Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 1 | //===- ValueTracking.cpp - Walk computations to compute properties --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains routines that help analyze properties that chains of |
| 11 | // computations have. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/ValueTracking.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/Instructions.h" |
| 18 | #include "llvm/IntrinsicInst.h" |
| 19 | #include "llvm/Target/TargetData.h" |
| 20 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 21 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 32a9e7a | 2008-06-04 04:46:14 +0000 | [diff] [blame] | 22 | #include <cstring> |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 23 | using namespace llvm; |
| 24 | |
| 25 | /// getOpcode - If this is an Instruction or a ConstantExpr, return the |
| 26 | /// opcode value. Otherwise return UserOp1. |
| 27 | static unsigned getOpcode(const Value *V) { |
| 28 | if (const Instruction *I = dyn_cast<Instruction>(V)) |
| 29 | return I->getOpcode(); |
| 30 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| 31 | return CE->getOpcode(); |
| 32 | // Use UserOp1 to mean there's no opcode. |
| 33 | return Instruction::UserOp1; |
| 34 | } |
| 35 | |
| 36 | |
| 37 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 38 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 39 | /// bit sets. This code only analyzes bits in Mask, in order to short-circuit |
| 40 | /// processing. |
| 41 | /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that |
| 42 | /// we cannot optimize based on the assumption that it is zero without changing |
| 43 | /// it to be an explicit zero. If we don't change it to zero, other code could |
| 44 | /// optimized based on the contradictory assumption that it is non-zero. |
| 45 | /// Because instcombine aggressively folds operations with undef args anyway, |
| 46 | /// this won't lose us code quality. |
| 47 | void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, |
| 48 | APInt &KnownZero, APInt &KnownOne, |
| 49 | TargetData *TD, unsigned Depth) { |
| 50 | assert(V && "No Value?"); |
| 51 | assert(Depth <= 6 && "Limit Search Depth"); |
| 52 | uint32_t BitWidth = Mask.getBitWidth(); |
| 53 | assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) && |
| 54 | "Not integer or pointer type!"); |
| 55 | assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) && |
| 56 | (!isa<IntegerType>(V->getType()) || |
| 57 | V->getType()->getPrimitiveSizeInBits() == BitWidth) && |
| 58 | KnownZero.getBitWidth() == BitWidth && |
| 59 | KnownOne.getBitWidth() == BitWidth && |
| 60 | "V, Mask, KnownOne and KnownZero should have same BitWidth"); |
| 61 | |
| 62 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| 63 | // We know all of the bits for a constant! |
| 64 | KnownOne = CI->getValue() & Mask; |
| 65 | KnownZero = ~KnownOne & Mask; |
| 66 | return; |
| 67 | } |
| 68 | // Null is all-zeros. |
| 69 | if (isa<ConstantPointerNull>(V)) { |
| 70 | KnownOne.clear(); |
| 71 | KnownZero = Mask; |
| 72 | return; |
| 73 | } |
| 74 | // The address of an aligned GlobalValue has trailing zeros. |
| 75 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 76 | unsigned Align = GV->getAlignment(); |
| 77 | if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) |
| 78 | Align = TD->getPrefTypeAlignment(GV->getType()->getElementType()); |
| 79 | if (Align > 0) |
| 80 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 81 | CountTrailingZeros_32(Align)); |
| 82 | else |
| 83 | KnownZero.clear(); |
| 84 | KnownOne.clear(); |
| 85 | return; |
| 86 | } |
| 87 | |
| 88 | KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. |
| 89 | |
| 90 | if (Depth == 6 || Mask == 0) |
| 91 | return; // Limit search depth. |
| 92 | |
| 93 | User *I = dyn_cast<User>(V); |
| 94 | if (!I) return; |
| 95 | |
| 96 | APInt KnownZero2(KnownZero), KnownOne2(KnownOne); |
| 97 | switch (getOpcode(I)) { |
| 98 | default: break; |
| 99 | case Instruction::And: { |
| 100 | // If either the LHS or the RHS are Zero, the result is zero. |
| 101 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 102 | APInt Mask2(Mask & ~KnownZero); |
| 103 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 104 | Depth+1); |
| 105 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 106 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 107 | |
| 108 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 109 | KnownOne &= KnownOne2; |
| 110 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 111 | KnownZero |= KnownZero2; |
| 112 | return; |
| 113 | } |
| 114 | case Instruction::Or: { |
| 115 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 116 | APInt Mask2(Mask & ~KnownOne); |
| 117 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 118 | Depth+1); |
| 119 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 120 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 121 | |
