blob: c36f68c2aeb99665074b3a446d3ba558005d86d9 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000023#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000024#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000025#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000027#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000028#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000029#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000030using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000031using namespace llvm::PatternMatch;
32
33const unsigned MaxDepth = 6;
34
35/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36/// unknown returns 0). For vector types, returns the element type's bitwidth.
37static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
42}
Chris Lattner173234a2008-06-02 01:18:21 +000043
Chris Lattner173234a2008-06-02 01:18:21 +000044/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45/// known to be either zero or one and return them in the KnownZero/KnownOne
46/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47/// processing.
48/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49/// we cannot optimize based on the assumption that it is zero without changing
50/// it to be an explicit zero. If we don't change it to zero, other code could
51/// optimized based on the contradictory assumption that it is non-zero.
52/// Because instcombine aggressively folds operations with undef args anyway,
53/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +000054///
55/// This function is defined on values with integer type, values with pointer
56/// type (but only if TD is non-null), and vectors of integers. In the case
57/// where V is a vector, the mask, known zero, and known one values are the
58/// same width as the vector element, and the bit is set only if it is true
59/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +000060void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
Dan Gohman846a2f22009-08-27 17:51:25 +000062 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +000063 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000064 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000065 unsigned BitWidth = Mask.getBitWidth();
Duncan Sands1df98592010-02-16 11:11:14 +000066 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000067 && "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000068 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000070 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +000071 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000072 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
75
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
81 }
Dan Gohman6de29f82009-06-15 22:12:54 +000082 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000085 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +000086 KnownZero = Mask;
87 return;
88 }
Dan Gohman6de29f82009-06-15 22:12:54 +000089 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000092 KnownZero.setAllBits(); KnownOne.setAllBits();
Dan Gohman6de29f82009-06-15 22:12:54 +000093 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
99 }
100 return;
101 }
Chris Lattner173234a2008-06-02 01:18:21 +0000102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
Dan Gohman00407252009-08-11 15:50:03 +0000105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106 const Type *ObjectType = GV->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
114 }
Chris Lattner173234a2008-06-02 01:18:21 +0000115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000121 return;
122 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
131 }
132 return;
133 }
Chris Lattner173234a2008-06-02 01:18:21 +0000134
Jay Foad7a874dd2010-12-01 08:53:58 +0000135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything.
Chris Lattner173234a2008-06-02 01:18:21 +0000136
Dan Gohman9004c8a2009-05-21 02:28:33 +0000137 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000138 return; // Limit search depth.
139
Dan Gohmanca178902009-07-17 20:47:02 +0000140 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000141 if (!I) return;
142
143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000144 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000145 default: break;
146 case Instruction::And: {
147 // If either the LHS or the RHS are Zero, the result is zero.
148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
149 APInt Mask2(Mask & ~KnownZero);
150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
151 Depth+1);
152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
154
155 // Output known-1 bits are only known if set in both the LHS & RHS.
156 KnownOne &= KnownOne2;
157 // Output known-0 are known to be clear if zero in either the LHS | RHS.
158 KnownZero |= KnownZero2;
159 return;
160 }
161 case Instruction::Or: {
162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
163 APInt Mask2(Mask & ~KnownOne);
164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
165 Depth+1);
166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
168
169 // Output known-0 bits are only known if clear in both the LHS & RHS.
170 KnownZero &= KnownZero2;
171 // Output known-1 are known to be set if set in either the LHS | RHS.
172 KnownOne |= KnownOne2;
173 return;
174 }
175 case Instruction::Xor: {
176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
178 Depth+1);
179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
181
182 // Output known-0 bits are known if clear or set in both the LHS & RHS.
183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
184 // Output known-1 are known to be set if set in only one of the LHS, RHS.
185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
186 KnownZero = KnownZeroOut;
187 return;
188 }
189 case Instruction::Mul: {
190 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
193 Depth+1);
194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
196
197 // If low bits are zero in either operand, output low known-0 bits.
198 // Also compute a conserative estimate for high known-0 bits.
199 // More trickiness is possible, but this is sufficient for the
200 // interesting case of alignment computation.
Jay Foad7a874dd2010-12-01 08:53:58 +0000201 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000202 unsigned TrailZ = KnownZero.countTrailingOnes() +
203 KnownZero2.countTrailingOnes();
204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
205 KnownZero2.countLeadingOnes(),
206 BitWidth) - BitWidth;
207
208 TrailZ = std::min(TrailZ, BitWidth);
209 LeadZ = std::min(LeadZ, BitWidth);
210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
211 APInt::getHighBitsSet(BitWidth, LeadZ);
212 KnownZero &= Mask;
213 return;
214 }
215 case Instruction::UDiv: {
216 // For the purposes of computing leading zeros we can conservatively
217 // treat a udiv as a logical right shift by the power of 2 known to
218 // be less than the denominator.
219 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
220 ComputeMaskedBits(I->getOperand(0),
221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
222 unsigned LeadZ = KnownZero2.countLeadingOnes();
223
Jay Foad7a874dd2010-12-01 08:53:58 +0000224 KnownOne2.clearAllBits();
225 KnownZero2.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000226 ComputeMaskedBits(I->getOperand(1),
227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
229 if (RHSUnknownLeadingOnes != BitWidth)
230 LeadZ = std::min(BitWidth,
231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
232
233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
234 return;
235 }
236 case Instruction::Select:
237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
239 Depth+1);
240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
242
243 // Only known if known in both the LHS and RHS.
244 KnownOne &= KnownOne2;
245 KnownZero &= KnownZero2;
246 return;
247 case Instruction::FPTrunc:
248 case Instruction::FPExt:
249 case Instruction::FPToUI:
250 case Instruction::FPToSI:
251 case Instruction::SIToFP:
252 case Instruction::UIToFP:
253 return; // Can't work with floating point.
254 case Instruction::PtrToInt:
255 case Instruction::IntToPtr:
256 // We can't handle these if we don't know the pointer size.
257 if (!TD) return;
258 // FALL THROUGH and handle them the same as zext/trunc.
259 case Instruction::ZExt:
260 case Instruction::Trunc: {
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000261 const Type *SrcTy = I->getOperand(0)->getType();
262
263 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000264 // Note that we handle pointer operands here because of inttoptr/ptrtoint
265 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000266 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
268 else
269 SrcBitWidth = SrcTy->getScalarSizeInBits();
270
Jay Foad40f8f622010-12-07 08:25:19 +0000271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
275 Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000276 KnownZero = KnownZero.zextOrTrunc(BitWidth);
277 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000278 // Any top bits are known to be zero.
