blob: 8d39aa2353aea5874b6400c65033dfc4daf6b74f [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
18 <li><a href="#stl">The C++ Standard Template Library</a><!--
Chris Lattner986e0c92002-09-22 19:38:40 +000019 <li>The <tt>-time-passes</tt> option
20 <li>How to use the LLVM Makefile system
21 <li>How to write a regression test
Chris Lattner261efe92003-11-25 01:02:51 +000022--> </li>
Chris Lattner84b7f8d2003-08-01 22:20:59 +000023 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000024 </li>
25 <li><a href="#apis">Important and useful LLVM APIs</a>
26 <ul>
27 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
28and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
29 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
30option</a>
31 <ul>
32 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
33and the <tt>-debug-only</tt> option</a> </li>
34 </ul>
35 </li>
36 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
37option</a><!--
Chris Lattner986e0c92002-09-22 19:38:40 +000038 <li>The <tt>InstVisitor</tt> template
39 <li>The general graph API
Chris Lattner261efe92003-11-25 01:02:51 +000040--> </li>
41 </ul>
42 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000043 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000044 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000045 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
46 <ul>
47 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
48in a <tt>Function</tt></a> </li>
49 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
50in a <tt>BasicBlock</tt></a> </li>
51 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
52in a <tt>Function</tt></a> </li>
53 <li><a href="#iterate_convert">Turning an iterator into a
54class pointer</a> </li>
55 <li><a href="#iterate_complex">Finding call sites: a more
56complex example</a> </li>
57 <li><a href="#calls_and_invokes">Treating calls and invokes
58the same way</a> </li>
59 <li><a href="#iterate_chains">Iterating over def-use &amp;
60use-def chains</a> </li>
61 </ul>
62 </li>
63 <li><a href="#simplechanges">Making simple changes</a>
64 <ul>
65 <li><a href="#schanges_creating">Creating and inserting new
66 <tt>Instruction</tt>s</a> </li>
67 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
68 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
69with another <tt>Value</tt></a> </li>
70 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000071<!--
72 <li>Working with the Control Flow Graph
73 <ul>
74 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
75 <li>
76 <li>
77 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000078--> </li>
79 </ul>
80 </li>
Joel Stanley9b96c442002-09-06 21:55:13 +000081 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000082 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +000083 <li><a href="#Value">The <tt>Value</tt> class</a>
84 <ul>
85 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +000086 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +000087 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +000088 <ul>
Reid Spencer096603a2004-05-26 08:41:35 +000089 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt>
90 class</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +000091 </ul></li>
92 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
93 <ul>
Reid Spencer096603a2004-05-26 08:41:35 +000094 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
95 <li><a href="#Function">The <tt>Function</tt> class</a></li>
96 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class
97 </a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +000098 </ul></li>
99 <li><a href="#Module">The <tt>Module</tt> class</a></li>
Reid Spencer096603a2004-05-26 08:41:35 +0000100 <li><a href="#Constant">The <tt>Constant</tt> class</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000101 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000102 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
103 </ul></li>
104 </ul></li>
105 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
106 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
107 <ul>
108 <li>Creating, inserting, moving and deleting from LLVM lists </li>
109 </ul>
110 </li>
111 <li>Important iterator invalidation semantics to be aware of.</li>
Chris Lattner261efe92003-11-25 01:02:51 +0000112 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000113</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000114
Chris Lattner69bf8a92004-05-23 21:06:58 +0000115<div class="doc_author">
116 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000117 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
118 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
119 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000120</div>
121
Chris Lattner9355b472002-09-06 02:50:58 +0000122<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000123<div class="doc_section">
124 <a name="introduction">Introduction </a>
125</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000126<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000127
128<div class="doc_text">
129
130<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000131interfaces available in the LLVM source-base. This manual is not
132intended to explain what LLVM is, how it works, and what LLVM code looks
133like. It assumes that you know the basics of LLVM and are interested
134in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000135code.</p>
136
137<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000138way in the continuously growing source code that makes up the LLVM
139infrastructure. Note that this manual is not intended to serve as a
140replacement for reading the source code, so if you think there should be
141a method in one of these classes to do something, but it's not listed,
142check the source. Links to the <a href="/doxygen/">doxygen</a> sources
143are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000144
145<p>The first section of this document describes general information that is
146useful to know when working in the LLVM infrastructure, and the second describes
147the Core LLVM classes. In the future this manual will be extended with
148information describing how to use extension libraries, such as dominator
149information, CFG traversal routines, and useful utilities like the <tt><a
150href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
151
152</div>
153
Chris Lattner9355b472002-09-06 02:50:58 +0000154<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000155<div class="doc_section">
156 <a name="general">General Information</a>
157</div>
158<!-- *********************************************************************** -->
159
160<div class="doc_text">
161
162<p>This section contains general information that is useful if you are working
163in the LLVM source-base, but that isn't specific to any particular API.</p>
164
165</div>
166
167<!-- ======================================================================= -->
168<div class="doc_subsection">
169 <a name="stl">The C++ Standard Template Library</a>
170</div>
171
172<div class="doc_text">
173
174<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000175perhaps much more than you are used to, or have seen before. Because of
176this, you might want to do a little background reading in the
177techniques used and capabilities of the library. There are many good
178pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000179can get, so it will not be discussed in this document.</p>
180
181<p>Here are some useful links:</p>
182
183<ol>
184
185<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
186reference</a> - an excellent reference for the STL and other parts of the
187standard C++ library.</li>
188
189<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Tanya Lattner09cf73c2004-06-22 04:24:55 +0000190O'Reilly book in the making. It has a decent
191Standard Library
192Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
Misha Brukman13fd15c2004-01-15 00:14:41 +0000193published.</li>
194
195<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
196Questions</a></li>
197
198<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
199Contains a useful <a
200href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
201STL</a>.</li>
202
203<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
204Page</a></li>
205
Reid Spencer096603a2004-05-26 08:41:35 +0000206<li><a href="http://www.linux.com.cn/Bruce_Eckel/TICPPv2/Contents.htm">
207Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
208the book).</a></li>
209
Misha Brukman13fd15c2004-01-15 00:14:41 +0000210</ol>
211
212<p>You are also encouraged to take a look at the <a
213href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
214to write maintainable code more than where to put your curly braces.</p>
215
216</div>
217
218<!-- ======================================================================= -->
219<div class="doc_subsection">
220 <a name="stl">Other useful references</a>
221</div>
222
223<div class="doc_text">
224
Misha Brukman13fd15c2004-01-15 00:14:41 +0000225<ol>
226<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000227Branch and Tag Primer</a></li>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000228<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
229static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000230</ol>
231
232</div>
233
Chris Lattner9355b472002-09-06 02:50:58 +0000234<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000235<div class="doc_section">
236 <a name="apis">Important and useful LLVM APIs</a>
237</div>
238<!-- *********************************************************************** -->
239
240<div class="doc_text">
241
242<p>Here we highlight some LLVM APIs that are generally useful and good to
243know about when writing transformations.</p>
244
245</div>
246
247<!-- ======================================================================= -->
248<div class="doc_subsection">
249 <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
250</div>
251
252<div class="doc_text">
253
254<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000255These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
256operator, but they don't have some drawbacks (primarily stemming from
257the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
258have a v-table). Because they are used so often, you must know what they
259do and how they work. All of these templates are defined in the <a
260 href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000261file (note that you very rarely have to include this file directly).</p>
262
263<dl>
264 <dt><tt>isa&lt;&gt;</tt>: </dt>
265
266 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
267 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
268 a reference or pointer points to an instance of the specified class. This can
269 be very useful for constraint checking of various sorts (example below).</dd>
270
271 <dt><tt>cast&lt;&gt;</tt>: </dt>
272
273 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
274 converts a pointer or reference from a base class to a derived cast, causing
275 an assertion failure if it is not really an instance of the right type. This
276 should be used in cases where you have some information that makes you believe
277 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
278 and <tt>cast&lt;&gt;</tt> template is:
279
Chris Lattner69bf8a92004-05-23 21:06:58 +0000280 <pre>
281 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
282 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
283 return true;
284
285 <i>// Otherwise, it must be an instruction...</i>
286 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
287 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000288
289 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
290 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
291 operator.</p>
292
293 </dd>
294
295 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
296
297 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
298 checks to see if the operand is of the specified type, and if so, returns a
299 pointer to it (this operator does not work with references). If the operand is
300 not of the correct type, a null pointer is returned. Thus, this works very
301 much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
302 same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
303 in an <tt>if</tt> statement or some other flow control statement like this:
304
Chris Lattner69bf8a92004-05-23 21:06:58 +0000305 <pre>
306 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
307 ...