| 122 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 123 | KnownZero &= KnownZero2; |
| 124 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 125 | KnownOne |= KnownOne2; |
| 126 | return; |
| 127 | } |
| 128 | case Instruction::Xor: { |
| 129 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 130 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, |
| 131 | Depth+1); |
| 132 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 133 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 134 | |
| 135 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 136 | APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 137 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 138 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 139 | KnownZero = KnownZeroOut; |
| 140 | return; |
| 141 | } |
| 142 | case Instruction::Mul: { |
| 143 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 144 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); |
| 145 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 146 | Depth+1); |
| 147 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 148 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 149 | |
| 150 | // If low bits are zero in either operand, output low known-0 bits. |
| 151 | // Also compute a conserative estimate for high known-0 bits. |
| 152 | // More trickiness is possible, but this is sufficient for the |
| 153 | // interesting case of alignment computation. |
| 154 | KnownOne.clear(); |
| 155 | unsigned TrailZ = KnownZero.countTrailingOnes() + |
| 156 | KnownZero2.countTrailingOnes(); |
| 157 | unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + |
| 158 | KnownZero2.countLeadingOnes(), |
| 159 | BitWidth) - BitWidth; |
| 160 | |
| 161 | TrailZ = std::min(TrailZ, BitWidth); |
| 162 | LeadZ = std::min(LeadZ, BitWidth); |
| 163 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | |
| 164 | APInt::getHighBitsSet(BitWidth, LeadZ); |
| 165 | KnownZero &= Mask; |
| 166 | return; |
| 167 | } |
| 168 | case Instruction::UDiv: { |
| 169 | // For the purposes of computing leading zeros we can conservatively |
| 170 | // treat a udiv as a logical right shift by the power of 2 known to |
| 171 | // be less than the denominator. |
| 172 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 173 | ComputeMaskedBits(I->getOperand(0), |
| 174 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 175 | unsigned LeadZ = KnownZero2.countLeadingOnes(); |
| 176 | |
| 177 | KnownOne2.clear(); |
| 178 | KnownZero2.clear(); |
| 179 | ComputeMaskedBits(I->getOperand(1), |
| 180 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 181 | unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); |
| 182 | if (RHSUnknownLeadingOnes != BitWidth) |
| 183 | LeadZ = std::min(BitWidth, |
| 184 | LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); |
| 185 | |
| 186 | KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; |
| 187 | return; |
| 188 | } |
| 189 | case Instruction::Select: |
| 190 | ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 191 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, |
| 192 | Depth+1); |
| 193 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 194 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 195 | |
| 196 | // Only known if known in both the LHS and RHS. |
| 197 | KnownOne &= KnownOne2; |
| 198 | KnownZero &= KnownZero2; |
| 199 | return; |
| 200 | case Instruction::FPTrunc: |
| 201 | case Instruction::FPExt: |
| 202 | case Instruction::FPToUI: |
| 203 | case Instruction::FPToSI: |
| 204 | case Instruction::SIToFP: |
| 205 | case Instruction::UIToFP: |
| 206 | return; // Can't work with floating point. |
| 207 | case Instruction::PtrToInt: |
| 208 | case Instruction::IntToPtr: |
| 209 | // We can't handle these if we don't know the pointer size. |
| 210 | if (!TD) return; |
| 211 | // FALL THROUGH and handle them the same as zext/trunc. |
| 212 | case Instruction::ZExt: |
| 213 | case Instruction::Trunc: { |
| 214 | // Note that we handle pointer operands here because of inttoptr/ptrtoint |
| 215 | // which fall through here. |
| 216 | const Type *SrcTy = I->getOperand(0)->getType(); |
| 217 | uint32_t SrcBitWidth = TD ? |
| 218 | TD->getTypeSizeInBits(SrcTy) : |
| 219 | SrcTy->getPrimitiveSizeInBits(); |
| 220 | APInt MaskIn(Mask); |
| 221 | MaskIn.zextOrTrunc(SrcBitWidth); |
| 222 | KnownZero.zextOrTrunc(SrcBitWidth); |
| 223 | KnownOne.zextOrTrunc(SrcBitWidth); |
| 224 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 225 | Depth+1); |
| 226 | KnownZero.zextOrTrunc(BitWidth); |
| 227 | KnownOne.zextOrTrunc(BitWidth); |
| 228 | // Any top bits are known to be zero. |
| 229 | if (BitWidth > SrcBitWidth) |
| 230 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 231 | return; |
| 232 | } |
| 233 | case Instruction::BitCast: { |
| 234 | const Type *SrcTy = I->getOperand(0)->getType(); |