279 if (BitWidth > SrcBitWidth)
280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 return;
282 }
283 case Instruction::BitCast: {
284 const Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000286 // TODO: For now, not handling conversions like:
287 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000288 !I->getType()->isVectorTy()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
290 Depth+1);
291 return;
292 }
293 break;
294 }
295 case Instruction::SExt: {
296 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000298
Jay Foad40f8f622010-12-07 08:25:19 +0000299 APInt MaskIn = Mask.trunc(SrcBitWidth);
300 KnownZero = KnownZero.trunc(SrcBitWidth);
301 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
303 Depth+1);
304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000305 KnownZero = KnownZero.zext(BitWidth);
306 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000307
308 // If the sign bit of the input is known set or clear, then we know the
309 // top bits of the result.
310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
314 return;
315 }
316 case Instruction::Shl:
317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
320 APInt Mask2(Mask.lshr(ShiftAmt));
321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
322 Depth+1);
323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
324 KnownZero <<= ShiftAmt;
325 KnownOne <<= ShiftAmt;
326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
327 return;
328 }
329 break;
330 case Instruction::LShr:
331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
333 // Compute the new bits that are at the top now.
334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
335
336 // Unsigned shift right.
337 APInt Mask2(Mask.shl(ShiftAmt));
338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
339 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
343 // high bits known zero.
344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
345 return;
346 }
347 break;
348 case Instruction::AShr:
349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
351 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000353
354 // Signed shift right.
355 APInt Mask2(Mask.shl(ShiftAmt));
356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
357 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
361
362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
364 KnownZero |= HighBits;
365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
366 KnownOne |= HighBits;
367 return;
368 }
369 break;
370 case Instruction::Sub: {
371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
372 // We know that the top bits of C-X are clear if X contains less bits
373 // than C (i.e. no wrap-around can happen). For example, 20-X is
374 // positive if we can prove that X is >= 0 and < 16.
375 if (!CLHS->getValue().isNegative()) {
376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
377 // NLZ can't be BitWidth with no sign bit
378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
380 TD, Depth+1);
381
382 // If all of the MaskV bits are known to be zero, then we know the
383 // output top bits are zero, because we now know that the output is
384 // from [0-C].
385 if ((KnownZero2 & MaskV) == MaskV) {
386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
387 // Top bits known zero.
388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
389 }
390 }
391 }
392 }
393 // fall through
394 case Instruction::Add: {
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000395 // If one of the operands has trailing zeros, then the bits that the
Dan Gohman39250432009-05-24 18:02:35 +0000396 // other operand has in those bit positions will be preserved in the
397 // result. For an add, this works with either operand. For a subtract,
398 // this only works if the known zeros are in the right operand.
399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
400 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
401 BitWidth - Mask.countLeadingZeros());
402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000403 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000404 assert((LHSKnownZero & LHSKnownOne) == 0 &&
405 "Bits known to be one AND zero?");
406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000407
408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000412
Dan Gohman39250432009-05-24 18:02:35 +0000413 // Determine which operand has more trailing zeros, and use that
414 // many bits from the other operand.
415 if (LHSKnownZeroOut > RHSKnownZeroOut) {
Dan Gohmanca178902009-07-17 20:47:02 +0000416 if (I->getOpcode() == Instruction::Add) {
Dan Gohman39250432009-05-24 18:02:35 +0000417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
418 KnownZero |= KnownZero2 & Mask;
419 KnownOne |= KnownOne2 & Mask;
420 } else {
421 // If the known zeros are in the left operand for a subtract,
422 // fall back to the minimum known zeros in both operands.
423 KnownZero |= APInt::getLowBitsSet(BitWidth,
424 std::min(LHSKnownZeroOut,
425 RHSKnownZeroOut));
426 }
427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
429 KnownZero |= LHSKnownZero & Mask;
430 KnownOne |= LHSKnownOne & Mask;
431 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000432
433 // Are we still trying to solve for the sign bit?
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000434 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000435 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
436 if (OBO->hasNoSignedWrap()) {
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000437 if (I->getOpcode() == Instruction::Add) {
438 // Adding two positive numbers can't wrap into negative
439 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
440 KnownZero |= APInt::getSignBit(BitWidth);
441 // and adding two negative numbers can't wrap into positive.
442 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
443 KnownOne |= APInt::getSignBit(BitWidth);
444 } else {
445 // Subtracting a negative number from a positive one can't wrap
446 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
447 KnownZero |= APInt::getSignBit(BitWidth);
448 // neither can subtracting a positive number from a negative one.
449 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
450 KnownOne |= APInt::getSignBit(BitWidth);
451 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000452 }
453 }
454
Chris Lattner173234a2008-06-02 01:18:21 +0000455 return;
456 }
457 case Instruction::SRem:
458 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000459 APInt RA = Rem->getValue().abs();
460 if (RA.isPowerOf2()) {
461 APInt LowBits = RA - 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000462 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
463 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
464 Depth+1);
465
Duncan Sandscfd54182010-01-29 06:18:37 +0000466 // The low bits of the first operand are unchanged by the srem.
467 KnownZero = KnownZero2 & LowBits;
468 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000469
Duncan Sandscfd54182010-01-29 06:18:37 +0000470 // If the first operand is non-negative or has all low bits zero, then
471 // the upper bits are all zero.
472 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
473 KnownZero |= ~LowBits;
474
475 // If the first operand is negative and not all low bits are zero, then
476 // the upper bits are all one.
477 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
478 KnownOne |= ~LowBits;
479
480 KnownZero &= Mask;
481 KnownOne &= Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000482
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000484 }
485 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000486
487 // The sign bit is the LHS's sign bit, except when the result of the
488 // remainder is zero.
489 if (Mask.isNegative() && KnownZero.isNonNegative()) {
490 APInt Mask2 = APInt::getSignBit(BitWidth);
491 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
492 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
493 Depth+1);
494 // If it's known zero, our sign bit is also zero.
495 if (LHSKnownZero.isNegative())
496 KnownZero |= LHSKnownZero;
497 }
498
Chris Lattner173234a2008-06-02 01:18:21 +0000499 break;
500 case Instruction::URem: {
501 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
502 APInt RA = Rem->getValue();
503 if (RA.isPowerOf2()) {
504 APInt LowBits = (RA - 1);
505 APInt Mask2 = LowBits & Mask;
506 KnownZero |= ~LowBits & Mask;
507 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
508 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000509 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000510 break;
511 }
512 }
513
514 // Since the result is less than or equal to either operand, any leading
515 // zero bits in either operand must also exist in the result.
