blob: ed61165b7e5f97f2036024a333d96aae0d161504 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000031#include "llvm/Support/CFG.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattnercf93cdd2004-01-30 22:13:44 +000034//#define SMART_FP 1
35
Chris Lattner333b2fa2002-12-13 10:09:43 +000036/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000037/// instruction at as well as a basic block. This is the version for when you
38/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000039inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000040 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000041 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 unsigned DestReg) {
43 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000044 MBB->insert(I, MI);
Chris Lattner333b2fa2002-12-13 10:09:43 +000045 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
46}
47
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000048/// BMI - A special BuildMI variant that takes an iterator to insert the
49/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000050inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000051 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000052 int Opcode, unsigned NumOperands) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000054 MBB->insert(I, MI);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000062 MachineFunction *F; // The function we are compiling into
63 MachineBasicBlock *BB; // The current MBB we are compiling
64 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000065 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000066
Chris Lattner72614082002-10-25 22:55:53 +000067 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
68
Chris Lattner333b2fa2002-12-13 10:09:43 +000069 // MBBMap - Mapping between LLVM BB -> Machine BB
70 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
71
Chris Lattnerf70e0c22003-12-28 21:23:38 +000072 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000073
74 /// runOnFunction - Top level implementation of instruction selection for
75 /// the entire function.
76 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000077 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000078 // First pass over the function, lower any unknown intrinsic functions
79 // with the IntrinsicLowering class.
80 LowerUnknownIntrinsicFunctionCalls(Fn);
81
Chris Lattner36b36032002-10-29 23:40:58 +000082 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000083
Chris Lattner065faeb2002-12-28 20:24:02 +000084 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000085 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
86 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
87
Chris Lattner14aa7fe2002-12-16 22:54:46 +000088 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000089
Chris Lattner0e5b79c2004-02-15 01:04:03 +000090 // Set up a frame object for the return address. This is used by the
91 // llvm.returnaddress & llvm.frameaddress intrinisics.
92 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
93
Chris Lattnerdbd73722003-05-06 21:32:22 +000094 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000095 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000096
Chris Lattner333b2fa2002-12-13 10:09:43 +000097 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000099
100 // Select the PHI nodes
101 SelectPHINodes();
102
Chris Lattner72614082002-10-25 22:55:53 +0000103 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000105 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000106 // We always build a machine code representation for the function
107 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000108 }
109
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000110 virtual const char *getPassName() const {
111 return "X86 Simple Instruction Selection";
112 }
113
Chris Lattner72614082002-10-25 22:55:53 +0000114 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000115 /// block. This simply creates a new MachineBasicBlock to emit code into
116 /// and adds it to the current MachineFunction. Subsequent visit* for
117 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000118 ///
119 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000121 }
122
Chris Lattner44827152003-12-28 09:47:19 +0000123 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
124 /// function, lowering any calls to unknown intrinsic functions into the
125 /// equivalent LLVM code.
126 void LowerUnknownIntrinsicFunctionCalls(Function &F);
127
Chris Lattner065faeb2002-12-28 20:24:02 +0000128 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
129 /// from the stack into virtual registers.
130 ///
131 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000132
133 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
134 /// because we have to generate our sources into the source basic blocks,
135 /// not the current one.
136 ///
137 void SelectPHINodes();
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 // Visitation methods for various instructions. These methods simply emit
140 // fixed X86 code for each instruction.
141 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000142
143 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000144 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000145 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000146
147 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000148 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000149 unsigned Reg;
150 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000151 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
152 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000153 };
154 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000155 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000156 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000157 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000158
159 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000160 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000161 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
162 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000163 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000165 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000166 void doMultiplyConst(MachineBasicBlock *MBB,
167 MachineBasicBlock::iterator &MBBI,
168 unsigned DestReg, const Type *DestTy,
169 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000170 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000171
Chris Lattnerf01729e2002-11-02 20:54:46 +0000172 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
173 void visitRem(BinaryOperator &B) { visitDivRem(B); }
174 void visitDivRem(BinaryOperator &B);
175
Chris Lattnere2954c82002-11-02 20:04:26 +0000176 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000177 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
178 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
179 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000180
Chris Lattner6d40c192003-01-16 16:43:00 +0000181 // Comparison operators...
182 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000183 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
184 MachineBasicBlock *MBB,
185 MachineBasicBlock::iterator &MBBI);
186
Chris Lattner6fc3c522002-11-17 21:11:55 +0000187 // Memory Instructions
188 void visitLoadInst(LoadInst &I);
189 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000190 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000192 void visitMallocInst(MallocInst &I);
193 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000194
Chris Lattnere2954c82002-11-02 20:04:26 +0000195 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000196 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000197 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000198 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000199 void visitVANextInst(VANextInst &I);
200 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000201
202 void visitInstruction(Instruction &I) {
203 std::cerr << "Cannot instruction select: " << I;
204 abort();
205 }
206
Brian Gaeke95780cc2002-12-13 07:56:18 +0000207 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000208 ///
209 void promote32(unsigned targetReg, const ValueRecord &VR);
210
Chris Lattner3e130a22003-01-13 00:32:26 +0000211 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
212 /// constant expression GEP support.
213 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000214 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000215 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000216 User::op_iterator IdxEnd, unsigned TargetReg);
217
Chris Lattner548f61d2003-04-23 17:22:12 +0000218 /// emitCastOperation - Common code shared between visitCastInst and
219 /// constant expression cast support.
220 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
221 Value *Src, const Type *DestTy, unsigned TargetReg);
222
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000223 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
224 /// and constant expression support.
225 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
226 MachineBasicBlock::iterator &IP,
227 Value *Op0, Value *Op1,
228 unsigned OperatorClass, unsigned TargetReg);
229
Chris Lattnercadff442003-10-23 17:21:43 +0000230 void emitDivRemOperation(MachineBasicBlock *BB,
231 MachineBasicBlock::iterator &IP,
232 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
233 const Type *Ty, unsigned TargetReg);
234
Chris Lattner58c41fe2003-08-24 19:19:47 +0000235 /// emitSetCCOperation - Common code shared between visitSetCondInst and
236 /// constant expression support.
237 void emitSetCCOperation(MachineBasicBlock *BB,
238 MachineBasicBlock::iterator &IP,
239 Value *Op0, Value *Op1, unsigned Opcode,
240 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000241
242 /// emitShiftOperation - Common code shared between visitShiftInst and
243 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000244 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000245 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000246 Value *Op, Value *ShiftAmount, bool isLeftShift,
247 const Type *ResultTy, unsigned DestReg);
248
Chris Lattner58c41fe2003-08-24 19:19:47 +0000249
Chris Lattnerc5291f52002-10-27 21:16:59 +0000250 /// copyConstantToRegister - Output the instructions required to put the
251 /// specified constant into the specified register.
252 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000253 void copyConstantToRegister(MachineBasicBlock *MBB,
254 MachineBasicBlock::iterator &MBBI,
255 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000256
Chris Lattner3e130a22003-01-13 00:32:26 +0000257 /// makeAnotherReg - This method returns the next register number we haven't
258 /// yet used.
259 ///
260 /// Long values are handled somewhat specially. They are always allocated
261 /// as pairs of 32 bit integer values. The register number returned is the
262 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
263 /// of the long value.
264 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000265 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000266 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
267 "Current target doesn't have X86 reg info??");
268 const X86RegisterInfo *MRI =
269 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000270 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000271 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
272 // Create the lower part
273 F->getSSARegMap()->createVirtualRegister(RC);
274 // Create the upper part.
275 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000276 }
277
Chris Lattnerc0812d82002-12-13 06:56:29 +0000278 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000279 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000280 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000281 }
282
Chris Lattner72614082002-10-25 22:55:53 +0000283 /// getReg - This method turns an LLVM value into a register number. This
284 /// is guaranteed to produce the same register number for a particular value
285 /// every time it is queried.
286 ///
287 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000288 unsigned getReg(Value *V) {
289 // Just append to the end of the current bb.
