blob: 87bb8034883a92eb1e71963a4a4c63be109580af [file] [log] [blame]
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +00001//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
Owen Anderson0bda0e82007-10-31 03:37:57 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Owen Anderson0bda0e82007-10-31 03:37:57 +00007//
8//===----------------------------------------------------------------------===//
9//
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000010// This pass eliminates PHI instructions by aggressively coalescing the copies
11// that would be inserted by a naive algorithm and only inserting the copies
12// that are necessary. The coalescing technique initially assumes that all
13// registers appearing in a PHI instruction do not interfere. It then eliminates
14// proven interferences, using dominators to only perform a linear number of
15// interference tests instead of the quadratic number of interference tests
16// that this would naively require. This is a technique derived from:
17//
18// Budimlic, et al. Fast copy coalescing and live-range identification.
19// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21// PLDI '02. ACM, New York, NY, 25-32.
22//
23// The original implementation constructs a data structure they call a dominance
24// forest for this purpose. The dominance forest was shown to be unnecessary,
25// as it is possible to emulate the creation and traversal of a dominance forest
26// by directly using the dominator tree, rather than actually constructing the
27// dominance forest. This technique is explained in:
28//
29// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30// Quality and Efficiency,
31// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33// CGO '09. IEEE, Washington, DC, 114-125.
34//
35// Careful implementation allows for all of the dominator forest interference
36// checks to be performed at once in a single depth-first traversal of the
37// dominator tree, which is what is implemented here.
Owen Anderson0bda0e82007-10-31 03:37:57 +000038//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "strongphielim"
Cameron Zwarich47bce432010-12-21 06:54:43 +000042#include "PHIEliminationUtils.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000043#include "llvm/CodeGen/Passes.h"
Owen Andersoneb37ecc2008-03-10 07:22:36 +000044#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000045#include "llvm/CodeGen/MachineDominators.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
Cameron Zwarich47bce432010-12-21 06:54:43 +000047#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineRegisterInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Support/Debug.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000051using namespace llvm;
52
Owen Anderson0bda0e82007-10-31 03:37:57 +000053namespace {
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000054 class StrongPHIElimination : public MachineFunctionPass {
55 public:
56 static char ID; // Pass identification, replacement for typeid
57 StrongPHIElimination() : MachineFunctionPass(ID) {
58 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
59 }
Owen Anderson0bda0e82007-10-31 03:37:57 +000060
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000061 virtual void getAnalysisUsage(AnalysisUsage&) const;
62 bool runOnMachineFunction(MachineFunction&);
Cameron Zwarich47bce432010-12-21 06:54:43 +000063
64 private:
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000065 /// This struct represents a single node in the union-find data structure
66 /// representing the variable congruence classes. There is one difference
67 /// from a normal union-find data structure. We steal two bits from the parent
68 /// pointer . One of these bits is used to represent whether the register
69 /// itself has been isolated, and the other is used to represent whether the
70 /// PHI with that register as its destination has been isolated.
71 ///
72 /// Note that this leads to the strange situation where the leader of a
73 /// congruence class may no longer logically be a member, due to being
74 /// isolated.
75 struct Node {
76 enum Flags {
77 kRegisterIsolatedFlag = 1,
78 kPHIIsolatedFlag = 2
79 };
80 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
81
82 Node* getLeader();
83
84 PointerIntPair<Node*, 2> parent;
85 unsigned value;
86 unsigned rank;
87 };
88
89 /// Add a register in a new congruence class containing only itself.
90 void addReg(unsigned);
91
92 /// Join the congruence classes of two registers.
93 void unionRegs(unsigned, unsigned);
94
95 /// Get the color of a register. The color is 0 if the register has been
96 /// isolated.
97 unsigned getRegColor(unsigned);
98
99 // Isolate a register.
100 void isolateReg(unsigned);
101
102 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
103 /// isolated. Otherwise, it is the original color of its destination and
104 /// all of its operands (before they were isolated, if they were).
105 unsigned getPHIColor(MachineInstr*);
106
107 /// Isolate a PHI.
108 void isolatePHI(MachineInstr*);
109
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000110 /// Traverses a basic block, splitting any interferences found between
111 /// registers in the same congruence class. It takes two DenseMaps as
112 /// arguments that it also updates: CurrentDominatingParent, which maps
113 /// a color to the register in that congruence class whose definition was
114 /// most recently seen, and ImmediateDominatingParent, which maps a register
115 /// to the register in the same congruence class that most immediately
116 /// dominates it.
