blob: fac58cc00ff46111f3aaeb0d9cc4449c0ad42d6c [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000021#include "llvm/Intrinsics.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000031
Brian Gaeked0fde302003-11-11 22:41:34 +000032namespace llvm {
33
Chris Lattner333b2fa2002-12-13 10:09:43 +000034/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000035/// instruction at as well as a basic block. This is the version for when you
36/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000037inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000038 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000039 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000041 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000043 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
45}
46
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047/// BMI - A special BuildMI variant that takes an iterator to insert the
48/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000049inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000050 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000051 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000052 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000054 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000062 MachineFunction *F; // The function we are compiling into
63 MachineBasicBlock *BB; // The current MBB we are compiling
64 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000065
Chris Lattner72614082002-10-25 22:55:53 +000066 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
67
Chris Lattner333b2fa2002-12-13 10:09:43 +000068 // MBBMap - Mapping between LLVM BB -> Machine BB
69 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
70
Chris Lattner3e130a22003-01-13 00:32:26 +000071 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000072
73 /// runOnFunction - Top level implementation of instruction selection for
74 /// the entire function.
75 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000076 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000077 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000078
Chris Lattner065faeb2002-12-28 20:24:02 +000079 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000080 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
81 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
82
Chris Lattner14aa7fe2002-12-16 22:54:46 +000083 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000084
Chris Lattnerdbd73722003-05-06 21:32:22 +000085 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000086 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000087
Chris Lattner333b2fa2002-12-13 10:09:43 +000088 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000089 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000090
91 // Select the PHI nodes
92 SelectPHINodes();
93
Chris Lattner72614082002-10-25 22:55:53 +000094 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000095 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000096 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000097 // We always build a machine code representation for the function
98 return true;
Chris Lattner72614082002-10-25 22:55:53 +000099 }
100
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000101 virtual const char *getPassName() const {
102 return "X86 Simple Instruction Selection";
103 }
104
Chris Lattner72614082002-10-25 22:55:53 +0000105 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000106 /// block. This simply creates a new MachineBasicBlock to emit code into
107 /// and adds it to the current MachineFunction. Subsequent visit* for
108 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000109 ///
110 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000111 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000112 }
113
Chris Lattner065faeb2002-12-28 20:24:02 +0000114 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
115 /// from the stack into virtual registers.
116 ///
117 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118
119 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
120 /// because we have to generate our sources into the source basic blocks,
121 /// not the current one.
122 ///
123 void SelectPHINodes();
124
Chris Lattner72614082002-10-25 22:55:53 +0000125 // Visitation methods for various instructions. These methods simply emit
126 // fixed X86 code for each instruction.
127 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000128
129 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000130 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000131 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000132
133 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000134 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000135 unsigned Reg;
136 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000137 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
138 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000139 };
140 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000141 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000142 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000143 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
145 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000146 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000147 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
148 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000149 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000151 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000152 void doMultiplyConst(MachineBasicBlock *MBB,
153 MachineBasicBlock::iterator &MBBI,
154 unsigned DestReg, const Type *DestTy,
155 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000156 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000157
Chris Lattnerf01729e2002-11-02 20:54:46 +0000158 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
159 void visitRem(BinaryOperator &B) { visitDivRem(B); }
160 void visitDivRem(BinaryOperator &B);
161
Chris Lattnere2954c82002-11-02 20:04:26 +0000162 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000163 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
164 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
165 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000166
Chris Lattner6d40c192003-01-16 16:43:00 +0000167 // Comparison operators...
168 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000169 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
170 MachineBasicBlock *MBB,
171 MachineBasicBlock::iterator &MBBI);
172
Chris Lattner6fc3c522002-11-17 21:11:55 +0000173 // Memory Instructions
174 void visitLoadInst(LoadInst &I);
175 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000176 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000177 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178 void visitMallocInst(MallocInst &I);
179 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000180
Chris Lattnere2954c82002-11-02 20:04:26 +0000181 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000182 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000183 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000184 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000185 void visitVANextInst(VANextInst &I);
186 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000187
188 void visitInstruction(Instruction &I) {
189 std::cerr << "Cannot instruction select: " << I;
190 abort();
191 }
192
Brian Gaeke95780cc2002-12-13 07:56:18 +0000193 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000194 ///
195 void promote32(unsigned targetReg, const ValueRecord &VR);
196
Chris Lattner3e130a22003-01-13 00:32:26 +0000197 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
198 /// constant expression GEP support.
199 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000200 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000201 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000202 User::op_iterator IdxEnd, unsigned TargetReg);
203
Chris Lattner548f61d2003-04-23 17:22:12 +0000204 /// emitCastOperation - Common code shared between visitCastInst and
205 /// constant expression cast support.
206 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
207 Value *Src, const Type *DestTy, unsigned TargetReg);
208
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000209 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
210 /// and constant expression support.
211 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
212 MachineBasicBlock::iterator &IP,
213 Value *Op0, Value *Op1,
214 unsigned OperatorClass, unsigned TargetReg);
215
Chris Lattnercadff442003-10-23 17:21:43 +0000216 void emitDivRemOperation(MachineBasicBlock *BB,
217 MachineBasicBlock::iterator &IP,
218 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
219 const Type *Ty, unsigned TargetReg);
220
Chris Lattner58c41fe2003-08-24 19:19:47 +0000221 /// emitSetCCOperation - Common code shared between visitSetCondInst and
222 /// constant expression support.
223 void emitSetCCOperation(MachineBasicBlock *BB,
224 MachineBasicBlock::iterator &IP,
225 Value *Op0, Value *Op1, unsigned Opcode,
226 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000227
228 /// emitShiftOperation - Common code shared between visitShiftInst and
229 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000230 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000231 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000232 Value *Op, Value *ShiftAmount, bool isLeftShift,
233 const Type *ResultTy, unsigned DestReg);
234
Chris Lattner58c41fe2003-08-24 19:19:47 +0000235
Chris Lattnerc5291f52002-10-27 21:16:59 +0000236 /// copyConstantToRegister - Output the instructions required to put the
237 /// specified constant into the specified register.
238 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000239 void copyConstantToRegister(MachineBasicBlock *MBB,
240 MachineBasicBlock::iterator &MBBI,
241 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000242
Chris Lattner3e130a22003-01-13 00:32:26 +0000243 /// makeAnotherReg - This method returns the next register number we haven't
244 /// yet used.
245 ///
246 /// Long values are handled somewhat specially. They are always allocated
247 /// as pairs of 32 bit integer values. The register number returned is the
248 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
249 /// of the long value.
250 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000251 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000252 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
253 "Current target doesn't have X86 reg info??");
254 const X86RegisterInfo *MRI =
255 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000256 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000257 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
258 // Create the lower part
259 F->getSSARegMap()->createVirtualRegister(RC);
260 // Create the upper part.
261 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000262 }
263
Chris Lattnerc0812d82002-12-13 06:56:29 +0000264 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000265 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000266 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000267 }
268
Chris Lattner72614082002-10-25 22:55:53 +0000269 /// getReg - This method turns an LLVM value into a register number. This
270 /// is guaranteed to produce the same register number for a particular value
271 /// every time it is queried.