308 }
309 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000310
311 <p> This form of the <tt>if</tt> statement effectively combines together a
312 call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
313 statement, which is very convenient.</p>
314
315 <p> Another common example is:</p>
316
Chris Lattner69bf8a92004-05-23 21:06:58 +0000317 <pre>
318 <i>// Loop over all of the phi nodes in a basic block</i>
319 BasicBlock::iterator BBI = BB-&gt;begin();
320 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
321 std::cerr &lt;&lt; *PN;
322 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000323
324 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
325 <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
326 In particular you should not use big chained <tt>if/then/else</tt> blocks to
327 check for lots of different variants of classes. If you find yourself
328 wanting to do this, it is much cleaner and more efficient to use the
329 InstVisitor class to dispatch over the instruction type directly.</p>
330
Chris Lattner261efe92003-11-25 01:02:51 +0000331 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000332
Chris Lattner261efe92003-11-25 01:02:51 +0000333 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000334
335 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
336 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
337 an argument (which it then propagates). This can sometimes be useful,
338 allowing you to combine several null checks into one.</dd>
339
Chris Lattner261efe92003-11-25 01:02:51 +0000340 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000341
342 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
343 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
344 as an argument (which it then propagates). This can sometimes be useful,
345 allowing you to combine several null checks into one.</dd>
346
Chris Lattner261efe92003-11-25 01:02:51 +0000347 </dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000348
349<p>These five templates can be used with any classes, whether they have a
350v-table or not. To add support for these templates, you simply need to add
351<tt>classof</tt> static methods to the class you are interested casting
352to. Describing this is currently outside the scope of this document, but there
353are lots of examples in the LLVM source base.</p>
354
355</div>
356
357<!-- ======================================================================= -->
358<div class="doc_subsection">
359 <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
360</div>
361
362<div class="doc_text">
363
364<p>Often when working on your pass you will put a bunch of debugging printouts
365and other code into your pass. After you get it working, you want to remove
366it... but you may need it again in the future (to work out new bugs that you run
367across).</p>
368
369<p> Naturally, because of this, you don't want to delete the debug printouts,
370but you don't want them to always be noisy. A standard compromise is to comment
371them out, allowing you to enable them if you need them in the future.</p>
372
373<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
374file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
375this problem. Basically, you can put arbitrary code into the argument of the
376<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
377tool) is run with the '<tt>-debug</tt>' command line argument:</p>
378
Chris Lattner261efe92003-11-25 01:02:51 +0000379 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000380
381<p>Then you can run your pass like this:</p>
382
Chris Lattner261efe92003-11-25 01:02:51 +0000383 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000384
385<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
386to not have to create "yet another" command line option for the debug output for
387your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
388so they do not cause a performance impact at all (for the same reason, they
389should also not contain side-effects!).</p>
390
391<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
392enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
393"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
394program hasn't been started yet, you can always just run it with
395<tt>-debug</tt>.</p>
396
397</div>
398
399<!-- _______________________________________________________________________ -->
400<div class="doc_subsubsection">
401 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
402 the <tt>-debug-only</tt> option</a>
403</div>
404
405<div class="doc_text">
406
407<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
408just turns on <b>too much</b> information (such as when working on the code
409generator). If you want to enable debug information with more fine-grained
410control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
411option as follows:</p>
412
Chris Lattner261efe92003-11-25 01:02:51 +0000413 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000414
415<p>Then you can run your pass like this:</p>
416
Chris Lattner261efe92003-11-25 01:02:51 +0000417 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000418
419<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
420a file, to specify the debug type for the entire module (if you do this before
421you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
422<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
423"bar", because there is no system in place to ensure that names do not
424conflict. If two different modules use the same string, they will all be turned
425on when the name is specified. This allows, for example, all debug information
426for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000427even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000428
429</div>
430
431<!-- ======================================================================= -->
432<div class="doc_subsection">
433 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
434 option</a>
435</div>
436
437<div class="doc_text">
438
439<p>The "<tt><a
440href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
441provides a template named <tt>Statistic</tt> that is used as a unified way to
442keep track of what the LLVM compiler is doing and how effective various
443optimizations are. It is useful to see what optimizations are contributing to
444making a particular program run faster.</p>
445
446<p>Often you may run your pass on some big program, and you're interested to see
447how many times it makes a certain transformation. Although you can do this with
448hand inspection, or some ad-hoc method, this is a real pain and not very useful
449for big programs. Using the <tt>Statistic</tt> template makes it very easy to
450keep track of this information, and the calculated information is presented in a
451uniform manner with the rest of the passes being executed.</p>
452
453<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
454it are as follows:</p>
455
456<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000457 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000458 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000459
460 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
461 but if you do not specify a template argument, it defaults to acting like
462 an unsigned int counter (this is usually what you want).</p></li>
463
Chris Lattner261efe92003-11-25 01:02:51 +0000464 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000465 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000466 </li>
467 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000468
469 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
470 statistics gathered, use the '<tt>-stats</tt>' option:</p>
471
Chris Lattner261efe92003-11-25 01:02:51 +0000472 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000473
Chris Lattner261efe92003-11-25 01:02:51 +0000474 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
475suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000476
Chris Lattner261efe92003-11-25 01:02:51 +0000477 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000478
479<p>Obviously, with so many optimizations, having a unified framework for this
480stuff is very nice. Making your pass fit well into the framework makes it more
481maintainable and useful.</p>
482
483</div>
484
485<!-- *********************************************************************** -->
486<div class="doc_section">
487 <a name="common">Helpful Hints for Common Operations</a>
488</div>
489<!-- *********************************************************************** -->
490
491<div class="doc_text">
492
493<p>This section describes how to perform some very simple transformations of
494LLVM code. This is meant to give examples of common idioms used, showing the
495practical side of LLVM transformations. <p> Because this is a "how-to" section,
496you should also read about the main classes that you will be working with. The
497<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
498and descriptions of the main classes that you should know about.</p>
499
500</div>
501
502<!-- NOTE: this section should be heavy on example code -->
503<!-- ======================================================================= -->
504<div class="doc_subsection">
505 <a name="inspection">Basic Inspection and Traversal Routines</a>
506</div>
507
508<div class="doc_text">
509