| 235 | if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) { |
| 236 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 237 | Depth+1); |
| 238 | return; |
| 239 | } |
| 240 | break; |
| 241 | } |
| 242 | case Instruction::SExt: { |
| 243 | // Compute the bits in the result that are not present in the input. |
| 244 | const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); |
| 245 | uint32_t SrcBitWidth = SrcTy->getBitWidth(); |
| 246 | |
| 247 | APInt MaskIn(Mask); |
| 248 | MaskIn.trunc(SrcBitWidth); |
| 249 | KnownZero.trunc(SrcBitWidth); |
| 250 | KnownOne.trunc(SrcBitWidth); |
| 251 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 252 | Depth+1); |
| 253 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 254 | KnownZero.zext(BitWidth); |
| 255 | KnownOne.zext(BitWidth); |
| 256 | |
| 257 | // If the sign bit of the input is known set or clear, then we know the |
| 258 | // top bits of the result. |
| 259 | if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero |
| 260 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 261 | else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set |
| 262 | KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 263 | return; |
| 264 | } |
| 265 | case Instruction::Shl: |
| 266 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 267 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 268 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 269 | APInt Mask2(Mask.lshr(ShiftAmt)); |
| 270 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 271 | Depth+1); |
| 272 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 273 | KnownZero <<= ShiftAmt; |
| 274 | KnownOne <<= ShiftAmt; |
| 275 | KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 |
| 276 | return; |
| 277 | } |
| 278 | break; |
| 279 | case Instruction::LShr: |
| 280 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 281 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 282 | // Compute the new bits that are at the top now. |
| 283 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 284 | |
| 285 | // Unsigned shift right. |
| 286 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 287 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, |
| 288 | Depth+1); |
| 289 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 290 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 291 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 292 | // high bits known zero. |
| 293 | KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); |
| 294 | return; |
| 295 | } |
| 296 | break; |
| 297 | case Instruction::AShr: |
| 298 | // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 299 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 300 | // Compute the new bits that are at the top now. |
| 301 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 302 | |
| 303 | // Signed shift right. |
| 304 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 305 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 306 | Depth+1); |
| 307 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 308 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 309 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 310 | |
| 311 | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); |
| 312 | if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. |
| 313 | KnownZero |= HighBits; |
| 314 | else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. |
| 315 | KnownOne |= HighBits; |
| 316 | return; |
| 317 | } |
| 318 | break; |
| 319 | case Instruction::Sub: { |
| 320 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { |
| 321 | // We know that the top bits of C-X are clear if X contains less bits |
| 322 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
| 323 | // positive if we can prove that X is >= 0 and < 16. |
| 324 | if (!CLHS->getValue().isNegative()) { |
| 325 | unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); |
| 326 | // NLZ can't be BitWidth with no sign bit |
| 327 | APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| 328 | ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, |
| 329 | TD, Depth+1); |
| 330 | |
| 331 | // If all of the MaskV bits are known to be zero, then we know the |
| 332 | // output top bits are zero, because we now know that the output is |
| 333 | // from [0-C]. |
| 334 | if ((KnownZero2 & MaskV) == MaskV) { |
| 335 | unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); |
| 336 | // Top bits known zero. |
| 337 | KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | // fall through |
| 343 | case Instruction::Add: { |
| 344 | // Output known-0 bits are known if clear or set in both the low clear bits |
| 345 | // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| 346 | // low 3 bits clear. |
| 347 | APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes()); |
| 348 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 349 | Depth+1); |
