Vincent Lejeune | 25f259c | 2013-04-30 00:14:27 +0000 | [diff] [blame] | 1 | //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
| 11 | /// This pass implements instructions packetization for R600. It unsets isLast |
| 12 | /// bit of instructions inside a bundle and substitutes src register with |
| 13 | /// PreviousVector when applicable. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef R600PACKETIZER_CPP |
| 18 | #define R600PACKETIZER_CPP |
| 19 | |
| 20 | #define DEBUG_TYPE "packets" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | #include "llvm/CodeGen/DFAPacketizer.h" |
| 24 | #include "llvm/CodeGen/Passes.h" |
| 25 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 26 | #include "llvm/CodeGen/MachineDominators.h" |
| 27 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 28 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 29 | #include "AMDGPU.h" |
| 30 | #include "R600InstrInfo.h" |
| 31 | |
| 32 | namespace llvm { |
| 33 | |
| 34 | class R600Packetizer : public MachineFunctionPass { |
| 35 | |
| 36 | public: |
| 37 | static char ID; |
| 38 | R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {} |
| 39 | |
| 40 | void getAnalysisUsage(AnalysisUsage &AU) const { |
| 41 | AU.setPreservesCFG(); |
| 42 | AU.addRequired<MachineDominatorTree>(); |
| 43 | AU.addPreserved<MachineDominatorTree>(); |
| 44 | AU.addRequired<MachineLoopInfo>(); |
| 45 | AU.addPreserved<MachineLoopInfo>(); |
| 46 | MachineFunctionPass::getAnalysisUsage(AU); |
| 47 | } |
| 48 | |
| 49 | const char *getPassName() const { |
| 50 | return "R600 Packetizer"; |
| 51 | } |
| 52 | |
| 53 | bool runOnMachineFunction(MachineFunction &Fn); |
| 54 | }; |
| 55 | char R600Packetizer::ID = 0; |
| 56 | |
| 57 | class R600PacketizerList : public VLIWPacketizerList { |
| 58 | |
| 59 | private: |
| 60 | const R600InstrInfo *TII; |
| 61 | const R600RegisterInfo &TRI; |
| 62 | |
| 63 | enum BankSwizzle { |
| 64 | ALU_VEC_012 = 0, |
| 65 | ALU_VEC_021, |
| 66 | ALU_VEC_120, |
| 67 | ALU_VEC_102, |
| 68 | ALU_VEC_201, |
| 69 | ALU_VEC_210 |
| 70 | }; |
| 71 | |
| 72 | unsigned getSlot(const MachineInstr *MI) const { |
| 73 | return TRI.getHWRegChan(MI->getOperand(0).getReg()); |
| 74 | } |
| 75 | |
| 76 | std::vector<unsigned> getPreviousVector(MachineBasicBlock::iterator I) const { |
| 77 | std::vector<unsigned> Result; |
| 78 | I--; |
| 79 | if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle()) |
| 80 | return Result; |
| 81 | MachineBasicBlock::instr_iterator BI = I.getInstrIterator(); |
| 82 | if (I->isBundle()) |
| 83 | BI++; |
| 84 | while (BI->isBundledWithPred() && !TII->isPredicated(BI)) { |
| 85 | int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600Operands::WRITE); |
| 86 | if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm()) |
| 87 | Result.push_back(BI->getOperand(0).getReg()); |
| 88 | BI++; |
| 89 | } |
| 90 | return Result; |
| 91 | } |
| 92 | |
| 93 | void substitutePV(MachineInstr *MI, const std::vector<unsigned> &PV) const { |
| 94 | R600Operands::Ops Ops[] = { |
| 95 | R600Operands::SRC0, |
| 96 | R600Operands::SRC1, |
| 97 | R600Operands::SRC2 |
| 98 | }; |
| 99 | for (unsigned i = 0; i < 3; i++) { |