516 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
517 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
518 TD, Depth+1);
519 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
520 TD, Depth+1);
521
Chris Lattner79abedb2009-01-20 18:22:57 +0000522 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000523 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000524 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000525 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
526 break;
527 }
528
Victor Hernandeza276c602009-10-17 01:18:07 +0000529 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000530 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000531 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000532 if (Align == 0 && TD)
533 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000534
535 if (Align > 0)
536 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
537 CountTrailingZeros_32(Align));
538 break;
539 }
540 case Instruction::GetElementPtr: {
541 // Analyze all of the subscripts of this getelementptr instruction
542 // to determine if we can prove known low zero bits.
543 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
544 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
545 ComputeMaskedBits(I->getOperand(0), LocalMask,
546 LocalKnownZero, LocalKnownOne, TD, Depth+1);
547 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
548
549 gep_type_iterator GTI = gep_type_begin(I);
550 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
551 Value *Index = I->getOperand(i);
552 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
553 // Handle struct member offset arithmetic.
554 if (!TD) return;
555 const StructLayout *SL = TD->getStructLayout(STy);
556 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
557 uint64_t Offset = SL->getElementOffset(Idx);
558 TrailZ = std::min(TrailZ,
559 CountTrailingZeros_64(Offset));
560 } else {
561 // Handle array index arithmetic.
562 const Type *IndexedTy = GTI.getIndexedType();
563 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000564 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000565 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000566 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
567 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
568 ComputeMaskedBits(Index, LocalMask,
569 LocalKnownZero, LocalKnownOne, TD, Depth+1);
570 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000571 unsigned(CountTrailingZeros_64(TypeSize) +
572 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000573 }
574 }
575
576 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
577 break;
578 }
579 case Instruction::PHI: {
580 PHINode *P = cast<PHINode>(I);
581 // Handle the case of a simple two-predecessor recurrence PHI.
582 // There's a lot more that could theoretically be done here, but
583 // this is sufficient to catch some interesting cases.
584 if (P->getNumIncomingValues() == 2) {
585 for (unsigned i = 0; i != 2; ++i) {
586 Value *L = P->getIncomingValue(i);
587 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000588 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000589 if (!LU)
590 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000591 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000592 // Check for operations that have the property that if
593 // both their operands have low zero bits, the result
594 // will have low zero bits.
595 if (Opcode == Instruction::Add ||
596 Opcode == Instruction::Sub ||
597 Opcode == Instruction::And ||
598 Opcode == Instruction::Or ||
599 Opcode == Instruction::Mul) {
600 Value *LL = LU->getOperand(0);
601 Value *LR = LU->getOperand(1);
602 // Find a recurrence.
603 if (LL == I)
604 L = LR;
605 else if (LR == I)
606 L = LL;
607 else
608 break;
609 // Ok, we have a PHI of the form L op= R. Check for low
610 // zero bits.
611 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
612 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
613 Mask2 = APInt::getLowBitsSet(BitWidth,
614 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000615
616 // We need to take the minimum number of known bits
617 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
618 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
619
Chris Lattner173234a2008-06-02 01:18:21 +0000620 KnownZero = Mask &
621 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000622 std::min(KnownZero2.countTrailingOnes(),
623 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000624 break;
625 }
626 }
627 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000628
Nick Lewycky3b739d22011-02-10 23:54:10 +0000629 // Unreachable blocks may have zero-operand PHI nodes.
630 if (P->getNumIncomingValues() == 0)
631 return;
632
Dan Gohman9004c8a2009-05-21 02:28:33 +0000633 // Otherwise take the unions of the known bit sets of the operands,
634 // taking conservative care to avoid excessive recursion.
635 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000636 // Skip if every incoming value references to ourself.
637 if (P->hasConstantValue() == P)
638 break;
639
Dan Gohman9004c8a2009-05-21 02:28:33 +0000640 KnownZero = APInt::getAllOnesValue(BitWidth);
641 KnownOne = APInt::getAllOnesValue(BitWidth);
642 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
643 // Skip direct self references.
644 if (P->getIncomingValue(i) == P) continue;
645
646 KnownZero2 = APInt(BitWidth, 0);
647 KnownOne2 = APInt(BitWidth, 0);
648 // Recurse, but cap the recursion to one level, because we don't
649 // want to waste time spinning around in loops.
650 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
651 KnownZero2, KnownOne2, TD, MaxDepth-1);
652 KnownZero &= KnownZero2;
653 KnownOne &= KnownOne2;
654 // If all bits have been ruled out, there's no need to check
655 // more operands.
656 if (!KnownZero && !KnownOne)
657 break;
658 }
659 }
Chris Lattner173234a2008-06-02 01:18:21 +0000660 break;
661 }
662 case Instruction::Call:
663 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
664 switch (II->getIntrinsicID()) {
665 default: break;
666 case Intrinsic::ctpop:
667 case Intrinsic::ctlz:
668 case Intrinsic::cttz: {
669 unsigned LowBits = Log2_32(BitWidth)+1;
670 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
671 break;
672 }
673 }
674 }
675 break;
676 }
677}
678
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000679/// ComputeSignBit - Determine whether the sign bit is known to be zero or
680/// one. Convenience wrapper around ComputeMaskedBits.
681void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
682 const TargetData *TD, unsigned Depth) {
683 unsigned BitWidth = getBitWidth(V->getType(), TD);
684 if (!BitWidth) {
685 KnownZero = false;
686 KnownOne = false;
687 return;
688 }
689 APInt ZeroBits(BitWidth, 0);
690 APInt OneBits(BitWidth, 0);
691 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
692 Depth);
693 KnownOne = OneBits[BitWidth - 1];
694 KnownZero = ZeroBits[BitWidth - 1];
695}
696
697/// isPowerOfTwo - Return true if the given value is known to have exactly one
698/// bit set when defined. For vectors return true if every element is known to
699/// be a power of two when defined. Supports values with integer or pointer
700/// types and vectors of integers.
701bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
702 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Duncan Sands464a4f32011-01-26 08:44:16 +0000703 return CI->getValue().isPowerOf2();
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000704 // TODO: Handle vector constants.
705
706 // 1 << X is clearly a power of two if the one is not shifted off the end. If
707 // it is shifted off the end then the result is undefined.
708 if (match(V, m_Shl(m_One(), m_Value())))
709 return true;
710
711 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
712 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000713 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000714 return true;
715
716 // The remaining tests are all recursive, so bail out if we hit the limit.