| 350 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 351 | unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); |
| 352 | |
| 353 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, |
| 354 | Depth+1); |
| 355 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 356 | KnownZeroOut = std::min(KnownZeroOut, |
| 357 | KnownZero2.countTrailingOnes()); |
| 358 | |
| 359 | KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); |
| 360 | return; |
| 361 | } |
| 362 | case Instruction::SRem: |
| 363 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 364 | APInt RA = Rem->getValue(); |
| 365 | if (RA.isPowerOf2() || (-RA).isPowerOf2()) { |
| 366 | APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; |
| 367 | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| 368 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 369 | Depth+1); |
| 370 | |
| 371 | // The sign of a remainder is equal to the sign of the first |
| 372 | // operand (zero being positive). |
| 373 | if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) |
| 374 | KnownZero2 |= ~LowBits; |
| 375 | else if (KnownOne2[BitWidth-1]) |
| 376 | KnownOne2 |= ~LowBits; |
| 377 | |
| 378 | KnownZero |= KnownZero2 & Mask; |
| 379 | KnownOne |= KnownOne2 & Mask; |
| 380 | |
| 381 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 382 | } |
| 383 | } |
| 384 | break; |
| 385 | case Instruction::URem: { |
| 386 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 387 | APInt RA = Rem->getValue(); |
| 388 | if (RA.isPowerOf2()) { |
| 389 | APInt LowBits = (RA - 1); |
| 390 | APInt Mask2 = LowBits & Mask; |
| 391 | KnownZero |= ~LowBits & Mask; |
| 392 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 393 | Depth+1); |
| 394 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 395 | break; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | // Since the result is less than or equal to either operand, any leading |
| 400 | // zero bits in either operand must also exist in the result. |
| 401 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 402 | ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, |
| 403 | TD, Depth+1); |
| 404 | ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, |
| 405 | TD, Depth+1); |
| 406 | |
| 407 | uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), |
| 408 | KnownZero2.countLeadingOnes()); |
| 409 | KnownOne.clear(); |
| 410 | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; |
| 411 | break; |
| 412 | } |
| 413 | |
| 414 | case Instruction::Alloca: |
| 415 | case Instruction::Malloc: { |
| 416 | AllocationInst *AI = cast<AllocationInst>(V); |
| 417 | unsigned Align = AI->getAlignment(); |
| 418 | if (Align == 0 && TD) { |
| 419 | if (isa<AllocaInst>(AI)) |
| 420 | Align = TD->getPrefTypeAlignment(AI->getType()->getElementType()); |
| 421 | else if (isa<MallocInst>(AI)) { |
| 422 | // Malloc returns maximally aligned memory. |
| 423 | Align = TD->getABITypeAlignment(AI->getType()->getElementType()); |
| 424 | Align = |
| 425 | std::max(Align, |
| 426 | (unsigned)TD->getABITypeAlignment(Type::DoubleTy)); |
| 427 | Align = |
| 428 | std::max(Align, |
| 429 | (unsigned)TD->getABITypeAlignment(Type::Int64Ty)); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | if (Align > 0) |
| 434 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 435 | CountTrailingZeros_32(Align)); |
| 436 | break; |
| 437 | } |
| 438 | case Instruction::GetElementPtr: { |
| 439 | // Analyze all of the subscripts of this getelementptr instruction |
| 440 | // to determine if we can prove known low zero bits. |
| 441 | APInt LocalMask = APInt::getAllOnesValue(BitWidth); |
| 442 | APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); |
| 443 | ComputeMaskedBits(I->getOperand(0), LocalMask, |
| 444 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 445 | unsigned TrailZ = LocalKnownZero.countTrailingOnes(); |
| 446 | |
| 447 | gep_type_iterator GTI = gep_type_begin(I); |
| 448 | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { |
| 449 | Value *Index = I->getOperand(i); |
| 450 | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 451 | // Handle struct member offset arithmetic. |
| 452 | if (!TD) return; |
| 453 | const StructLayout *SL = TD->getStructLayout(STy); |
| 454 | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); |
| 455 | uint64_t Offset = SL->getElementOffset(Idx); |
| 456 | TrailZ = std::min(TrailZ, |
| 457 | CountTrailingZeros_64(Offset)); |
| 458 | } else { |
| 459 | // Handle array index arithmetic. |
| 460 | const Type *IndexedTy = GTI.getIndexedType(); |
| 461 | if (!IndexedTy->isSized()) return; |
| 462 | unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits(); |
| 463 | uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1; |
| 464 | LocalMask = APInt::getAllOnesValue(GEPOpiBits); |
| 465 | LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); |
