Andrew Trick | 14e8d71 | 2010-10-22 23:09:15 +0000 | [diff] [blame^] | 1 | //===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // LiveIntervalUnion represents a coalesced set of live intervals. This may be |
| 11 | // used during coalescing to represent a congruence class, or during register |
| 12 | // allocation to model liveness of a physical register. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #define DEBUG_TYPE "regalloc" |
| 17 | #include "LiveIntervalUnion.h" |
| 18 | #include "llvm/Support/Debug.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
| 20 | #include <algorithm> |
| 21 | using namespace llvm; |
| 22 | |
| 23 | // Merge a LiveInterval's segments. Guarantee no overlaps. |
| 24 | void LiveIntervalUnion::unify(LiveInterval &lvr) { |
| 25 | // Add this live virtual register to the union |
| 26 | LiveVirtRegs::iterator pos = std::upper_bound(lvrs_.begin(), lvrs_.end(), |
| 27 | &lvr, less_ptr<LiveInterval>()); |
| 28 | assert(pos == lvrs_.end() || *pos != &lvr && "duplicate LVR insertion"); |
| 29 | lvrs_.insert(pos, &lvr); |
| 30 | // Insert each of the virtual register's live segments into the map |
| 31 | SegmentIter segPos = segments_.begin(); |
| 32 | for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end(); |
| 33 | lvrI != lvrEnd; ++lvrI ) { |
| 34 | LiveSegment segment(lvrI->start, lvrI->end, lvr); |
| 35 | segPos = segments_.insert(segPos, segment); |
| 36 | assert(*segPos == segment && "need equal val for equal key"); |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | namespace { |
| 41 | |
| 42 | // Keep LVRs sorted for fast membership test and extraction. |
| 43 | struct LessReg |
| 44 | : public std::binary_function<LiveInterval*, LiveInterval*, bool> { |
| 45 | bool operator()(const LiveInterval *left, const LiveInterval *right) const { |
| 46 | return left->reg < right->reg; |
| 47 | } |
| 48 | }; |
| 49 | |
| 50 | // Low-level helper to find the first segment in the range [segI,segEnd) that |
| 51 | // intersects with a live virtual register segment, or segI.start >= lvr.end |
| 52 | // |
| 53 | // This logic is tied to the underlying LiveSegments data structure. For now, we |
| 54 | // use a binary search within the vector to find the nearest starting position, |
| 55 | // then reverse iterate to find the first overlap. |
| 56 | // |
| 57 | // Upon entry we have segI.start < lvrSeg.end |
| 58 | // seg |--... |
| 59 | // \ . |
| 60 | // lvr ...-| |
| 61 | // |
| 62 | // After binary search, we have segI.start >= lvrSeg.start: |
| 63 | // seg |--... |
| 64 | // / |
| 65 | // lvr |--... |
| 66 | // |
| 67 | // Assuming intervals are disjoint, if an intersection exists, it must be the |
| 68 | // segment found or immediately behind it. We continue reverse iterating to |
| 69 | // return the first overlap. |
| 70 | // |
| 71 | // FIXME: support extract(), handle tombstones of extracted lvrs. |
| 72 | typedef LiveIntervalUnion::SegmentIter SegmentIter; |
| 73 | SegmentIter upperBound(SegmentIter segBegin, |
| 74 | SegmentIter segEnd, |
| 75 | const LiveRange &lvrSeg) { |
| 76 | assert(lvrSeg.end > segBegin->start && "segment iterator precondition"); |
| 77 | // get the next LIU segment such that setg.start is not less than |
| 78 | // lvrSeg.start |
| 79 | SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start); |
| 80 | while (segI != segBegin) { |
| 81 | --segI; |
| 82 | if (lvrSeg.start >= segI->end) |
| 83 | return ++segI; |
| 84 | } |
| 85 | return segI; |
| 86 | } |
| 87 | } // end anonymous namespace |
| 88 | |
| 89 | // Private interface accessed by Query. |
| 90 | // |
