blob: 97a57562bd73d38ea5c163bc197ea851efeb49cd [file] [log] [blame]
Chris Lattner71c7ec92002-08-30 20:28:10 +00001//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner71c7ec92002-08-30 20:28:10 +00009//
Chris Lattner5a6e9472004-03-15 05:44:59 +000010// This file implements a value numbering pass that value numbers load and call
11// instructions. To do this, it finds lexically identical load instructions,
12// and uses alias analysis to determine which loads are guaranteed to produce
13// the same value. To value number call instructions, it looks for calls to
14// functions that do not write to memory which do not have intervening
15// instructions that clobber the memory that is read from.
Chris Lattner71c7ec92002-08-30 20:28:10 +000016//
17// This pass builds off of another value numbering pass to implement value
Chris Lattner5a6e9472004-03-15 05:44:59 +000018// numbering for non-load and non-call instructions. It uses Alias Analysis so
19// that it can disambiguate the load instructions. The more powerful these base
20// analyses are, the more powerful the resultant value numbering will be.
Chris Lattner71c7ec92002-08-30 20:28:10 +000021//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Analysis/LoadValueNumbering.h"
Chris Lattner5da80972004-04-03 00:45:16 +000025#include "llvm/Constant.h"
Chris Lattner5a6e9472004-03-15 05:44:59 +000026#include "llvm/Function.h"
27#include "llvm/iMemory.h"
28#include "llvm/iOther.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
Chris Lattner71c7ec92002-08-30 20:28:10 +000031#include "llvm/Analysis/ValueNumbering.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/Dominators.h"
Chris Lattner71c7ec92002-08-30 20:28:10 +000034#include "llvm/Support/CFG.h"
Chris Lattner5a6e9472004-03-15 05:44:59 +000035#include "llvm/Target/TargetData.h"
Chris Lattner71c7ec92002-08-30 20:28:10 +000036#include <set>
Chris Lattner270db362004-02-05 05:51:40 +000037using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000038
Chris Lattner71c7ec92002-08-30 20:28:10 +000039namespace {
Chris Lattner28c6cf22003-06-16 12:06:41 +000040 // FIXME: This should not be a FunctionPass.
Chris Lattner71c7ec92002-08-30 20:28:10 +000041 struct LoadVN : public FunctionPass, public ValueNumbering {
42
43 /// Pass Implementation stuff. This doesn't do any analysis.
44 ///
45 bool runOnFunction(Function &) { return false; }
46
47 /// getAnalysisUsage - Does not modify anything. It uses Value Numbering
48 /// and Alias Analysis.
49 ///
50 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
51
52 /// getEqualNumberNodes - Return nodes with the same value number as the
53 /// specified Value. This fills in the argument vector with any equal
54 /// values.
55 ///
56 virtual void getEqualNumberNodes(Value *V1,
57 std::vector<Value*> &RetVals) const;
Chris Lattner5a6e9472004-03-15 05:44:59 +000058
59 /// getCallEqualNumberNodes - Given a call instruction, find other calls
60 /// that have the same value number.
61 void getCallEqualNumberNodes(CallInst *CI,
62 std::vector<Value*> &RetVals) const;
Chris Lattner71c7ec92002-08-30 20:28:10 +000063 };
64
65 // Register this pass...
66 RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering");
67
68 // Declare that we implement the ValueNumbering interface
69 RegisterAnalysisGroup<ValueNumbering, LoadVN> Y;
70}
71
Chris Lattner270db362004-02-05 05:51:40 +000072Pass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }
Chris Lattner71c7ec92002-08-30 20:28:10 +000073
74
75/// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
76/// Alias Analysis.