717 if (Depth++ == MaxDepth)
718 return false;
719
720 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
721 return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
722
723 if (SelectInst *SI = dyn_cast<SelectInst>(V))
724 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
725 isPowerOfTwo(SI->getFalseValue(), TD, Depth);
726
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000727 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyda834092011-02-28 09:18:11 +0000728 // is a power of two only if the first operand is a power of two.
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000729 if (match(V, m_Shr(m_Value(), m_Value())) ||
730 match(V, m_IDiv(m_Value(), m_Value()))) {
731 BinaryOperator *BO = cast<BinaryOperator>(V);
732 if (BO->isExact())
733 return isPowerOfTwo(BO->getOperand(0), TD, Depth);
734 }
735
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000736 return false;
737}
738
739/// isKnownNonZero - Return true if the given value is known to be non-zero
740/// when defined. For vectors return true if every element is known to be
741/// non-zero when defined. Supports values with integer or pointer type and
742/// vectors of integers.
743bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
744 if (Constant *C = dyn_cast<Constant>(V)) {
745 if (C->isNullValue())
746 return false;
747 if (isa<ConstantInt>(C))
748 // Must be non-zero due to null test above.
749 return true;
750 // TODO: Handle vectors
751 return false;
752 }
753
754 // The remaining tests are all recursive, so bail out if we hit the limit.
755 if (Depth++ == MaxDepth)
756 return false;
757
758 unsigned BitWidth = getBitWidth(V->getType(), TD);
759
760 // X | Y != 0 if X != 0 or Y != 0.
761 Value *X = 0, *Y = 0;
762 if (match(V, m_Or(m_Value(X), m_Value(Y))))
763 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
764
765 // ext X != 0 if X != 0.
766 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
767 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
768
Duncan Sands91367822011-01-29 13:27:00 +0000769 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000770 // if the lowest bit is shifted off the end.
771 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000772 // shl nuw can't remove any non-zero bits.
773 BinaryOperator *BO = cast<BinaryOperator>(V);
774 if (BO->hasNoUnsignedWrap())
775 return isKnownNonZero(X, TD, Depth);
776
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000777 APInt KnownZero(BitWidth, 0);
778 APInt KnownOne(BitWidth, 0);
Duncan Sands91367822011-01-29 13:27:00 +0000779 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000780 if (KnownOne[0])
781 return true;
782 }
Duncan Sands91367822011-01-29 13:27:00 +0000783 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000784 // defined if the sign bit is shifted off the end.
785 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000786 // shr exact can only shift out zero bits.
787 BinaryOperator *BO = cast<BinaryOperator>(V);
788 if (BO->isExact())
789 return isKnownNonZero(X, TD, Depth);
790
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000791 bool XKnownNonNegative, XKnownNegative;
792 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
793 if (XKnownNegative)
794 return true;
795 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000796 // div exact can only produce a zero if the dividend is zero.
797 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
798 BinaryOperator *BO = cast<BinaryOperator>(V);
799 if (BO->isExact())
800 return isKnownNonZero(X, TD, Depth);
801 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000802 // X + Y.
803 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
804 bool XKnownNonNegative, XKnownNegative;
805 bool YKnownNonNegative, YKnownNegative;
806 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
807 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
808
809 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000810 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000811 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000812 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
813 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000814
815 // If X and Y are both negative (as signed values) then their sum is not
816 // zero unless both X and Y equal INT_MIN.
817 if (BitWidth && XKnownNegative && YKnownNegative) {
818 APInt KnownZero(BitWidth, 0);
819 APInt KnownOne(BitWidth, 0);
820 APInt Mask = APInt::getSignedMaxValue(BitWidth);
821 // The sign bit of X is set. If some other bit is set then X is not equal
822 // to INT_MIN.
823 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
824 if ((KnownOne & Mask) != 0)
825 return true;
826 // The sign bit of Y is set. If some other bit is set then Y is not equal
827 // to INT_MIN.
828 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
829 if ((KnownOne & Mask) != 0)
830 return true;
831 }
832
833 // The sum of a non-negative number and a power of two is not zero.
834 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
835 return true;
836 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
837 return true;
838 }
839 // (C ? X : Y) != 0 if X != 0 and Y != 0.
840 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
841 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
842 isKnownNonZero(SI->getFalseValue(), TD, Depth))
843 return true;
844 }
845
846 if (!BitWidth) return false;
847 APInt KnownZero(BitWidth, 0);
848 APInt KnownOne(BitWidth, 0);
849 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
850 TD, Depth);
851 return KnownOne != 0;
852}
853
Chris Lattner173234a2008-06-02 01:18:21 +0000854/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
855/// this predicate to simplify operations downstream. Mask is known to be zero
856/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000857///
858/// This function is defined on values with integer type, values with pointer
859/// type (but only if TD is non-null), and vectors of integers. In the case
860/// where V is a vector, the mask, known zero, and known one values are the
861/// same width as the vector element, and the bit is set only if it is true
862/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000863bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Dan Gohman846a2f22009-08-27 17:51:25 +0000864 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000865 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
866 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
867 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
868 return (KnownZero & Mask) == Mask;
869}
870
871
872
873/// ComputeNumSignBits - Return the number of times the sign bit of the
874/// register is replicated into the other bits. We know that at least 1 bit
875/// is always equal to the sign bit (itself), but other cases can give us
876/// information. For example, immediately after an "ashr X, 2", we know that
877/// the top 3 bits are all equal to each other, so we return 3.
878///
879/// 'Op' must have a scalar integer type.
880///
Dan Gohman846a2f22009-08-27 17:51:25 +0000881unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
882 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000883 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000884 "ComputeNumSignBits requires a TargetData object to operate "
885 "on non-integer values!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000886 const Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000887 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
888 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000889 unsigned Tmp, Tmp2;
890 unsigned FirstAnswer = 1;
891
Chris Lattnerd82e5112008-06-02 18:39:07 +0000892 // Note that ConstantInt is handled by the general ComputeMaskedBits case
893 // below.
894
Chris Lattner173234a2008-06-02 01:18:21 +0000895 if (Depth == 6)
896 return 1; // Limit search depth.
897
Dan Gohmanca178902009-07-17 20:47:02 +0000898 Operator *U = dyn_cast<Operator>(V);
899 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000900 default: break;
901 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +0000902 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000903 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
904
905 case Instruction::AShr:
906 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
907 // ashr X, C -> adds C sign bits.