| 466 | ComputeMaskedBits(Index, LocalMask, |
| 467 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 468 | TrailZ = std::min(TrailZ, |
| 469 | CountTrailingZeros_64(TypeSize) + |
| 470 | LocalKnownZero.countTrailingOnes()); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; |
| 475 | break; |
| 476 | } |
| 477 | case Instruction::PHI: { |
| 478 | PHINode *P = cast<PHINode>(I); |
| 479 | // Handle the case of a simple two-predecessor recurrence PHI. |
| 480 | // There's a lot more that could theoretically be done here, but |
| 481 | // this is sufficient to catch some interesting cases. |
| 482 | if (P->getNumIncomingValues() == 2) { |
| 483 | for (unsigned i = 0; i != 2; ++i) { |
| 484 | Value *L = P->getIncomingValue(i); |
| 485 | Value *R = P->getIncomingValue(!i); |
| 486 | User *LU = dyn_cast<User>(L); |
| 487 | if (!LU) |
| 488 | continue; |
| 489 | unsigned Opcode = getOpcode(LU); |
| 490 | // Check for operations that have the property that if |
| 491 | // both their operands have low zero bits, the result |
| 492 | // will have low zero bits. |
| 493 | if (Opcode == Instruction::Add || |
| 494 | Opcode == Instruction::Sub || |
| 495 | Opcode == Instruction::And || |
| 496 | Opcode == Instruction::Or || |
| 497 | Opcode == Instruction::Mul) { |
| 498 | Value *LL = LU->getOperand(0); |
| 499 | Value *LR = LU->getOperand(1); |
| 500 | // Find a recurrence. |
| 501 | if (LL == I) |
| 502 | L = LR; |
| 503 | else if (LR == I) |
| 504 | L = LL; |
| 505 | else |
| 506 | break; |
| 507 | // Ok, we have a PHI of the form L op= R. Check for low |
| 508 | // zero bits. |
| 509 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 510 | ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); |
| 511 | Mask2 = APInt::getLowBitsSet(BitWidth, |
| 512 | KnownZero2.countTrailingOnes()); |
| 513 | KnownOne2.clear(); |
| 514 | KnownZero2.clear(); |
| 515 | ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, TD, Depth+1); |
| 516 | KnownZero = Mask & |
| 517 | APInt::getLowBitsSet(BitWidth, |
| 518 | KnownZero2.countTrailingOnes()); |
| 519 | break; |
| 520 | } |
| 521 | } |
| 522 | } |
| 523 | break; |
| 524 | } |
| 525 | case Instruction::Call: |
| 526 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 527 | switch (II->getIntrinsicID()) { |
| 528 | default: break; |
| 529 | case Intrinsic::ctpop: |
| 530 | case Intrinsic::ctlz: |
| 531 | case Intrinsic::cttz: { |
| 532 | unsigned LowBits = Log2_32(BitWidth)+1; |
| 533 | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); |
| 534 | break; |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | break; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 543 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 544 | /// for bits that V cannot have. |
| 545 | bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, |
| 546 | TargetData *TD, unsigned Depth) { |
| 547 | APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); |
| 548 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 549 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 550 | return (KnownZero & Mask) == Mask; |
| 551 | } |
| 552 | |
| 553 | |
| 554 | |
| 555 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 556 | /// register is replicated into the other bits. We know that at least 1 bit |
| 557 | /// is always equal to the sign bit (itself), but other cases can give us |
| 558 | /// information. For example, immediately after an "ashr X, 2", we know that |
| 559 | /// the top 3 bits are all equal to each other, so we return 3. |
| 560 | /// |
| 561 | /// 'Op' must have a scalar integer type. |
| 562 | /// |
| 563 | unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) { |
| 564 | const IntegerType *Ty = cast<IntegerType>(V->getType()); |
| 565 | unsigned TyBits = Ty->getBitWidth(); |
| 566 | unsigned Tmp, Tmp2; |
| 567 | unsigned FirstAnswer = 1; |
| 568 | |
Chris Lattner | d82e511 | 2008-06-02 18:39:07 +0000 | [diff] [blame] | 569 | // Note that ConstantInt is handled by the general ComputeMaskedBits case |
| 570 | // below. |
| 571 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 572 | if (Depth == 6) |
| 573 | return 1; // Limit search depth. |
| 574 | |
| 575 | User *U = dyn_cast<User>(V); |
| 576 | switch (getOpcode(V)) { |
| 577 | default: break; |
| 578 | case Instruction::SExt: |
| 579 | Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth(); |
| 580 | return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; |
| 581 | |
| 582 | case Instruction::AShr: |
| 583 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 584 | // ashr X, C -> adds C sign bits. |
| 585 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 586 | Tmp += C->getZExtValue(); |
| 587 | if (Tmp > TyBits) Tmp = TyBits; |
| 588 | } |
| 589 | return Tmp; |
| 590 | case Instruction::Shl: |
| 591 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 592 | // shl destroys sign bits. |