510<p>The LLVM compiler infrastructure have many different data structures that may
511be traversed. Following the example of the C++ standard template library, the
512techniques used to traverse these various data structures are all basically the
513same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
514method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
515function returns an iterator pointing to one past the last valid element of the
516sequence, and there is some <tt>XXXiterator</tt> data type that is common
517between the two operations.</p>
518
519<p>Because the pattern for iteration is common across many different aspects of
520the program representation, the standard template library algorithms may be used
521on them, and it is easier to remember how to iterate. First we show a few common
522examples of the data structures that need to be traversed. Other data
523structures are traversed in very similar ways.</p>
524
525</div>
526
527<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000528<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000529 <a name="iterate_function">Iterating over the </a><a
530 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
531 href="#Function"><tt>Function</tt></a>
532</div>
533
534<div class="doc_text">
535
536<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
537transform in some way; in particular, you'd like to manipulate its
538<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
539the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
540an example that prints the name of a <tt>BasicBlock</tt> and the number of
541<tt>Instruction</tt>s it contains:</p>
542
Chris Lattner261efe92003-11-25 01:02:51 +0000543 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000544
545<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000546invoking member functions of the <tt>Instruction</tt> class. This is
547because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000548classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000549exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
550
551</div>
552
553<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000554<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000555 <a name="iterate_basicblock">Iterating over the </a><a
556 href="#Instruction"><tt>Instruction</tt></a>s in a <a
557 href="#BasicBlock"><tt>BasicBlock</tt></a>
558</div>
559
560<div class="doc_text">
561
562<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
563easy to iterate over the individual instructions that make up
564<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
565a <tt>BasicBlock</tt>:</p>
566
Chris Lattner261efe92003-11-25 01:02:51 +0000567 <pre> // blk is a pointer to a BasicBlock instance<br> for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)<br> // the next statement works since operator&lt;&lt;(ostream&amp;,...) <br> // is overloaded for Instruction&amp;<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000568
569<p>However, this isn't really the best way to print out the contents of a
570<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
571anything you'll care about, you could have just invoked the print routine on the
572basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
573
574<p>Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so
575it will print out the contents of the pointer, instead of the pointer value you
576might expect. This is a deprecated interface that will be removed in the
577future, so it's best not to depend on it. To print out the pointer value for
578now, you must cast to <tt>void*</tt>.</p>
579
580</div>
581
582<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000583<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000584 <a name="iterate_institer">Iterating over the </a><a
585 href="#Instruction"><tt>Instruction</tt></a>s in a <a
586 href="#Function"><tt>Function</tt></a>
587</div>
588
589<div class="doc_text">
590
591<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
592<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
593<tt>InstIterator</tt> should be used instead. You'll need to include <a
594href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
595and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000596small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000597
Chris Lattner69bf8a92004-05-23 21:06:58 +0000598 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000599Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
600worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000601initialize a worklist to contain all instructions in a <tt>Function</tt>
602F, all you would need to do is something like:
603 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000604
605<p>The STL set <tt>worklist</tt> would now contain all instructions in the
606<tt>Function</tt> pointed to by F.</p>
607
608</div>
609
610<!-- _______________________________________________________________________ -->
611<div class="doc_subsubsection">
612 <a name="iterate_convert">Turning an iterator into a class pointer (and
613 vice-versa)</a>
614</div>
615
616<div class="doc_text">
617
618<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000619instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000620a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000621Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000622is a <tt>BasicBlock::const_iterator</tt>:</p>
623
Chris Lattner261efe92003-11-25 01:02:51 +0000624 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000625
626<p>However, the iterators you'll be working with in the LLVM framework are
627special: they will automatically convert to a ptr-to-instance type whenever they
628need to. Instead of dereferencing the iterator and then taking the address of
629the result, you can simply assign the iterator to the proper pointer type and
630you get the dereference and address-of operation as a result of the assignment
631(behind the scenes, this is a result of overloading casting mechanisms). Thus
632the last line of the last example,</p>
633
Chris Lattner261efe92003-11-25 01:02:51 +0000634 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000635
636<p>is semantically equivalent to</p>
637
Chris Lattner261efe92003-11-25 01:02:51 +0000638 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000639
Chris Lattner69bf8a92004-05-23 21:06:58 +0000640<p>It's also possible to turn a class pointer into the corresponding iterator,
641and this is a constant time operation (very efficient). The following code
642snippet illustrates use of the conversion constructors provided by LLVM
643iterators. By using these, you can explicitly grab the iterator of something
644without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000645
Chris Lattner261efe92003-11-25 01:02:51 +0000646 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000647
Misha Brukman13fd15c2004-01-15 00:14:41 +0000648</div>
649
650<!--_______________________________________________________________________-->
651<div class="doc_subsubsection">
652 <a name="iterate_complex">Finding call sites: a slightly more complex
653 example</a>
654</div>
655
656<div class="doc_text">
657
658<p>Say that you're writing a FunctionPass and would like to count all the
659locations in the entire module (that is, across every <tt>Function</tt>) where a
660certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
661learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000662much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000663you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
664is what we want to do:</p>
665
Chris Lattner261efe92003-11-25 01:02:51 +0000666 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000667
668<p>And the actual code is (remember, since we're writing a
669<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
670override the <tt>runOnFunction</tt> method...):</p>
671
Chris Lattner261efe92003-11-25 01:02:51 +0000672 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
673 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
674 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000675
676</div>
677
Brian Gaekef1972c62003-11-07 19:25:45 +0000678<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000679<div class="doc_subsubsection">
680 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
681</div>
682
683<div class="doc_text">
684
685<p>You may have noticed that the previous example was a bit oversimplified in
686that it did not deal with call sites generated by 'invoke' instructions. In
687this, and in other situations, you may find that you want to treat
688<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
689most-specific common base class is <tt>Instruction</tt>, which includes lots of
690less closely-related things. For these cases, LLVM provides a handy wrapper
691class called <a
Misha Brukman384047f2004-06-03 23:29:12 +0000692href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +0000693It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
694methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000695<tt>InvokeInst</tt>s.</p>
696
Chris Lattner69bf8a92004-05-23 21:06:58 +0000697<p>This class has "value semantics": it should be passed by value, not by
698reference and it should not be dynamically allocated or deallocated using
699<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
700assignable and constructable, with costs equivalents to that of a bare pointer.