272 ///
273 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000274 unsigned getReg(Value *V) {
275 // Just append to the end of the current bb.
276 MachineBasicBlock::iterator It = BB->end();
277 return getReg(V, BB, It);
278 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000279 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000280 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000281 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000282 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000283 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000284 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000285 }
Chris Lattner72614082002-10-25 22:55:53 +0000286
Chris Lattner6f8fd252002-10-27 21:23:43 +0000287 // If this operand is a constant, emit the code to copy the constant into
288 // the register here...
289 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000290 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000291 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000292 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000293 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
294 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000295 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000296 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000297 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000298
Chris Lattner72614082002-10-25 22:55:53 +0000299 return Reg;
300 }
Chris Lattner72614082002-10-25 22:55:53 +0000301 };
302}
303
Chris Lattner43189d12002-11-17 20:07:45 +0000304/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
305/// Representation.
306///
307enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000308 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000309};
310
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000311/// getClass - Turn a primitive type into a "class" number which is based on the
312/// size of the type, and whether or not it is floating point.
313///
Chris Lattner43189d12002-11-17 20:07:45 +0000314static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000315 switch (Ty->getPrimitiveID()) {
316 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000317 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000318 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000319 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000320 case Type::IntTyID:
321 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000322 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000323
Chris Lattner94af4142002-12-25 05:13:53 +0000324 case Type::FloatTyID:
325 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000326
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000327 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000328 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 default:
330 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000331 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000332 }
333}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000334
Chris Lattner6b993cc2002-12-15 08:02:15 +0000335// getClassB - Just like getClass, but treat boolean values as bytes.
336static inline TypeClass getClassB(const Type *Ty) {
337 if (Ty == Type::BoolTy) return cByte;
338 return getClass(Ty);
339}
340
Chris Lattner06925362002-11-17 21:56:38 +0000341
Chris Lattnerc5291f52002-10-27 21:16:59 +0000342/// copyConstantToRegister - Output the instructions required to put the
343/// specified constant into the specified register.
344///
Chris Lattner8a307e82002-12-16 19:32:50 +0000345void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
346 MachineBasicBlock::iterator &IP,
347 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000348 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000349 unsigned Class = 0;
350 switch (CE->getOpcode()) {
351 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000352 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000353 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000354 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000355 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000356 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000357 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000358
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000359 case Instruction::Xor: ++Class; // FALL THROUGH
360 case Instruction::Or: ++Class; // FALL THROUGH
361 case Instruction::And: ++Class; // FALL THROUGH
362 case Instruction::Sub: ++Class; // FALL THROUGH
363 case Instruction::Add:
364 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
365 Class, R);
366 return;
367
Chris Lattnercadff442003-10-23 17:21:43 +0000368 case Instruction::Mul: {
369 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
370 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
371 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
372 return;
373 }
374 case Instruction::Div:
375 case Instruction::Rem: {
376 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
377 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
378 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
379 CE->getOpcode() == Instruction::Div,
380 CE->getType(), R);
381 return;
382 }
383
Chris Lattner58c41fe2003-08-24 19:19:47 +0000384 case Instruction::SetNE:
385 case Instruction::SetEQ:
386 case Instruction::SetLT:
387 case Instruction::SetGT:
388 case Instruction::SetLE:
389 case Instruction::SetGE:
390 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
391 CE->getOpcode(), R);
392 return;
393
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000394 case Instruction::Shl:
395 case Instruction::Shr:
396 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000397 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
398 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000399
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000400 default:
401 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000402 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000403 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000404 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000405
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000406 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000407 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000408
409 if (Class == cLong) {
410 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000411 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000412 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
413 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
414 return;
415 }
416
Chris Lattner94af4142002-12-25 05:13:53 +0000417 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000418
419 static const unsigned IntegralOpcodeTab[] = {
420 X86::MOVir8, X86::MOVir16, X86::MOVir32
421 };
422
Chris Lattner6b993cc2002-12-15 08:02:15 +0000423 if (C->getType() == Type::BoolTy) {
424 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000425 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000426 ConstantInt *CI = cast<ConstantInt>(C);
427 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000428 }
Chris Lattner94af4142002-12-25 05:13:53 +0000429 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
430 double Value = CFP->getValue();
431 if (Value == +0.0)
432 BMI(MBB, IP, X86::FLD0, 0, R);
433 else if (Value == +1.0)
434 BMI(MBB, IP, X86::FLD1, 0, R);
435 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000436 // Otherwise we need to spill the constant to memory...
437 MachineConstantPool *CP = F->getConstantPool();
438 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000439 const Type *Ty = CFP->getType();
440
441 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
442 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
443 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000444 }
445
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000446 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000447 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000448 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000449 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000450 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000451 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000452 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000453 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000454 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000455 }
456}
457
Chris Lattner065faeb2002-12-28 20:24:02 +0000458/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
459/// the stack into virtual registers.
460///
461void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
462 // Emit instructions to load the arguments... On entry to a function on the
463 // X86, the stack frame looks like this:
464 //
465 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000466 // [ESP + 4] -- first argument (leftmost lexically)
467 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000468 // ...
469 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000470 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000471 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000472
473 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
474 unsigned Reg = getReg(*I);
475
Chris Lattner065faeb2002-12-28 20:24:02 +0000476 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000477 switch (getClassB(I->getType())) {
478 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000479 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000480 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
481 break;
482 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000483 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000484 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
485 break;
486 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000487 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
489 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000490 case cLong:
491 FI = MFI->CreateFixedObject(8, ArgOffset);
492 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
493 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
494 ArgOffset += 4; // longs require 4 additional bytes
495 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000496 case cFP:
497 unsigned Opcode;
498 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000499 Opcode = X86::FLDr32;
500 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000501 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000502 Opcode = X86::FLDr64;
503 FI = MFI->CreateFixedObject(8, ArgOffset);
504 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000505 }
506 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
507 break;
508 default:
509 assert(0 && "Unhandled argument type!");
510 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000511 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000512 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000513
514 // If the function takes variable number of arguments, add a frame offset for
515 // the start of the first vararg value... this is used to expand
516 // llvm.va_start.
517 if (Fn.getFunctionType()->isVarArg())
518 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000519}
520
521
Chris Lattner333b2fa2002-12-13 10:09:43 +0000522/// SelectPHINodes - Insert machine code to generate phis. This is tricky
523/// because we have to generate our sources into the source basic blocks, not
524/// the current one.
525///
526void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000527 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000528 const Function &LF = *F->getFunction(); // The LLVM function...
529 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
530 const BasicBlock *BB = I;
531 MachineBasicBlock *MBB = MBBMap[I];
532
533 // Loop over all of the PHI nodes in the LLVM basic block...
534 unsigned NumPHIs = 0;
535 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000536 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000537
Chris Lattner333b2fa2002-12-13 10:09:43 +0000538 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000539 unsigned PHIReg = getReg(*PN);
540 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
541 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
542
543 MachineInstr *LongPhiMI = 0;
544 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000545 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
546 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000547 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548
Chris Lattnera6e73f12003-05-12 14:22:21 +0000549 // PHIValues - Map of blocks to incoming virtual registers. We use this
550 // so that we only initialize one incoming value for a particular block,
551 // even if the block has multiple entries in the PHI node.