117 ///
118 /// This function assumes that it is being called in a depth-first traversal
119 /// of the dominator tree.
120 void SplitInterferencesForBasicBlock(
121 MachineBasicBlock&,
122 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
123 DenseMap<unsigned, unsigned>& ImmediateDominatingParent);
124
125 // Lowers a PHI instruction, inserting copies of the source and destination
126 // registers as necessary.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000127 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
128
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000129 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
130 // everywhere that Reg appears. Requires Reg and NewReg to have non-
131 // overlapping lifetimes.
132 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
133
Cameron Zwarich47bce432010-12-21 06:54:43 +0000134 MachineRegisterInfo* MRI;
135 const TargetInstrInfo* TII;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000136 MachineDominatorTree* DT;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000137 LiveIntervals* LI;
138
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000139 BumpPtrAllocator Allocator;
140
141 DenseMap<unsigned, Node*> RegNodeMap;
142
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000143 // Maps a basic block to a list of its defs of registers that appear as PHI
144 // sources.
145 DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
146
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000147 // FIXME: Can these two data structures be combined? Would a std::multimap
148 // be any better?
149
150 // Stores pairs of predecessor basic blocks and the source registers of
151 // inserted copy instructions.
152 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
153 SrcCopySet InsertedSrcCopySet;
154
155 // Maps pairs of predecessor basic blocks and colors to their defining copy
156 // instructions.
157 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
158 SrcCopyMap;
159 SrcCopyMap InsertedSrcCopyMap;
160
161 // Maps inserted destination copy registers to their defining copy
162 // instructions.
163 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
164 DestCopyMap InsertedDestCopies;
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000165 };
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000166
167 struct MIIndexCompare {
168 MIIndexCompare(LiveIntervals* LiveIntervals) : LI(LiveIntervals) { }
169
170 bool operator()(const MachineInstr* LHS, const MachineInstr* RHS) const {
171 return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
172 }
173
174 LiveIntervals* LI;
175 };
Jakob Stoklund Olesen68be9562010-12-03 19:21:53 +0000176} // namespace
Owen Anderson0bda0e82007-10-31 03:37:57 +0000177
Dan Gohman844731a2008-05-13 00:00:25 +0000178char StrongPHIElimination::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000179INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
180 "Eliminate PHI nodes for register allocation, intelligently", false, false)
181INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
182INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
183INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
184INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
Owen Andersonce665bd2010-10-07 22:25:06 +0000185 "Eliminate PHI nodes for register allocation, intelligently", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000186
Owen Anderson90c579d2010-08-06 18:33:48 +0000187char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
Owen Anderson0bda0e82007-10-31 03:37:57 +0000188
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000189void StrongPHIElimination::getAnalysisUsage(AnalysisUsage& AU) const {
190 AU.setPreservesCFG();
191 AU.addRequired<MachineDominatorTree>();
192 AU.addRequired<SlotIndexes>();
193 AU.addPreserved<SlotIndexes>();
194 AU.addRequired<LiveIntervals>();
195 AU.addPreserved<LiveIntervals>();
196 MachineFunctionPass::getAnalysisUsage(AU);
197}
198
Cameron Zwarich47bce432010-12-21 06:54:43 +0000199static MachineOperand* findLastUse(MachineBasicBlock* MBB, unsigned Reg) {
200 // FIXME: This only needs to check from the first terminator, as only the
201 // first terminator can use a virtual register.