701If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000702
703</div>
704
Chris Lattner1a3105b2002-09-09 05:49:39 +0000705<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000706<div class="doc_subsubsection">
707 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
708</div>
709
710<div class="doc_text">
711
712<p>Frequently, we might have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000713href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
714determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
715<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
716For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
717particular function <tt>foo</tt>. Finding all of the instructions that
718<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
719of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000720
Chris Lattner261efe92003-11-25 01:02:51 +0000721 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000722
723<p>Alternately, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000724href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +0000725<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
726<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
727<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
728all of the values that a particular instruction uses (that is, the operands of
729the particular <tt>Instruction</tt>):</p>
730
Chris Lattner261efe92003-11-25 01:02:51 +0000731 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000732
Chris Lattner1a3105b2002-09-09 05:49:39 +0000733<!--
734 def-use chains ("finding all users of"): Value::use_begin/use_end
735 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000736-->
737
738</div>
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="simplechanges">Making simple changes</a>
743</div>
744
745<div class="doc_text">
746
747<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000748infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000749transformations, it's fairly common to manipulate the contents of basic
750blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000751and gives example code.</p>
752
753</div>
754
Chris Lattner261efe92003-11-25 01:02:51 +0000755<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000756<div class="doc_subsubsection">
757 <a name="schanges_creating">Creating and inserting new
758 <tt>Instruction</tt>s</a>
759</div>
760
761<div class="doc_text">
762
763<p><i>Instantiating Instructions</i></p>
764
Chris Lattner69bf8a92004-05-23 21:06:58 +0000765<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000766constructor for the kind of instruction to instantiate and provide the necessary
767parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
768(const-ptr-to) <tt>Type</tt>. Thus:</p>
769
770<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
771
772<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
773one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
774subclass is likely to have varying default parameters which change the semantics
775of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +0000776href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +0000777Instruction</a> that you're interested in instantiating.</p>
778
779<p><i>Naming values</i></p>
780
781<p>It is very useful to name the values of instructions when you're able to, as
782this facilitates the debugging of your transformations. If you end up looking
783at generated LLVM machine code, you definitely want to have logical names
784associated with the results of instructions! By supplying a value for the
785<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
786associate a logical name with the result of the instruction's execution at
787runtime. For example, say that I'm writing a transformation that dynamically
788allocates space for an integer on the stack, and that integer is going to be
789used as some kind of index by some other code. To accomplish this, I place an
790<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
791<tt>Function</tt>, and I'm intending to use it within the same
792<tt>Function</tt>. I might do:</p>
793
794 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
795
796<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
797execution value, which is a pointer to an integer on the runtime stack.</p>
798
799<p><i>Inserting instructions</i></p>
800
801<p>There are essentially two ways to insert an <tt>Instruction</tt>
802into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
803
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000804<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000805 <li>Insertion into an explicit instruction list
806
807 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
808 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
809 before <tt>*pi</tt>, we do the following: </p>
810
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +0000811 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
812
813 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
814 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
815 classes provide constructors which take a pointer to a
816 <tt>BasicBlock</tt> to be appended to. For example code that
817 looked like: </p>
818
819 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
820
821 <p>becomes: </p>
822
823 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
824
825 <p>which is much cleaner, especially if you are creating
826 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000827
828 <li>Insertion into an implicit instruction list
829
830 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
831 are implicitly associated with an existing instruction list: the instruction
832 list of the enclosing basic block. Thus, we could have accomplished the same
833 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
834 </p>
835
836 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
837
838 <p>In fact, this sequence of steps occurs so frequently that the
839 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
840 constructors which take (as a default parameter) a pointer to an
841 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
842 precede. That is, <tt>Instruction</tt> constructors are capable of
843 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
844 provided instruction, immediately before that instruction. Using an
845 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
846 parameter, the above code becomes:</p>
847
848 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
849
850 <p>which is much cleaner, especially if you're creating a lot of
851instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
852</ul>
853
854</div>
855
856<!--_______________________________________________________________________-->
857<div class="doc_subsubsection">
858 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
859</div>
860
861<div class="doc_text">
862
863<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000864<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000865you must have a pointer to the instruction that you wish to delete. Second, you
866need to obtain the pointer to that instruction's basic block. You use the
867pointer to the basic block to get its list of instructions and then use the
868erase function to remove your instruction. For example:</p>
869
Chris Lattner261efe92003-11-25 01:02:51 +0000870 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
871 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000872
873</div>
874
875<!--_______________________________________________________________________-->
876<div class="doc_subsubsection">
877 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
878 <tt>Value</tt></a>
879</div>
880
881<div class="doc_text">
882
883<p><i>Replacing individual instructions</i></p>
884
885<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000886permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000887and <tt>ReplaceInstWithInst</tt>.</p>
888
Chris Lattner261efe92003-11-25 01:02:51 +0000889<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000890
Chris Lattner261efe92003-11-25 01:02:51 +0000891<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000892 <li><tt>ReplaceInstWithValue</tt>
893
894 <p>This function replaces all uses (within a basic block) of a given
895 instruction with a value, and then removes the original instruction. The
896 following example illustrates the replacement of the result of a particular
897 <tt>AllocaInst</tt> that allocates memory for a single integer with an null
898 pointer to an integer.</p>
899
900 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
901
902 <li><tt>ReplaceInstWithInst</tt>
903
904 <p>This function replaces a particular instruction with another
905 instruction. The following example illustrates the replacement of one
906 <tt>AllocaInst</tt> with another.</p>
907
908 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000909</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000910
911<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
912
913<p>You can use <tt>Value::replaceAllUsesWith</tt> and
914<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Misha Brukman384047f2004-06-03 23:29:12 +0000915doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
916and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +0000917information.</p>
918
919<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
920include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
921ReplaceInstWithValue, ReplaceInstWithInst -->
922
923</div>
924
Chris Lattner9355b472002-09-06 02:50:58 +0000925<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000926<div class="doc_section">
927 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
928</div>
929<!-- *********************************************************************** -->
930
931<div class="doc_text">
932
933<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +0000934being inspected or transformed. The core LLVM classes are defined in
935header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +0000936the <tt>lib/VMCore</tt> directory.</p>
937
938</div>
939
940<!-- ======================================================================= -->
941<div class="doc_subsection">
942 <a name="Value">The <tt>Value</tt> class</a>
943</div>
944
945<div>
946
947<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
948<br>
Misha Brukman384047f2004-06-03 23:29:12 +0000949doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000950
951<p>The <tt>Value</tt> class is the most important class in the LLVM Source
952base. It represents a typed value that may be used (among other things) as an
953operand to an instruction. There are many different types of <tt>Value</tt>s,
954such as <a href="#Constant"><tt>Constant</tt></a>s,<a
955href="#Argument"><tt>Argument</tt></a>s. Even <a
956href="#Instruction"><tt>Instruction</tt></a>s and <a
957href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
958
959<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
960for a program. For example, an incoming argument to a function (represented
961with an instance of the <a href="#Argument">Argument</a> class) is "used" by
962every instruction in the function that references the argument. To keep track
963of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
964href="#User"><tt>User</tt></a>s that is using it (the <a
965href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
966graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
967def-use information in the program, and is accessible through the <tt>use_</tt>*
968methods, shown below.</p>
969
970<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
971and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
972method. In addition, all LLVM values can be named. The "name" of the
973<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
974
Chris Lattner261efe92003-11-25 01:02:51 +0000975 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000976
977<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
978that the name of any value may be missing (an empty string), so names should
979<b>ONLY</b> be used for debugging (making the source code easier to read,
980debugging printouts), they should not be used to keep track of values or map
981between them. For this purpose, use a <tt>std::map</tt> of pointers to the
982<tt>Value</tt> itself instead.</p>
983
984<p>One important aspect of LLVM is that there is no distinction between an SSA
985variable and the operation that produces it. Because of this, any reference to
986the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +0000987argument, for example) is represented as a direct pointer to the instance of
988the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +0000989represents this value. Although this may take some getting used to, it
990simplifies the representation and makes it easier to manipulate.</p>
991
992</div>
993
994<!-- _______________________________________________________________________ -->
995<div class="doc_subsubsection">
996 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
997</div>
998
999<div class="doc_text">
1000
Chris Lattner261efe92003-11-25 01:02:51 +00001001<ul>
1002 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
1003use-list<br>
1004 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
1005the use-list<br>
1006 <tt>unsigned use_size()</tt> - Returns the number of users of the
1007value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001008 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001009 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
1010the use-list.<br>
1011 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
1012use-list.<br>
1013 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
1014element in the list.
1015 <p> These methods are the interface to access the def-use
1016information in LLVM. As with all other iterators in LLVM, the naming
1017conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001018 </li>
1019 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001020 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001021 </li>
1022 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001023 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001024 <tt>void setName(const std::string &amp;Name)</tt>
1025 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1026be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001027 </li>
1028 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001029
1030 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1031 href="#User"><tt>User</tt>s</a> of the current value to refer to
1032 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1033 produces a constant value (for example through constant folding), you can
1034 replace all uses of the instruction with the constant like this:</p>
1035
Chris Lattner261efe92003-11-25 01:02:51 +00001036 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001037</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001038
1039</div>
1040
1041<!-- ======================================================================= -->
1042<div class="doc_subsection">
1043 <a name="User">The <tt>User</tt> class</a>
1044</div>
1045
1046<div class="doc_text">
1047
1048<p>
1049<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001050doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001051Superclass: <a href="#Value"><tt>Value</tt></a></p>
1052
1053<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1054refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1055that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1056referring to. The <tt>User</tt> class itself is a subclass of
1057<tt>Value</tt>.</p>
1058
1059<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1060href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1061Single Assignment (SSA) form, there can only be one definition referred to,
1062allowing this direct connection. This connection provides the use-def
1063information in LLVM.</p>
1064
1065</div>
1066
1067<!-- _______________________________________________________________________ -->
1068<div class="doc_subsubsection">
1069 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1070</div>
1071
1072<div class="doc_text">
1073
1074<p>The <tt>User</tt> class exposes the operand list in two ways: through
1075an index access interface and through an iterator based interface.</p>
1076
Chris Lattner261efe92003-11-25 01:02:51 +00001077<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001078 <li><tt>Value *getOperand(unsigned i)</tt><br>
1079 <tt>unsigned getNumOperands()</tt>
1080 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001081convenient form for direct access.</p></li>
1082
Chris Lattner261efe92003-11-25 01:02:51 +00001083 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1084list<br>
1085 <tt>User::op_const_iterator</tt> <tt>use_iterator op_begin()</tt> -
1086Get an iterator to the start of the operand list.<br>
1087 <tt>use_iterator op_end()</tt> - Get an iterator to the end of the
1088operand list.