77///
78void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesAll();
80 AU.addRequired<AliasAnalysis>();
81 AU.addRequired<ValueNumbering>();
82 AU.addRequired<DominatorSet>();
Chris Lattnerf98d8d82003-02-26 19:27:35 +000083 AU.addRequired<TargetData>();
Chris Lattner71c7ec92002-08-30 20:28:10 +000084}
85
Chris Lattner3b303d92004-02-05 17:20:00 +000086static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
87 Value *Ptr, unsigned Size, AliasAnalysis &AA,
88 std::set<BasicBlock*> &Visited,
89 std::map<BasicBlock*, bool> &TransparentBlocks){
90 // If we have already checked out this path, or if we reached our destination,
91 // stop searching, returning success.
92 if (CurBlock == Dom || !Visited.insert(CurBlock).second)
93 return true;
94
95 // Check whether this block is known transparent or not.
96 std::map<BasicBlock*, bool>::iterator TBI =
97 TransparentBlocks.lower_bound(CurBlock);
98
99 if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) {
100 // If this basic block can modify the memory location, then the path is not
101 // transparent!
102 if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
103 TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
104 return false;
105 }
106 TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
107 } else if (!TBI->second)
108 // This block is known non-transparent, so that path can't be either.
109 return false;
110
111 // The current block is known to be transparent. The entire path is
112 // transparent if all of the predecessors paths to the parent is also
113 // transparent to the memory location.
114 for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
115 PI != E; ++PI)
116 if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
117 TransparentBlocks))
118 return false;
119 return true;
120}
121
Chris Lattner5a6e9472004-03-15 05:44:59 +0000122/// getCallEqualNumberNodes - Given a call instruction, find other calls that
123/// have the same value number.
124void LoadVN::getCallEqualNumberNodes(CallInst *CI,
125 std::vector<Value*> &RetVals) const {
126 Function *CF = CI->getCalledFunction();
127 if (CF == 0) return; // Indirect call.
128 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
129 if (!AA.onlyReadsMemory(CF)) return; // Nothing we can do.
130
131 // Scan all of the arguments of the function, looking for one that is not
132 // global. In particular, we would prefer to have an argument or instruction
133 // operand to chase the def-use chains of.
134 Value *Op = CF;
135 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
136 if (isa<Argument>(CI->getOperand(i)) ||
137 isa<Instruction>(CI->getOperand(i))) {
138 Op = CI->getOperand(i);
139 break;
140 }
141
142 // Identify all lexically identical calls in this function.
143 std::vector<CallInst*> IdenticalCalls;
144
145 Function *CIFunc = CI->getParent()->getParent();
146 for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
147 ++UI)
148 if (CallInst *C = dyn_cast<CallInst>(*UI))
149 if (C->getNumOperands() == CI->getNumOperands() &&
150 C->getOperand(0) == CI->getOperand(0) &&
151 C->getParent()->getParent() == CIFunc && C != CI) {
152 bool AllOperandsEqual = true;
153 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
154 if (C->getOperand(i) != CI->getOperand(i)) {
155 AllOperandsEqual = false;
156 break;
157 }
158
159 if (AllOperandsEqual)
160 IdenticalCalls.push_back(C);
161 }
162
163 if (IdenticalCalls.empty()) return;
164
165 // Eliminate duplicates, which could occur if we chose a value that is passed
166 // into a call site multiple times.
167 std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
168 IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
169 IdenticalCalls.end());
170
171 // If the call reads memory, we must make sure that there are no stores
172 // between the calls in question.
173 //
174 // FIXME: This should use mod/ref information. What we really care about it
175 // whether an intervening instruction could modify memory that is read, not
176 // ANY memory.
177 //
178 if (!AA.doesNotAccessMemory(CF)) {
179 DominatorSet &DomSetInfo = getAnalysis<DominatorSet>();
180 BasicBlock *CIBB = CI->getParent();
181 for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
182 CallInst *C = IdenticalCalls[i];
183 bool CantEqual = false;
184
185 if (DomSetInfo.dominates(CIBB, C->getParent())) {
186 // FIXME: we currently only handle the case where both calls are in the
187 // same basic block.