202 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
203 assert (RI != MBB->rend());
204 MachineInstr* MI = &*RI;
205
206 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
207 OE = MI->operands_end(); OI != OE; ++OI) {
208 MachineOperand& MO = *OI;
209 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
210 return &MO;
211 }
212 }
213 return NULL;
214}
215
216bool StrongPHIElimination::runOnMachineFunction(MachineFunction& MF) {
217 MRI = &MF.getRegInfo();
218 TII = MF.getTarget().getInstrInfo();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000219 DT = &getAnalysis<MachineDominatorTree>();
Cameron Zwarich47bce432010-12-21 06:54:43 +0000220 LI = &getAnalysis<LiveIntervals>();
221
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000222 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
223 I != E; ++I) {
224 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
225 BBI != BBE && BBI->isPHI(); ++BBI) {
226 unsigned DestReg = BBI->getOperand(0).getReg();
227 addReg(DestReg);
228 PHISrcDefs[I].push_back(BBI);
229
230 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
231 MachineOperand& SrcMO = BBI->getOperand(i);
232 unsigned SrcReg = SrcMO.getReg();
233 addReg(SrcReg);
234 unionRegs(DestReg, SrcReg);
235
236 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg),
237 DE = MRI->def_end(); DI != DE; ++DI) {
238 PHISrcDefs[DI->getParent()].push_back(&*DI);
239 }
240 }
241 }
242 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000243
244 // Perform a depth-first traversal of the dominator tree, splitting
245 // interferences amongst PHI-congruence classes.
246 DenseMap<unsigned, unsigned> CurrentDominatingParent;
247 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
248 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
249 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
250 SplitInterferencesForBasicBlock(*DI->getBlock(),
251 CurrentDominatingParent,
252 ImmediateDominatingParent);
253 }
254
Cameron Zwarich47bce432010-12-21 06:54:43 +0000255 // Insert copies for all PHI source and destination registers.
256 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
257 I != E; ++I) {
258 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
259 BBI != BBE && BBI->isPHI(); ++BBI) {
260 InsertCopiesForPHI(BBI, I);
261 }
262 }
263
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000264 // FIXME: Preserve the equivalence classes during copy insertion and use
265 // the preversed equivalence classes instead of recomputing them.
266 RegNodeMap.clear();
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000267 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
268 I != E; ++I) {
269 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
270 BBI != BBE && BBI->isPHI(); ++BBI) {
271 unsigned DestReg = BBI->getOperand(0).getReg();
272 addReg(DestReg);
273
274 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
275 unsigned SrcReg = BBI->getOperand(i).getReg();
276 addReg(SrcReg);
277 unionRegs(DestReg, SrcReg);
278 }
279 }
280 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000281
282 DenseMap<unsigned, unsigned> RegRenamingMap;
283 bool Changed = false;
284 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
285 I != E; ++I) {
286 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
287 while (BBI != BBE && BBI->isPHI()) {
288 MachineInstr* PHI = BBI;
289
290 assert(PHI->getNumOperands() > 0);
291
292 unsigned SrcReg = PHI->getOperand(1).getReg();
293 unsigned SrcColor = getRegColor(SrcReg);
294 unsigned NewReg = RegRenamingMap[SrcColor];
295 if (!NewReg) {
296 NewReg = SrcReg;
297 RegRenamingMap[SrcColor] = SrcReg;
298 }
299 MergeLIsAndRename(SrcReg, NewReg);
300
301 unsigned DestReg = PHI->getOperand(0).getReg();
302 if (!InsertedDestCopies.count(DestReg))
303 MergeLIsAndRename(DestReg, NewReg);
304
305 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
306 unsigned SrcReg = PHI->getOperand(i).getReg();
307 MergeLIsAndRename(SrcReg, NewReg);
308 }
309
310 ++BBI;
311 LI->RemoveMachineInstrFromMaps(PHI);
312 PHI->eraseFromParent();
313 Changed = true;
314 }
315 }
316
317 // Due to the insertion of copies to split live ranges, the live intervals are
318 // guaranteed to not overlap, except in one case: an original PHI source and a
319 // PHI destination copy. In this case, they have the same value and thus don't
320 // truly intersect, so we merge them into the value live at that point.
321 // FIXME: Is there some better way we can handle this?
322 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
323 E = InsertedDestCopies.end(); I != E; ++I) {
324 unsigned DestReg = I->first;
325 unsigned DestColor = getRegColor(DestReg);
326 unsigned NewReg = RegRenamingMap[DestColor];
327
328 LiveInterval& DestLI = LI->getInterval(DestReg);
329 LiveInterval& NewLI = LI->getInterval(NewReg);
330
Cameron Zwarich480b80a2010-12-29 03:52:51 +0000331 assert(DestLI.ranges.size() == 1
332 && "PHI destination copy's live interval should be a single live "
333 "range from the beginning of the BB to the copy instruction.");
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000334 LiveRange* DestLR = DestLI.begin();
335 VNInfo* NewVNI = NewLI.getVNInfoAt(DestLR->start);
336 if (!NewVNI) {
337 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
338 MachineInstr* CopyInstr = I->second;
339 CopyInstr->getOperand(1).setIsKill(true);
340 }
341
342 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
343 NewLI.addRange(NewLR);
344
345 LI->removeInterval(DestReg);
346 MRI->replaceRegWith(DestReg, NewReg);
347 }
348
Cameron Zwarich47bce432010-12-21 06:54:43 +0000349 // Adjust the live intervals of all PHI source registers to handle the case
350 // where the PHIs in successor blocks were the only later uses of the source
351 // register.