290 MachineBasicBlock::iterator It = BB->end();
291 return getReg(V, BB, It);
292 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000293 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000294 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000295 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000296 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000297 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000298 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000299 }
Chris Lattner72614082002-10-25 22:55:53 +0000300
Chris Lattner6f8fd252002-10-27 21:23:43 +0000301 // If this operand is a constant, emit the code to copy the constant into
302 // the register here...
303 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000304 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000305 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000306 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000307 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
308 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000309 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000310 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000311 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000312
Chris Lattner72614082002-10-25 22:55:53 +0000313 return Reg;
314 }
Chris Lattner72614082002-10-25 22:55:53 +0000315 };
316}
317
Chris Lattner43189d12002-11-17 20:07:45 +0000318/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
319/// Representation.
320///
321enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000322 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000323};
324
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000325/// getClass - Turn a primitive type into a "class" number which is based on the
326/// size of the type, and whether or not it is floating point.
327///
Chris Lattner43189d12002-11-17 20:07:45 +0000328static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 switch (Ty->getPrimitiveID()) {
330 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000331 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000332 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000333 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000334 case Type::IntTyID:
335 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000336 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000337
Chris Lattner94af4142002-12-25 05:13:53 +0000338 case Type::FloatTyID:
339 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000340
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000341 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000342 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343 default:
344 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000345 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000346 }
347}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000348
Chris Lattner6b993cc2002-12-15 08:02:15 +0000349// getClassB - Just like getClass, but treat boolean values as bytes.
350static inline TypeClass getClassB(const Type *Ty) {
351 if (Ty == Type::BoolTy) return cByte;
352 return getClass(Ty);
353}
354
Chris Lattner06925362002-11-17 21:56:38 +0000355
Chris Lattnerc5291f52002-10-27 21:16:59 +0000356/// copyConstantToRegister - Output the instructions required to put the
357/// specified constant into the specified register.
358///
Chris Lattner8a307e82002-12-16 19:32:50 +0000359void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
360 MachineBasicBlock::iterator &IP,
361 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000363 unsigned Class = 0;
364 switch (CE->getOpcode()) {
365 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000366 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000367 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000368 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000369 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000370 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000371 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000372
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000373 case Instruction::Xor: ++Class; // FALL THROUGH
374 case Instruction::Or: ++Class; // FALL THROUGH
375 case Instruction::And: ++Class; // FALL THROUGH
376 case Instruction::Sub: ++Class; // FALL THROUGH
377 case Instruction::Add:
378 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
379 Class, R);
380 return;
381
Chris Lattnercadff442003-10-23 17:21:43 +0000382 case Instruction::Mul: {
383 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
384 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
385 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
386 return;
387 }
388 case Instruction::Div:
389 case Instruction::Rem: {
390 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
391 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
392 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
393 CE->getOpcode() == Instruction::Div,
394 CE->getType(), R);
395 return;
396 }
397
Chris Lattner58c41fe2003-08-24 19:19:47 +0000398 case Instruction::SetNE:
399 case Instruction::SetEQ:
400 case Instruction::SetLT:
401 case Instruction::SetGT:
402 case Instruction::SetLE:
403 case Instruction::SetGE:
404 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
405 CE->getOpcode(), R);
406 return;
407
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000408 case Instruction::Shl:
409 case Instruction::Shr:
410 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000411 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
412 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000413
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000414 default:
415 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000416 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000417 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000418 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000419
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000420 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000421 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000422
423 if (Class == cLong) {
424 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000425 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000426 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
427 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
428 return;
429 }
430
Chris Lattner94af4142002-12-25 05:13:53 +0000431 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000432
433 static const unsigned IntegralOpcodeTab[] = {
434 X86::MOVir8, X86::MOVir16, X86::MOVir32
435 };
436
Chris Lattner6b993cc2002-12-15 08:02:15 +0000437 if (C->getType() == Type::BoolTy) {
438 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000440 ConstantInt *CI = cast<ConstantInt>(C);
441 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000442 }
Chris Lattner94af4142002-12-25 05:13:53 +0000443 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000444 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000445 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000446 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000447 BMI(MBB, IP, X86::FLD1, 0, R);
448 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000449 // Otherwise we need to spill the constant to memory...
450 MachineConstantPool *CP = F->getConstantPool();
451 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000452 const Type *Ty = CFP->getType();
453
454 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
455 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
456 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000457 }
458
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000459 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000460 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000461 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000462 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000463 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000464 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000465 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000466 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000467 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000468 }
469}
470
Chris Lattner065faeb2002-12-28 20:24:02 +0000471/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
472/// the stack into virtual registers.
473///
474void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
475 // Emit instructions to load the arguments... On entry to a function on the
476 // X86, the stack frame looks like this:
477 //
478 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000479 // [ESP + 4] -- first argument (leftmost lexically)
480 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000481 // ...
482 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000483 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000484 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000485
486 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
487 unsigned Reg = getReg(*I);
488
Chris Lattner065faeb2002-12-28 20:24:02 +0000489 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000490 switch (getClassB(I->getType())) {
491 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000492 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000493 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
494 break;
495 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000496 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000497 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
498 break;
499 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000500 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000501 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
502 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000503 case cLong:
504 FI = MFI->CreateFixedObject(8, ArgOffset);
505 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
506 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
507 ArgOffset += 4; // longs require 4 additional bytes
508 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000509 case cFP:
510 unsigned Opcode;
511 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000512 Opcode = X86::FLDr32;
513 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000514 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000515 Opcode = X86::FLDr64;
516 FI = MFI->CreateFixedObject(8, ArgOffset);
517 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000518 }
519 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
520 break;
521 default:
522 assert(0 && "Unhandled argument type!");
523 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000524 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000525 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000526
527 // If the function takes variable number of arguments, add a frame offset for
528 // the start of the first vararg value... this is used to expand
529 // llvm.va_start.
530 if (Fn.getFunctionType()->isVarArg())
531 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000532}
533
534
Chris Lattner333b2fa2002-12-13 10:09:43 +0000535/// SelectPHINodes - Insert machine code to generate phis. This is tricky
536/// because we have to generate our sources into the source basic blocks, not
537/// the current one.
538///
539void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000540 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000541 const Function &LF = *F->getFunction(); // The LLVM function...
542 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
543 const BasicBlock *BB = I;
544 MachineBasicBlock *MBB = MBBMap[I];
545
546 // Loop over all of the PHI nodes in the LLVM basic block...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000547 MachineInstr* instr = MBB->begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000549 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000550
Chris Lattner333b2fa2002-12-13 10:09:43 +0000551 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000552 unsigned PHIReg = getReg(*PN);
553 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000554 MBB->insert(instr, PhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000555
556 MachineInstr *LongPhiMI = 0;
557 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000558 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000559 MBB->insert(instr, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000560 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000561
Chris Lattnera6e73f12003-05-12 14:22:21 +0000562 // PHIValues - Map of blocks to incoming virtual registers. We use this
563 // so that we only initialize one incoming value for a particular block,
564 // even if the block has multiple entries in the PHI node.
565 //
566 std::map<MachineBasicBlock*, unsigned> PHIValues;
567
Chris Lattner333b2fa2002-12-13 10:09:43 +0000568 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
569 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000570 unsigned ValReg;
571 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
572 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000573
Chris Lattnera6e73f12003-05-12 14:22:21 +0000574 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
575 // We already inserted an initialization of the register for this
576 // predecessor. Recycle it.
577 ValReg = EntryIt->second;
578
579 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000580 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000581 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000582 Value *Val = PN->getIncomingValue(i);
583
584 // If this is a constant or GlobalValue, we may have to insert code
585 // into the basic block to compute it into a virtual register.
586 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
587 // Because we don't want to clobber any values which might be in
588 // physical registers with the computation of this constant (which
589 // might be arbitrarily complex if it is a constant expression),
590 // just insert the computation at the top of the basic block.
591 MachineBasicBlock::iterator PI = PredMBB->begin();
592
593 // Skip over any PHI nodes though!