552 //
553 std::map<MachineBasicBlock*, unsigned> PHIValues;
554
Chris Lattner333b2fa2002-12-13 10:09:43 +0000555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000557 unsigned ValReg;
558 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
559 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000560
Chris Lattnera6e73f12003-05-12 14:22:21 +0000561 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
562 // We already inserted an initialization of the register for this
563 // predecessor. Recycle it.
564 ValReg = EntryIt->second;
565
566 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000567 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000568 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000569 Value *Val = PN->getIncomingValue(i);
570
571 // If this is a constant or GlobalValue, we may have to insert code
572 // into the basic block to compute it into a virtual register.
573 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
574 // Because we don't want to clobber any values which might be in
575 // physical registers with the computation of this constant (which
576 // might be arbitrarily complex if it is a constant expression),
577 // just insert the computation at the top of the basic block.
578 MachineBasicBlock::iterator PI = PredMBB->begin();
579
580 // Skip over any PHI nodes though!
581 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
582 ++PI;
583
584 ValReg = getReg(Val, PredMBB, PI);
585 } else {
586 ValReg = getReg(Val);
587 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000588
589 // Remember that we inserted a value for this PHI for this predecessor
590 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
591 }
592
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000593 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000594 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000595 if (LongPhiMI) {
596 LongPhiMI->addRegOperand(ValReg+1);
597 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
598 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000599 }
600 }
601 }
602}
603
Chris Lattner6d40c192003-01-16 16:43:00 +0000604// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
605// the conditional branch instruction which is the only user of the cc
606// instruction. This is the case if the conditional branch is the only user of
607// the setcc, and if the setcc is in the same basic block as the conditional
608// branch. We also don't handle long arguments below, so we reject them here as
609// well.
610//
611static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
612 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000613 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000614 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
615 const Type *Ty = SCI->getOperand(0)->getType();
616 if (Ty != Type::LongTy && Ty != Type::ULongTy)
617 return SCI;
618 }
619 return 0;
620}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000621
Chris Lattner6d40c192003-01-16 16:43:00 +0000622// Return a fixed numbering for setcc instructions which does not depend on the
623// order of the opcodes.
624//
625static unsigned getSetCCNumber(unsigned Opcode) {
626 switch(Opcode) {
627 default: assert(0 && "Unknown setcc instruction!");
628 case Instruction::SetEQ: return 0;
629 case Instruction::SetNE: return 1;
630 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000631 case Instruction::SetGE: return 3;
632 case Instruction::SetGT: return 4;
633 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000634 }
635}
Chris Lattner06925362002-11-17 21:56:38 +0000636
Chris Lattner6d40c192003-01-16 16:43:00 +0000637// LLVM -> X86 signed X86 unsigned
638// ----- ---------- ------------
639// seteq -> sete sete
640// setne -> setne setne
641// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000642// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000643// setgt -> setg seta
644// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000645// ----
646// sets // Used by comparison with 0 optimization
647// setns
648static const unsigned SetCCOpcodeTab[2][8] = {
649 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
650 0, 0 },
651 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
652 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000653};
654
Chris Lattnerb2acc512003-10-19 21:09:10 +0000655// EmitComparison - This function emits a comparison of the two operands,
656// returning the extended setcc code to use.
657unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
658 MachineBasicBlock *MBB,
659 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000660 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000661 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000662 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000663 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000664
665 // Special case handling of: cmp R, i
666 if (Class == cByte || Class == cShort || Class == cInt)
667 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000668 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
669
Chris Lattner333864d2003-06-05 19:30:30 +0000670 // Mask off any upper bits of the constant, if there are any...
671 Op1v &= (1ULL << (8 << Class)) - 1;
672
Chris Lattnerb2acc512003-10-19 21:09:10 +0000673 // If this is a comparison against zero, emit more efficient code. We
674 // can't handle unsigned comparisons against zero unless they are == or
675 // !=. These should have been strength reduced already anyway.
676 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
677 static const unsigned TESTTab[] = {
678 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
679 };
680 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
681
682 if (OpNum == 2) return 6; // Map jl -> js
683 if (OpNum == 3) return 7; // Map jg -> jns
684 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000685 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000686
687 static const unsigned CMPTab[] = {
688 X86::CMPri8, X86::CMPri16, X86::CMPri32
689 };
690
691 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
692 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000693 }
694
Chris Lattner58c41fe2003-08-24 19:19:47 +0000695 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000696 switch (Class) {
697 default: assert(0 && "Unknown type class!");
698 // Emit: cmp <var1>, <var2> (do the comparison). We can
699 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
700 // 32-bit.
701 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000702 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000703 break;
704 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000705 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000706 break;
707 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000708 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000709 break;
710 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000711 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
712 BMI(MBB, IP, X86::FNSTSWr8, 0);
713 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 break;
715
716 case cLong:
717 if (OpNum < 2) { // seteq, setne
718 unsigned LoTmp = makeAnotherReg(Type::IntTy);
719 unsigned HiTmp = makeAnotherReg(Type::IntTy);
720 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000721 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
722 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
723 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000724 break; // Allow the sete or setne to be generated from flags set by OR
725 } else {
726 // Emit a sequence of code which compares the high and low parts once
727 // each, then uses a conditional move to handle the overflow case. For
728 // example, a setlt for long would generate code like this:
729 //
730 // AL = lo(op1) < lo(op2) // Signedness depends on operands
731 // BL = hi(op1) < hi(op2) // Always unsigned comparison
732 // dest = hi(op1) == hi(op2) ? AL : BL;
733 //
734
Chris Lattner6d40c192003-01-16 16:43:00 +0000735 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000736 // classes! Until then, hardcode registers so that we can deal with their
737 // aliases (because we don't have conditional byte moves).
738 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000739 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
740 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
741 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000742 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000743 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
744 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
745 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000746 // NOTE: visitSetCondInst knows that the value is dumped into the BL
747 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000748 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000749 }
750 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000751 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000752}
Chris Lattner3e130a22003-01-13 00:32:26 +0000753
Chris Lattner6d40c192003-01-16 16:43:00 +0000754
755/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
756/// register, then move it to wherever the result should be.
757///
758void ISel::visitSetCondInst(SetCondInst &I) {
759 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
760
Chris Lattner6d40c192003-01-16 16:43:00 +0000761 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000762 MachineBasicBlock::iterator MII = BB->end();
763 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
764 DestReg);
765}
Chris Lattner6d40c192003-01-16 16:43:00 +0000766
Chris Lattner58c41fe2003-08-24 19:19:47 +0000767/// emitSetCCOperation - Common code shared between visitSetCondInst and
768/// constant expression support.
769void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
770 MachineBasicBlock::iterator &IP,
771 Value *Op0, Value *Op1, unsigned Opcode,
772 unsigned TargetReg) {
773 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000774 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000775
Chris Lattnerb2acc512003-10-19 21:09:10 +0000776 const Type *CompTy = Op0->getType();
777 unsigned CompClass = getClassB(CompTy);
778 bool isSigned = CompTy->isSigned() && CompClass != cFP;
779
780 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000781 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000782 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000783 } else {
784 // Handle long comparisons by copying the value which is already in BL into
785 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000786 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000787 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000788}
Chris Lattner51b49a92002-11-02 19:45:49 +0000789
Chris Lattner58c41fe2003-08-24 19:19:47 +0000790
791
792
Brian Gaekec2505982002-11-30 11:57:28 +0000793/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
794/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000795void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
796 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000797
798 // Make sure we have the register number for this value...