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000352 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
353 E = InsertedSrcCopySet.end(); I != E; ++I) {
Cameron Zwarich47bce432010-12-21 06:54:43 +0000354 MachineBasicBlock* MBB = I->first;
355 unsigned SrcReg = I->second;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000356 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
357 SrcReg = RenamedRegister;
358
Cameron Zwarich47bce432010-12-21 06:54:43 +0000359 LiveInterval& SrcLI = LI->getInterval(SrcReg);
360
361 bool isLiveOut = false;
362 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
363 SE = MBB->succ_end(); SI != SE; ++SI) {
364 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
365 isLiveOut = true;
366 break;
367 }
368 }
369
370 if (isLiveOut)
371 continue;
372
373 MachineOperand* LastUse = findLastUse(MBB, SrcReg);
374 assert(LastUse);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000375 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
376 SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
Cameron Zwarich47bce432010-12-21 06:54:43 +0000377 LastUse->setIsKill(true);
378 }
379
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000380 LI->renumber();
381
382 Allocator.Reset();
383 RegNodeMap.clear();
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000384 PHISrcDefs.clear();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000385 InsertedSrcCopySet.clear();
386 InsertedSrcCopyMap.clear();
387 InsertedDestCopies.clear();
388
389 return Changed;
390}
391
392void StrongPHIElimination::addReg(unsigned Reg) {
393 if (RegNodeMap.count(Reg))
394 return;
395 RegNodeMap[Reg] = new (Allocator) Node(Reg);
396}
397
398StrongPHIElimination::Node*
399StrongPHIElimination::Node::getLeader() {
400 Node* parentPointer = parent.getPointer();
401 if (parentPointer == this)
402 return this;
403 Node* newParent = parentPointer->getLeader();
404 parent.setPointer(newParent);
405 return newParent;
406}
407
408unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
409 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
410 if (RI == RegNodeMap.end())
411 return 0;
412 Node* Node = RI->second;
413 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
414 return 0;
415 return Node->getLeader()->value;
416}
417
418void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
419 Node* Node1 = RegNodeMap[Reg1]->getLeader();
420 Node* Node2 = RegNodeMap[Reg2]->getLeader();
421
422 if (Node1->rank > Node2->rank) {
423 Node2->parent.setPointer(Node1->getLeader());
424 } else if (Node1->rank < Node2->rank) {
425 Node1->parent.setPointer(Node2->getLeader());
426 } else if (Node1 != Node2) {
427 Node2->parent.setPointer(Node1->getLeader());
428 Node1->rank++;
429 }
430}
431
432void StrongPHIElimination::isolateReg(unsigned Reg) {
433 Node* Node = RegNodeMap[Reg];
434 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
435}
436
437unsigned StrongPHIElimination::getPHIColor(MachineInstr* PHI) {
438 assert(PHI->isPHI());
439
440 unsigned DestReg = PHI->getOperand(0).getReg();
441 Node* DestNode = RegNodeMap[DestReg];
442 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
443 return 0;
444
445 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
446 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
447 if (SrcColor)
448 return SrcColor;
449 }
450 return 0;
451}
452
453void StrongPHIElimination::isolatePHI(MachineInstr* PHI) {
454 assert(PHI->isPHI());
455 Node* Node = RegNodeMap[PHI->getOperand(0).getReg()];
456 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
457}
458
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000459/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
460/// interferences found between registers in the same congruence class. It
461/// takes two DenseMaps as arguments that it also updates:
462///
463/// 1) CurrentDominatingParent, which maps a color to the register in that
464/// congruence class whose definition was most recently seen.
465///
466/// 2) ImmediateDominatingParent, which maps a register to the register in the
467/// same congruence class that most immediately dominates it.
468///
469/// This function assumes that it is being called in a depth-first traversal
470/// of the dominator tree.