188 if (CIBB != C->getParent()) {
189 CantEqual = true;
190 } else {
191 Instruction *First = CI, *Second = C;
192 if (!DomSetInfo.dominates(CI, C))
193 std::swap(First, Second);
194
195 // Scan the instructions between the calls, checking for stores or
196 // calls to dangerous functions.
197 BasicBlock::iterator I = First;
198 for (++First; I != BasicBlock::iterator(Second); ++I) {
199 if (isa<StoreInst>(I)) {
200 // FIXME: We could use mod/ref information to make this much
201 // better!
202 CantEqual = true;
203 break;
204 } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
205 if (CI->getCalledFunction() == 0 ||
206 !AA.onlyReadsMemory(CI->getCalledFunction())) {
207 CantEqual = true;
208 break;
209 }
210 } else if (I->mayWriteToMemory()) {
211 CantEqual = true;
212 break;
213 }
214 }
215 }
216
217 } else if (DomSetInfo.dominates(C->getParent(), CIBB)) {
218 // FIXME: We could implement this, but we don't for now.
219 CantEqual = true;
220 } else {
221 // FIXME: if one doesn't dominate the other, we can't tell yet.
222 CantEqual = true;
223 }
224
225
226 if (CantEqual) {
227 // This call does not produce the same value as the one in the query.
228 std::swap(IdenticalCalls[i--], IdenticalCalls.back());
229 IdenticalCalls.pop_back();
230 }
231 }
232 }
233
234 // Any calls that are identical and not destroyed will produce equal values!
235 for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
236 RetVals.push_back(IdenticalCalls[i]);
237}
Chris Lattner3b303d92004-02-05 17:20:00 +0000238
Chris Lattner71c7ec92002-08-30 20:28:10 +0000239// getEqualNumberNodes - Return nodes with the same value number as the
240// specified Value. This fills in the argument vector with any equal values.
241//
242void LoadVN::getEqualNumberNodes(Value *V,
243 std::vector<Value*> &RetVals) const {
Chris Lattneraed2c6d2003-06-29 00:53:34 +0000244 // If the alias analysis has any must alias information to share with us, we
Misha Brukman7bc439a2003-09-11 15:31:17 +0000245 // can definitely use it.
Chris Lattneraed2c6d2003-06-29 00:53:34 +0000246 if (isa<PointerType>(V->getType()))
247 getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);
Chris Lattner71c7ec92002-08-30 20:28:10 +0000248
Chris Lattner57ef9a22004-02-05 05:56:23 +0000249 if (!isa<LoadInst>(V)) {
Chris Lattner5a6e9472004-03-15 05:44:59 +0000250 if (CallInst *CI = dyn_cast<CallInst>(V))
Chris Lattner002be762004-03-16 03:41:35 +0000251 getCallEqualNumberNodes(CI, RetVals);
Chris Lattner5a6e9472004-03-15 05:44:59 +0000252
Chris Lattner57ef9a22004-02-05 05:56:23 +0000253 // Not a load instruction? Just chain to the base value numbering
254 // implementation to satisfy the request...
Chris Lattner71c7ec92002-08-30 20:28:10 +0000255 assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
256 "getAnalysis() returned this!");
257
Chris Lattner71c7ec92002-08-30 20:28:10 +0000258 return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
259 }
Chris Lattner57ef9a22004-02-05 05:56:23 +0000260
261 // Volatile loads cannot be replaced with the value of other loads.
262 LoadInst *LI = cast<LoadInst>(V);
263 if (LI->isVolatile())
264 return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
265
266 // If we have a load instruction, find all of the load and store instructions
267 // that use the same source operand. We implement this recursively, because
268 // there could be a load of a load of a load that are all identical. We are
269 // guaranteed that this cannot be an infinite recursion because load
270 // instructions would have to pass through a PHI node in order for there to be
271 // a cycle. The PHI node would be handled by the else case here, breaking the
272 // infinite recursion.