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000594 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
Chris Lattnera81fc682003-10-19 00:26:11 +0000595 ++PI;
596
597 ValReg = getReg(Val, PredMBB, PI);
598 } else {
599 ValReg = getReg(Val);
600 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000601
602 // Remember that we inserted a value for this PHI for this predecessor
603 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
604 }
605
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000606 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000607 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000608 if (LongPhiMI) {
609 LongPhiMI->addRegOperand(ValReg+1);
610 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
611 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000612 }
613 }
614 }
615}
616
Chris Lattner6d40c192003-01-16 16:43:00 +0000617// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
618// the conditional branch instruction which is the only user of the cc
619// instruction. This is the case if the conditional branch is the only user of
620// the setcc, and if the setcc is in the same basic block as the conditional
621// branch. We also don't handle long arguments below, so we reject them here as
622// well.
623//
624static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
625 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000626 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000627 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
628 const Type *Ty = SCI->getOperand(0)->getType();
629 if (Ty != Type::LongTy && Ty != Type::ULongTy)
630 return SCI;
631 }
632 return 0;
633}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000634
Chris Lattner6d40c192003-01-16 16:43:00 +0000635// Return a fixed numbering for setcc instructions which does not depend on the
636// order of the opcodes.
637//
638static unsigned getSetCCNumber(unsigned Opcode) {
639 switch(Opcode) {
640 default: assert(0 && "Unknown setcc instruction!");
641 case Instruction::SetEQ: return 0;
642 case Instruction::SetNE: return 1;
643 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000644 case Instruction::SetGE: return 3;
645 case Instruction::SetGT: return 4;
646 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000647 }
648}
Chris Lattner06925362002-11-17 21:56:38 +0000649
Chris Lattner6d40c192003-01-16 16:43:00 +0000650// LLVM -> X86 signed X86 unsigned
651// ----- ---------- ------------
652// seteq -> sete sete
653// setne -> setne setne
654// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000655// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000656// setgt -> setg seta
657// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000658// ----
659// sets // Used by comparison with 0 optimization
660// setns
661static const unsigned SetCCOpcodeTab[2][8] = {
662 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
663 0, 0 },
664 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
665 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000666};
667
Chris Lattnerb2acc512003-10-19 21:09:10 +0000668// EmitComparison - This function emits a comparison of the two operands,
669// returning the extended setcc code to use.
670unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
671 MachineBasicBlock *MBB,
672 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000673 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000674 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000675 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000676 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000677
678 // Special case handling of: cmp R, i
679 if (Class == cByte || Class == cShort || Class == cInt)
680 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000681 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
682
Chris Lattner333864d2003-06-05 19:30:30 +0000683 // Mask off any upper bits of the constant, if there are any...
684 Op1v &= (1ULL << (8 << Class)) - 1;
685
Chris Lattnerb2acc512003-10-19 21:09:10 +0000686 // If this is a comparison against zero, emit more efficient code. We
687 // can't handle unsigned comparisons against zero unless they are == or
688 // !=. These should have been strength reduced already anyway.
689 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
690 static const unsigned TESTTab[] = {
691 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
692 };
693 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
694
695 if (OpNum == 2) return 6; // Map jl -> js
696 if (OpNum == 3) return 7; // Map jg -> jns
697 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000698 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000699
700 static const unsigned CMPTab[] = {
701 X86::CMPri8, X86::CMPri16, X86::CMPri32
702 };
703
704 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
705 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000706 }
707
Chris Lattner9f08a922004-02-03 18:54:04 +0000708 // Special case handling of comparison against +/- 0.0
709 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
710 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
711 BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
712 BMI(MBB, IP, X86::FNSTSWr8, 0);
713 BMI(MBB, IP, X86::SAHF, 1);
714 return OpNum;
715 }
716
Chris Lattner58c41fe2003-08-24 19:19:47 +0000717 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000718 switch (Class) {
719 default: assert(0 && "Unknown type class!");
720 // Emit: cmp <var1>, <var2> (do the comparison). We can
721 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
722 // 32-bit.
723 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000724 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000725 break;
726 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000727 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000728 break;
729 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000730 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000731 break;
732 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000733 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
734 BMI(MBB, IP, X86::FNSTSWr8, 0);
735 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000736 break;
737
738 case cLong:
739 if (OpNum < 2) { // seteq, setne
740 unsigned LoTmp = makeAnotherReg(Type::IntTy);
741 unsigned HiTmp = makeAnotherReg(Type::IntTy);
742 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000743 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
744 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
745 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000746 break; // Allow the sete or setne to be generated from flags set by OR
747 } else {
748 // Emit a sequence of code which compares the high and low parts once
749 // each, then uses a conditional move to handle the overflow case. For
750 // example, a setlt for long would generate code like this:
751 //
752 // AL = lo(op1) < lo(op2) // Signedness depends on operands
753 // BL = hi(op1) < hi(op2) // Always unsigned comparison
754 // dest = hi(op1) == hi(op2) ? AL : BL;
755 //
756
Chris Lattner6d40c192003-01-16 16:43:00 +0000757 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000758 // classes! Until then, hardcode registers so that we can deal with their
759 // aliases (because we don't have conditional byte moves).
760 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000761 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
762 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
763 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000764 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000765 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
766 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
767 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000768 // NOTE: visitSetCondInst knows that the value is dumped into the BL
769 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000770 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000771 }
772 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000773 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000774}
Chris Lattner3e130a22003-01-13 00:32:26 +0000775
Chris Lattner6d40c192003-01-16 16:43:00 +0000776
777/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
778/// register, then move it to wherever the result should be.
779///
780void ISel::visitSetCondInst(SetCondInst &I) {
781 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
782
Chris Lattner6d40c192003-01-16 16:43:00 +0000783 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000784 MachineBasicBlock::iterator MII = BB->end();
785 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
786 DestReg);
787}
Chris Lattner6d40c192003-01-16 16:43:00 +0000788
Chris Lattner58c41fe2003-08-24 19:19:47 +0000789/// emitSetCCOperation - Common code shared between visitSetCondInst and
790/// constant expression support.
791void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
792 MachineBasicBlock::iterator &IP,
793 Value *Op0, Value *Op1, unsigned Opcode,
794 unsigned TargetReg) {
795 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000796 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000797
Chris Lattnerb2acc512003-10-19 21:09:10 +0000798 const Type *CompTy = Op0->getType();
799 unsigned CompClass = getClassB(CompTy);
800 bool isSigned = CompTy->isSigned() && CompClass != cFP;
801
802 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000803 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000804 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000805 } else {
806 // Handle long comparisons by copying the value which is already in BL into
807 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000808 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000809 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000810}
Chris Lattner51b49a92002-11-02 19:45:49 +0000811
Chris Lattner58c41fe2003-08-24 19:19:47 +0000812
813
814
Brian Gaekec2505982002-11-30 11:57:28 +0000815/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
816/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000817void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
818 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000819
820 // Make sure we have the register number for this value...
821 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
822
Chris Lattner3e130a22003-01-13 00:32:26 +0000823 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000824 case cByte:
825 // Extend value into target register (8->32)
826 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000827 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000828 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000829 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000830 break;
831 case cShort:
832 // Extend value into target register (16->32)
833 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000834 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000835 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000836 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000837 break;
838 case cInt:
839 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000840 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000841 break;
842 default:
843 assert(0 && "Unpromotable operand class in promote32");
844 }
Brian Gaekec2505982002-11-30 11:57:28 +0000845}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000846
Chris Lattner72614082002-10-25 22:55:53 +0000847/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
848/// we have the following possibilities:
849///
850/// ret void: No return value, simply emit a 'ret' instruction
851/// ret sbyte, ubyte : Extend value into EAX and return
852/// ret short, ushort: Extend value into EAX and return
853/// ret int, uint : Move value into EAX and return
854/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000855/// ret long, ulong : Move value into EAX/EDX and return
856/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000857///
Chris Lattner3e130a22003-01-13 00:32:26 +0000858void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000859 if (I.getNumOperands() == 0) {
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000860#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000861 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000862#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000863 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
864 return;
865 }
866
867 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000868 unsigned RetReg = getReg(RetVal);
869 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000870 case cByte: // integral return values: extend or move into EAX and return
871 case cShort:
872 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000873 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000874 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000875 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000876 break;
877 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000878 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000879 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000880 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000881 break;
882 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
884 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000885 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000886 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
887 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000888 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000889 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000890 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000891 }
Chris Lattner43189d12002-11-17 20:07:45 +0000892 // Emit a 'ret' instruction
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000893#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000894 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000895#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000896 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000897}
898
Chris Lattner55f6fab2003-01-16 18:07:23 +0000899// getBlockAfter - Return the basic block which occurs lexically after the
900// specified one.