471///
472/// The algorithm used here is a generalization of the dominance-based SSA test
473/// for two variables. If there are variables a_1, ..., a_n such that
474///
475/// def(a_1) dom ... dom def(a_n),
476///
477/// then we can test for an interference between any two a_i by only using O(n)
478/// interference tests between pairs of variables. If i < j and a_i and a_j
479/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
480/// Thus, in order to test for an interference involving a_i, we need only check
481/// for a potential interference with a_i+1.
482///
483/// This method can be generalized to arbitrary sets of variables by performing
484/// a depth-first traversal of the dominator tree. As we traverse down a branch
485/// of the dominator tree, we keep track of the current dominating variable and
486/// only perform an interference test with that variable. However, when we go to
487/// another branch of the dominator tree, the definition of the current dominating
488/// variable may no longer dominate the current block. In order to correct this,
489/// we need to use a stack of past choices of the current dominating variable
490/// and pop from this stack until we find a variable whose definition actually
491/// dominates the current block.
492///
493/// There will be one push on this stack for each variable that has become the
494/// current dominating variable, so instead of using an explicit stack we can
495/// simply associate the previous choice for a current dominating variable with
496/// the new choice. This works better in our implementation, where we test for
497/// interference in multiple distinct sets at once.
498void
499StrongPHIElimination::SplitInterferencesForBasicBlock(
500 MachineBasicBlock& MBB,
501 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
502 DenseMap<unsigned, unsigned>& ImmediateDominatingParent) {
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000503 // Sort defs by their order in the original basic block, as the code below
504 // assumes that it is processing definitions in dominance order.
505 std::vector<MachineInstr*>& DefInstrs = PHISrcDefs[&MBB];
506 std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
507
508 for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
509 BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
510 for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
511 E = (*BBI)->operands_end(); I != E; ++I) {
Cameron Zwarich92f0fcb62010-12-28 10:49:33 +0000512 const MachineOperand& MO = *I;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000513
Cameron Zwarich438e25c2010-12-28 23:02:56 +0000514 // FIXME: This would be faster if it were possible to bail out of checking
515 // an instruction's operands after the explicit defs, but this is incorrect
516 // for variadic instructions, which may appear before register allocation
517 // in the future.
518 if (!MO.isReg() || !MO.isDef())
519 continue;
520
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000521 unsigned DestReg = MO.getReg();
522 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
523 continue;
524
525 // If the virtual register being defined is not used in any PHI or has
526 // already been isolated, then there are no more interferences to check.
527 unsigned DestColor = getRegColor(DestReg);
528 if (!DestColor)
529 continue;
530
531 // The input to this pass sometimes is not in SSA form in every basic
532 // block, as some virtual registers have redefinitions. We could eliminate
533 // this by fixing the passes that generate the non-SSA code, or we could
534 // handle it here by tracking defining machine instructions rather than
535 // virtual registers. For now, we just handle the situation conservatively
536 // in a way that will possibly lead to false interferences.
537 unsigned NewParent = CurrentDominatingParent[DestColor];
538 if (NewParent == DestReg)
539 continue;
540
541 // Pop registers from the stack represented by ImmediateDominatingParent
542 // until we find a parent that dominates the current instruction.
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000543 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000544 || !getRegColor(NewParent)))
545 NewParent = ImmediateDominatingParent[NewParent];
546
547 // If NewParent is nonzero, then its definition dominates the current
548 // instruction, so it is only necessary to check for the liveness of
549 // NewParent in order to check for an interference.
550 if (NewParent
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000551 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000552 // If there is an interference, always isolate the new register. This
553 // could be improved by using a heuristic that decides which of the two
554 // registers to isolate.
555 isolateReg(DestReg);
556 CurrentDominatingParent[DestColor] = NewParent;
557 } else {
558 // If there is no interference, update ImmediateDominatingParent and set
559 // the CurrentDominatingParent for this color to the current register.
560 ImmediateDominatingParent[DestReg] = NewParent;
561 CurrentDominatingParent[DestColor] = DestReg;
562 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000563 }
564 }
565
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000566 // We now walk the PHIs in successor blocks and check for interferences. This
567 // is necesary because the use of a PHI's operands are logically contained in
568 // the predecessor block. The def of a PHI's destination register is processed
569 // along with the other defs in a basic block.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000570
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000571 // The map CurrentPHIForColor maps a color to a pair of a MachineInstr* and a
572 // virtual register, which is the operand of that PHI corresponding to the
573 // current basic block.