| 593 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 594 | if (C->getZExtValue() >= TyBits || // Bad shift. |
| 595 | C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. |
| 596 | return Tmp - C->getZExtValue(); |
| 597 | } |
| 598 | break; |
| 599 | case Instruction::And: |
| 600 | case Instruction::Or: |
| 601 | case Instruction::Xor: // NOT is handled here. |
| 602 | // Logical binary ops preserve the number of sign bits at the worst. |
| 603 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 604 | if (Tmp != 1) { |
| 605 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 606 | FirstAnswer = std::min(Tmp, Tmp2); |
| 607 | // We computed what we know about the sign bits as our first |
| 608 | // answer. Now proceed to the generic code that uses |
| 609 | // ComputeMaskedBits, and pick whichever answer is better. |
| 610 | } |
| 611 | break; |
| 612 | |
| 613 | case Instruction::Select: |
| 614 | Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 615 | if (Tmp == 1) return 1; // Early out. |
| 616 | Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); |
| 617 | return std::min(Tmp, Tmp2); |
| 618 | |
| 619 | case Instruction::Add: |
| 620 | // Add can have at most one carry bit. Thus we know that the output |
| 621 | // is, at worst, one more bit than the inputs. |
| 622 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 623 | if (Tmp == 1) return 1; // Early out. |
| 624 | |
| 625 | // Special case decrementing a value (ADD X, -1): |
| 626 | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(0))) |
| 627 | if (CRHS->isAllOnesValue()) { |
| 628 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 629 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 630 | ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 631 | Depth+1); |
| 632 | |
| 633 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 634 | // sign bits set. |
| 635 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 636 | return TyBits; |
| 637 | |
| 638 | // If we are subtracting one from a positive number, there is no carry |
| 639 | // out of the result. |
| 640 | if (KnownZero.isNegative()) |
| 641 | return Tmp; |
| 642 | } |
| 643 | |
| 644 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 645 | if (Tmp2 == 1) return 1; |
| 646 | return std::min(Tmp, Tmp2)-1; |
| 647 | break; |
| 648 | |
| 649 | case Instruction::Sub: |
| 650 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 651 | if (Tmp2 == 1) return 1; |
| 652 | |
| 653 | // Handle NEG. |
| 654 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) |
| 655 | if (CLHS->isNullValue()) { |
| 656 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 657 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 658 | ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, |
| 659 | TD, Depth+1); |
| 660 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 661 | // sign bits set. |
| 662 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 663 | return TyBits; |
| 664 | |
| 665 | // If the input is known to be positive (the sign bit is known clear), |
| 666 | // the output of the NEG has the same number of sign bits as the input. |
| 667 | if (KnownZero.isNegative()) |
| 668 | return Tmp2; |
| 669 | |
| 670 | // Otherwise, we treat this like a SUB. |
| 671 | } |
| 672 | |
| 673 | // Sub can have at most one carry bit. Thus we know that the output |
| 674 | // is, at worst, one more bit than the inputs. |
| 675 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 676 | if (Tmp == 1) return 1; // Early out. |
| 677 | return std::min(Tmp, Tmp2)-1; |
| 678 | break; |
| 679 | case Instruction::Trunc: |
| 680 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 681 | // case for targets like X86. |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 686 | // use this information. |
| 687 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 688 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 689 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 690 | |
| 691 | if (KnownZero.isNegative()) { // sign bit is 0 |
| 692 | Mask = KnownZero; |
| 693 | } else if (KnownOne.isNegative()) { // sign bit is 1; |
| 694 | Mask = KnownOne; |
| 695 | } else { |
| 696 | // Nothing known. |
| 697 | return FirstAnswer; |
| 698 | } |
| 699 | |
| 700 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 701 | // the number of identical bits in the top of the input value. |
| 702 | Mask = ~Mask; |
| 703 | Mask <<= Mask.getBitWidth()-TyBits; |
| 704 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 705 | // shifting. We don't want to return '64' as for an i32 "0". |
| 706 | return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); |
| 707 | } |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 708 | |
| 709 | /// CannotBeNegativeZero - Return true if we can prove that the specified FP |
| 710 | /// value is never equal to -0.0. |
| 711 | /// |