901static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
902 Function::iterator I = BB; ++I; // Get iterator to next block
903 return I != BB->getParent()->end() ? &*I : 0;
904}
905
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000906/// RequiresFPRegKill - The floating point stackifier pass cannot insert
907/// compensation code on critical edges. As such, it requires that we kill all
908/// FP registers on the exit from any blocks that either ARE critical edges, or
909/// branch to a block that has incoming critical edges.
910///
911/// Note that this kill instruction will eventually be eliminated when
912/// restrictions in the stackifier are relaxed.
913///
914static bool RequiresFPRegKill(const BasicBlock *BB) {
915#ifdef SMART_FP
916 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
917 const BasicBlock *Succ = *SI;
918 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
919 ++PI; // Block have at least one predecessory
920 if (PI != PE) { // If it has exactly one, this isn't crit edge
921 // If this block has more than one predecessor, check all of the
922 // predecessors to see if they have multiple successors. If so, then the
923 // block we are analyzing needs an FPRegKill.
924 for (PI = pred_begin(Succ); PI != PE; ++PI) {
925 const BasicBlock *Pred = *PI;
926 succ_const_iterator SI2 = succ_begin(Pred);
927 ++SI2; // There must be at least one successor of this block.
928 if (SI2 != succ_end(Pred))
929 return true; // Yes, we must insert the kill on this edge.
930 }
931 }
932 }
933 // If we got this far, there is no need to insert the kill instruction.
934 return false;
935#else
936 return true;
937#endif
938}
939
Chris Lattner51b49a92002-11-02 19:45:49 +0000940/// visitBranchInst - Handle conditional and unconditional branches here. Note
941/// that since code layout is frozen at this point, that if we are trying to
942/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000943/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000944///
Chris Lattner94af4142002-12-25 05:13:53 +0000945void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000946 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
947
948 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000949 if (RequiresFPRegKill(BI.getParent()))
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000950 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000951 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +0000952 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000953 return;
954 }
955
956 // See if we can fold the setcc into the branch itself...
957 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
958 if (SCI == 0) {
959 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
960 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000961 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000962 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000963 if (RequiresFPRegKill(BI.getParent()))
964 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000965 if (BI.getSuccessor(1) == NextBB) {
966 if (BI.getSuccessor(0) != NextBB)
967 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
968 } else {
969 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
970
971 if (BI.getSuccessor(0) != NextBB)
972 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
973 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000974 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000975 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000976
977 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000978 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000979 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000980
981 const Type *CompTy = SCI->getOperand(0)->getType();
982 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000983
Chris Lattnerb2acc512003-10-19 21:09:10 +0000984
Chris Lattner6d40c192003-01-16 16:43:00 +0000985 // LLVM -> X86 signed X86 unsigned
986 // ----- ---------- ------------
987 // seteq -> je je
988 // setne -> jne jne
989 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000990 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000991 // setgt -> jg ja
992 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000993 // ----
994 // js // Used by comparison with 0 optimization
995 // jns
996
997 static const unsigned OpcodeTab[2][8] = {
998 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
999 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1000 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001001 };
1002
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001003 if (RequiresFPRegKill(BI.getParent()))
1004 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001005 if (BI.getSuccessor(0) != NextBB) {
1006 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1007 if (BI.getSuccessor(1) != NextBB)
1008 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1009 } else {
1010 // Change to the inverse condition...
1011 if (BI.getSuccessor(1) != NextBB) {
1012 OpNum ^= 1;
1013 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1014 }
1015 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001016}
1017
Chris Lattner3e130a22003-01-13 00:32:26 +00001018
1019/// doCall - This emits an abstract call instruction, setting up the arguments
1020/// and the return value as appropriate. For the actual function call itself,
1021/// it inserts the specified CallMI instruction into the stream.
1022///
1023void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001024 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001025
Chris Lattner065faeb2002-12-28 20:24:02 +00001026 // Count how many bytes are to be pushed on the stack...
1027 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001028
Chris Lattner3e130a22003-01-13 00:32:26 +00001029 if (!Args.empty()) {
1030 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1031 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001032 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001033 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001034 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001035 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001036 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001037 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1038 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001039 default: assert(0 && "Unknown class!");
1040 }
1041
1042 // Adjust the stack pointer for the new arguments...
1043 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1044
1045 // Arguments go on the stack in reverse order, as specified by the ABI.
1046 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001047 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001048 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001049 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001050 case cByte:
1051 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001052 // Promote arg to 32 bits wide into a temporary register...
1053 unsigned R = makeAnotherReg(Type::UIntTy);
1054 promote32(R, Args[i]);
1055 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1056 X86::ESP, ArgOffset).addReg(R);
1057 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001058 }
1059 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001060 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1061 X86::ESP, ArgOffset).addReg(ArgReg);
1062 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001063 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001064 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1065 X86::ESP, ArgOffset).addReg(ArgReg);
1066 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1067 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1068 ArgOffset += 4; // 8 byte entry, not 4.
1069 break;
1070
Chris Lattner065faeb2002-12-28 20:24:02 +00001071 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001072 if (Args[i].Ty == Type::FloatTy) {
1073 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1074 X86::ESP, ArgOffset).addReg(ArgReg);
1075 } else {
1076 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1077 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1078 X86::ESP, ArgOffset).addReg(ArgReg);
1079 ArgOffset += 4; // 8 byte entry, not 4.
1080 }
1081 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001082
Chris Lattner3e130a22003-01-13 00:32:26 +00001083 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001084 }
1085 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001086 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001087 } else {
1088 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001089 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001090
Chris Lattner3e130a22003-01-13 00:32:26 +00001091 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001092
Chris Lattner065faeb2002-12-28 20:24:02 +00001093 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001094
1095 // If there is a return value, scavenge the result from the location the call
1096 // leaves it in...
1097 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001098 if (Ret.Ty != Type::VoidTy) {
1099 unsigned DestClass = getClassB(Ret.Ty);
1100 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001101 case cByte:
1102 case cShort:
1103 case cInt: {
1104 // Integral results are in %eax, or the appropriate portion
1105 // thereof.
1106 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001107 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001108 };
1109 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001110 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001111 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001112 }
Chris Lattner94af4142002-12-25 05:13:53 +00001113 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001114 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001115 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001116 case cLong: // Long values are left in EDX:EAX
1117 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1118 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1119 break;
1120 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001121 }
Chris Lattnera3243642002-12-04 23:45:28 +00001122 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001123}
Chris Lattner2df035b2002-11-02 19:27:56 +00001124
Chris Lattner3e130a22003-01-13 00:32:26 +00001125
1126/// visitCallInst - Push args on stack and do a procedure call instruction.
1127void ISel::visitCallInst(CallInst &CI) {
1128 MachineInstr *TheCall;
1129 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001130 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001131 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001132 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1133 return;
1134 }
1135
Chris Lattner3e130a22003-01-13 00:32:26 +00001136 // Emit a CALL instruction with PC-relative displacement.
1137 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1138 } else { // Emit an indirect call...
1139 unsigned Reg = getReg(CI.getCalledValue());
1140 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1141 }
1142
1143 std::vector<ValueRecord> Args;
1144 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001145 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001146
1147 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1148 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001149}
Chris Lattner3e130a22003-01-13 00:32:26 +00001150
Chris Lattneraeb54b82003-08-28 21:23:43 +00001151
Chris Lattner44827152003-12-28 09:47:19 +00001152/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1153/// function, lowering any calls to unknown intrinsic functions into the
1154/// equivalent LLVM code.