574 // FIXME: This should use a container that doesn't always perform heap
575 // allocation.
576 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000577
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000578 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
579 SE = MBB.succ_end(); SI != SE; ++SI) {
580 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
581 BBI != BBE && BBI->isPHI(); ++BBI) {
582 MachineInstr* PHI = BBI;
583
584 // If a PHI is already isolated, either by being isolated directly or
585 // having all of its operands isolated, ignore it.
586 unsigned Color = getPHIColor(PHI);
587 if (!Color)
588 continue;
589
590 // Find the index of the PHI operand that corresponds to this basic block.
591 unsigned PredIndex;
592 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
593 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
594 break;
595 }
596 assert(PredIndex < PHI->getNumOperands());
597 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
598
599 // Pop registers from the stack represented by ImmediateDominatingParent
600 // until we find a parent that dominates the current instruction.
601 unsigned NewParent = CurrentDominatingParent[Color];
602 while (NewParent
603 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
604 || !getRegColor(NewParent)))
605 NewParent = ImmediateDominatingParent[NewParent];
606 CurrentDominatingParent[Color] = NewParent;
607
608 // If there is an interference with a register, always isolate the
609 // register rather than the PHI. It is also possible to isolate the
610 // PHI, but that introduces copies for all of the registers involved
611 // in that PHI.
612 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
613 && NewParent != PredOperandReg)
614 isolateReg(NewParent);
615
616 std::pair<MachineInstr*, unsigned> CurrentPHI = CurrentPHIForColor[Color];
617
618 // If two PHIs have the same operand from every shared predecessor, then
619 // they don't actually interfere. Otherwise, isolate the current PHI. This
620 // could possibly be improved, e.g. we could isolate the PHI with the
621 // fewest operands.
622 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
623 isolatePHI(PHI);
624 else
625 CurrentPHIForColor[Color] = std::make_pair(PHI, PredOperandReg);
626 }
627 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000628}
629
630void StrongPHIElimination::InsertCopiesForPHI(MachineInstr* PHI,
631 MachineBasicBlock* MBB) {
632 assert(PHI->isPHI());
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000633 unsigned PHIColor = getPHIColor(PHI);
634
635 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
636 MachineOperand& SrcMO = PHI->getOperand(i);
637
638 // If a source is defined by an implicit def, there is no need to insert a
639 // copy in the predecessor.
640 if (SrcMO.isUndef())
641 continue;
642
643 unsigned SrcReg = SrcMO.getReg();
644 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
645 "Machine PHI Operands must all be virtual registers!");
646
647 MachineBasicBlock* PredBB = PHI->getOperand(i + 1).getMBB();
648 unsigned SrcColor = getRegColor(SrcReg);
649
650 // If neither the PHI nor the operand were isolated, then we only need to
651 // set the phi-kill flag on the VNInfo at this PHI.
652 if (PHIColor && SrcColor == PHIColor) {
653 LiveInterval& SrcInterval = LI->getInterval(SrcReg);
654 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
655 VNInfo* SrcVNI = SrcInterval.getVNInfoAt(PredIndex.getPrevIndex());
656 assert(SrcVNI);
657 SrcVNI->setHasPHIKill(true);
658 continue;
659 }
660
661 unsigned CopyReg = 0;
662 if (PHIColor) {
663 SrcCopyMap::const_iterator I
664 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
665 CopyReg
666 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
667 }
668
669 if (!CopyReg) {
670 const TargetRegisterClass* RC = MRI->getRegClass(SrcReg);
671 CopyReg = MRI->createVirtualRegister(RC);
672
673 MachineBasicBlock::iterator
674 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
675 unsigned SrcSubReg = SrcMO.getSubReg();
676 MachineInstr* CopyInstr = BuildMI(*PredBB,
677 CopyInsertPoint,
678 PHI->getDebugLoc(),
679 TII->get(TargetOpcode::COPY),
680 CopyReg).addReg(SrcReg, 0, SrcSubReg);
681 LI->InsertMachineInstrInMaps(CopyInstr);
682
683 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
684 // the newly added range.