799 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
800
Chris Lattner3e130a22003-01-13 00:32:26 +0000801 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000802 case cByte:
803 // Extend value into target register (8->32)
804 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000805 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000806 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000807 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000808 break;
809 case cShort:
810 // Extend value into target register (16->32)
811 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000812 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000813 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000814 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000815 break;
816 case cInt:
817 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000818 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000819 break;
820 default:
821 assert(0 && "Unpromotable operand class in promote32");
822 }
Brian Gaekec2505982002-11-30 11:57:28 +0000823}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000824
Chris Lattner72614082002-10-25 22:55:53 +0000825/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
826/// we have the following possibilities:
827///
828/// ret void: No return value, simply emit a 'ret' instruction
829/// ret sbyte, ubyte : Extend value into EAX and return
830/// ret short, ushort: Extend value into EAX and return
831/// ret int, uint : Move value into EAX and return
832/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000833/// ret long, ulong : Move value into EAX/EDX and return
834/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000835///
Chris Lattner3e130a22003-01-13 00:32:26 +0000836void ISel::visitReturnInst(ReturnInst &I) {
Alkis Evlogimenose0bb3e72003-12-20 16:22:59 +0000837 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000838 if (I.getNumOperands() == 0) {
839 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
840 return;
841 }
842
843 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000844 unsigned RetReg = getReg(RetVal);
845 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000846 case cByte: // integral return values: extend or move into EAX and return
847 case cShort:
848 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000849 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000850 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000851 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000852 break;
853 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000854 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000855 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000856 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000857 break;
858 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000859 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
860 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000861 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000862 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
863 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000864 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000865 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000866 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000867 }
Chris Lattner43189d12002-11-17 20:07:45 +0000868 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000869 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000870}
871
Chris Lattner55f6fab2003-01-16 18:07:23 +0000872// getBlockAfter - Return the basic block which occurs lexically after the
873// specified one.
874static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
875 Function::iterator I = BB; ++I; // Get iterator to next block
876 return I != BB->getParent()->end() ? &*I : 0;
877}
878
Chris Lattner51b49a92002-11-02 19:45:49 +0000879/// visitBranchInst - Handle conditional and unconditional branches here. Note
880/// that since code layout is frozen at this point, that if we are trying to
881/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000882/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000883///
Chris Lattner94af4142002-12-25 05:13:53 +0000884void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000885 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
886
887 if (!BI.isConditional()) { // Unconditional branch?
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000888 if (BI.getSuccessor(0) != NextBB) {
889 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000890 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000891 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000892 return;
893 }
894
895 // See if we can fold the setcc into the branch itself...
896 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
897 if (SCI == 0) {
898 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
899 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000900 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000901 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000902 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000903 if (BI.getSuccessor(1) == NextBB) {
904 if (BI.getSuccessor(0) != NextBB)
905 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
906 } else {
907 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
908
909 if (BI.getSuccessor(0) != NextBB)
910 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
911 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000912 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000913 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000914
915 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000916 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000917 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000918
919 const Type *CompTy = SCI->getOperand(0)->getType();
920 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000921
Chris Lattnerb2acc512003-10-19 21:09:10 +0000922
Chris Lattner6d40c192003-01-16 16:43:00 +0000923 // LLVM -> X86 signed X86 unsigned
924 // ----- ---------- ------------
925 // seteq -> je je
926 // setne -> jne jne
927 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000928 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000929 // setgt -> jg ja
930 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000931 // ----
932 // js // Used by comparison with 0 optimization
933 // jns
934
935 static const unsigned OpcodeTab[2][8] = {
936 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
937 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
938 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000939 };
940
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000941 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000942 if (BI.getSuccessor(0) != NextBB) {
943 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
944 if (BI.getSuccessor(1) != NextBB)
945 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
946 } else {
947 // Change to the inverse condition...
948 if (BI.getSuccessor(1) != NextBB) {
949 OpNum ^= 1;
950 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
951 }
952 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000953}
954
Chris Lattner3e130a22003-01-13 00:32:26 +0000955
956/// doCall - This emits an abstract call instruction, setting up the arguments
957/// and the return value as appropriate. For the actual function call itself,
958/// it inserts the specified CallMI instruction into the stream.
959///
960void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000961 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000962
Chris Lattner065faeb2002-12-28 20:24:02 +0000963 // Count how many bytes are to be pushed on the stack...
964 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000965
Chris Lattner3e130a22003-01-13 00:32:26 +0000966 if (!Args.empty()) {
967 for (unsigned i = 0, e = Args.size(); i != e; ++i)
968 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000969 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000970 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000971 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000972 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000973 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000974 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
975 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000976 default: assert(0 && "Unknown class!");
977 }
978
979 // Adjust the stack pointer for the new arguments...
980 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
981
982 // Arguments go on the stack in reverse order, as specified by the ABI.
983 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000984 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000985 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000986 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000987 case cByte:
988 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000989 // Promote arg to 32 bits wide into a temporary register...
990 unsigned R = makeAnotherReg(Type::UIntTy);
991 promote32(R, Args[i]);
992 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
993 X86::ESP, ArgOffset).addReg(R);
994 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000995 }
996 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000997 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
998 X86::ESP, ArgOffset).addReg(ArgReg);
999 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001000 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001001 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1002 X86::ESP, ArgOffset).addReg(ArgReg);
1003 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1004 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1005 ArgOffset += 4; // 8 byte entry, not 4.
1006 break;
1007
Chris Lattner065faeb2002-12-28 20:24:02 +00001008 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001009 if (Args[i].Ty == Type::FloatTy) {
1010 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1011 X86::ESP, ArgOffset).addReg(ArgReg);
1012 } else {
1013 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1014 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1015 X86::ESP, ArgOffset).addReg(ArgReg);
1016 ArgOffset += 4; // 8 byte entry, not 4.
1017 }
1018 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001019
Chris Lattner3e130a22003-01-13 00:32:26 +00001020 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001021 }
1022 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001023 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001024 } else {
1025 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001026 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001027
Chris Lattner3e130a22003-01-13 00:32:26 +00001028 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001029
Chris Lattner065faeb2002-12-28 20:24:02 +00001030 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001031
1032 // If there is a return value, scavenge the result from the location the call
1033 // leaves it in...
1034 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001035 if (Ret.Ty != Type::VoidTy) {
1036 unsigned DestClass = getClassB(Ret.Ty);
1037 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001038 case cByte:
1039 case cShort:
1040 case cInt: {
1041 // Integral results are in %eax, or the appropriate portion
1042 // thereof.
1043 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001044 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001045 };
1046 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001047 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001048 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001049 }
Chris Lattner94af4142002-12-25 05:13:53 +00001050 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001051 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001052 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001053 case cLong: // Long values are left in EDX:EAX
1054 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1055 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1056 break;
1057 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001058 }
Chris Lattnera3243642002-12-04 23:45:28 +00001059 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001060}
Chris Lattner2df035b2002-11-02 19:27:56 +00001061
Chris Lattner3e130a22003-01-13 00:32:26 +00001062
1063/// visitCallInst - Push args on stack and do a procedure call instruction.