| 712 | /// NOTE: this function will need to be revisited when we support non-default |
| 713 | /// rounding modes! |
| 714 | /// |
| 715 | bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { |
| 716 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) |
| 717 | return !CFP->getValueAPF().isNegZero(); |
| 718 | |
| 719 | if (Depth == 6) |
| 720 | return 1; // Limit search depth. |
| 721 | |
| 722 | const Instruction *I = dyn_cast<Instruction>(V); |
| 723 | if (I == 0) return false; |
| 724 | |
| 725 | // (add x, 0.0) is guaranteed to return +0.0, not -0.0. |
| 726 | if (I->getOpcode() == Instruction::Add && |
| 727 | isa<ConstantFP>(I->getOperand(1)) && |
| 728 | cast<ConstantFP>(I->getOperand(1))->isNullValue()) |
| 729 | return true; |
| 730 | |
| 731 | // sitofp and uitofp turn into +0.0 for zero. |
| 732 | if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) |
| 733 | return true; |
| 734 | |
| 735 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| 736 | // sqrt(-0.0) = -0.0, no other negative results are possible. |
| 737 | if (II->getIntrinsicID() == Intrinsic::sqrt) |
| 738 | return CannotBeNegativeZero(II->getOperand(1), Depth+1); |
| 739 | |
| 740 | if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| 741 | if (const Function *F = CI->getCalledFunction()) { |
| 742 | if (F->isDeclaration()) { |
| 743 | switch (F->getNameLen()) { |
| 744 | case 3: // abs(x) != -0.0 |
| 745 | if (!strcmp(F->getNameStart(), "abs")) return true; |
| 746 | break; |
| 747 | case 4: // abs[lf](x) != -0.0 |
| 748 | if (!strcmp(F->getNameStart(), "absf")) return true; |
| 749 | if (!strcmp(F->getNameStart(), "absl")) return true; |
| 750 | break; |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | return false; |
| 756 | } |
| 757 | |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 758 | // This is the recursive version of BuildSubAggregate. It takes a few different |
| 759 | // arguments. Idxs is the index within the nested struct From that we are |
| 760 | // looking at now (which is of type IndexedType). IdxSkip is the number of |
| 761 | // indices from Idxs that should be left out when inserting into the resulting |
| 762 | // struct. To is the result struct built so far, new insertvalue instructions |
| 763 | // build on that. |
| 764 | Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, |
| 765 | SmallVector<unsigned, 10> &Idxs, |
| 766 | unsigned IdxSkip, |
| 767 | Instruction &InsertBefore) { |
| 768 | const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); |
| 769 | if (STy) { |
| 770 | // General case, the type indexed by Idxs is a struct |
| 771 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 772 | // Process each struct element recursively |
| 773 | Idxs.push_back(i); |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 774 | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, |
| 775 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 776 | Idxs.pop_back(); |
| 777 | } |
| 778 | return To; |
| 779 | } else { |
| 780 | // Base case, the type indexed by SourceIdxs is not a struct |
| 781 | // Load the value from the nested struct into the sub struct (and skip |
| 782 | // IdxSkip indices when indexing the sub struct). |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 783 | Instruction *V = llvm::ExtractValueInst::Create(From, Idxs.begin(), |
| 784 | Idxs.end(), "tmp", |
| 785 | &InsertBefore); |
| 786 | Instruction *Ins = llvm::InsertValueInst::Create(To, V, |
| 787 | Idxs.begin() + IdxSkip, |
| 788 | Idxs.end(), "tmp", |
| 789 | &InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 790 | return Ins; |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | // This helper takes a nested struct and extracts a part of it (which is again a |
| 795 | // struct) into a new value. For example, given the struct: |
| 796 | // { a, { b, { c, d }, e } } |
| 797 | // and the indices "1, 1" this returns |
| 798 | // { c, d }. |
| 799 | // |
| 800 | // It does this by inserting an extractvalue and insertvalue for each element in |
| 801 | // the resulting struct, as opposed to just inserting a single struct. This |
| 802 | // allows for later folding of these individual extractvalue instructions with |
| 803 | // insertvalue instructions that fill the nested struct. |
| 804 | // |
| 805 | // Any inserted instructions are inserted before InsertBefore |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 806 | Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, |
| 807 | const unsigned *idx_end, Instruction &InsertBefore) { |
| 808 | const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), |
| 809 | idx_begin, |
| 810 | idx_end); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 811 | Value *To = UndefValue::get(IndexedType); |
| 812 | SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); |
| 813 | unsigned IdxSkip = Idxs.size(); |
| 814 | |
| 815 | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); |
| 816 | } |