273 //
274 std::vector<Value*> PointerSources;
275 getEqualNumberNodes(LI->getOperand(0), PointerSources);
276 PointerSources.push_back(LI->getOperand(0));
277
Chris Lattner3b303d92004-02-05 17:20:00 +0000278 BasicBlock *LoadBB = LI->getParent();
279 Function *F = LoadBB->getParent();
Chris Lattner57ef9a22004-02-05 05:56:23 +0000280
281 // Now that we know the set of equivalent source pointers for the load
282 // instruction, look to see if there are any load or store candidates that are
283 // identical.
284 //
Chris Lattner3b303d92004-02-05 17:20:00 +0000285 std::map<BasicBlock*, std::vector<LoadInst*> > CandidateLoads;
286 std::map<BasicBlock*, std::vector<StoreInst*> > CandidateStores;
Chris Lattner5da80972004-04-03 00:45:16 +0000287 std::set<AllocationInst*> Allocations;
Chris Lattner57ef9a22004-02-05 05:56:23 +0000288
289 while (!PointerSources.empty()) {
290 Value *Source = PointerSources.back();
291 PointerSources.pop_back(); // Get a source pointer...
Chris Lattner5da80972004-04-03 00:45:16 +0000292
293 if (AllocationInst *AI = dyn_cast<AllocationInst>(Source))
294 Allocations.insert(AI);
Chris Lattner57ef9a22004-02-05 05:56:23 +0000295
296 for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end();
297 UI != UE; ++UI)
298 if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
299 if (Cand->getParent()->getParent() == F && // In the same function?
300 Cand != LI && !Cand->isVolatile()) // Not LI itself?
Chris Lattner3b303d92004-02-05 17:20:00 +0000301 CandidateLoads[Cand->getParent()].push_back(Cand); // Got one...
Chris Lattner57ef9a22004-02-05 05:56:23 +0000302 } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
303 if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
304 Cand->getOperand(1) == Source) // It's a store THROUGH the ptr...
Chris Lattner3b303d92004-02-05 17:20:00 +0000305 CandidateStores[Cand->getParent()].push_back(Cand);
Chris Lattner57ef9a22004-02-05 05:56:23 +0000306 }
307 }
308
Chris Lattner3b303d92004-02-05 17:20:00 +0000309 // Get alias analysis & dominators.
Chris Lattner57ef9a22004-02-05 05:56:23 +0000310 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
311 DominatorSet &DomSetInfo = getAnalysis<DominatorSet>();
Chris Lattner3b303d92004-02-05 17:20:00 +0000312 Value *LoadPtr = LI->getOperand(0);
Chris Lattnerf98d8d82003-02-26 19:27:35 +0000313 // Find out how many bytes of memory are loaded by the load instruction...
Chris Lattner3b303d92004-02-05 17:20:00 +0000314 unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType());
Chris Lattnerf98d8d82003-02-26 19:27:35 +0000315
Chris Lattner3b303d92004-02-05 17:20:00 +0000316 // Find all of the candidate loads and stores that are in the same block as
317 // the defining instruction.
318 std::set<Instruction*> Instrs;
319 Instrs.insert(CandidateLoads[LoadBB].begin(), CandidateLoads[LoadBB].end());
320 CandidateLoads.erase(LoadBB);
321 Instrs.insert(CandidateStores[LoadBB].begin(), CandidateStores[LoadBB].end());
322 CandidateStores.erase(LoadBB);
Chris Lattner71c7ec92002-08-30 20:28:10 +0000323
Chris Lattner3b303d92004-02-05 17:20:00 +0000324 // Figure out if the load is invalidated from the entry of the block it is in
325 // until the actual instruction. This scans the block backwards from LI. If
326 // we see any candidate load or store instructions, then we know that the
327 // candidates have the same value # as LI.
328 bool LoadInvalidatedInBBBefore = false;
329 for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
330 --I;
331 // If this instruction is a candidate load before LI, we know there are no
332 // invalidating instructions between it and LI, so they have the same value
333 // number.