1089 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001090the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001091</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001092
1093</div>
1094
1095<!-- ======================================================================= -->
1096<div class="doc_subsection">
1097 <a name="Instruction">The <tt>Instruction</tt> class</a>
1098</div>
1099
1100<div class="doc_text">
1101
1102<p><tt>#include "</tt><tt><a
1103href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00001104doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001105Superclasses: <a href="#User"><tt>User</tt></a>, <a
1106href="#Value"><tt>Value</tt></a></p>
1107
1108<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1109instructions. It provides only a few methods, but is a very commonly used
1110class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1111opcode (instruction type) and the parent <a
1112href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1113into. To represent a specific type of instruction, one of many subclasses of
1114<tt>Instruction</tt> are used.</p>
1115
1116<p> Because the <tt>Instruction</tt> class subclasses the <a
1117href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1118way as for other <a href="#User"><tt>User</tt></a>s (with the
1119<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1120<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1121the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1122file contains some meta-data about the various different types of instructions
1123in LLVM. It describes the enum values that are used as opcodes (for example
1124<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1125concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1126example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1127href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1128this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00001129<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001130
1131</div>
1132
1133<!-- _______________________________________________________________________ -->
1134<div class="doc_subsubsection">
1135 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1136 class</a>
1137</div>
1138
1139<div class="doc_text">
1140
Chris Lattner261efe92003-11-25 01:02:51 +00001141<ul>
1142 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001143 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1144this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001145 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001146 <p>Returns true if the instruction writes to memory, i.e. it is a
1147 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001148 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001149 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001150 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001151 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001152in all ways to the original except that the instruction has no parent
1153(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001154and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001155</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001156
1157</div>
1158
1159<!-- ======================================================================= -->
1160<div class="doc_subsection">
1161 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1162</div>
1163
1164<div class="doc_text">
1165
Misha Brukman384047f2004-06-03 23:29:12 +00001166<p><tt>#include "<a
1167href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
1168doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
1169Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001170Superclass: <a href="#Value"><tt>Value</tt></a></p>
1171
1172<p>This class represents a single entry multiple exit section of the code,
1173commonly known as a basic block by the compiler community. The
1174<tt>BasicBlock</tt> class maintains a list of <a
1175href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1176Matching the language definition, the last element of this list of instructions
1177is always a terminator instruction (a subclass of the <a
1178href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1179
1180<p>In addition to tracking the list of instructions that make up the block, the
1181<tt>BasicBlock</tt> class also keeps track of the <a
1182href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1183
1184<p>Note that <tt>BasicBlock</tt>s themselves are <a
1185href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1186like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1187<tt>label</tt>.</p>
1188
1189</div>
1190
1191<!-- _______________________________________________________________________ -->
1192<div class="doc_subsubsection">
1193 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1194 class</a>
1195</div>
1196
1197<div class="doc_text">
1198
Chris Lattner261efe92003-11-25 01:02:51 +00001199<ul>
1200 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
1201 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001202 <p>The <tt>BasicBlock</tt> constructor is used to create new basic
Chris Lattner261efe92003-11-25 01:02:51 +00001203blocks for insertion into a function. The constructor optionally takes
1204a name for the new block, and a <a href="#Function"><tt>Function</tt></a>
1205to insert it into. If the <tt>Parent</tt> parameter is specified, the
1206new <tt>BasicBlock</tt> is automatically inserted at the end of the
1207specified <a href="#Function"><tt>Function</tt></a>, if not specified,
1208the BasicBlock must be manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001209 </li>
1210 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list
1211iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001212 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001213 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()
1214- </tt>STL style functions for accessing the instruction list.
1215 <p> These methods and typedefs are forwarding functions that have
1216the same semantics as the standard library methods of the same names.
1217These methods expose the underlying instruction list of a basic block in
1218a way that is easy to manipulate. To get the full complement of
1219container operations (including operations to update the list), you must
Misha Brukman13fd15c2004-01-15 00:14:41 +00001220use the <tt>getInstList()</tt> method.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001221 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1222 <p> This method is used to get access to the underlying container
1223that actually holds the Instructions. This method must be used when
1224there isn't a forwarding function in the <tt>BasicBlock</tt> class for
1225the operation that you would like to perform. Because there are no
1226forwarding functions for "updating" operations, you need to use this if
Misha Brukman13fd15c2004-01-15 00:14:41 +00001227you want to update the contents of a <tt>BasicBlock</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001228 <li><tt><a href="#Function">Function</a> *getParent()</tt>
1229 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001230the block is embedded into, or a null pointer if it is homeless.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001231 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1232 <p> Returns a pointer to the terminator instruction that appears at
1233the end of the <tt>BasicBlock</tt>. If there is no terminator
1234instruction, or if the last instruction in the block is not a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001235terminator, then a null pointer is returned.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001236</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001237
1238</div>
1239
1240<!-- ======================================================================= -->
1241<div class="doc_subsection">
1242 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1243</div>
1244
1245<div class="doc_text">
1246
1247<p><tt>#include "<a
1248href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001249doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
1250Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001251Superclasses: <a href="#User"><tt>User</tt></a>, <a
1252href="#Value"><tt>Value</tt></a></p>
1253
1254<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1255href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1256visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1257Because they are visible at global scope, they are also subject to linking with
1258other globals defined in different translation units. To control the linking
1259process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1260<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
1261defined by the <tt>LinkageTypes</tt> enumerator.</p>
1262
1263<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1264<tt>static</tt> in C), it is not visible to code outside the current translation
1265unit, and does not participate in linking. If it has external linkage, it is
1266visible to external code, and does participate in linking. In addition to
1267linkage information, <tt>GlobalValue</tt>s keep track of which <a
1268href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1269
1270<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1271by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1272global is always a pointer to its contents. It is important to remember this
1273when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1274be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1275subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1276int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1277the address of the first element of this array and the value of the
1278<tt>GlobalVariable</tt> are the same, they have different types. The
1279<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1280is <tt>int.</tt> Because of this, accessing a global value requires you to
1281dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1282can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1283Language Reference Manual</a>.</p>
1284
1285</div>
1286
1287<!-- _______________________________________________________________________ -->
1288<div class="doc_subsubsection">
1289 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1290 class</a>
1291</div>
1292
1293<div class="doc_text">
1294
Chris Lattner261efe92003-11-25 01:02:51 +00001295<ul>
1296 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001297 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001298 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1299 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1300 <p> </p>
1301 </li>
1302 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1303 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001304GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001305</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001306
1307</div>
1308
1309<!-- ======================================================================= -->
1310<div class="doc_subsection">
1311 <a name="Function">The <tt>Function</tt> class</a>
1312</div>
1313
1314<div class="doc_text">
1315
1316<p><tt>#include "<a
1317href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00001318info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
1319Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001320href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1321
1322<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1323actually one of the more complex classes in the LLVM heirarchy because it must
1324keep track of a large amount of data. The <tt>Function</tt> class keeps track
1325of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1326href="#Argument"><tt>Argument</tt></a>s, and a <a
1327href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
1328
1329<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1330commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1331ordering of the blocks in the function, which indicate how the code will be
1332layed out by the backend. Additionally, the first <a
1333href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1334<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1335block. There are no implicit exit nodes, and in fact there may be multiple exit
1336nodes from a single <tt>Function</tt>. If the <a
1337href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1338the <tt>Function</tt> is actually a function declaration: the actual body of the
1339function hasn't been linked in yet.</p>
1340
1341<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1342<tt>Function</tt> class also keeps track of the list of formal <a
1343href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1344container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1345nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1346the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1347
1348<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1349LLVM feature that is only used when you have to look up a value by name. Aside
1350from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1351internally to make sure that there are not conflicts between the names of <a
1352href="#Instruction"><tt>Instruction</tt></a>s, <a
1353href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1354href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1355