| 817 | |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 818 | /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if |
| 819 | /// the scalar value indexed is already around as a register, for example if it |
| 820 | /// were inserted directly into the aggregrate. |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 821 | Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, |
| 822 | const unsigned *idx_end, Instruction &InsertBefore) { |
| 823 | // Nothing to index? Just return V then (this is useful at the end of our |
| 824 | // recursion) |
| 825 | if (idx_begin == idx_end) |
| 826 | return V; |
| 827 | // We have indices, so V should have an indexable type |
| 828 | assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType())) |
| 829 | && "Not looking at a struct or array?"); |
| 830 | assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) |
| 831 | && "Invalid indices for type?"); |
| 832 | const CompositeType *PTy = cast<CompositeType>(V->getType()); |
| 833 | |
| 834 | if (isa<UndefValue>(V)) |
| 835 | return UndefValue::get(ExtractValueInst::getIndexedType(PTy, |
| 836 | idx_begin, |
| 837 | idx_end)); |
| 838 | else if (isa<ConstantAggregateZero>(V)) |
| 839 | return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, |
| 840 | idx_begin, |
| 841 | idx_end)); |
| 842 | else if (Constant *C = dyn_cast<Constant>(V)) { |
| 843 | if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) |
| 844 | // Recursively process this constant |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 845 | return FindInsertedValue(C->getOperand(*idx_begin), ++idx_begin, idx_end, |
| 846 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 847 | } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { |
| 848 | // Loop the indices for the insertvalue instruction in parallel with the |
| 849 | // requested indices |
| 850 | const unsigned *req_idx = idx_begin; |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 851 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
| 852 | i != e; ++i, ++req_idx) { |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 853 | if (req_idx == idx_end) |
| 854 | // The requested index is a part of a nested aggregate. Handle this |
| 855 | // specially. |
| 856 | return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); |
| 857 | |
| 858 | // This insert value inserts something else than what we are looking for. |
| 859 | // See if the (aggregrate) value inserted into has the value we are |
| 860 | // looking for, then. |
| 861 | if (*req_idx != *i) |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 862 | return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, |
| 863 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 864 | } |
| 865 | // If we end up here, the indices of the insertvalue match with those |
| 866 | // requested (though possibly only partially). Now we recursively look at |
| 867 | // the inserted value, passing any remaining indices. |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 868 | return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, |
| 869 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 870 | } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { |
| 871 | // If we're extracting a value from an aggregrate that was extracted from |
| 872 | // something else, we can extract from that something else directly instead. |
| 873 | // However, we will need to chain I's indices with the requested indices. |
| 874 | |
| 875 | // Calculate the number of indices required |
| 876 | unsigned size = I->getNumIndices() + (idx_end - idx_begin); |
| 877 | // Allocate some space to put the new indices in |
| 878 | unsigned *new_begin = new unsigned[size]; |
| 879 | // Auto cleanup this array |
| 880 | std::auto_ptr<unsigned> newptr(new_begin); |
| 881 | // Start inserting at the beginning |
| 882 | unsigned *new_end = new_begin; |
| 883 | // Add indices from the extract value instruction |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 884 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
| 885 | i != e; ++i, ++new_end) |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 886 | *new_end = *i; |
| 887 | |
| 888 | // Add requested indices |
| 889 | for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i, ++new_end) |
| 890 | *new_end = *i; |
| 891 | |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 892 | assert((unsigned)(new_end - new_begin) == size |
| 893 | && "Number of indices added not correct?"); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 894 | |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 895 | return FindInsertedValue(I->getAggregateOperand(), new_begin, new_end, |
| 896 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 897 | } |
| 898 | // Otherwise, we don't know (such as, extracting from a function return value |
| 899 | // or load instruction) |
| 900 | return 0; |
| 901 | } |