685 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
686 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
687
688 addReg(CopyReg);
689 if (PHIColor) {
690 unionRegs(PHIColor, CopyReg);
691 assert(getRegColor(CopyReg) != CopyReg);
692 } else {
693 PHIColor = CopyReg;
694 assert(getRegColor(CopyReg) == CopyReg);
695 }
696
697 if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
698 InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
699 }
700
701 SrcMO.setReg(CopyReg);
702
703 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
704 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
705 // processed later, but this is still correct to do at this point because we
706 // never rely on LiveIntervals being correct while inserting copies.
707 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
708 // pass does?
709 LiveInterval& SrcLI = LI->getInterval(SrcReg);
710 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
711 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
712 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
713 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
714 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
715 }
716
Cameron Zwarich47bce432010-12-21 06:54:43 +0000717 unsigned DestReg = PHI->getOperand(0).getReg();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000718 unsigned DestColor = getRegColor(DestReg);
719
720 if (PHIColor && DestColor == PHIColor) {
721 LiveInterval& DestLI = LI->getInterval(DestReg);
722
723 // Set the phi-def flag for the VN at this PHI.
724 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
725 VNInfo* DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
726 assert(DestVNI);
727 DestVNI->setIsPHIDef(true);
728
729 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
730 // instruction. After PHI elimination, PHI instructions are replaced by VNs
731 // with the phi-def flag set, and the live ranges of these VNs start at the
732 // beginning of the basic block.
733 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
734 DestVNI->def = MBBStartIndex;
735 DestLI.addRange(LiveRange(MBBStartIndex,
736 PHIIndex.getDefIndex(),
737 DestVNI));
738 return;
739 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000740
741 const TargetRegisterClass* RC = MRI->getRegClass(DestReg);
742 unsigned CopyReg = MRI->createVirtualRegister(RC);
743
744 MachineInstr* CopyInstr = BuildMI(*MBB,
745 MBB->SkipPHIsAndLabels(MBB->begin()),
746 PHI->getDebugLoc(),
747 TII->get(TargetOpcode::COPY),
748 DestReg).addReg(CopyReg);
749 LI->InsertMachineInstrInMaps(CopyInstr);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000750 PHI->getOperand(0).setReg(CopyReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000751
752 // Add the region from the beginning of MBB to the copy instruction to
753 // CopyReg's live interval, and give the VNInfo the phidef flag.
754 LiveInterval& CopyLI = LI->getOrCreateInterval(CopyReg);
755 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
756 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
757 VNInfo* CopyVNI = CopyLI.getNextValue(MBBStartIndex,
758 CopyInstr,
759 LI->getVNInfoAllocator());
760 CopyVNI->setIsPHIDef(true);
761 CopyLI.addRange(LiveRange(MBBStartIndex,
762 DestCopyIndex.getDefIndex(),
763 CopyVNI));
764
765 // Adjust DestReg's live interval to adjust for its new definition at
766 // CopyInstr.
767 LiveInterval& DestLI = LI->getOrCreateInterval(DestReg);
768 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
769 DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
770
771 VNInfo* DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
772 assert(DestVNI);
773 DestVNI->def = DestCopyIndex.getDefIndex();
774
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000775 InsertedDestCopies[CopyReg] = CopyInstr;
776}
Cameron Zwarichef485d82010-12-24 03:09:36 +0000777
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000778void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
779 if (Reg == NewReg)
780 return;
Cameron Zwarichef485d82010-12-24 03:09:36 +0000781
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000782 LiveInterval& OldLI = LI->getInterval(Reg);
783 LiveInterval& NewLI = LI->getInterval(NewReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000784
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000785 // Merge the live ranges of the two registers.
786 DenseMap<VNInfo*, VNInfo*> VNMap;
787 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
788 LRI != LRE; ++LRI) {
789 LiveRange OldLR = *LRI;
790 VNInfo* OldVN = OldLR.valno;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000791
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000792 VNInfo*& NewVN = VNMap[OldVN];
793 if (!NewVN) {
794 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
795 VNMap[OldVN] = NewVN;
796 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000797
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000798 LiveRange LR(OldLR.start, OldLR.end, NewVN);
799 NewLI.addRange(LR);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000800 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000801
802 // Remove the LiveInterval for the register being renamed and replace all
803 // of its defs and uses with the new register.
804 LI->removeInterval(Reg);
805 MRI->replaceRegWith(Reg, NewReg);
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000806}