| 100 | int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]); |
| 101 | if (OperandIdx < 0) |
| 102 | continue; |
| 103 | unsigned Src = MI->getOperand(OperandIdx).getReg(); |
| 104 | for (unsigned j = 0, e = PV.size(); j < e; j++) { |
| 105 | if (Src == PV[j]) { |
| 106 | unsigned Chan = TRI.getHWRegChan(Src); |
| 107 | unsigned PVReg; |
| 108 | switch (Chan) { |
| 109 | case 0: |
| 110 | PVReg = AMDGPU::PV_X; |
| 111 | break; |
| 112 | case 1: |
| 113 | PVReg = AMDGPU::PV_Y; |
| 114 | break; |
| 115 | case 2: |
| 116 | PVReg = AMDGPU::PV_Z; |
| 117 | break; |
| 118 | case 3: |
| 119 | PVReg = AMDGPU::PV_W; |
| 120 | break; |
| 121 | default: |
| 122 | llvm_unreachable("Invalid Chan"); |
| 123 | } |
| 124 | MI->getOperand(OperandIdx).setReg(PVReg); |
| 125 | break; |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | public: |
| 131 | // Ctor. |
| 132 | R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI, |
| 133 | MachineDominatorTree &MDT) |
| 134 | : VLIWPacketizerList(MF, MLI, MDT, true), |
| 135 | TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())), |
| 136 | TRI(TII->getRegisterInfo()) { } |
| 137 | |
| 138 | // initPacketizerState - initialize some internal flags. |
| 139 | void initPacketizerState() { } |
| 140 | |
| 141 | // ignorePseudoInstruction - Ignore bundling of pseudo instructions. |
| 142 | bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB) { |
| 143 | return false; |
| 144 | } |
| 145 | |
| 146 | // isSoloInstruction - return true if instruction MI can not be packetized |
| 147 | // with any other instruction, which means that MI itself is a packet. |
| 148 | bool isSoloInstruction(MachineInstr *MI) { |
| 149 | if (TII->isVector(*MI)) |
| 150 | return true; |
| 151 | if (!TII->isALUInstr(MI->getOpcode())) |
| 152 | return true; |
| 153 | if (TII->get(MI->getOpcode()).TSFlags & R600_InstFlag::TRANS_ONLY) |
| 154 | return true; |
| 155 | if (TII->isTransOnly(MI)) |
| 156 | return true; |
| 157 | return false; |
| 158 | } |
| 159 | |
| 160 | // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ |
| 161 | // together. |
| 162 | bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { |
| 163 | MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr(); |
| 164 | if (getSlot(MII) <= getSlot(MIJ)) |
| 165 | return false; |
| 166 | // Does MII and MIJ share the same pred_sel ? |
| 167 | int OpI = TII->getOperandIdx(MII->getOpcode(), R600Operands::PRED_SEL), |
| 168 | OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600Operands::PRED_SEL); |
| 169 | unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0, |
| 170 | PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0; |
| 171 | if (PredI != PredJ) |
| 172 | return false; |
| 173 | if (SUJ->isSucc(SUI)) { |
| 174 | for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) { |
| 175 | const SDep &Dep = SUJ->Succs[i]; |
| 176 | if (Dep.getSUnit() != SUI) |
| 177 | continue; |
| 178 | if (Dep.getKind() == SDep::Anti) |
| 179 | continue; |
| 180 | if (Dep.getKind() == SDep::Output) |
| 181 | if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg()) |
| 182 | continue; |
| 183 | return false; |