1356</div>
1357
1358<!-- _______________________________________________________________________ -->
1359<div class="doc_subsubsection">
1360 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1361 class</a>
1362</div>
1363
1364<div class="doc_text">
1365
Chris Lattner261efe92003-11-25 01:02:51 +00001366<ul>
1367 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001368 *Ty, bool isInternal, const std::string &amp;N = "", Module* Parent = 0)</tt>
1369
1370 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1371 the the program. The constructor must specify the type of the function to
1372 create and whether or not it should start out with internal or external
1373 linkage. The&nbsp;<a href="#FunctionType"><tt>FunctionType</tt></a> argument
1374 specifies the formal arguments and return value for the function. The same
1375 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1376 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1377 in which the function is defined. If this argument is provided, the function
1378 will automatically be inserted into that module's list of
1379 functions.</p></li>
1380
Chris Lattner261efe92003-11-25 01:02:51 +00001381 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001382
1383 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1384 function is "external", it does not have a body, and thus must be resolved
1385 by linking with a function defined in a different translation unit.</p></li>
1386
Chris Lattner261efe92003-11-25 01:02:51 +00001387 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001388 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001389
1390 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1391 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
1392
1393 <p>These are forwarding methods that make it easy to access the contents of
1394 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1395 list.</p></li>
1396
Chris Lattner261efe92003-11-25 01:02:51 +00001397 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001398
1399 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1400 is necessary to use when you need to update the list or perform a complex
1401 action that doesn't have a forwarding method.</p></li>
1402
Chris Lattner261efe92003-11-25 01:02:51 +00001403 <li><tt>Function::aiterator</tt> - Typedef for the argument list
1404iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001405 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001406
1407 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1408 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt>
1409
1410 <p>These are forwarding methods that make it easy to access the contents of
1411 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1412 list.</p></li>
1413
Chris Lattner261efe92003-11-25 01:02:51 +00001414 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001415
1416 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1417 necessary to use when you need to update the list or perform a complex
1418 action that doesn't have a forwarding method.</p></li>
1419
Chris Lattner261efe92003-11-25 01:02:51 +00001420 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001421
1422 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1423 function. Because the entry block for the function is always the first
1424 block, this returns the first block of the <tt>Function</tt>.</p></li>
1425
Chris Lattner261efe92003-11-25 01:02:51 +00001426 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1427 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001428
1429 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1430 <tt>Function</tt> and returns the return type of the function, or the <a
1431 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1432 function.</p></li>
1433
Chris Lattner261efe92003-11-25 01:02:51 +00001434 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001435
Chris Lattner261efe92003-11-25 01:02:51 +00001436 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001437 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001438</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001439
1440</div>
1441
1442<!-- ======================================================================= -->
1443<div class="doc_subsection">
1444 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1445</div>
1446
1447<div class="doc_text">
1448
1449<p><tt>#include "<a
1450href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1451<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001452doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable
Misha Brukman13fd15c2004-01-15 00:14:41 +00001453Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1454href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1455
1456<p>Global variables are represented with the (suprise suprise)
1457<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1458subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1459always referenced by their address (global values must live in memory, so their
1460"name" refers to their address). See <a
1461href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
1462may have an initial value (which must be a <a
1463href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
1464may be marked as "constant" themselves (indicating that their contents never
1465change at runtime).</p>
1466
1467</div>
1468
1469<!-- _______________________________________________________________________ -->
1470<div class="doc_subsubsection">
1471 <a name="m_GlobalVariable">Important Public Members of the
1472 <tt>GlobalVariable</tt> class</a>
1473</div>
1474
1475<div class="doc_text">
1476
Chris Lattner261efe92003-11-25 01:02:51 +00001477<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001478 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1479 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1480 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1481
1482 <p>Create a new global variable of the specified type. If
1483 <tt>isConstant</tt> is true then the global variable will be marked as
1484 unchanging for the program. The Linkage parameter specifies the type of
1485 linkage (internal, external, weak, linkonce, appending) for the variable. If
1486 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1487 the resultant global variable will have internal linkage. AppendingLinkage
1488 concatenates together all instances (in different translation units) of the
1489 variable into a single variable but is only applicable to arrays. &nbsp;See
1490 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1491 further details on linkage types. Optionally an initializer, a name, and the
1492 module to put the variable into may be specified for the global variable as
1493 well.</p></li>
1494
Chris Lattner261efe92003-11-25 01:02:51 +00001495 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001496
1497 <p>Returns true if this is a global variable that is known not to
1498 be modified at runtime.</p></li>
1499
Chris Lattner261efe92003-11-25 01:02:51 +00001500 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001501
1502 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1503
Chris Lattner261efe92003-11-25 01:02:51 +00001504 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001505
1506 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1507 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001508</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001509
1510</div>
1511
1512<!-- ======================================================================= -->
1513<div class="doc_subsection">
1514 <a name="Module">The <tt>Module</tt> class</a>
1515</div>
1516
1517<div class="doc_text">
1518
1519<p><tt>#include "<a
1520href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
Misha Brukman31ca1de2004-06-03 23:35:54 +00001521<a href="/doxygen/structllvm_1_1Module.html">Module Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001522
1523<p>The <tt>Module</tt> class represents the top level structure present in LLVM
1524programs. An LLVM module is effectively either a translation unit of the
1525original program or a combination of several translation units merged by the
1526linker. The <tt>Module</tt> class keeps track of a list of <a
1527href="#Function"><tt>Function</tt></a>s, a list of <a
1528href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1529href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1530helpful member functions that try to make common operations easy.</p>
1531
1532</div>
1533
1534<!-- _______________________________________________________________________ -->
1535<div class="doc_subsubsection">
1536 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
1537</div>
1538
1539<div class="doc_text">
1540
Chris Lattner261efe92003-11-25 01:02:51 +00001541<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001542 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001543</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001544
1545<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
1546provide a name for it (probably based on the name of the translation unit).</p>
1547
Chris Lattner261efe92003-11-25 01:02:51 +00001548<ul>
1549 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00001550 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001551
1552 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1553 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
1554
1555 <p>These are forwarding methods that make it easy to access the contents of
1556 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1557 list.</p></li>
1558
Chris Lattner261efe92003-11-25 01:02:51 +00001559 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001560
1561 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1562 necessary to use when you need to update the list or perform a complex
1563 action that doesn't have a forwarding method.</p>
1564
1565 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001566</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001567
1568<hr>
1569
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001570<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001571 <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1572
1573 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1574
1575 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1576 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt>
1577
1578 <p> These are forwarding methods that make it easy to access the contents of
1579 a <tt>Module</tt> object's <a
1580 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
1581
1582 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
1583
1584 <p>Returns the list of <a
1585 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
1586 use when you need to update the list or perform a complex action that
1587 doesn't have a forwarding method.</p>
1588
1589 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001590</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001591
1592<hr>
1593
1594<ul>
1595 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
1596
1597 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1598 for this <tt>Module</tt>.</p>
1599
1600 <p><!-- Convenience methods --></p></li>
1601</ul>
1602
1603<hr>
1604
1605<ul>
1606 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
1607 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
1608
1609 <p>Look up the specified function in the <tt>Module</tt> <a
1610 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1611 <tt>null</tt>.</p></li>
1612
1613 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
1614 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
1615
1616 <p>Look up the specified function in the <tt>Module</tt> <a
1617 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1618 external declaration for the function and return it.</p></li>
1619
1620 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
1621
1622 <p>If there is at least one entry in the <a
1623 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1624 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1625 string.</p></li>
1626
1627 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
1628 href="#Type">Type</a> *Ty)</tt>
1629
1630 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1631 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
1632 name, true is returned and the <a
1633 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
1634</ul>
1635
1636</div>
1637
1638<!-- ======================================================================= -->
1639<div class="doc_subsection">
1640 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1641</div>
1642
1643<div class="doc_text">
1644
1645<p>Constant represents a base class for different types of constants. It
1646is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1647ConstantArray etc for representing the various types of Constants.</p>
1648
1649</div>
1650
1651<!-- _______________________________________________________________________ -->
1652<div class="doc_subsubsection">
1653 <a name="m_Value">Important Public Methods</a>
1654</div>
1655
1656<div class="doc_text">
1657
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001658<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001659 <li><tt>bool isConstantExpr()</tt>: Returns true if it is a
1660ConstantExpr
1661 <hr> Important Subclasses of Constant
1662 <p> </p>
1663 <ul>
1664 <li>ConstantSInt : This subclass of Constant represents a signed
1665integer constant.