1064void ISel::visitCallInst(CallInst &CI) {
1065 MachineInstr *TheCall;
1066 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001067 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001068 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001069 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1070 return;
1071 }
1072
Chris Lattner3e130a22003-01-13 00:32:26 +00001073 // Emit a CALL instruction with PC-relative displacement.
1074 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1075 } else { // Emit an indirect call...
1076 unsigned Reg = getReg(CI.getCalledValue());
1077 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1078 }
1079
1080 std::vector<ValueRecord> Args;
1081 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001082 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001083
1084 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1085 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001086}
Chris Lattner3e130a22003-01-13 00:32:26 +00001087
Chris Lattneraeb54b82003-08-28 21:23:43 +00001088
Brian Gaeked0fde302003-11-11 22:41:34 +00001089void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001090 unsigned TmpReg1, TmpReg2;
1091 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001092 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001093 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001094 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001095 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001096 return;
1097
Brian Gaeked0fde302003-11-11 22:41:34 +00001098 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001099 TmpReg1 = getReg(CI);
1100 TmpReg2 = getReg(CI.getOperand(1));
1101 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001102 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001103 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001104
Brian Gaeked0fde302003-11-11 22:41:34 +00001105 case Intrinsic::longjmp:
1106 case Intrinsic::siglongjmp:
Chris Lattneraeb54b82003-08-28 21:23:43 +00001107 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +00001108 return;
1109
Brian Gaeked0fde302003-11-11 22:41:34 +00001110 case Intrinsic::setjmp:
1111 case Intrinsic::sigsetjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +00001112 // Setjmp always returns zero...
1113 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001114 return;
Chris Lattnereca195e2003-05-08 19:44:13 +00001115 default: assert(0 && "Unknown intrinsic for X86!");
1116 }
1117}
1118
1119
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001120/// visitSimpleBinary - Implement simple binary operators for integral types...
1121/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1122/// Xor.
1123void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1124 unsigned DestReg = getReg(B);
1125 MachineBasicBlock::iterator MI = BB->end();
1126 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1127 OperatorClass, DestReg);
1128}
Chris Lattner3e130a22003-01-13 00:32:26 +00001129
Chris Lattnerb2acc512003-10-19 21:09:10 +00001130/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1131/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1132/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001133///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001134/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1135/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001136///
1137void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001138 MachineBasicBlock::iterator &IP,
1139 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001140 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001141 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001142
1143 // sub 0, X -> neg X
1144 if (OperatorClass == 1 && Class != cLong)
1145 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1146 if (CI->isNullValue()) {
1147 unsigned op1Reg = getReg(Op1, MBB, IP);
1148 switch (Class) {
1149 default: assert(0 && "Unknown class for this function!");
1150 case cByte:
1151 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1152 return;
1153 case cShort:
1154 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1155 return;
1156 case cInt:
1157 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1158 return;
1159 }
1160 }
1161
Chris Lattner35333e12003-06-05 18:28:55 +00001162 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1163 static const unsigned OpcodeTab[][4] = {
1164 // Arithmetic operators
1165 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1166 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1167
1168 // Bitwise operators
1169 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1170 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1171 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001172 };
Chris Lattner35333e12003-06-05 18:28:55 +00001173
1174 bool isLong = false;
1175 if (Class == cLong) {
1176 isLong = true;
1177 Class = cInt; // Bottom 32 bits are handled just like ints
1178 }
1179
1180 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1181 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001182 unsigned Op0r = getReg(Op0, MBB, IP);
1183 unsigned Op1r = getReg(Op1, MBB, IP);
1184 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001185
1186 if (isLong) { // Handle the upper 32 bits of long values...
1187 static const unsigned TopTab[] = {
1188 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1189 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001190 BMI(MBB, IP, TopTab[OperatorClass], 2,
1191 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001192 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001193 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001194 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001195
1196 // Special case: op Reg, <const>
1197 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1198 unsigned Op0r = getReg(Op0, MBB, IP);
1199
1200 // xor X, -1 -> not X
1201 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1202 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1203 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1204 return;
1205 }
1206
1207 // add X, -1 -> dec X
1208 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1209 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1210 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1211 return;
1212 }
1213
1214 // add X, 1 -> inc X
1215 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1216 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1217 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1218 return;
1219 }
1220
1221 static const unsigned OpcodeTab[][3] = {
1222 // Arithmetic operators
1223 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1224 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1225
1226 // Bitwise operators
1227 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1228 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1229 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1230 };
1231
1232 assert(Class < 3 && "General code handles 64-bit integer types!");
1233 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1234 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1235
1236 // Mask off any upper bits of the constant, if there are any...
1237 Op1v &= (1ULL << (8 << Class)) - 1;
1238 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001239}
1240
Chris Lattner3e130a22003-01-13 00:32:26 +00001241/// doMultiply - Emit appropriate instructions to multiply together the
1242/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1243/// result should be given as DestTy.
1244///
Chris Lattner8a307e82002-12-16 19:32:50 +00001245void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001246 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001247 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001248 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001249 switch (Class) {
1250 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001251 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001252 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001253 case cInt:
1254 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001255 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001256 .addReg(op0Reg).addReg(op1Reg);
1257 return;
1258 case cByte:
1259 // Must use the MUL instruction, which forces use of AL...
1260 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1261 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1262 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1263 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001264 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001265 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001266 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001267}
1268
Chris Lattnerb2acc512003-10-19 21:09:10 +00001269// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1270// returns zero when the input is not exactly a power of two.
1271static unsigned ExactLog2(unsigned Val) {
1272 if (Val == 0) return 0;
1273 unsigned Count = 0;
1274 while (Val != 1) {
1275 if (Val & 1) return 0;
1276 Val >>= 1;
1277 ++Count;
1278 }
1279 return Count+1;
1280}
1281
1282void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1283 MachineBasicBlock::iterator &IP,
1284 unsigned DestReg, const Type *DestTy,
1285 unsigned op0Reg, unsigned ConstRHS) {
1286 unsigned Class = getClass(DestTy);
1287
1288 // If the element size is exactly a power of 2, use a shift to get it.
1289 if (unsigned Shift = ExactLog2(ConstRHS)) {
1290 switch (Class) {
1291 default: assert(0 && "Unknown class for this function!");
1292 case cByte:
1293 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1294 return;
1295 case cShort:
1296 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1297 return;
1298 case cInt:
1299 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1300 return;
1301 }
1302 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001303
1304 if (Class == cShort) {
1305 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1306 return;
1307 } else if (Class == cInt) {
1308 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1309 return;
1310 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001311
1312 // Most general case, emit a normal multiply...
1313 static const unsigned MOVirTab[] = {
1314 X86::MOVir8, X86::MOVir16, X86::MOVir32
1315 };
1316
1317 unsigned TmpReg = makeAnotherReg(DestTy);
1318 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1319
1320 // Emit a MUL to multiply the register holding the index by
1321 // elementSize, putting the result in OffsetReg.