334 if (isa<LoadInst>(I) && Instrs.count(I)) {
335 RetVals.push_back(I);
336 Instrs.erase(I);
Chris Lattner5da80972004-04-03 00:45:16 +0000337 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(I)) {
338 // If we run into an allocation of the value being loaded, then the
339 // contenxt are not initialized. We can return any value, so we will
340 // return a zero.
341 if (Allocations.count(AI)) {
342 LoadInvalidatedInBBBefore = true;
343 RetVals.push_back(Constant::getNullValue(LI->getType()));
344 break;
345 }
Chris Lattneradf9b902004-02-05 00:36:43 +0000346 }
347
Chris Lattner3b303d92004-02-05 17:20:00 +0000348 if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
349 // If the invalidating instruction is a store, and its in our candidate
350 // set, then we can do store-load forwarding: the load has the same value
351 // # as the stored value.
352 if (isa<StoreInst>(I) && Instrs.count(I)) {
353 Instrs.erase(I);
354 RetVals.push_back(I->getOperand(0));
Chris Lattneradf9b902004-02-05 00:36:43 +0000355 }
Chris Lattner3b303d92004-02-05 17:20:00 +0000356
357 LoadInvalidatedInBBBefore = true;
358 break;
Chris Lattneradf9b902004-02-05 00:36:43 +0000359 }
Chris Lattner71c7ec92002-08-30 20:28:10 +0000360 }
Chris Lattner28c6cf22003-06-16 12:06:41 +0000361
Chris Lattner3b303d92004-02-05 17:20:00 +0000362 // Figure out if the load is invalidated between the load and the exit of the
363 // block it is defined in. While we are scanning the current basic block, if
364 // we see any candidate loads, then we know they have the same value # as LI.
Chris Lattner28c6cf22003-06-16 12:06:41 +0000365 //
Chris Lattner3b303d92004-02-05 17:20:00 +0000366 bool LoadInvalidatedInBBAfter = false;
367 for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) {
368 // If this instruction is a load, then this instruction returns the same
369 // value as LI.
370 if (isa<LoadInst>(I) && Instrs.count(I)) {
371 RetVals.push_back(I);
372 Instrs.erase(I);
373 }
Chris Lattner28c6cf22003-06-16 12:06:41 +0000374
Chris Lattner3b303d92004-02-05 17:20:00 +0000375 if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
376 LoadInvalidatedInBBAfter = true;
377 break;
378 }
Chris Lattner28c6cf22003-06-16 12:06:41 +0000379 }
Chris Lattner3b303d92004-02-05 17:20:00 +0000380
381 // If there is anything left in the Instrs set, it could not possibly equal
382 // LI.
383 Instrs.clear();
384
385 // TransparentBlocks - For each basic block the load/store is alive across,
386 // figure out if the pointer is invalidated or not. If it is invalidated, the
387 // boolean is set to false, if it's not it is set to true. If we don't know
388 // yet, the entry is not in the map.
389 std::map<BasicBlock*, bool> TransparentBlocks;
390
391 // Loop over all of the basic blocks that also load the value. If the value
392 // is live across the CFG from the source to destination blocks, and if the
393 // value is not invalidated in either the source or destination blocks, add it
394 // to the equivalence sets.
395 for (std::map<BasicBlock*, std::vector<LoadInst*> >::iterator
396 I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
397 bool CantEqual = false;
398
399 // Right now we only can handle cases where one load dominates the other.
400 // FIXME: generalize this!
401 BasicBlock *BB1 = I->first, *BB2 = LoadBB;
402 if (DomSetInfo.dominates(BB1, BB2)) {
403 // The other load dominates LI. If the loaded value is killed entering
404 // the LoadBB block, we know the load is not live.
405 if (LoadInvalidatedInBBBefore)
406 CantEqual = true;
407 } else if (DomSetInfo.dominates(BB2, BB1)) {
408 std::swap(BB1, BB2); // Canonicalize
409 // LI dominates the other load. If the loaded value is killed exiting
410 // the LoadBB block, we know the load is not live.