1155void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1156 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1157 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1158 if (CallInst *CI = dyn_cast<CallInst>(I++))
1159 if (Function *F = CI->getCalledFunction())
1160 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001161 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001162 case Intrinsic::va_start:
1163 case Intrinsic::va_copy:
1164 case Intrinsic::va_end:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001165 case Intrinsic::returnaddress:
1166 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001167 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001168 case Intrinsic::memset:
Chris Lattner44827152003-12-28 09:47:19 +00001169 // We directly implement these intrinsics
1170 break;
1171 default:
1172 // All other intrinsic calls we must lower.
1173 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001174 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001175 if (Before) { // Move iterator to instruction after call
1176 I = Before; ++I;
1177 } else {
1178 I = BB->begin();
1179 }
1180 }
1181
1182}
1183
Brian Gaeked0fde302003-11-11 22:41:34 +00001184void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001185 unsigned TmpReg1, TmpReg2;
1186 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001187 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001188 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001189 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001190 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001191 return;
1192
Brian Gaeked0fde302003-11-11 22:41:34 +00001193 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001194 TmpReg1 = getReg(CI);
1195 TmpReg2 = getReg(CI.getOperand(1));
1196 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001197 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001198 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001199
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001200 case Intrinsic::returnaddress:
1201 case Intrinsic::frameaddress:
1202 TmpReg1 = getReg(CI);
1203 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1204 if (ID == Intrinsic::returnaddress) {
1205 // Just load the return address
1206 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, TmpReg1),
1207 ReturnAddressIndex);
1208 } else {
1209 addFrameReference(BuildMI(BB, X86::LEAr32, 4, TmpReg1),
1210 ReturnAddressIndex, -4);
1211 }
1212 } else {
1213 // Values other than zero are not implemented yet.
1214 BuildMI(BB, X86::MOVir32, 1, TmpReg1).addZImm(0);
1215 }
1216 return;
1217
Chris Lattner915e5e52004-02-12 17:53:22 +00001218 case Intrinsic::memcpy: {
1219 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1220 unsigned Align = 1;
1221 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1222 Align = AlignC->getRawValue();
1223 if (Align == 0) Align = 1;
1224 }
1225
1226 // Turn the byte code into # iterations
Chris Lattner07122832004-02-13 23:36:47 +00001227 unsigned ByteReg;
Chris Lattner915e5e52004-02-12 17:53:22 +00001228 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001229 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001230 switch (Align & 3) {
1231 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001232 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1233 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1234 } else {
1235 CountReg = makeAnotherReg(Type::IntTy);
1236 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(1);
1237 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001238 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001239 break;
1240 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001241 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1242 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1243 } else {
1244 CountReg = makeAnotherReg(Type::IntTy);
1245 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(2);
1246 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001247 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001248 break;
1249 case 1: // BYTE aligned
1250 case 3: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001251 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001252 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001253 break;
1254 }
1255
1256 // No matter what the alignment is, we put the source in ESI, the
1257 // destination in EDI, and the count in ECX.
1258 TmpReg1 = getReg(CI.getOperand(1));
1259 TmpReg2 = getReg(CI.getOperand(2));
1260 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1261 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1262 BuildMI(BB, X86::MOVrr32, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001263 BuildMI(BB, Opcode, 0);
1264 return;
1265 }
1266 case Intrinsic::memset: {
1267 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1268 unsigned Align = 1;
1269 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1270 Align = AlignC->getRawValue();
1271 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001272 }
1273
Chris Lattner2a0f2242004-02-14 04:46:05 +00001274 // Turn the byte code into # iterations
1275 unsigned ByteReg;
1276 unsigned CountReg;
1277 unsigned Opcode;
1278 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1279 unsigned Val = ValC->getRawValue() & 255;
1280
1281 // If the value is a constant, then we can potentially use larger copies.
1282 switch (Align & 3) {
1283 case 2: // WORD aligned
1284 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001285 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001286 } else {
1287 CountReg = makeAnotherReg(Type::IntTy);
1288 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(1);
1289 }
1290 BuildMI(BB, X86::MOVir16, 1, X86::AX).addZImm((Val << 8) | Val);
1291 Opcode = X86::REP_STOSW;
1292 break;
1293 case 0: // DWORD aligned
1294 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001295 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001296 } else {
1297 CountReg = makeAnotherReg(Type::IntTy);
1298 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(2);
1299 }
1300 Val = (Val << 8) | Val;
1301 BuildMI(BB, X86::MOVir32, 1, X86::EAX).addZImm((Val << 16) | Val);
1302 Opcode = X86::REP_STOSD;
1303 break;
1304 case 1: // BYTE aligned
1305 case 3: // BYTE aligned
1306 CountReg = getReg(CI.getOperand(3));
1307 BuildMI(BB, X86::MOVir8, 1, X86::AL).addZImm(Val);
1308 Opcode = X86::REP_STOSB;
1309 break;
1310 }
1311 } else {
1312 // If it's not a constant value we are storing, just fall back. We could
1313 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1314 unsigned ValReg = getReg(CI.getOperand(2));
1315 BuildMI(BB, X86::MOVrr8, 1, X86::AL).addReg(ValReg);
1316 CountReg = getReg(CI.getOperand(3));
1317 Opcode = X86::REP_STOSB;
1318 }
1319
1320 // No matter what the alignment is, we put the source in ESI, the
1321 // destination in EDI, and the count in ECX.
1322 TmpReg1 = getReg(CI.getOperand(1));
1323 //TmpReg2 = getReg(CI.getOperand(2));
1324 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1325 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1326 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001327 return;
1328 }
1329
Chris Lattner44827152003-12-28 09:47:19 +00001330 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001331 }
1332}
1333
1334
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001335/// visitSimpleBinary - Implement simple binary operators for integral types...
1336/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1337/// Xor.
1338void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1339 unsigned DestReg = getReg(B);
1340 MachineBasicBlock::iterator MI = BB->end();
1341 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1342 OperatorClass, DestReg);
1343}
Chris Lattner3e130a22003-01-13 00:32:26 +00001344
Chris Lattnerb2acc512003-10-19 21:09:10 +00001345/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1346/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1347/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001348///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001349/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1350/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001351///
1352void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001353 MachineBasicBlock::iterator &IP,
1354 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001355 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001356 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001357
1358 // sub 0, X -> neg X
1359 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001360 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001361 if (CI->isNullValue()) {
1362 unsigned op1Reg = getReg(Op1, MBB, IP);
1363 switch (Class) {
1364 default: assert(0 && "Unknown class for this function!");
1365 case cByte:
1366 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1367 return;
1368 case cShort:
1369 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1370 return;
1371 case cInt:
1372 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1373 return;
1374 }
1375 }
Chris Lattner9f8fd6d2004-02-02 19:31:38 +00001376 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1377 if (CFP->isExactlyValue(-0.0)) {
1378 // -0.0 - X === -X
1379 unsigned op1Reg = getReg(Op1, MBB, IP);
1380 BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1381 return;
1382 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001383
Chris Lattner35333e12003-06-05 18:28:55 +00001384 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1385 static const unsigned OpcodeTab[][4] = {
1386 // Arithmetic operators
1387 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1388 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1389
1390 // Bitwise operators
1391 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1392 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1393 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001394 };
Chris Lattner35333e12003-06-05 18:28:55 +00001395
1396 bool isLong = false;
1397 if (Class == cLong) {
1398 isLong = true;
1399 Class = cInt; // Bottom 32 bits are handled just like ints
1400 }
1401
1402 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1403 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001404 unsigned Op0r = getReg(Op0, MBB, IP);
1405 unsigned Op1r = getReg(Op1, MBB, IP);
1406 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001407
1408 if (isLong) { // Handle the upper 32 bits of long values...
1409 static const unsigned TopTab[] = {
1410 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1411 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001412 BMI(MBB, IP, TopTab[OperatorClass], 2,
1413 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001414 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001415 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001416 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001417
1418 // Special case: op Reg, <const>
1419 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1420 unsigned Op0r = getReg(Op0, MBB, IP);
1421
1422 // xor X, -1 -> not X
1423 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1424 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1425 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1426 return;
1427 }
1428
1429 // add X, -1 -> dec X
1430 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1431 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1432 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1433 return;
1434 }
1435
1436 // add X, 1 -> inc X
1437 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1438 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1439 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1440 return;
1441 }
1442
1443 static const unsigned OpcodeTab[][3] = {
1444 // Arithmetic operators
1445 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1446 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1447
1448 // Bitwise operators
1449 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1450 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1451 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1452 };
1453
1454 assert(Class < 3 && "General code handles 64-bit integer types!");
1455 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1456 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1457
1458 // Mask off any upper bits of the constant, if there are any...