| 184 | } |
| 185 | } |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | // isLegalToPruneDependencies - Is it legal to prune dependece between SUI |
| 190 | // and SUJ. |
| 191 | bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {return false;} |
| 192 | |
| 193 | void setIsLastBit(MachineInstr *MI, unsigned Bit) const { |
| 194 | unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600Operands::LAST); |
| 195 | MI->getOperand(LastOp).setImm(Bit); |
| 196 | } |
| 197 | |
| 198 | MachineBasicBlock::iterator addToPacket(MachineInstr *MI) { |
| 199 | CurrentPacketMIs.push_back(MI); |
| 200 | bool FitsConstLimits = TII->canBundle(CurrentPacketMIs); |
| 201 | DEBUG( |
| 202 | if (!FitsConstLimits) { |
| 203 | dbgs() << "Couldn't pack :\n"; |
| 204 | MI->dump(); |
| 205 | dbgs() << "with the following packets :\n"; |
| 206 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
| 207 | CurrentPacketMIs[i]->dump(); |
| 208 | dbgs() << "\n"; |
| 209 | } |
| 210 | dbgs() << "because of Consts read limitations\n"; |
| 211 | }); |
| 212 | const std::vector<unsigned> &PV = getPreviousVector(MI); |
| 213 | bool FitsReadPortLimits = fitsReadPortLimitation(CurrentPacketMIs, PV); |
| 214 | DEBUG( |
| 215 | if (!FitsReadPortLimits) { |
| 216 | dbgs() << "Couldn't pack :\n"; |
| 217 | MI->dump(); |
| 218 | dbgs() << "with the following packets :\n"; |
| 219 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
| 220 | CurrentPacketMIs[i]->dump(); |
| 221 | dbgs() << "\n"; |
| 222 | } |
| 223 | dbgs() << "because of Read port limitations\n"; |
| 224 | }); |
| 225 | bool isBundlable = FitsConstLimits && FitsReadPortLimits; |
| 226 | CurrentPacketMIs.pop_back(); |
| 227 | if (!isBundlable) { |
| 228 | endPacket(MI->getParent(), MI); |
| 229 | substitutePV(MI, getPreviousVector(MI)); |
| 230 | return VLIWPacketizerList::addToPacket(MI); |
| 231 | } |
| 232 | if (!CurrentPacketMIs.empty()) |
| 233 | setIsLastBit(CurrentPacketMIs.back(), 0); |
| 234 | substitutePV(MI, PV); |
| 235 | return VLIWPacketizerList::addToPacket(MI); |
| 236 | } |
| 237 | private: |
| 238 | std::vector<std::pair<int, unsigned> > |
| 239 | ExtractSrcs(const MachineInstr *MI, const std::vector<unsigned> &PV) const { |
| 240 | R600Operands::Ops Ops[] = { |
| 241 | R600Operands::SRC0, |
| 242 | R600Operands::SRC1, |
| 243 | R600Operands::SRC2 |
| 244 | }; |
| 245 | std::vector<std::pair<int, unsigned> > Result; |
| 246 | for (unsigned i = 0; i < 3; i++) { |
| 247 | int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]); |
| 248 | if (OperandIdx < 0){ |
| 249 | Result.push_back(std::pair<int, unsigned>(-1,0)); |
| 250 | continue; |
| 251 | } |
| 252 | unsigned Src = MI->getOperand(OperandIdx).getReg(); |
| 253 | if (std::find(PV.begin(), PV.end(), Src) != PV.end()) { |
| 254 | Result.push_back(std::pair<int, unsigned>(-1,0)); |
| 255 | continue; |
| 256 | } |
| 257 | unsigned Reg = TRI.getEncodingValue(Src) & 0xff; |
| 258 | if (Reg > 127) { |
| 259 | Result.push_back(std::pair<int, unsigned>(-1,0)); |
| 260 | continue; |
| 261 | } |
| 262 | unsigned Chan = TRI.getHWRegChan(Src); |
| 263 | Result.push_back(std::pair<int, unsigned>(Reg, Chan)); |