908 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
909 Tmp += C->getZExtValue();
910 if (Tmp > TyBits) Tmp = TyBits;
911 }
Nate Begeman9a3dc552010-12-17 23:12:19 +0000912 // vector ashr X, <C, C, C, C> -> adds C sign bits
913 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
914 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
915 Tmp += CI->getZExtValue();
916 if (Tmp > TyBits) Tmp = TyBits;
917 }
918 }
Chris Lattner173234a2008-06-02 01:18:21 +0000919 return Tmp;
920 case Instruction::Shl:
921 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
922 // shl destroys sign bits.
923 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
924 if (C->getZExtValue() >= TyBits || // Bad shift.
925 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
926 return Tmp - C->getZExtValue();
927 }
928 break;
929 case Instruction::And:
930 case Instruction::Or:
931 case Instruction::Xor: // NOT is handled here.
932 // Logical binary ops preserve the number of sign bits at the worst.
933 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
934 if (Tmp != 1) {
935 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
936 FirstAnswer = std::min(Tmp, Tmp2);
937 // We computed what we know about the sign bits as our first
938 // answer. Now proceed to the generic code that uses
939 // ComputeMaskedBits, and pick whichever answer is better.
940 }
941 break;
942
943 case Instruction::Select:
944 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
945 if (Tmp == 1) return 1; // Early out.
946 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
947 return std::min(Tmp, Tmp2);
948
949 case Instruction::Add:
950 // Add can have at most one carry bit. Thus we know that the output
951 // is, at worst, one more bit than the inputs.
952 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
953 if (Tmp == 1) return 1; // Early out.
954
955 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000956 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000957 if (CRHS->isAllOnesValue()) {
958 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
959 APInt Mask = APInt::getAllOnesValue(TyBits);
960 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
961 Depth+1);
962
963 // If the input is known to be 0 or 1, the output is 0/-1, which is all
964 // sign bits set.
965 if ((KnownZero | APInt(TyBits, 1)) == Mask)
966 return TyBits;
967
968 // If we are subtracting one from a positive number, there is no carry
969 // out of the result.
970 if (KnownZero.isNegative())
971 return Tmp;
972 }
973
974 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
975 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +0000976 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +0000977
978 case Instruction::Sub:
979 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
980 if (Tmp2 == 1) return 1;
981
982 // Handle NEG.
983 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
984 if (CLHS->isNullValue()) {
985 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
986 APInt Mask = APInt::getAllOnesValue(TyBits);
987 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
988 TD, Depth+1);
989 // If the input is known to be 0 or 1, the output is 0/-1, which is all
990 // sign bits set.
991 if ((KnownZero | APInt(TyBits, 1)) == Mask)
992 return TyBits;
993
994 // If the input is known to be positive (the sign bit is known clear),
995 // the output of the NEG has the same number of sign bits as the input.
996 if (KnownZero.isNegative())
997 return Tmp2;
998
999 // Otherwise, we treat this like a SUB.
1000 }
1001
1002 // Sub can have at most one carry bit. Thus we know that the output
1003 // is, at worst, one more bit than the inputs.
1004 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1005 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001006 return std::min(Tmp, Tmp2)-1;
1007
1008 case Instruction::PHI: {
1009 PHINode *PN = cast<PHINode>(U);
1010 // Don't analyze large in-degree PHIs.
1011 if (PN->getNumIncomingValues() > 4) break;
1012
1013 // Take the minimum of all incoming values. This can't infinitely loop
1014 // because of our depth threshold.
1015 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1016 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1017 if (Tmp == 1) return Tmp;
1018 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001019 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001020 }
1021 return Tmp;
1022 }
1023
Chris Lattner173234a2008-06-02 01:18:21 +00001024 case Instruction::Trunc:
1025 // FIXME: it's tricky to do anything useful for this, but it is an important
1026 // case for targets like X86.
1027 break;
1028 }
1029
1030 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1031 // use this information.
1032 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1033 APInt Mask = APInt::getAllOnesValue(TyBits);
1034 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1035
1036 if (KnownZero.isNegative()) { // sign bit is 0
1037 Mask = KnownZero;
1038 } else if (KnownOne.isNegative()) { // sign bit is 1;
1039 Mask = KnownOne;
1040 } else {
1041 // Nothing known.
1042 return FirstAnswer;
1043 }
1044
1045 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1046 // the number of identical bits in the top of the input value.
1047 Mask = ~Mask;
1048 Mask <<= Mask.getBitWidth()-TyBits;
1049 // Return # leading zeros. We use 'min' here in case Val was zero before
1050 // shifting. We don't want to return '64' as for an i32 "0".
1051 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1052}
Chris Lattner833f25d2008-06-02 01:29:46 +00001053
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001054/// ComputeMultiple - This function computes the integer multiple of Base that
1055/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001056/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001057/// through SExt instructions only if LookThroughSExt is true.
1058bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001059 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001060 const unsigned MaxDepth = 6;
1061
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001062 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001063 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001064 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001065
1066 const Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001067
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001068 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001069
1070 if (Base == 0)
1071 return false;
1072
1073 if (Base == 1) {
1074 Multiple = V;
1075 return true;
1076 }
1077
1078 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1079 Constant *BaseVal = ConstantInt::get(T, Base);
1080 if (CO && CO == BaseVal) {
1081 // Multiple is 1.
1082 Multiple = ConstantInt::get(T, 1);
1083 return true;
1084 }
1085
1086 if (CI && CI->getZExtValue() % Base == 0) {
1087 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1088 return true;
1089 }
1090
1091 if (Depth == MaxDepth) return false; // Limit search depth.
1092
1093 Operator *I = dyn_cast<Operator>(V);
1094 if (!I) return false;
1095
1096 switch (I->getOpcode()) {
1097 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001098 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001099 if (!LookThroughSExt) return false;
1100 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001101 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001102 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1103 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001104 case Instruction::Shl:
1105 case Instruction::Mul: {
1106 Value *Op0 = I->getOperand(0);
1107 Value *Op1 = I->getOperand(1);
1108
1109 if (I->getOpcode() == Instruction::Shl) {
1110 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1111 if (!Op1CI) return false;
1112 // Turn Op0 << Op1 into Op0 * 2^Op1
1113 APInt Op1Int = Op1CI->getValue();
1114 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001115 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001116 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001117 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001118 }
1119
1120 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001121 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1122 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1123 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1124 if (Op1C->getType()->getPrimitiveSizeInBits() <
1125 MulC->getType()->getPrimitiveSizeInBits())
1126 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1127 if (Op1C->getType()->getPrimitiveSizeInBits() >
1128 MulC->getType()->getPrimitiveSizeInBits())
1129 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1130
1131 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1132 Multiple = ConstantExpr::getMul(MulC, Op1C);
1133 return true;
1134 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001135
1136 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1137 if (Mul0CI->getValue() == 1) {
1138 // V == Base * Op1, so return Op1
1139 Multiple = Op1;
1140 return true;
1141 }
1142 }
1143
Chris Lattnere9711312010-09-05 17:20:46 +00001144 Value *Mul1 = NULL;
1145 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1146 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1147 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1148 if (Op0C->getType()->getPrimitiveSizeInBits() <
1149 MulC->getType()->getPrimitiveSizeInBits())
1150 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1151 if (Op0C->getType()->getPrimitiveSizeInBits() >
1152 MulC->getType()->getPrimitiveSizeInBits())
1153 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1154
1155 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1156 Multiple = ConstantExpr::getMul(MulC, Op0C);
1157 return true;
1158 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001159
1160 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1161 if (Mul1CI->getValue() == 1) {
1162 // V == Base * Op0, so return Op0
1163 Multiple = Op0;
1164 return true;
1165 }
1166 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001167 }
1168 }
1169
1170 // We could not determine if V is a multiple of Base.