1459 Op1v &= (1ULL << (8 << Class)) - 1;
1460 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001461}
1462
Chris Lattner3e130a22003-01-13 00:32:26 +00001463/// doMultiply - Emit appropriate instructions to multiply together the
1464/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1465/// result should be given as DestTy.
1466///
Chris Lattner8a307e82002-12-16 19:32:50 +00001467void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001468 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001469 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001470 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001471 switch (Class) {
1472 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001473 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001474 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001475 case cInt:
1476 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001477 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001478 .addReg(op0Reg).addReg(op1Reg);
1479 return;
1480 case cByte:
1481 // Must use the MUL instruction, which forces use of AL...
1482 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1483 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1484 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1485 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001486 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001487 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001488 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001489}
1490
Chris Lattnerb2acc512003-10-19 21:09:10 +00001491// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1492// returns zero when the input is not exactly a power of two.
1493static unsigned ExactLog2(unsigned Val) {
1494 if (Val == 0) return 0;
1495 unsigned Count = 0;
1496 while (Val != 1) {
1497 if (Val & 1) return 0;
1498 Val >>= 1;
1499 ++Count;
1500 }
1501 return Count+1;
1502}
1503
1504void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1505 MachineBasicBlock::iterator &IP,
1506 unsigned DestReg, const Type *DestTy,
1507 unsigned op0Reg, unsigned ConstRHS) {
1508 unsigned Class = getClass(DestTy);
1509
1510 // If the element size is exactly a power of 2, use a shift to get it.
1511 if (unsigned Shift = ExactLog2(ConstRHS)) {
1512 switch (Class) {
1513 default: assert(0 && "Unknown class for this function!");
1514 case cByte:
1515 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1516 return;
1517 case cShort:
1518 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1519 return;
1520 case cInt:
1521 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1522 return;
1523 }
1524 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001525
1526 if (Class == cShort) {
1527 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1528 return;
1529 } else if (Class == cInt) {
1530 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1531 return;
1532 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001533
1534 // Most general case, emit a normal multiply...
1535 static const unsigned MOVirTab[] = {
1536 X86::MOVir8, X86::MOVir16, X86::MOVir32
1537 };
1538
1539 unsigned TmpReg = makeAnotherReg(DestTy);
1540 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1541
1542 // Emit a MUL to multiply the register holding the index by
1543 // elementSize, putting the result in OffsetReg.
1544 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1545}
1546
Chris Lattnerca9671d2002-11-02 20:28:58 +00001547/// visitMul - Multiplies are not simple binary operators because they must deal
1548/// with the EAX register explicitly.
1549///
1550void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001551 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001552 unsigned DestReg = getReg(I);
1553
1554 // Simple scalar multiply?
1555 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001556 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1557 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1558 MachineBasicBlock::iterator MBBI = BB->end();
1559 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1560 } else {
1561 unsigned Op1Reg = getReg(I.getOperand(1));
1562 MachineBasicBlock::iterator MBBI = BB->end();
1563 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1564 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001565 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001566 unsigned Op1Reg = getReg(I.getOperand(1));
1567
Chris Lattner3e130a22003-01-13 00:32:26 +00001568 // Long value. We have to do things the hard way...
1569 // Multiply the two low parts... capturing carry into EDX
1570 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1571 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1572
1573 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1574 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1575 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1576
1577 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001578 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001579 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001580
1581 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1582 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001583 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001584
1585 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001586 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001587 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001588
1589 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001590 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001591 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001592}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001593
Chris Lattner06925362002-11-17 21:56:38 +00001594
Chris Lattnerf01729e2002-11-02 20:54:46 +00001595/// visitDivRem - Handle division and remainder instructions... these
1596/// instruction both require the same instructions to be generated, they just
1597/// select the result from a different register. Note that both of these
1598/// instructions work differently for signed and unsigned operands.
1599///
1600void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001601 unsigned Op0Reg = getReg(I.getOperand(0));
1602 unsigned Op1Reg = getReg(I.getOperand(1));
1603 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001604
Chris Lattnercadff442003-10-23 17:21:43 +00001605 MachineBasicBlock::iterator IP = BB->end();
1606 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1607 I.getType(), ResultReg);
1608}
1609
1610void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1611 MachineBasicBlock::iterator &IP,
1612 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1613 const Type *Ty, unsigned ResultReg) {
1614 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001615 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001616 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001617 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001618 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001619 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001620 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001621 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001622 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001623 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1624 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001625 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1626 }
Chris Lattner94af4142002-12-25 05:13:53 +00001627 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001628 case cLong: {
1629 static const char *FnName[] =
1630 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1631
Chris Lattnercadff442003-10-23 17:21:43 +00001632 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001633 MachineInstr *TheCall =
1634 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1635
1636 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001637 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1638 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001639 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1640 return;
1641 }
1642 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001643 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001644 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001645 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001646
1647 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1648 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001649 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001650 static const unsigned ClrOpcode[]={ X86::MOVir8, X86::MOVir16, X86::MOVir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001651 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1652
1653 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001654 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1655 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001656 };
1657
Chris Lattnercadff442003-10-23 17:21:43 +00001658 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001659 unsigned Reg = Regs[Class];
1660 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001661
1662 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001663 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001664
1665 if (isSigned) {
1666 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001667 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001668 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1669 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001670 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001671 // If unsigned, emit a zeroing instruction... (reg = 0)
1672 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001673 }
1674
Chris Lattner06925362002-11-17 21:56:38 +00001675 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001676 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001677
Chris Lattnerf01729e2002-11-02 20:54:46 +00001678 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001679 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001680
Chris Lattnerf01729e2002-11-02 20:54:46 +00001681 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001682 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001683}
Chris Lattnere2954c82002-11-02 20:04:26 +00001684
Chris Lattner06925362002-11-17 21:56:38 +00001685
Brian Gaekea1719c92002-10-31 23:03:59 +00001686/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1687/// for constant immediate shift values, and for constant immediate
1688/// shift values equal to 1. Even the general case is sort of special,
1689/// because the shift amount has to be in CL, not just any old register.
1690///
Chris Lattner3e130a22003-01-13 00:32:26 +00001691void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001692 MachineBasicBlock::iterator IP = BB->end ();
1693 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1694 I.getOpcode () == Instruction::Shl, I.getType (),
1695 getReg (I));
1696}
1697
1698/// emitShiftOperation - Common code shared between visitShiftInst and
1699/// constant expression support.
1700void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1701 MachineBasicBlock::iterator &IP,
1702 Value *Op, Value *ShiftAmount, bool isLeftShift,
1703 const Type *ResultTy, unsigned DestReg) {
1704 unsigned SrcReg = getReg (Op, MBB, IP);
1705 bool isSigned = ResultTy->isSigned ();
1706 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001707
1708 static const unsigned ConstantOperand[][4] = {
1709 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1710 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1711 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1712 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1713 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001714
Chris Lattner3e130a22003-01-13 00:32:26 +00001715 static const unsigned NonConstantOperand[][4] = {
1716 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1717 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1718 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1719 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1720 };
Chris Lattner796df732002-11-02 00:44:25 +00001721
Chris Lattner3e130a22003-01-13 00:32:26 +00001722 // Longs, as usual, are handled specially...
1723 if (Class == cLong) {
1724 // If we have a constant shift, we can generate much more efficient code
1725 // than otherwise...