| 264 | } |
| 265 | return Result; |
| 266 | } |
| 267 | |
| 268 | std::vector<std::pair<int, unsigned> > |
| 269 | Swizzle(std::vector<std::pair<int, unsigned> > Src, |
| 270 | BankSwizzle Swz) const { |
| 271 | switch (Swz) { |
| 272 | case ALU_VEC_012: |
| 273 | break; |
| 274 | case ALU_VEC_021: |
| 275 | std::swap(Src[1], Src[2]); |
| 276 | break; |
| 277 | case ALU_VEC_102: |
| 278 | std::swap(Src[0], Src[1]); |
| 279 | break; |
| 280 | case ALU_VEC_120: |
| 281 | std::swap(Src[0], Src[1]); |
| 282 | std::swap(Src[0], Src[2]); |
| 283 | break; |
| 284 | case ALU_VEC_201: |
| 285 | std::swap(Src[0], Src[2]); |
| 286 | std::swap(Src[0], Src[1]); |
| 287 | break; |
| 288 | case ALU_VEC_210: |
| 289 | std::swap(Src[0], Src[2]); |
| 290 | break; |
| 291 | } |
| 292 | return Src; |
| 293 | } |
| 294 | |
| 295 | bool isLegal(const std::vector<MachineInstr *> &IG, |
| 296 | const std::vector<BankSwizzle> &Swz, |
| 297 | const std::vector<unsigned> &PV) const { |
| 298 | assert (Swz.size() == IG.size()); |
| 299 | int Vector[4][3]; |
| 300 | memset(Vector, -1, sizeof(Vector)); |
| 301 | for (unsigned i = 0, e = IG.size(); i < e; i++) { |
| 302 | const std::vector<std::pair<int, unsigned> > &Srcs = |
| 303 | Swizzle(ExtractSrcs(IG[i], PV), Swz[i]); |
| 304 | for (unsigned j = 0; j < 3; j++) { |
| 305 | const std::pair<int, unsigned> &Src = Srcs[j]; |
| 306 | if (Src.first < 0) |
| 307 | continue; |
| 308 | if (Vector[Src.second][j] < 0) |
| 309 | Vector[Src.second][j] = Src.first; |
| 310 | if (Vector[Src.second][j] != Src.first) |
| 311 | return false; |
| 312 | } |
| 313 | } |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | bool recursiveFitsFPLimitation( |
| 318 | std::vector<MachineInstr *> IG, |
| 319 | const std::vector<unsigned> &PV, |
| 320 | std::vector<BankSwizzle> &SwzCandidate, |
| 321 | std::vector<MachineInstr *> CurrentlyChecked) |
| 322 | const { |
| 323 | if (!isLegal(CurrentlyChecked, SwzCandidate, PV)) |
| 324 | return false; |
| 325 | if (IG.size() == CurrentlyChecked.size()) { |
| 326 | return true; |
| 327 | } |
| 328 | BankSwizzle AvailableSwizzle[] = { |
| 329 | ALU_VEC_012, |
| 330 | ALU_VEC_021, |
| 331 | ALU_VEC_120, |
| 332 | ALU_VEC_102, |
| 333 | ALU_VEC_201, |
| 334 | ALU_VEC_210 |
| 335 | }; |
| 336 | CurrentlyChecked.push_back(IG[CurrentlyChecked.size()]); |
| 337 | for (unsigned i = 0; i < 6; i++) { |
| 338 | SwzCandidate.push_back(AvailableSwizzle[i]); |
| 339 | if (recursiveFitsFPLimitation(IG, PV, SwzCandidate, CurrentlyChecked)) |
| 340 | return true; |
| 341 | SwzCandidate.pop_back(); |
| 342 | } |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | bool fitsReadPortLimitation( |
| 347 | std::vector<MachineInstr *> IG, |
| 348 | const std::vector<unsigned> &PV) |
| 349 | const { |
| 350 | //Todo : support shared src0 - src1 operand |
| 351 | std::vector<BankSwizzle> SwzCandidate; |
| 352 | bool Result = recursiveFitsFPLimitation(IG, PV, SwzCandidate, |
| 353 | std::vector<MachineInstr *>()); |
| 354 | if (!Result) |
| 355 | return false; |
| 356 | for (unsigned i = 0, e = IG.size(); i < e; i++) { |
| 357 | MachineInstr *MI = IG[i]; |
| 358 | unsigned Op = TII->getOperandIdx(MI->getOpcode(), |