1171 return false;
1172}
1173
Chris Lattner833f25d2008-06-02 01:29:46 +00001174/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1175/// value is never equal to -0.0.
1176///
1177/// NOTE: this function will need to be revisited when we support non-default
1178/// rounding modes!
1179///
1180bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1181 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1182 return !CFP->getValueAPF().isNegZero();
1183
1184 if (Depth == 6)
1185 return 1; // Limit search depth.
1186
Dan Gohmanca178902009-07-17 20:47:02 +00001187 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001188 if (I == 0) return false;
1189
1190 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001191 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001192 isa<ConstantFP>(I->getOperand(1)) &&
1193 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1194 return true;
1195
1196 // sitofp and uitofp turn into +0.0 for zero.
1197 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1198 return true;
1199
1200 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1201 // sqrt(-0.0) = -0.0, no other negative results are possible.
1202 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001203 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001204
1205 if (const CallInst *CI = dyn_cast<CallInst>(I))
1206 if (const Function *F = CI->getCalledFunction()) {
1207 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001208 // abs(x) != -0.0
1209 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001210 // fabs[lf](x) != -0.0
1211 if (F->getName() == "fabs") return true;
1212 if (F->getName() == "fabsf") return true;
1213 if (F->getName() == "fabsl") return true;
1214 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1215 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001216 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001217 }
1218 }
1219
1220 return false;
1221}
1222
Chris Lattnerbb897102010-12-26 20:15:01 +00001223/// isBytewiseValue - If the specified value can be set by repeating the same
1224/// byte in memory, return the i8 value that it is represented with. This is
1225/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1226/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1227/// byte store (e.g. i16 0x1234), return null.
1228Value *llvm::isBytewiseValue(Value *V) {
1229 // All byte-wide stores are splatable, even of arbitrary variables.
1230 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001231
1232 // Handle 'null' ConstantArrayZero etc.
1233 if (Constant *C = dyn_cast<Constant>(V))
1234 if (C->isNullValue())
1235 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001236
1237 // Constant float and double values can be handled as integer values if the
1238 // corresponding integer value is "byteable". An important case is 0.0.
1239 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1240 if (CFP->getType()->isFloatTy())
1241 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1242 if (CFP->getType()->isDoubleTy())
1243 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1244 // Don't handle long double formats, which have strange constraints.
1245 }
1246
1247 // We can handle constant integers that are power of two in size and a
1248 // multiple of 8 bits.
1249 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1250 unsigned Width = CI->getBitWidth();
1251 if (isPowerOf2_32(Width) && Width > 8) {
1252 // We can handle this value if the recursive binary decomposition is the
1253 // same at all levels.
1254 APInt Val = CI->getValue();
1255 APInt Val2;
1256 while (Val.getBitWidth() != 8) {
1257 unsigned NextWidth = Val.getBitWidth()/2;
1258 Val2 = Val.lshr(NextWidth);
1259 Val2 = Val2.trunc(Val.getBitWidth()/2);
1260 Val = Val.trunc(Val.getBitWidth()/2);
1261
1262 // If the top/bottom halves aren't the same, reject it.
1263 if (Val != Val2)
1264 return 0;
1265 }
1266 return ConstantInt::get(V->getContext(), Val);
1267 }
1268 }
1269
1270 // A ConstantArray is splatable if all its members are equal and also
1271 // splatable.
1272 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1273 if (CA->getNumOperands() == 0)
1274 return 0;
1275
1276 Value *Val = isBytewiseValue(CA->getOperand(0));
1277 if (!Val)
1278 return 0;
1279
1280 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1281 if (CA->getOperand(I-1) != CA->getOperand(I))
1282 return 0;
1283
1284 return Val;
1285 }
1286
1287 // Conceptually, we could handle things like:
1288 // %a = zext i8 %X to i16
1289 // %b = shl i16 %a, 8
1290 // %c = or i16 %a, %b
1291 // but until there is an example that actually needs this, it doesn't seem
1292 // worth worrying about.
1293 return 0;
1294}
1295
1296
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001297// This is the recursive version of BuildSubAggregate. It takes a few different
1298// arguments. Idxs is the index within the nested struct From that we are
1299// looking at now (which is of type IndexedType). IdxSkip is the number of
1300// indices from Idxs that should be left out when inserting into the resulting
1301// struct. To is the result struct built so far, new insertvalue instructions
1302// build on that.
Dan Gohman7db949d2009-08-07 01:32:21 +00001303static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
1304 SmallVector<unsigned, 10> &Idxs,
1305 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001306 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001307 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1308 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001309 // Save the original To argument so we can modify it
1310 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001311 // General case, the type indexed by Idxs is a struct
1312 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1313 // Process each struct element recursively
1314 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001315 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001316 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001317 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001318 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001319 if (!To) {
1320 // Couldn't find any inserted value for this index? Cleanup
1321 while (PrevTo != OrigTo) {
1322 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1323 PrevTo = Del->getAggregateOperand();
1324 Del->eraseFromParent();
1325 }
1326 // Stop processing elements
1327 break;
1328 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001329 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001330 // If we succesfully found a value for each of our subaggregates
1331 if (To)
1332 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001333 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001334 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1335 // the struct's elements had a value that was inserted directly. In the latter
1336 // case, perhaps we can't determine each of the subelements individually, but
1337 // we might be able to find the complete struct somewhere.
1338
1339 // Find the value that is at that particular spot
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001340 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001341
1342 if (!V)
1343 return NULL;
1344
1345 // Insert the value in the new (sub) aggregrate
1346 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
1347 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001348}
1349
1350// This helper takes a nested struct and extracts a part of it (which is again a
1351// struct) into a new value. For example, given the struct:
1352// { a, { b, { c, d }, e } }
1353// and the indices "1, 1" this returns
1354// { c, d }.