1726 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001727 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001728 unsigned Amount = CUI->getValue();
1729 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001730 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1731 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001732 BMI(MBB, IP, Opc[3], 3,
1733 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1734 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001735 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001736 BMI(MBB, IP, Opc[3], 3,
1737 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1738 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001739 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001740 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001741 Amount -= 32;
1742 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001743 BMI(MBB, IP, X86::SHLir32, 2,
1744 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1745 BMI(MBB, IP, X86::MOVir32, 1,
1746 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001747 } else {
1748 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001749 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1750 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001751 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001752 }
1753 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001754 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1755
1756 if (!isLeftShift && isSigned) {
1757 // If this is a SHR of a Long, then we need to do funny sign extension
1758 // stuff. TmpReg gets the value to use as the high-part if we are
1759 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001760 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001761 } else {
1762 // Other shifts use a fixed zero value if the shift is more than 32
1763 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001764 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001765 }
1766
1767 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001768 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1769 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001770
1771 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1772 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1773 if (isLeftShift) {
1774 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001775 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001776 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001777 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001778
1779 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001780 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001781
1782 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001783 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001784 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1785 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001786 BMI(MBB, IP, X86::CMOVNErr32, 2,
1787 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001788 } else {
1789 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001790 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001791 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001792 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001793 .addReg(SrcReg+1);
1794
1795 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001796 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001797
1798 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001799 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001800 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1801
1802 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001803 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001804 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1805 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001806 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001807 return;
1808 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001809
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001810 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001811 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1812 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001813
Chris Lattner3e130a22003-01-13 00:32:26 +00001814 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001815 BMI(MBB, IP, Opc[Class], 2,
1816 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001817 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001818 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1819 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001820
Chris Lattner3e130a22003-01-13 00:32:26 +00001821 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001822 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001823 }
1824}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001825
Chris Lattner3e130a22003-01-13 00:32:26 +00001826
Chris Lattner6fc3c522002-11-17 21:11:55 +00001827/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001828/// instruction. The load and store instructions are the only place where we
1829/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001830///
1831void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001832 unsigned SrcAddrReg = getReg(I.getOperand(0));
1833 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001834
Brian Gaekebfedb912003-07-17 21:30:06 +00001835 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001836
1837 if (Class == cLong) {
1838 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1839 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001840 return;
1841 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001842
Chris Lattner6ac1d712003-10-20 04:48:06 +00001843 static const unsigned Opcodes[] = {
1844 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001845 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001846 unsigned Opcode = Opcodes[Class];
1847 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1848 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001849}
1850
Chris Lattner6fc3c522002-11-17 21:11:55 +00001851/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1852/// instruction.
1853///
1854void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001855 unsigned ValReg = getReg(I.getOperand(0));
1856 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001857
1858 const Type *ValTy = I.getOperand(0)->getType();
1859 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001860
1861 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001862 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1863 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001864 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001865 }
1866
Chris Lattner6ac1d712003-10-20 04:48:06 +00001867 static const unsigned Opcodes[] = {
1868 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1869 };
1870 unsigned Opcode = Opcodes[Class];
1871 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1872 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001873}
1874
1875
Brian Gaekec11232a2002-11-26 10:43:30 +00001876/// visitCastInst - Here we have various kinds of copying with or without
1877/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001878void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001879 Value *Op = CI.getOperand(0);
1880 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1881 // of the case are GEP instructions, then the cast does not need to be
1882 // generated explicitly, it will be folded into the GEP.
1883 if (CI.getType() == Type::LongTy &&
1884 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1885 bool AllUsesAreGEPs = true;
1886 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1887 if (!isa<GetElementPtrInst>(*I)) {
1888 AllUsesAreGEPs = false;
1889 break;
1890 }
1891
1892 // No need to codegen this cast if all users are getelementptr instrs...
1893 if (AllUsesAreGEPs) return;
1894 }
1895
Chris Lattner548f61d2003-04-23 17:22:12 +00001896 unsigned DestReg = getReg(CI);
1897 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001898 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001899}
1900
1901/// emitCastOperation - Common code shared between visitCastInst and
1902/// constant expression cast support.
1903void ISel::emitCastOperation(MachineBasicBlock *BB,
1904 MachineBasicBlock::iterator &IP,
1905 Value *Src, const Type *DestTy,
1906 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001907 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001908 const Type *SrcTy = Src->getType();
1909 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001910 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001911
Chris Lattner3e130a22003-01-13 00:32:26 +00001912 // Implement casts to bool by using compare on the operand followed by set if
1913 // not zero on the result.
1914 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001915 switch (SrcClass) {
1916 case cByte:
1917 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1918 break;
1919 case cShort:
1920 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1921 break;
1922 case cInt:
1923 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1924 break;
1925 case cLong: {
1926 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1927 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1928 break;
1929 }
1930 case cFP:
1931 assert(0 && "FIXME: implement cast FP to bool");
1932 abort();
1933 }
1934
1935 // If the zero flag is not set, then the value is true, set the byte to
1936 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001937 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001938 return;
1939 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001940
1941 static const unsigned RegRegMove[] = {
1942 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1943 };
1944
1945 // Implement casts between values of the same type class (as determined by
1946 // getClass) by using a register-to-register move.
1947 if (SrcClass == DestClass) {
1948 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001949 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001950 } else if (SrcClass == cFP) {
1951 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001952 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1953 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001954 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001955 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1956 "Unknown cFP member!");
1957 // Truncate from double to float by storing to memory as short, then
1958 // reading it back.
1959 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001960 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001961 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1962 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001963 }
1964 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001965 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1966 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001967 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001968 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001969 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001970 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001971 return;
1972 }
1973
1974 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1975 // or zero extension, depending on whether the source type was signed.
1976 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1977 SrcClass < DestClass) {
1978 bool isLong = DestClass == cLong;
1979 if (isLong) DestClass = cInt;
1980
1981 static const unsigned Opc[][4] = {
1982 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1983 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1984 };
1985
1986 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001987 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1988 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001989
1990 if (isLong) { // Handle upper 32 bits as appropriate...
1991 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001992 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001993 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001994 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001995 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001996 return;
1997 }
1998
1999 // Special case long -> int ...
2000 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002001 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002002 return;
2003 }
2004
2005 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
2006 // move out of AX or AL.
2007 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2008 && SrcClass > DestClass) {
2009 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00002010 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
2011 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00002012 return;
2013 }
2014
2015 // Handle casts from integer to floating point now...
2016 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002017 // Promote the integer to a type supported by FLD. We do this because there
2018 // are no unsigned FLD instructions, so we must promote an unsigned value to
2019 // a larger signed value, then use FLD on the larger value.
2020 //
2021 const Type *PromoteType = 0;
2022 unsigned PromoteOpcode;
2023 switch (SrcTy->getPrimitiveID()) {
2024 case Type::BoolTyID:
2025 case Type::SByteTyID:
2026 // We don't have the facilities for directly loading byte sized data from
2027 // memory (even signed). Promote it to 16 bits.
2028 PromoteType = Type::ShortTy;
2029 PromoteOpcode = X86::MOVSXr16r8;
2030 break;
2031 case Type::UByteTyID:
2032 PromoteType = Type::ShortTy;
2033 PromoteOpcode = X86::MOVZXr16r8;
2034 break;
2035 case Type::UShortTyID:
2036 PromoteType = Type::IntTy;
2037 PromoteOpcode = X86::MOVZXr32r16;
2038 break;
2039 case Type::UIntTyID: {
2040 // Make a 64 bit temporary... and zero out the top of it...
2041 unsigned TmpReg = makeAnotherReg(Type::LongTy);
2042 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
2043 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
2044 SrcTy = Type::LongTy;
2045 SrcClass = cLong;
2046 SrcReg = TmpReg;
2047 break;
2048 }
2049 case Type::ULongTyID:
2050 assert("FIXME: not implemented: cast ulong X to fp type!");
2051 default: // No promotion needed...
2052 break;
2053 }
2054
2055 if (PromoteType) {
2056 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00002057 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
2058 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002059 SrcTy = PromoteType;
2060 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00002061 SrcReg = TmpReg;
2062 }
2063
2064 // Spill the integer to memory and reload it from there...
2065 int FrameIdx =
2066 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2067
2068 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002069 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
2070 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002071 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002072 } else {
2073 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002074 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002075 }
2076
2077 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002078 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002079 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002080 return;
2081 }
2082
2083 // Handle casts from floating point to integer now...
2084 if (SrcClass == cFP) {
2085 // Change the floating point control register to use "round towards zero"
2086 // mode when truncating to an integer value.