| 359 | R600Operands::BANK_SWIZZLE); |
| 360 | MI->getOperand(Op).setImm(SwzCandidate[i]); |
| 361 | } |
| 362 | return true; |
| 363 | } |
| 364 | }; |
| 365 | |
| 366 | bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) { |
| 367 | const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo(); |
| 368 | MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); |
| 369 | MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); |
| 370 | |
| 371 | // Instantiate the packetizer. |
| 372 | R600PacketizerList Packetizer(Fn, MLI, MDT); |
| 373 | |
| 374 | // DFA state table should not be empty. |
| 375 | assert(Packetizer.getResourceTracker() && "Empty DFA table!"); |
| 376 | |
| 377 | // |
| 378 | // Loop over all basic blocks and remove KILL pseudo-instructions |
| 379 | // These instructions confuse the dependence analysis. Consider: |
| 380 | // D0 = ... (Insn 0) |
| 381 | // R0 = KILL R0, D0 (Insn 1) |
| 382 | // R0 = ... (Insn 2) |
| 383 | // Here, Insn 1 will result in the dependence graph not emitting an output |
| 384 | // dependence between Insn 0 and Insn 2. This can lead to incorrect |
| 385 | // packetization |
| 386 | // |
| 387 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 388 | MBB != MBBe; ++MBB) { |
| 389 | MachineBasicBlock::iterator End = MBB->end(); |
| 390 | MachineBasicBlock::iterator MI = MBB->begin(); |
| 391 | while (MI != End) { |
| 392 | if (MI->isKill()) { |
| 393 | MachineBasicBlock::iterator DeleteMI = MI; |
| 394 | ++MI; |
| 395 | MBB->erase(DeleteMI); |
| 396 | End = MBB->end(); |
| 397 | continue; |
| 398 | } |
| 399 | ++MI; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | // Loop over all of the basic blocks. |
| 404 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 405 | MBB != MBBe; ++MBB) { |
| 406 | // Find scheduling regions and schedule / packetize each region. |
| 407 | unsigned RemainingCount = MBB->size(); |
| 408 | for(MachineBasicBlock::iterator RegionEnd = MBB->end(); |
| 409 | RegionEnd != MBB->begin();) { |
| 410 | // The next region starts above the previous region. Look backward in the |
| 411 | // instruction stream until we find the nearest boundary. |
| 412 | MachineBasicBlock::iterator I = RegionEnd; |
| 413 | for(;I != MBB->begin(); --I, --RemainingCount) { |
| 414 | if (TII->isSchedulingBoundary(llvm::prior(I), MBB, Fn)) |
| 415 | break; |
| 416 | } |
| 417 | I = MBB->begin(); |
| 418 | |
| 419 | // Skip empty scheduling regions. |
| 420 | if (I == RegionEnd) { |
| 421 | RegionEnd = llvm::prior(RegionEnd); |
| 422 | --RemainingCount; |
| 423 | continue; |
| 424 | } |
| 425 | // Skip regions with one instruction. |
| 426 | if (I == llvm::prior(RegionEnd)) { |
| 427 | RegionEnd = llvm::prior(RegionEnd); |
| 428 | continue; |
| 429 | } |
| 430 | |
| 431 | Packetizer.PacketizeMIs(MBB, I, RegionEnd); |
| 432 | RegionEnd = I; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | return true; |
| 437 | |
| 438 | } |
| 439 | |
| 440 | } |
| 441 | |
| 442 | llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) { |
| 443 | return new R600Packetizer(tm); |
| 444 | } |
| 445 | |
| 446 | #endif // R600PACKETIZER_CPP |