411 if (LoadInvalidatedInBBAfter)
412 CantEqual = true;
413 } else {
414 // None of these loads can VN the same.
415 CantEqual = true;
416 }
417
418 if (!CantEqual) {
419 // Ok, at this point, we know that BB1 dominates BB2, and that there is
420 // nothing in the LI block that kills the loaded value. Check to see if
421 // the value is live across the CFG.
422 std::set<BasicBlock*> Visited;
423 for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
424 if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
425 Visited, TransparentBlocks)) {
426 // None of these loads can VN the same.
427 CantEqual = true;
428 break;
429 }
430 }
431
432 // If the loads can equal so far, scan the basic block that contains the
433 // loads under consideration to see if they are invalidated in the block.
434 // For any loads that are not invalidated, add them to the equivalence
435 // set!
436 if (!CantEqual) {
437 Instrs.insert(I->second.begin(), I->second.end());
438 if (BB1 == LoadBB) {
439 // If LI dominates the block in question, check to see if any of the
440 // loads in this block are invalidated before they are reached.
441 for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
442 if (isa<LoadInst>(BBI) && Instrs.count(BBI)) {
443 // The load is in the set!
444 RetVals.push_back(BBI);
445 Instrs.erase(BBI);
446 if (Instrs.empty()) break;
447 } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
448 & AliasAnalysis::Mod) {
449 // If there is a modifying instruction, nothing below it will value
450 // # the same.
451 break;
452 }
453 }
454 } else {
455 // If the block dominates LI, make sure that the loads in the block are
456 // not invalidated before the block ends.
457 BasicBlock::iterator BBI = I->first->end();
458 while (1) {
459 --BBI;
460 if (isa<LoadInst>(BBI) && Instrs.count(BBI)) {
461 // The load is in the set!
462 RetVals.push_back(BBI);
463 Instrs.erase(BBI);
464 if (Instrs.empty()) break;
465 } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
466 & AliasAnalysis::Mod) {
467 // If there is a modifying instruction, nothing above it will value
468 // # the same.
469 break;
470 }
471 }
472 }
473
474 Instrs.clear();
475 }
476 }
477
478 // Handle candidate stores. If the loaded location is clobbered on entrance
479 // to the LoadBB, no store outside of the LoadBB can value number equal, so
480 // quick exit.
481 if (LoadInvalidatedInBBBefore)
482 return;
483
484 for (std::map<BasicBlock*, std::vector<StoreInst*> >::iterator
485 I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I)
486 if (DomSetInfo.dominates(I->first, LoadBB)) {
487 // Check to see if the path from the store to the load is transparent
488 // w.r.t. the memory location.
489 bool CantEqual = false;
490 std::set<BasicBlock*> Visited;
491 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
492 PI != E; ++PI)
493 if (!isPathTransparentTo(*PI, I->first, LoadPtr, LoadSize, AA,
494 Visited, TransparentBlocks)) {
495 // None of these stores can VN the same.
496 CantEqual = true;
497 break;
498 }
499 Visited.clear();
500 if (!CantEqual) {
501 // Okay, the path from the store block to the load block is clear, and
502 // we know that there are no invalidating instructions from the start
503 // of the load block to the load itself. Now we just scan the store
504 // block.
505
506 BasicBlock::iterator BBI = I->first->end();
507 while (1) {
508 --BBI;
509 if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)& AliasAnalysis::Mod){
510 // If the invalidating instruction is one of the candidates,
511 // then it provides the value the load loads.
512 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
513 if (std::find(I->second.begin(), I->second.end(), SI) !=
514 I->second.end())
515 RetVals.push_back(SI->getOperand(0));
516 break;
517 }
518 }
519 }
520 }
Chris Lattner28c6cf22003-06-16 12:06:41 +0000521}