2087 //
2088 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00002089 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002090
2091 // Load the old value of the high byte of the control word...
2092 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00002093 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002094
2095 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00002096 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00002097
2098 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002099 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002100
2101 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00002102 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002103 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00002104
2105 // We don't have the facilities for directly storing byte sized data to
2106 // memory. Promote it to 16 bits. We also must promote unsigned values to
2107 // larger classes because we only have signed FP stores.
2108 unsigned StoreClass = DestClass;
2109 const Type *StoreTy = DestTy;
2110 if (StoreClass == cByte || DestTy->isUnsigned())
2111 switch (StoreClass) {
2112 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
2113 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
2114 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00002115 // The following treatment of cLong may not be perfectly right,
2116 // but it survives chains of casts of the form
2117 // double->ulong->double.
2118 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002119 default: assert(0 && "Unknown store class!");
2120 }
2121
2122 // Spill the integer to memory and reload it from there...
2123 int FrameIdx =
2124 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2125
2126 static const unsigned Op1[] =
2127 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002128 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002129
2130 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002131 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
2132 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002133 } else {
2134 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002135 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002136 }
2137
2138 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002139 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002140 return;
2141 }
2142
Brian Gaeked474e9c2002-12-06 10:49:33 +00002143 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002144 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002145 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002146}
Brian Gaekea1719c92002-10-31 23:03:59 +00002147
Chris Lattner73815062003-10-18 05:56:40 +00002148/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002149///
Chris Lattner73815062003-10-18 05:56:40 +00002150void ISel::visitVANextInst(VANextInst &I) {
2151 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002152 unsigned DestReg = getReg(I);
2153
Chris Lattnereca195e2003-05-08 19:44:13 +00002154 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002155 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002156 default:
2157 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002158 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002159 return;
2160 case Type::PointerTyID:
2161 case Type::UIntTyID:
2162 case Type::IntTyID:
2163 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002164 break;
2165 case Type::ULongTyID:
2166 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002167 case Type::DoubleTyID:
2168 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002169 break;
2170 }
2171
2172 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002173 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2174}
Chris Lattnereca195e2003-05-08 19:44:13 +00002175
Chris Lattner73815062003-10-18 05:56:40 +00002176void ISel::visitVAArgInst(VAArgInst &I) {
2177 unsigned VAList = getReg(I.getOperand(0));
2178 unsigned DestReg = getReg(I);
2179
2180 switch (I.getType()->getPrimitiveID()) {
2181 default:
2182 std::cerr << I;
2183 assert(0 && "Error: bad type for va_next instruction!");
2184 return;
2185 case Type::PointerTyID:
2186 case Type::UIntTyID:
2187 case Type::IntTyID:
2188 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2189 break;
2190 case Type::ULongTyID:
2191 case Type::LongTyID:
2192 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2193 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2194 break;
2195 case Type::DoubleTyID:
2196 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2197 break;
2198 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002199}
2200
2201
Chris Lattner3e130a22003-01-13 00:32:26 +00002202void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2203 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002204 MachineBasicBlock::iterator MI = BB->end();
2205 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002206 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002207}
2208
Brian Gaeke71794c02002-12-13 11:22:48 +00002209void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002210 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002211 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002212 User::op_iterator IdxEnd, unsigned TargetReg) {
2213 const TargetData &TD = TM.getTargetData();
2214 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002215 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002216
Brian Gaeke20244b72002-12-12 15:33:40 +00002217 // GEPs have zero or more indices; we must perform a struct access
2218 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002219 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2220 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002221 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002222 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002223 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002224 // It's a struct access. idx is the index into the structure,
2225 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002226 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2227 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002228 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002229 // Use the TargetData structure to pick out what the layout of
2230 // the structure is in memory. Since the structure index must
2231 // be constant, we can get its value and use it to find the
2232 // right byte offset from the StructLayout class's list of
2233 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002234 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002235 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2236 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002237 NextReg = makeAnotherReg(Type::UIntTy);
2238 // Emit an ADD to add FieldOff to the basePtr.
2239 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002240 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002241 // The next type is the member of the structure selected by the
2242 // index.
Chris Lattnerd21cd802004-02-09 04:37:31 +00002243 Ty = StTy->getElementType(idxValue);
Chris Lattner065faeb2002-12-28 20:24:02 +00002244 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002245 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002246
Brian Gaeke20244b72002-12-12 15:33:40 +00002247 // idx is the index into the array. Unlike with structure
2248 // indices, we may not know its actual value at code-generation
2249 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002250 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2251
Chris Lattnerf5854472003-06-21 16:01:24 +00002252 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2253 // operand on X86. Handle this case directly now...
2254 if (CastInst *CI = dyn_cast<CastInst>(idx))
2255 if (CI->getOperand(0)->getType() == Type::IntTy ||
2256 CI->getOperand(0)->getType() == Type::UIntTy)
2257 idx = CI->getOperand(0);
2258
Chris Lattner3e130a22003-01-13 00:32:26 +00002259 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002260 // must find the size of the pointed-to type (Not coincidentally, the next
2261 // type is the type of the elements in the array).
2262 Ty = SqTy->getElementType();
2263 unsigned elementSize = TD.getTypeSize(Ty);
2264
2265 // If idxReg is a constant, we don't need to perform the multiply!
2266 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002267 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002268 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002269 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002270 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002271 }
2272 } else if (elementSize == 1) {
2273 // If the element size is 1, we don't have to multiply, just add
2274 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002275 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002276 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002277 } else {
2278 unsigned idxReg = getReg(idx, MBB, IP);
2279 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002280
2281 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2282
Chris Lattner8a307e82002-12-16 19:32:50 +00002283 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002284 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002285 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002286 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002287 }
2288 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002289 // one, so we don't need to worry about BaseReg itself, anymore.
2290 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002291 }
2292 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002293 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002294 // put the answer. A 32-bit move should do it, because we are in
2295 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002296 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002297}
2298
2299
Chris Lattner065faeb2002-12-28 20:24:02 +00002300/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2301/// frame manager, otherwise do it the hard way.
2302///
2303void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002304 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002305 const Type *Ty = I.getAllocatedType();
2306 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2307
2308 // If this is a fixed size alloca in the entry block for the function,
2309 // statically stack allocate the space.
2310 //
2311 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2312 if (I.getParent() == I.getParent()->getParent()->begin()) {
2313 TySize *= CUI->getValue(); // Get total allocated size...
2314 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2315
2316 // Create a new stack object using the frame manager...
2317 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2318 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2319 return;
2320 }
2321 }
2322
2323 // Create a register to hold the temporary result of multiplying the type size
2324 // constant by the variable amount.
2325 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2326 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002327
2328 // TotalSizeReg = mul <numelements>, <TypeSize>
2329 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002330 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002331
2332 // AddedSize = add <TotalSizeReg>, 15
2333 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2334 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2335
2336 // AlignedSize = and <AddedSize>, ~15
2337 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2338 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2339
Brian Gaekee48ec012002-12-13 06:46:31 +00002340 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002341 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002342
Brian Gaekee48ec012002-12-13 06:46:31 +00002343 // Put a pointer to the space into the result register, by copying
2344 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002345 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2346
Misha Brukman48196b32003-05-03 02:18:17 +00002347 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002348 // object.
2349 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002350}
Chris Lattner3e130a22003-01-13 00:32:26 +00002351
2352/// visitMallocInst - Malloc instructions are code generated into direct calls
2353/// to the library malloc.
2354///
2355void ISel::visitMallocInst(MallocInst &I) {
2356 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2357 unsigned Arg;
2358
2359 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2360 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2361 } else {
2362 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002363 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002364 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002365 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002366 }
2367
2368 std::vector<ValueRecord> Args;
2369 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2370 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002371 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002372 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2373}
2374
2375
2376/// visitFreeInst - Free instructions are code gen'd to call the free libc
2377/// function.
2378///
2379void ISel::visitFreeInst(FreeInst &I) {
2380 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002381 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002382 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002383 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002384 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2385}
2386
Chris Lattnerd281de22003-07-26 23:49:58 +00002387/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002388/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002389/// generated code sucks but the implementation is nice and simple.
2390///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002391FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2392 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002393}