1322 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1323}
1324
Chris Lattnerca9671d2002-11-02 20:28:58 +00001325/// visitMul - Multiplies are not simple binary operators because they must deal
1326/// with the EAX register explicitly.
1327///
1328void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001329 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 unsigned DestReg = getReg(I);
1331
1332 // Simple scalar multiply?
1333 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001334 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1335 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1336 MachineBasicBlock::iterator MBBI = BB->end();
1337 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1338 } else {
1339 unsigned Op1Reg = getReg(I.getOperand(1));
1340 MachineBasicBlock::iterator MBBI = BB->end();
1341 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1342 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001343 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001344 unsigned Op1Reg = getReg(I.getOperand(1));
1345
Chris Lattner3e130a22003-01-13 00:32:26 +00001346 // Long value. We have to do things the hard way...
1347 // Multiply the two low parts... capturing carry into EDX
1348 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1349 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1350
1351 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1352 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1353 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1354
1355 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001356 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001357 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001358
1359 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1360 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001361 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001362
1363 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001364 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001365 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001366
1367 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001368 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001369 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001370}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001371
Chris Lattner06925362002-11-17 21:56:38 +00001372
Chris Lattnerf01729e2002-11-02 20:54:46 +00001373/// visitDivRem - Handle division and remainder instructions... these
1374/// instruction both require the same instructions to be generated, they just
1375/// select the result from a different register. Note that both of these
1376/// instructions work differently for signed and unsigned operands.
1377///
1378void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001379 unsigned Op0Reg = getReg(I.getOperand(0));
1380 unsigned Op1Reg = getReg(I.getOperand(1));
1381 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001382
Chris Lattnercadff442003-10-23 17:21:43 +00001383 MachineBasicBlock::iterator IP = BB->end();
1384 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1385 I.getType(), ResultReg);
1386}
1387
1388void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1389 MachineBasicBlock::iterator &IP,
1390 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1391 const Type *Ty, unsigned ResultReg) {
1392 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001393 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001394 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001395 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001396 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001397 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001398 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001399 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001400 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001401 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1402 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001403 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1404 }
Chris Lattner94af4142002-12-25 05:13:53 +00001405 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001406 case cLong: {
1407 static const char *FnName[] =
1408 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1409
Chris Lattnercadff442003-10-23 17:21:43 +00001410 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001411 MachineInstr *TheCall =
1412 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1413
1414 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001415 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1416 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001417 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1418 return;
1419 }
1420 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001421 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001422 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001423 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001424
1425 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1426 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001427 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001428 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1429 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1430
1431 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001432 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1433 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001434 };
1435
Chris Lattnercadff442003-10-23 17:21:43 +00001436 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001437 unsigned Reg = Regs[Class];
1438 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001439
1440 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001441 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001442
1443 if (isSigned) {
1444 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001445 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001446 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1447 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001448 } else {
1449 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
Chris Lattner62b767b2003-11-18 17:47:05 +00001450 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001451 }
1452
Chris Lattner06925362002-11-17 21:56:38 +00001453 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001454 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001455
Chris Lattnerf01729e2002-11-02 20:54:46 +00001456 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001457 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001458
Chris Lattnerf01729e2002-11-02 20:54:46 +00001459 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001460 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001461}
Chris Lattnere2954c82002-11-02 20:04:26 +00001462
Chris Lattner06925362002-11-17 21:56:38 +00001463
Brian Gaekea1719c92002-10-31 23:03:59 +00001464/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1465/// for constant immediate shift values, and for constant immediate
1466/// shift values equal to 1. Even the general case is sort of special,
1467/// because the shift amount has to be in CL, not just any old register.
1468///
Chris Lattner3e130a22003-01-13 00:32:26 +00001469void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001470 MachineBasicBlock::iterator IP = BB->end ();
1471 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1472 I.getOpcode () == Instruction::Shl, I.getType (),
1473 getReg (I));
1474}
1475
1476/// emitShiftOperation - Common code shared between visitShiftInst and
1477/// constant expression support.
1478void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1479 MachineBasicBlock::iterator &IP,
1480 Value *Op, Value *ShiftAmount, bool isLeftShift,
1481 const Type *ResultTy, unsigned DestReg) {
1482 unsigned SrcReg = getReg (Op, MBB, IP);
1483 bool isSigned = ResultTy->isSigned ();
1484 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001485
1486 static const unsigned ConstantOperand[][4] = {
1487 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1488 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1489 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1490 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1491 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001492
Chris Lattner3e130a22003-01-13 00:32:26 +00001493 static const unsigned NonConstantOperand[][4] = {
1494 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1495 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1496 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1497 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1498 };
Chris Lattner796df732002-11-02 00:44:25 +00001499
Chris Lattner3e130a22003-01-13 00:32:26 +00001500 // Longs, as usual, are handled specially...
1501 if (Class == cLong) {
1502 // If we have a constant shift, we can generate much more efficient code
1503 // than otherwise...
1504 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001505 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001506 unsigned Amount = CUI->getValue();
1507 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001508 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1509 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001510 BMI(MBB, IP, Opc[3], 3,
1511 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1512 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001513 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001514 BMI(MBB, IP, Opc[3], 3,
1515 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1516 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001517 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001518 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001519 Amount -= 32;
1520 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001521 BMI(MBB, IP, X86::SHLir32, 2,
1522 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1523 BMI(MBB, IP, X86::MOVir32, 1,
1524 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001525 } else {
1526 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001527 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1528 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001529 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001530 }
1531 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001532 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1533
1534 if (!isLeftShift && isSigned) {
1535 // If this is a SHR of a Long, then we need to do funny sign extension
1536 // stuff. TmpReg gets the value to use as the high-part if we are
1537 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001538 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001539 } else {
1540 // Other shifts use a fixed zero value if the shift is more than 32
1541 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001542 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001543 }
1544
1545 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001546 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1547 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001548
1549 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1550 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1551 if (isLeftShift) {
1552 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001553 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001554 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001555 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001556
1557 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001558 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001559
1560 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001561 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001562 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1563 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001564 BMI(MBB, IP, X86::CMOVNErr32, 2,
1565 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001566 } else {
1567 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001568 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001569 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001570 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001571 .addReg(SrcReg+1);
1572
1573 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001574 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001575
1576 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001577 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001578 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1579
1580 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001581 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001582 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1583 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001584 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 return;
1586 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001587
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001588 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001589 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1590 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001591
Chris Lattner3e130a22003-01-13 00:32:26 +00001592 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001593 BMI(MBB, IP, Opc[Class], 2,
1594 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001595 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001596 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1597 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001598
Chris Lattner3e130a22003-01-13 00:32:26 +00001599 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001600 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001601 }
1602}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001603
Chris Lattner3e130a22003-01-13 00:32:26 +00001604
Chris Lattner6fc3c522002-11-17 21:11:55 +00001605/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001606/// instruction. The load and store instructions are the only place where we
1607/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001608///
1609void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001610 unsigned SrcAddrReg = getReg(I.getOperand(0));
1611 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001612
Brian Gaekebfedb912003-07-17 21:30:06 +00001613 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001614
1615 if (Class == cLong) {
1616 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1617 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001618 return;
1619 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001620
Chris Lattner6ac1d712003-10-20 04:48:06 +00001621 static const unsigned Opcodes[] = {
1622 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001623 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001624 unsigned Opcode = Opcodes[Class];
1625 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1626 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001627}
1628
Chris Lattner6fc3c522002-11-17 21:11:55 +00001629/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1630/// instruction.