| 91 | // Find a pair of segments that intersect, one in the live virtual register |
| 92 | // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) |
| 93 | // is responsible for advancing the LiveIntervalUnion segments to find a |
| 94 | // "notable" intersection, which requires query-specific logic. |
| 95 | // |
| 96 | // This design assumes only a fast mechanism for intersecting a single live |
| 97 | // virtual register segment with a set of LiveIntervalUnion segments. This may |
| 98 | // be ok since most LVRs have very few segments. If we had a data |
| 99 | // structure that optimizd MxN intersection of segments, then we would bypass |
| 100 | // the loop that advances within the LiveInterval. |
| 101 | // |
| 102 | // If no intersection exists, set lvrI = lvrEnd, and set segI to the first |
| 103 | // segment whose start point is greater than LiveInterval's end point. |
| 104 | // |
| 105 | // Assumes that segments are sorted by start position in both |
| 106 | // LiveInterval and LiveSegments. |
| 107 | void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const { |
| 108 | LiveInterval::iterator lvrEnd = lvr_.end(); |
| 109 | SegmentIter liuEnd = liu_.end(); |
| 110 | while (ir.liuSegI_ != liuEnd) { |
| 111 | // Slowly advance the live virtual reg iterator until we surpass the next |
| 112 | // segment in this union. If this is ever used for coalescing of fixed |
| 113 | // registers and we have a LiveInterval with thousands of segments, then use |
| 114 | // upper bound instead. |
| 115 | while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start) |
| 116 | ++ir.lvrSegI_; |
| 117 | if (ir.lvrSegI_ == lvrEnd) |
| 118 | break; |
| 119 | // lvrSegI_ may have advanced far beyond liuSegI_, |
| 120 | // do a fast intersection test to "catch up" |
| 121 | ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_); |
| 122 | // Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end |
| 123 | if (ir.liuSegI_ == liuEnd) |
| 124 | break; |
| 125 | if (ir.liuSegI_->start < ir.lvrSegI_->end) { |
| 126 | assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition"); |
| 127 | break; |
| 128 | } |
| 129 | } |
| 130 | if (ir.liuSegI_ == liuEnd) |
| 131 | ir.lvrSegI_ = lvrEnd; |
| 132 | } |
| 133 | |
| 134 | // Find the first intersection, and cache interference info |
| 135 | // (retain segment iterators into both lvr_ and liu_). |
| 136 | LiveIntervalUnion::InterferenceResult |
| 137 | LiveIntervalUnion::Query::firstInterference() { |
| 138 | if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) { |
| 139 | return firstInterference_; |
| 140 | } |
| 141 | firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin()); |
| 142 | findIntersection(firstInterference_); |
| 143 | return firstInterference_; |
| 144 | } |
| 145 | |
| 146 | // Treat the result as an iterator and advance to the next interfering pair |
| 147 | // of segments. This is a plain iterator with no filter. |
| 148 | bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const { |
| 149 | assert(isInterference(ir) && "iteration past end of interferences"); |
| 150 | // Advance either the lvr or liu segment to ensure that we visit all unique |
| 151 | // overlapping pairs. |
| 152 | if (ir.lvrSegI_->end < ir.liuSegI_->end) { |
| 153 | if (++ir.lvrSegI_ == lvr_.end()) |
| 154 | return false; |
| 155 | } |
| 156 | else { |
| 157 | if (++ir.liuSegI_ == liu_.end()) { |
| 158 | ir.lvrSegI_ = lvr_.end(); |
| 159 | return false; |
| 160 | } |
| 161 | } |
| 162 | if (overlap(*ir.lvrSegI_, *ir.liuSegI_)) |
| 163 | return true; |
| 164 | // find the next intersection |
| 165 | findIntersection(ir); |
| 166 | return isInterference(ir); |
| 167 | } |