1666 <ul>
1667 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
1668this constant. </li>
1669 </ul>
1670 </li>
1671 <li>ConstantUInt : This class represents an unsigned integer.
1672 <ul>
1673 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value
1674of this constant. </li>
1675 </ul>
1676 </li>
1677 <li>ConstantFP : This class represents a floating point constant.
1678 <ul>
1679 <li><tt>double getValue() const</tt>: Returns the underlying value of
1680this constant. </li>
1681 </ul>
1682 </li>
1683 <li>ConstantBool : This represents a boolean constant.
1684 <ul>
1685 <li><tt>bool getValue() const</tt>: Returns the underlying value of
1686this constant. </li>
1687 </ul>
1688 </li>
1689 <li>ConstantArray : This represents a constant array.
1690 <ul>
1691 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
1692Returns a Vecotr of component constants that makeup this array. </li>
1693 </ul>
1694 </li>
1695 <li>ConstantStruct : This represents a constant struct.
1696 <ul>
1697 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
1698Returns a Vecotr of component constants that makeup this array. </li>
1699 </ul>
1700 </li>
1701 <li>ConstantPointerRef : This represents a constant pointer value
1702that is initialized to point to a global value, which lies at a
1703constant fixed address.
1704 <ul>
1705 <li><tt>GlobalValue *getValue()</tt>: Returns the global
1706value to which this pointer is pointing to. </li>
1707 </ul>
1708 </li>
1709 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001710 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001711</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001712
1713</div>
1714
1715<!-- ======================================================================= -->
1716<div class="doc_subsection">
1717 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
1718</div>
1719
1720<div class="doc_text">
1721
1722<p>Type as noted earlier is also a subclass of a Value class. Any primitive
1723type (like int, short etc) in LLVM is an instance of Type Class. All other
1724types are instances of subclasses of type like FunctionType, ArrayType
1725etc. DerivedType is the interface for all such dervied types including
1726FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
1727be recursive (StructType). There exists exactly one instance of any type
1728structure at a time. This allows using pointer equality of Type *s for comparing
1729types.</p>
1730
1731</div>
1732
1733<!-- _______________________________________________________________________ -->
1734<div class="doc_subsubsection">
1735 <a name="m_Value">Important Public Methods</a>
1736</div>
1737
1738<div class="doc_text">
1739
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001740<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001741
Misha Brukman13fd15c2004-01-15 00:14:41 +00001742 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
1743 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
1744 not true for Float and Double. </li>
1745
1746 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
1747 unsigned. This is not quite the complement of isSigned... nonnumeric types
1748 return false as they do with isSigned. This returns true for UByteTy,
1749 UShortTy, UIntTy, and ULongTy. </li>
1750
1751 <li><tt>bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(),
1752 but with only a single virtual function invocation.</li>
1753
1754 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
1755 type, which is either Bool type or one of the Integer types.</li>
1756
1757 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
1758 floating point types.</li>
1759
Misha Brukman13fd15c2004-01-15 00:14:41 +00001760 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
1761 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00001762 example, uint to int or one pointer type to another.</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001763
Chris Lattner69bf8a92004-05-23 21:06:58 +00001764<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001765 <p>Derived Types</p>
1766
Chris Lattner261efe92003-11-25 01:02:51 +00001767 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001768 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00001769 <ul>
1770 <li><tt>const Type * getElementType() const</tt>: Returns the type of
1771each of the elements in the sequential type. </li>
1772 </ul>
1773 </li>
1774 <li>ArrayType : This is a subclass of SequentialType and defines
1775interface for array types.
1776 <ul>
1777 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
1778elements in the array. </li>
1779 </ul>
1780 </li>
1781 <li>PointerType : Subclass of SequentialType for pointer types. </li>
1782 <li>StructType : subclass of DerivedTypes for struct types </li>
1783 <li>FunctionType : subclass of DerivedTypes for function types.