1631///
1632void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001633 unsigned ValReg = getReg(I.getOperand(0));
1634 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001635
1636 const Type *ValTy = I.getOperand(0)->getType();
1637 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001638
1639 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001640 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1641 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001642 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001643 }
1644
Chris Lattner6ac1d712003-10-20 04:48:06 +00001645 static const unsigned Opcodes[] = {
1646 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1647 };
1648 unsigned Opcode = Opcodes[Class];
1649 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1650 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001651}
1652
1653
Brian Gaekec11232a2002-11-26 10:43:30 +00001654/// visitCastInst - Here we have various kinds of copying with or without
1655/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001656void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001657 Value *Op = CI.getOperand(0);
1658 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1659 // of the case are GEP instructions, then the cast does not need to be
1660 // generated explicitly, it will be folded into the GEP.
1661 if (CI.getType() == Type::LongTy &&
1662 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1663 bool AllUsesAreGEPs = true;
1664 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1665 if (!isa<GetElementPtrInst>(*I)) {
1666 AllUsesAreGEPs = false;
1667 break;
1668 }
1669
1670 // No need to codegen this cast if all users are getelementptr instrs...
1671 if (AllUsesAreGEPs) return;
1672 }
1673
Chris Lattner548f61d2003-04-23 17:22:12 +00001674 unsigned DestReg = getReg(CI);
1675 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001676 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001677}
1678
1679/// emitCastOperation - Common code shared between visitCastInst and
1680/// constant expression cast support.
1681void ISel::emitCastOperation(MachineBasicBlock *BB,
1682 MachineBasicBlock::iterator &IP,
1683 Value *Src, const Type *DestTy,
1684 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001685 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001686 const Type *SrcTy = Src->getType();
1687 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001688 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001689
Chris Lattner3e130a22003-01-13 00:32:26 +00001690 // Implement casts to bool by using compare on the operand followed by set if
1691 // not zero on the result.
1692 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001693 switch (SrcClass) {
1694 case cByte:
1695 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1696 break;
1697 case cShort:
1698 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1699 break;
1700 case cInt:
1701 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1702 break;
1703 case cLong: {
1704 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1705 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1706 break;
1707 }
1708 case cFP:
1709 assert(0 && "FIXME: implement cast FP to bool");
1710 abort();
1711 }
1712
1713 // If the zero flag is not set, then the value is true, set the byte to
1714 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001715 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001716 return;
1717 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001718
1719 static const unsigned RegRegMove[] = {
1720 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1721 };
1722
1723 // Implement casts between values of the same type class (as determined by
1724 // getClass) by using a register-to-register move.
1725 if (SrcClass == DestClass) {
1726 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001727 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001728 } else if (SrcClass == cFP) {
1729 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001730 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1731 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001732 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001733 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1734 "Unknown cFP member!");
1735 // Truncate from double to float by storing to memory as short, then
1736 // reading it back.
1737 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001738 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001739 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1740 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001741 }
1742 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001743 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1744 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001745 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001746 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001747 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001748 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001749 return;
1750 }
1751
1752 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1753 // or zero extension, depending on whether the source type was signed.
1754 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1755 SrcClass < DestClass) {
1756 bool isLong = DestClass == cLong;
1757 if (isLong) DestClass = cInt;
1758
1759 static const unsigned Opc[][4] = {
1760 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1761 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1762 };
1763
1764 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001765 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1766 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001767
1768 if (isLong) { // Handle upper 32 bits as appropriate...
1769 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001770 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001771 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001772 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001773 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001774 return;
1775 }
1776
1777 // Special case long -> int ...
1778 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001779 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001780 return;
1781 }
1782
1783 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1784 // move out of AX or AL.
1785 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1786 && SrcClass > DestClass) {
1787 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001788 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1789 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001790 return;
1791 }
1792
1793 // Handle casts from integer to floating point now...
1794 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001795 // Promote the integer to a type supported by FLD. We do this because there
1796 // are no unsigned FLD instructions, so we must promote an unsigned value to
1797 // a larger signed value, then use FLD on the larger value.
1798 //
1799 const Type *PromoteType = 0;
1800 unsigned PromoteOpcode;
1801 switch (SrcTy->getPrimitiveID()) {
1802 case Type::BoolTyID:
1803 case Type::SByteTyID:
1804 // We don't have the facilities for directly loading byte sized data from
1805 // memory (even signed). Promote it to 16 bits.
1806 PromoteType = Type::ShortTy;
1807 PromoteOpcode = X86::MOVSXr16r8;
1808 break;
1809 case Type::UByteTyID:
1810 PromoteType = Type::ShortTy;
1811 PromoteOpcode = X86::MOVZXr16r8;
1812 break;
1813 case Type::UShortTyID:
1814 PromoteType = Type::IntTy;
1815 PromoteOpcode = X86::MOVZXr32r16;
1816 break;
1817 case Type::UIntTyID: {
1818 // Make a 64 bit temporary... and zero out the top of it...
1819 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1820 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1821 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1822 SrcTy = Type::LongTy;
1823 SrcClass = cLong;
1824 SrcReg = TmpReg;
1825 break;
1826 }
1827 case Type::ULongTyID:
1828 assert("FIXME: not implemented: cast ulong X to fp type!");
1829 default: // No promotion needed...
1830 break;
1831 }
1832
1833 if (PromoteType) {
1834 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001835 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1836 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001837 SrcTy = PromoteType;
1838 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001839 SrcReg = TmpReg;
1840 }
1841
1842 // Spill the integer to memory and reload it from there...
1843 int FrameIdx =
1844 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1845
1846 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001847 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1848 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001849 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001850 } else {
1851 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001852 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001853 }
1854
1855 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001856 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001857 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001858 return;
1859 }
1860
1861 // Handle casts from floating point to integer now...
1862 if (SrcClass == cFP) {
1863 // Change the floating point control register to use "round towards zero"
1864 // mode when truncating to an integer value.
1865 //
1866 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001867 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001868
1869 // Load the old value of the high byte of the control word...
1870 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001871 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001872
1873 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001874 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001875
1876 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001877 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001878
1879 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001880 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001881 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001882
1883 // We don't have the facilities for directly storing byte sized data to
1884 // memory. Promote it to 16 bits. We also must promote unsigned values to
1885 // larger classes because we only have signed FP stores.
1886 unsigned StoreClass = DestClass;
1887 const Type *StoreTy = DestTy;
1888 if (StoreClass == cByte || DestTy->isUnsigned())
1889 switch (StoreClass) {
1890 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1891 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1892 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001893 // The following treatment of cLong may not be perfectly right,
1894 // but it survives chains of casts of the form
1895 // double->ulong->double.
1896 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001897 default: assert(0 && "Unknown store class!");
1898 }
1899
1900 // Spill the integer to memory and reload it from there...
