0000470
471 // Put the first operand into one of the A registers...
472 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
473
Chris Lattner06925362002-11-17 21:56:38 +0000474 // Emit the appropriate multiply instruction...
Chris Lattner71e83ca2002-11-17 22:33:26 +0000475 BuildMI(BB, MulOpcode[Class], 3)
Chris Lattner06925362002-11-17 21:56:38 +0000476 .addReg(Reg, UseAndDef).addReg(Op1Reg).addClobber(Clobber);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000477
478 // Put the result into the destination register...
479 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000480}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000481
Chris Lattner06925362002-11-17 21:56:38 +0000482
Chris Lattnerf01729e2002-11-02 20:54:46 +0000483/// visitDivRem - Handle division and remainder instructions... these
484/// instruction both require the same instructions to be generated, they just
485/// select the result from a different register. Note that both of these
486/// instructions work differently for signed and unsigned operands.
487///
488void ISel::visitDivRem(BinaryOperator &I) {
489 unsigned Class = getClass(I.getType());
490 if (Class > 2) // FIXME: Handle longs
491 visitInstruction(I);
492
493 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
494 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000495 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000496 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
497 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
498
499 static const unsigned DivOpcode[][4] = {
500 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
501 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
502 };
503
504 bool isSigned = I.getType()->isSigned();
505 unsigned Reg = Regs[Class];
506 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000507 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000508 unsigned Op1Reg = getReg(I.getOperand(1));
509
510 // Put the first operand into one of the A registers...
511 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
512
513 if (isSigned) {
514 // Emit a sign extension instruction...
515 BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
516 } else {
517 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
518 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
519 }
520
Chris Lattner06925362002-11-17 21:56:38 +0000521 // Emit the appropriate divide or remainder instruction...
522 BuildMI(BB, DivOpcode[isSigned][Class], 2)
523 .addReg(Reg, UseAndDef).addReg(ExtReg, UseAndDef).addReg(Op1Reg);
524
Chris Lattnerf01729e2002-11-02 20:54:46 +0000525 // Figure out which register we want to pick the result out of...
526 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
527
Chris Lattnerf01729e2002-11-02 20:54:46 +0000528 // Put the result into the destination register...
529 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000530}
Chris Lattnere2954c82002-11-02 20:04:26 +0000531
Chris Lattner06925362002-11-17 21:56:38 +0000532
Brian Gaekea1719c92002-10-31 23:03:59 +0000533/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
534/// for constant immediate shift values, and for constant immediate
535/// shift values equal to 1. Even the general case is sort of special,
536/// because the shift amount has to be in CL, not just any old register.
537///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000538void ISel::visitShiftInst (ShiftInst &I) {
539 unsigned Op0r = getReg (I.getOperand(0));
540 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000541 bool isLeftShift = I.getOpcode() == Instruction::Shl;
542 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000543 unsigned OperandClass = getClass(I.getType());
544
545 if (OperandClass > 2)
546 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000547
Brian Gaekea1719c92002-10-31 23:03:59 +0000548 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
549 {
Chris Lattner796df732002-11-02 00:44:25 +0000550 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
551 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
552 unsigned char shAmt = CUI->getValue();
553
Chris Lattnere9913f22002-11-02 01:41:55 +0000554 static const unsigned ConstantOperand[][4] = {
555 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
556 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
557 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
558 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000559 };
560
Chris Lattnere9913f22002-11-02 01:41:55 +0000561 const unsigned *OpTab = // Figure out the operand table to use
562 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000563
Brian Gaekea1719c92002-10-31 23:03:59 +0000564 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000565 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000566 }
567 else
568 {
569 // The shift amount is non-constant.
570 //
571 // In fact, you can only shift with a variable shift amount if
572 // that amount is already in the CL register, so we have to put it
573 // there first.
574 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000575
Brian Gaekea1719c92002-10-31 23:03:59 +0000576 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000577 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000578
579 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000580 static const unsigned NonConstantOperand[][4] = {
581 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
582 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
583 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
584 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000585 };
586
Chris Lattnere9913f22002-11-02 01:41:55 +0000587 const unsigned *OpTab = // Figure out the operand table to use
588 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000589
Chris Lattnere9913f22002-11-02 01:41:55 +0000590 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
Brian Gaekea1719c92002-10-31 23:03:59 +0000591 }
592}
593
Chris Lattner06925362002-11-17 21:56:38 +0000594
Chris Lattner6fc3c522002-11-17 21:11:55 +0000595/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
596/// instruction.
597///
598void ISel::visitLoadInst(LoadInst &I) {
599 unsigned Class = getClass(I.getType());
600 if (Class > 2) // FIXME: Handle longs and others...
601 visitInstruction(I);
602
603 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
604
605 unsigned AddressReg = getReg(I.getOperand(0));
606 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
607}
608
Chris Lattner06925362002-11-17 21:56:38 +0000609
Chris Lattner6fc3c522002-11-17 21:11:55 +0000610/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
611/// instruction.
612///
613void ISel::visitStoreInst(StoreInst &I) {
614 unsigned Class = getClass(I.getOperand(0)->getType());
615 if (Class > 2) // FIXME: Handle longs and others...
616 visitInstruction(I);
617
618 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
619
620 unsigned ValReg = getReg(I.getOperand(0));
621 unsigned AddressReg = getReg(I.getOperand(1));
622 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
623}
624
625
Chris Lattnere2954c82002-11-02 20:04:26 +0000626/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
627///
628void ISel::visitPHINode(PHINode &PN) {
629 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000630
Chris Lattnere2954c82002-11-02 20:04:26 +0000631 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
632 // FIXME: This will put constants after the PHI nodes in the block, which
633 // is invalid. They should be put inline into the PHI node eventually.
634 //
635 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
636 MI->addPCDispOperand(PN.getIncomingBlock(i));
637 }
Chris Lattner72614082002-10-25 22:55:53 +0000638}
639
Brian Gaekea1719c92002-10-31 23:03:59 +0000640
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000641/// createSimpleX86InstructionSelector - This pass converts an LLVM function
642/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000643/// generated code sucks but the implementation is nice and simple.
644///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000645Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
646 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000647}