1355//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001356// It does this by inserting an insertvalue for each element in the resulting
1357// struct, as opposed to just inserting a single struct. This will only work if
1358// each of the elements of the substruct are known (ie, inserted into From by an
1359// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001360//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001361// All inserted insertvalue instructions are inserted before InsertBefore
Dan Gohman7db949d2009-08-07 01:32:21 +00001362static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001363 const unsigned *idx_end,
Dan Gohman7db949d2009-08-07 01:32:21 +00001364 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001365 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001366 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1367 idx_begin,
1368 idx_end);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001369 Value *To = UndefValue::get(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001370 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1371 unsigned IdxSkip = Idxs.size();
1372
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001373 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001374}
1375
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001376/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1377/// the scalar value indexed is already around as a register, for example if it
1378/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001379///
1380/// If InsertBefore is not null, this function will duplicate (modified)
1381/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001382Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001383 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001384 // Nothing to index? Just return V then (this is useful at the end of our
1385 // recursion)
1386 if (idx_begin == idx_end)
1387 return V;
1388 // We have indices, so V should have an indexable type
Duncan Sands1df98592010-02-16 11:11:14 +00001389 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001390 && "Not looking at a struct or array?");
1391 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1392 && "Invalid indices for type?");
1393 const CompositeType *PTy = cast<CompositeType>(V->getType());
Owen Anderson76f600b2009-07-06 22:37:39 +00001394
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001395 if (isa<UndefValue>(V))
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001396 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001397 idx_begin,
1398 idx_end));
1399 else if (isa<ConstantAggregateZero>(V))
Owen Andersona7235ea2009-07-31 20:28:14 +00001400 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
Owen Anderson76f600b2009-07-06 22:37:39 +00001401 idx_begin,
1402 idx_end));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001403 else if (Constant *C = dyn_cast<Constant>(V)) {
1404 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1405 // Recursively process this constant
Owen Anderson76f600b2009-07-06 22:37:39 +00001406 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001407 idx_end, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001408 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1409 // Loop the indices for the insertvalue instruction in parallel with the
1410 // requested indices
1411 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001412 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1413 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +00001414 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001415 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001416 // The requested index identifies a part of a nested aggregate. Handle
1417 // this specially. For example,
1418 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1419 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1420 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1421 // This can be changed into
1422 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1423 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1424 // which allows the unused 0,0 element from the nested struct to be
1425 // removed.
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001426 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
Matthijs Kooijman97728912008-06-16 13:28:31 +00001427 else
1428 // We can't handle this without inserting insertvalues
1429 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +00001430 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001431
1432 // This insert value inserts something else than what we are looking for.
1433 // See if the (aggregrate) value inserted into has the value we are
1434 // looking for, then.
1435 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001436 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001437 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001438 }
1439 // If we end up here, the indices of the insertvalue match with those
1440 // requested (though possibly only partially). Now we recursively look at
1441 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001442 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001443 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001444 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1445 // If we're extracting a value from an aggregrate that was extracted from
1446 // something else, we can extract from that something else directly instead.
1447 // However, we will need to chain I's indices with the requested indices.
1448
1449 // Calculate the number of indices required
1450 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1451 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001452 SmallVector<unsigned, 5> Idxs;
1453 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001454 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001455 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001456 i != e; ++i)
1457 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001458
1459 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001460 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1461 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001462
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001463 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001464 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001465
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001466 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001467 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001468 }
1469 // Otherwise, we don't know (such as, extracting from a function return value
1470 // or load instruction)
1471 return 0;
1472}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001473
Chris Lattnered58a6f2010-11-30 22:25:26 +00001474/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1475/// it can be expressed as a base pointer plus a constant offset. Return the
1476/// base and offset to the caller.
1477Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1478 const TargetData &TD) {
1479 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1480 if (PtrOp == 0) return Ptr;
1481
1482 // Just look through bitcasts.
1483 if (PtrOp->getOpcode() == Instruction::BitCast)
1484 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1485
1486 // If this is a GEP with constant indices, we can look through it.
1487 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1488 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1489
1490 gep_type_iterator GTI = gep_type_begin(GEP);
1491 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1492 ++I, ++GTI) {
1493 ConstantInt *OpC = cast<ConstantInt>(*I);
1494 if (OpC->isZero()) continue;
1495
1496 // Handle a struct and array indices which add their offset to the pointer.
1497 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1498 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1499 } else {
1500 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1501 Offset += OpC->getSExtValue()*Size;
1502 }
1503 }
1504
1505 // Re-sign extend from the pointer size if needed to get overflow edge cases
1506 // right.
1507 unsigned PtrSize = TD.getPointerSizeInBits();
1508 if (PtrSize < 64)
1509 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1510
1511 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1512}
1513
1514
Evan Cheng0ff39b32008-06-30 07:31:25 +00001515/// GetConstantStringInfo - This function computes the length of a
1516/// null-terminated C string pointed to by V. If successful, it returns true
1517/// and returns the string in Str. If unsuccessful, it returns false.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001518bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
1519 uint64_t Offset,
Bill Wendling0582ae92009-03-13 04:39:26 +00001520 bool StopAtNul) {
1521 // If V is NULL then return false;
1522 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001523
1524 // Look through bitcast instructions.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001525 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001526 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1527
Evan Cheng0ff39b32008-06-30 07:31:25 +00001528 // If the value is not a GEP instruction nor a constant expression with a
1529 // GEP instruction, then return false because ConstantArray can't occur
1530 // any other way
Dan Gohman0a60fa32010-04-14 22:20:45 +00001531 const User *GEP = 0;
1532 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001533 GEP = GEPI;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001534 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001535 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001536 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1537 if (CE->getOpcode() != Instruction::GetElementPtr)
1538 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001539 GEP = CE;
1540 }
1541
1542 if (GEP) {
1543 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001544 if (GEP->getNumOperands() != 3)
1545 return false;
1546
Evan Cheng0ff39b32008-06-30 07:31:25 +00001547 // Make sure the index-ee is a pointer to array of i8.
1548 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1549 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001550 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001551 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001552
1553 // Check to make sure that the first operand of the GEP is an integer and
1554 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001555 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001556 if (FirstIdx == 0 || !FirstIdx->isZero())
1557 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001558
1559 // If the second index isn't a ConstantInt, then this is a variable index
1560 // into the array. If this occurs, we can't say anything meaningful about
1561 // the string.