1901 int FrameIdx =
1902 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1903
1904 static const unsigned Op1[] =
1905 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001906 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001907
1908 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001909 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1910 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001911 } else {
1912 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001913 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001914 }
1915
1916 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001917 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001918 return;
1919 }
1920
Brian Gaeked474e9c2002-12-06 10:49:33 +00001921 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001922 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001923 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001924}
Brian Gaekea1719c92002-10-31 23:03:59 +00001925
Chris Lattner73815062003-10-18 05:56:40 +00001926/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001927///
Chris Lattner73815062003-10-18 05:56:40 +00001928void ISel::visitVANextInst(VANextInst &I) {
1929 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00001930 unsigned DestReg = getReg(I);
1931
Chris Lattnereca195e2003-05-08 19:44:13 +00001932 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00001933 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001934 default:
1935 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00001936 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001937 return;
1938 case Type::PointerTyID:
1939 case Type::UIntTyID:
1940 case Type::IntTyID:
1941 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00001942 break;
1943 case Type::ULongTyID:
1944 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00001945 case Type::DoubleTyID:
1946 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00001947 break;
1948 }
1949
1950 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00001951 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
1952}
Chris Lattnereca195e2003-05-08 19:44:13 +00001953
Chris Lattner73815062003-10-18 05:56:40 +00001954void ISel::visitVAArgInst(VAArgInst &I) {
1955 unsigned VAList = getReg(I.getOperand(0));
1956 unsigned DestReg = getReg(I);
1957
1958 switch (I.getType()->getPrimitiveID()) {
1959 default:
1960 std::cerr << I;
1961 assert(0 && "Error: bad type for va_next instruction!");
1962 return;
1963 case Type::PointerTyID:
1964 case Type::UIntTyID:
1965 case Type::IntTyID:
1966 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1967 break;
1968 case Type::ULongTyID:
1969 case Type::LongTyID:
1970 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1971 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1972 break;
1973 case Type::DoubleTyID:
1974 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1975 break;
1976 }
Chris Lattnereca195e2003-05-08 19:44:13 +00001977}
1978
1979
Chris Lattner3e130a22003-01-13 00:32:26 +00001980void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1981 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001982 MachineBasicBlock::iterator MI = BB->end();
1983 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001984 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001985}
1986
Brian Gaeke71794c02002-12-13 11:22:48 +00001987void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001988 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001989 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001990 User::op_iterator IdxEnd, unsigned TargetReg) {
1991 const TargetData &TD = TM.getTargetData();
1992 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001993 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001994
Brian Gaeke20244b72002-12-12 15:33:40 +00001995 // GEPs have zero or more indices; we must perform a struct access
1996 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001997 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1998 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001999 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002001 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002002 // It's a struct access. idx is the index into the structure,
2003 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002004 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2005 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002006 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002007 // Use the TargetData structure to pick out what the layout of
2008 // the structure is in memory. Since the structure index must
2009 // be constant, we can get its value and use it to find the
2010 // right byte offset from the StructLayout class's list of
2011 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002012 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002013 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2014 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002015 NextReg = makeAnotherReg(Type::UIntTy);
2016 // Emit an ADD to add FieldOff to the basePtr.
2017 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002018 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002019 // The next type is the member of the structure selected by the
2020 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002021 Ty = StTy->getElementTypes()[idxValue];
2022 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002023 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002024
Brian Gaeke20244b72002-12-12 15:33:40 +00002025 // idx is the index into the array. Unlike with structure
2026 // indices, we may not know its actual value at code-generation
2027 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002028 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2029
Chris Lattnerf5854472003-06-21 16:01:24 +00002030 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2031 // operand on X86. Handle this case directly now...
2032 if (CastInst *CI = dyn_cast<CastInst>(idx))
2033 if (CI->getOperand(0)->getType() == Type::IntTy ||
2034 CI->getOperand(0)->getType() == Type::UIntTy)
2035 idx = CI->getOperand(0);
2036
Chris Lattner3e130a22003-01-13 00:32:26 +00002037 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002038 // must find the size of the pointed-to type (Not coincidentally, the next
2039 // type is the type of the elements in the array).
2040 Ty = SqTy->getElementType();
2041 unsigned elementSize = TD.getTypeSize(Ty);
2042
2043 // If idxReg is a constant, we don't need to perform the multiply!
2044 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002045 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002046 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002047 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002048 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002049 }
2050 } else if (elementSize == 1) {
2051 // If the element size is 1, we don't have to multiply, just add
2052 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002053 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002054 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002055 } else {
2056 unsigned idxReg = getReg(idx, MBB, IP);
2057 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002058
2059 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2060
Chris Lattner8a307e82002-12-16 19:32:50 +00002061 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002062 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002063 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002064 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002065 }
2066 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002067 // one, so we don't need to worry about BaseReg itself, anymore.
2068 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002069 }
2070 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002071 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002072 // put the answer. A 32-bit move should do it, because we are in
2073 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002074 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002075}
2076
2077
Chris Lattner065faeb2002-12-28 20:24:02 +00002078/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2079/// frame manager, otherwise do it the hard way.
2080///
2081void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002082 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002083 const Type *Ty = I.getAllocatedType();
2084 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2085
2086 // If this is a fixed size alloca in the entry block for the function,
2087 // statically stack allocate the space.
2088 //
2089 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2090 if (I.getParent() == I.getParent()->getParent()->begin()) {
2091 TySize *= CUI->getValue(); // Get total allocated size...
2092 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2093
2094 // Create a new stack object using the frame manager...
2095 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2096 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2097 return;
2098 }
2099 }
2100
2101 // Create a register to hold the temporary result of multiplying the type size
2102 // constant by the variable amount.
2103 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2104 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002105
2106 // TotalSizeReg = mul <numelements>, <TypeSize>
2107 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002108 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002109
2110 // AddedSize = add <TotalSizeReg>, 15
2111 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2112 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2113
2114 // AlignedSize = and <AddedSize>, ~15
2115 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2116 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2117
Brian Gaekee48ec012002-12-13 06:46:31 +00002118 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002119 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002120
Brian Gaekee48ec012002-12-13 06:46:31 +00002121 // Put a pointer to the space into the result register, by copying
2122 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002123 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2124
Misha Brukman48196b32003-05-03 02:18:17 +00002125 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002126 // object.
2127 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002128}
Chris Lattner3e130a22003-01-13 00:32:26 +00002129
2130/// visitMallocInst - Malloc instructions are code generated into direct calls
2131/// to the library malloc.
2132///
2133void ISel::visitMallocInst(MallocInst &I) {
2134 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2135 unsigned Arg;
2136
2137 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2138 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2139 } else {
2140 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002141 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002142 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002143 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002144 }
2145
2146 std::vector<ValueRecord> Args;
2147 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2148 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002149 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002150 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2151}
2152
2153
2154/// visitFreeInst - Free instructions are code gen'd to call the free libc
2155/// function.
2156///
2157void ISel::visitFreeInst(FreeInst &I) {
2158 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002159 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002160 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002161 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002162 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2163}
2164
Chris Lattnerd281de22003-07-26 23:49:58 +00002165/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002166/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002167/// generated code sucks but the implementation is nice and simple.
2168///
Brian Gaeke19df3872003-08-13 18:18:15 +00002169FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002170 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002171}
Brian Gaeked0fde302003-11-11 22:41:34 +00002172
2173} // End llvm namespace