1784 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001785 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
1786 function</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001787 <li><tt> const Type * getReturnType() const</tt>: Returns the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001788 return type of the function.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001789 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
Misha Brukman13fd15c2004-01-15 00:14:41 +00001790 the type of the ith parameter.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001791 <li><tt> const unsigned getNumParams() const</tt>: Returns the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001792 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001793 </ul>
1794 </li>
1795 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001796 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001797</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001798
1799</div>
1800
1801<!-- ======================================================================= -->
1802<div class="doc_subsection">
1803 <a name="Argument">The <tt>Argument</tt> class</a>
1804</div>
1805
1806<div class="doc_text">
1807
1808<p>This subclass of Value defines the interface for incoming formal
Chris Lattner261efe92003-11-25 01:02:51 +00001809arguments to a function. A Function maitanis a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00001810arguments. An argument has a pointer to the parent Function.</p>
1811
1812</div>
1813
Reid Spencer096603a2004-05-26 08:41:35 +00001814<!-- ======================================================================= -->
1815<div class="doc_subsection">
1816 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1817</div>
1818<div class="doc_text">
1819<p>This class provides a symbol table that the
1820<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
1821<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1822provide a name for any <a href="#Value"><tt>Value</tt></a> or
1823<a href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1824type. It hides the data it contains and provides access to it through a
1825controlled interface.</p>
1826
1827<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1828structure of the information it holds. The class contains two
1829<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1830<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1831The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1832are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1833however, are stored in a single dimension and accessed only by name.</p>
1834
1835<p>The interface of this class provides three basic types of operations:
1836<ol>
1837 <li><em>Accessors</em>. Accessors provide read-only access to information
1838 such as finding a value for a name with the
1839 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1840 <li><em>Mutators</em>. Mutators allow the user to add information to the
1841 <tt>SymbolTable</tt> with methods like
1842 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1843 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1844 of the symbol table in well defined ways, such as the method
1845 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1846</ol>
1847
1848<h3>Accessors</h3>
1849<dl>
1850 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1851 </dt>
1852 <dd>The <tt>lookup</tt> method searches the type plane given by the
1853 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1854 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1855
1856 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1857 <dd>The <tt>lookupType</tt> method searches through the types for a
1858 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1859 is not found, null is returned.</dd>
1860
1861 <dt><tt>bool hasTypes() const</tt>:</dt>
1862 <dd>This function returns true if an entry has been made into the type
1863 map.</dd>
1864
1865 <dt><tt>bool isEmpty() const</tt>:</dt>
1866 <dd>This function returns true if both the value and types maps are
1867 empty</dd>
1868
1869 <dt><tt>std::string get_name(const Value*) const</tt>:</dt>
1870 <dd>This function returns the name of the Value provided or the empty
1871 string if the Value is not in the symbol table.</dd>
1872
1873 <dt><tt>std::string get_name(const Type*) const</tt>:</dt>
1874 <dd>This function returns the name of the Type provided or the empty
1875 string if the Type is not in the symbol table.</dd>
1876</dl>
1877
1878<h3>Mutators</h3>
1879<dl>
1880 <dt><tt>void insert(Value *Val)</tt>:</dt>
1881 <dd>This method adds the provided value to the symbol table. The Value must
1882 have both a name and a type which are extracted and used to place the value
1883 in the correct type plane under the value's name.</dd>
1884
1885 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1886 <dd> Inserts a constant or type into the symbol table with the specified
1887 name. There can be a many to one mapping between names and constants
1888 or types.</dd>
1889
1890 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1891 <dd> Inserts a type into the symbol table with the specified name. There
1892 can be a many-to-one mapping between names and types. This method
1893 allows a type with an existing entry in the symbol table to get
1894 a new name.</dd>
1895
1896 <dt><tt>void remove(Value* Val)</tt>:</dt>
1897 <dd> This method removes a named value from the symbol table. The
1898 type and name of the Value are extracted from \p N and used to
1899 lookup the Value in the correct type plane. If the Value is
1900 not in the symbol table, this method silently ignores the
1901 request.</dd>
1902
1903 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1904 <dd> This method removes a named type from the symbol table. The
1905 name of the type is extracted from \P T and used to look up
1906 the Type in the type map. If the Type is not in the symbol
1907 table, this method silently ignores the request.</dd>
1908
1909 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1910 <dd> Remove a constant or type with the specified name from the
1911 symbol table.</dd>
1912
1913 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1914 <dd> Remove a type with the specified name from the symbol table.
1915 Returns the removed Type.</dd>
1916
1917 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1918 <dd> Removes a specific value from the symbol table.
1919 Returns the removed value.</dd>
1920
1921 <dt><tt>bool strip()</tt>:</dt>
1922 <dd> This method will strip the symbol table of its names leaving
1923 the type and values. </dd>
1924
1925 <dt><tt>void clear()</tt>:</dt>
1926 <dd>Empty the symbol table completely.</dd>
1927</dl>
1928
1929<h3>Iteration</h3>
1930<p>The following functions describe three types of iterators you can obtain
1931the beginning or end of the sequence for both const and non-const. It is
1932important to keep track of the different kinds of iterators. There are
1933three idioms worth pointing out:</p>
1934<table class="doc_table">
1935 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1936 <tr>
1937 <td>Planes Of name/Value maps</td><td>PI</td>
1938 <td><tt><pre>
1939for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
1940PE = ST.plane_end(); PI != PE; ++PI ) {
1941 PI-&gt;first // This is the Type* of the plane
1942 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
1943 </pre></tt></td>
1944 </tr>
1945 <tr>
1946 <td>All name/Type Pairs</td><td>TI</td>
1947 <td><tt><pre>
1948for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1949 TE = ST.type_end(); TI != TE; ++TI )
1950 TI-&gt;first // This is the name of the type
1951 TI-&gt;second // This is the Type* value associated with the name
1952 </pre></tt></td>
1953 </tr>
1954 <tr>
1955 <td>name/Value pairs in a plane</td><td>VI</td>
1956 <td><tt><pre>
1957for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1958 VE = ST.value_end(SomeType); VI != VE; ++VI )
1959 VI-&gt;first // This is the name of the Value
1960 VI-&gt;second // This is the Value* value associated with the name
1961 </pre></tt></td>
1962 </tr>
1963</table>
1964<p>Using the recommended iterator names and idioms will help you avoid
1965making mistakes. Of particular note, make sure that whenever you use
1966value_begin(SomeType) that you always compare the resulting iterator
1967with value_end(SomeType) not value_end(SomeOtherType) or else you
1968will loop infinitely.</p>
1969
1970<dl>
1971
1972 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1973 <dd>Get an iterator that starts at the beginning of the type planes.
1974 The iterator will iterate over the Type/ValueMap pairs in the
1975 type planes. </dd>
1976
1977 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1978 <dd>Get a const_iterator that starts at the beginning of the type
1979 planes. The iterator will iterate over the Type/ValueMap pairs
1980 in the type planes. </dd>
1981
1982 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1983 <dd>Get an iterator at the end of the type planes. This serves as
1984 the marker for end of iteration over the type planes.</dd>
1985
1986 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1987 <dd>Get a const_iterator at the end of the type planes. This serves as
1988 the marker for end of iteration over the type planes.</dd>
1989
1990 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1991 <dd>Get an iterator that starts at the beginning of a type plane.
1992 The iterator will iterate over the name/value pairs in the type plane.
1993 Note: The type plane must already exist before using this.</dd>
1994
1995 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
1996 <dd>Get a const_iterator that starts at the beginning of a type plane.
1997 The iterator will iterate over the name/value pairs in the type plane.
1998 Note: The type plane must already exist before using this.</dd>
1999
2000 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
2001 <dd>Get an iterator to the end of a type plane. This serves as the marker
2002 for end of iteration of the type plane.
2003 Note: The type plane must already exist before using this.</dd>
2004
2005 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
2006 <dd>Get a const_iterator to the end of a type plane. This serves as the
2007 marker for end of iteration of the type plane.
2008 Note: the type plane must already exist before using this.</dd>
2009
2010 <dt><tt>type_iterator type_begin()</tt>:</dt>
2011 <dd>Get an iterator to the start of the name/Type map.</dd>
2012
2013 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
2014 <dd> Get a const_iterator to the start of the name/Type map.</dd>
2015
2016 <dt><tt>type_iterator type_end()</tt>:</dt>
2017 <dd>Get an iterator to the end of the name/Type map. This serves as the
2018 marker for end of iteration of the types.</dd>
2019
2020 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
2021 <dd>Get a const-iterator to the end of the name/Type map. This serves
2022 as the marker for end of iteration of the types.</dd>
2023
2024 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
2025 <dd>This method returns a plane_const_iterator for iteration over
2026 the type planes starting at a specific plane, given by \p Ty.</dd>
2027
2028 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
2029 <dd>This method returns a plane_iterator for iteration over the
2030 type planes starting at a specific plane, given by \p Ty.</dd>
2031
2032 <dt><tt>const ValueMap* findPlane( const Type* Typ ) cons</tt>:</dt>
2033 <dd>This method returns a ValueMap* for a specific type plane. This
2034 interface is deprecated and may go away in the future.</dd>
2035</dl>
2036</div>
2037
Chris Lattner9355b472002-09-06 02:50:58 +00002038<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002039<hr>
2040<address>
2041 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2042 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2043 <a href="http://validator.w3.org/check/referer"><img
2044 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2045
2046 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2047 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2048 <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
2049 Last modified: $Date$
2050</address>
2051
Chris Lattner261efe92003-11-25 01:02:51 +00002052</body>
2053</html>
Reid Spencer096603a2004-05-26 08:41:35 +00002054<!-- vim: sw=2 noai
2055-->