1562 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001563 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001564 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001565 else
1566 return false;
1567 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001568 StopAtNul);
1569 }
1570
1571 // The GEP instruction, constant or instruction, must reference a global
1572 // variable that is a constant and is initialized. The referenced constant
1573 // initializer is the array that we'll use for optimization.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001574 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001575 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001576 return false;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001577 const Constant *GlobalInit = GV->getInitializer();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001578
1579 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001580 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001581 // This is a degenerate case. The initializer is constant zero so the
1582 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001583 Str.clear();
1584 return true;
1585 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001586
1587 // Must be a Constant Array
Dan Gohman0a60fa32010-04-14 22:20:45 +00001588 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001589 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001590 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001591
1592 // Get the number of elements in the array
1593 uint64_t NumElts = Array->getType()->getNumElements();
1594
Bill Wendling0582ae92009-03-13 04:39:26 +00001595 if (Offset > NumElts)
1596 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001597
1598 // Traverse the constant array from 'Offset' which is the place the GEP refers
1599 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001600 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001601 for (unsigned i = Offset; i != NumElts; ++i) {
Dan Gohman0a60fa32010-04-14 22:20:45 +00001602 const Constant *Elt = Array->getOperand(i);
1603 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001604 if (!CI) // This array isn't suitable, non-int initializer.
1605 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001606 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001607 return true; // we found end of string, success!
1608 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001609 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001610
Evan Cheng0ff39b32008-06-30 07:31:25 +00001611 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001612 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001613}
Eric Christopher25ec4832010-03-05 06:58:57 +00001614
1615// These next two are very similar to the above, but also look through PHI
1616// nodes.
1617// TODO: See if we can integrate these two together.
1618
1619/// GetStringLengthH - If we can compute the length of the string pointed to by
1620/// the specified pointer, return 'len+1'. If we can't, return 0.
1621static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1622 // Look through noop bitcast instructions.
1623 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1624 return GetStringLengthH(BCI->getOperand(0), PHIs);
1625
1626 // If this is a PHI node, there are two cases: either we have already seen it
1627 // or we haven't.
1628 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1629 if (!PHIs.insert(PN))
1630 return ~0ULL; // already in the set.
1631
1632 // If it was new, see if all the input strings are the same length.
1633 uint64_t LenSoFar = ~0ULL;
1634 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1635 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1636 if (Len == 0) return 0; // Unknown length -> unknown.
1637
1638 if (Len == ~0ULL) continue;
1639
1640 if (Len != LenSoFar && LenSoFar != ~0ULL)
1641 return 0; // Disagree -> unknown.
1642 LenSoFar = Len;
1643 }
1644
1645 // Success, all agree.
1646 return LenSoFar;
1647 }
1648
1649 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1650 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1651 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1652 if (Len1 == 0) return 0;
1653 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1654 if (Len2 == 0) return 0;
1655 if (Len1 == ~0ULL) return Len2;
1656 if (Len2 == ~0ULL) return Len1;
1657 if (Len1 != Len2) return 0;
1658 return Len1;
1659 }
1660
1661 // If the value is not a GEP instruction nor a constant expression with a
1662 // GEP instruction, then return unknown.
1663 User *GEP = 0;
1664 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1665 GEP = GEPI;
1666 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1667 if (CE->getOpcode() != Instruction::GetElementPtr)
1668 return 0;
1669 GEP = CE;
1670 } else {
1671 return 0;
1672 }
1673
1674 // Make sure the GEP has exactly three arguments.
1675 if (GEP->getNumOperands() != 3)
1676 return 0;
1677
1678 // Check to make sure that the first operand of the GEP is an integer and
1679 // has value 0 so that we are sure we're indexing into the initializer.
1680 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1681 if (!Idx->isZero())
1682 return 0;
1683 } else
1684 return 0;
1685
1686 // If the second index isn't a ConstantInt, then this is a variable index
1687 // into the array. If this occurs, we can't say anything meaningful about
1688 // the string.
1689 uint64_t StartIdx = 0;
1690 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1691 StartIdx = CI->getZExtValue();
1692 else
1693 return 0;
1694
1695 // The GEP instruction, constant or instruction, must reference a global
1696 // variable that is a constant and is initialized. The referenced constant
1697 // initializer is the array that we'll use for optimization.
1698 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1699 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1700 GV->mayBeOverridden())
1701 return 0;
1702 Constant *GlobalInit = GV->getInitializer();
1703
1704 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1705 // initializer is constant zero so the length of the string must be zero.
1706 if (isa<ConstantAggregateZero>(GlobalInit))
1707 return 1; // Len = 0 offset by 1.
1708
1709 // Must be a Constant Array
1710 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1711 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1712 return false;
1713
1714 // Get the number of elements in the array
1715 uint64_t NumElts = Array->getType()->getNumElements();
1716
1717 // Traverse the constant array from StartIdx (derived above) which is
1718 // the place the GEP refers to in the array.
1719 for (unsigned i = StartIdx; i != NumElts; ++i) {
1720 Constant *Elt = Array->getOperand(i);
1721 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1722 if (!CI) // This array isn't suitable, non-int initializer.
1723 return 0;
1724 if (CI->isZero())
1725 return i-StartIdx+1; // We found end of string, success!
1726 }
1727
1728 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1729}
1730
1731/// GetStringLength - If we can compute the length of the string pointed to by
1732/// the specified pointer, return 'len+1'. If we can't, return 0.
1733uint64_t llvm::GetStringLength(Value *V) {
1734 if (!V->getType()->isPointerTy()) return 0;
1735
1736 SmallPtrSet<PHINode*, 32> PHIs;
1737 uint64_t Len = GetStringLengthH(V, PHIs);
1738 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1739 // an empty string as a length.
1740 return Len == ~0ULL ? 1 : Len;
1741}
Dan Gohman5034dd32010-12-15 20:02:24 +00001742
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001743Value *
1744llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001745 if (!V->getType()->isPointerTy())
1746 return V;
1747 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1748 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1749 V = GEP->getPointerOperand();
1750 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1751 V = cast<Operator>(V)->getOperand(0);
1752 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1753 if (GA->mayBeOverridden())
1754 return V;
1755 V = GA->getAliasee();
1756 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001757 // See if InstructionSimplify knows any relevant tricks.
1758 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001759 // TODO: Aquire a DominatorTree and use it.
1760 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001761 V = Simplified;
1762 continue;
1763 }
1764
Dan Gohman5034dd32010-12-15 20:02:24 +00001765 return V;
1766 }
1767 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1768 }
1769 return V;
1770}