blob: d3df471a1c2db87f8bdff1199a46ad840185fb16 [file] [log] [blame]
Chris Lattnerd6b65252001-10-24 01:15:12 +00001//===- Reader.cpp - Code to read bytecode files ---------------------------===//
Misha Brukman8a96c532005-04-21 21:44:41 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman8a96c532005-04-21 21:44:41 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +00009//
10// This library implements the functionality defined in llvm/Bytecode/Reader.h
11//
Misha Brukman8a96c532005-04-21 21:44:41 +000012// Note that this library should be as fast as possible, reentrant, and
Chris Lattner00950542001-06-06 20:29:01 +000013// threadsafe!!
14//
Chris Lattner00950542001-06-06 20:29:01 +000015// TODO: Allow passing in an option to ignore the symbol table
16//
Chris Lattnerd6b65252001-10-24 01:15:12 +000017//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +000018
Reid Spencer060d25d2004-06-29 23:29:38 +000019#include "Reader.h"
Reid Spencer0b118202006-01-16 21:12:35 +000020#include "llvm/Assembly/AutoUpgrade.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000021#include "llvm/Bytecode/BytecodeHandler.h"
22#include "llvm/BasicBlock.h"
Chris Lattnerdee199f2005-05-06 22:34:01 +000023#include "llvm/CallingConv.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000024#include "llvm/Constants.h"
Chris Lattner3bc5a602006-01-25 23:08:15 +000025#include "llvm/InlineAsm.h"
Reid Spencer04cde2c2004-07-04 11:33:49 +000026#include "llvm/Instructions.h"
27#include "llvm/SymbolTable.h"
Chris Lattner00950542001-06-06 20:29:01 +000028#include "llvm/Bytecode/Format.h"
Chris Lattnerdee199f2005-05-06 22:34:01 +000029#include "llvm/Config/alloca.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000030#include "llvm/Support/GetElementPtrTypeIterator.h"
Reid Spencer17f52c52004-11-06 23:17:23 +000031#include "llvm/Support/Compressor.h"
Jim Laskeycb6682f2005-08-17 19:34:49 +000032#include "llvm/Support/MathExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/StringExtras.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000034#include <sstream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000035#include <algorithm>
Chris Lattner29b789b2003-11-19 17:27:18 +000036using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000037
Reid Spencer46b002c2004-07-11 17:28:43 +000038namespace {
Chris Lattnercad28bd2005-01-29 00:36:19 +000039 /// @brief A class for maintaining the slot number definition
40 /// as a placeholder for the actual definition for forward constants defs.
41 class ConstantPlaceHolder : public ConstantExpr {
42 ConstantPlaceHolder(); // DO NOT IMPLEMENT
43 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
44 public:
Chris Lattner61323322005-01-31 01:11:13 +000045 Use Op;
Misha Brukman8a96c532005-04-21 21:44:41 +000046 ConstantPlaceHolder(const Type *Ty)
Chris Lattner61323322005-01-31 01:11:13 +000047 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
48 Op(UndefValue::get(Type::IntTy), this) {
49 }
Chris Lattnercad28bd2005-01-29 00:36:19 +000050 };
Reid Spencer46b002c2004-07-11 17:28:43 +000051}
Reid Spencer060d25d2004-06-29 23:29:38 +000052
Reid Spencer24399722004-07-09 22:21:33 +000053// Provide some details on error
Reid Spencer233fe722006-08-22 16:09:19 +000054inline void BytecodeReader::error(const std::string& err) {
55 ErrorMsg = err + " (Vers=" + itostr(RevisionNum) + ", Pos="
56 + itostr(At-MemStart) + ")";
57 longjmp(context,1);
Reid Spencer24399722004-07-09 22:21:33 +000058}
59
Reid Spencer060d25d2004-06-29 23:29:38 +000060//===----------------------------------------------------------------------===//
61// Bytecode Reading Methods
62//===----------------------------------------------------------------------===//
63
Reid Spencer04cde2c2004-07-04 11:33:49 +000064/// Determine if the current block being read contains any more data.
Reid Spencer060d25d2004-06-29 23:29:38 +000065inline bool BytecodeReader::moreInBlock() {
66 return At < BlockEnd;
Chris Lattner00950542001-06-06 20:29:01 +000067}
68
Reid Spencer04cde2c2004-07-04 11:33:49 +000069/// Throw an error if we've read past the end of the current block
Reid Spencer060d25d2004-06-29 23:29:38 +000070inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
Reid Spencer46b002c2004-07-11 17:28:43 +000071 if (At > BlockEnd)
Chris Lattnera79e7cc2004-10-16 18:18:16 +000072 error(std::string("Attempt to read past the end of ") + block_name +
73 " block.");
Reid Spencer060d25d2004-06-29 23:29:38 +000074}
Chris Lattner36392bc2003-10-08 21:18:57 +000075
Reid Spencer04cde2c2004-07-04 11:33:49 +000076/// Align the buffer position to a 32 bit boundary
Reid Spencer060d25d2004-06-29 23:29:38 +000077inline void BytecodeReader::align32() {
Reid Spencer38d54be2004-08-17 07:45:14 +000078 if (hasAlignment) {
79 BufPtr Save = At;
Jeff Cohen05ebc8d2006-01-25 17:18:50 +000080 At = (const unsigned char *)((intptr_t)(At+3) & (~3UL));
Misha Brukman8a96c532005-04-21 21:44:41 +000081 if (At > Save)
Reid Spencer38d54be2004-08-17 07:45:14 +000082 if (Handler) Handler->handleAlignment(At - Save);
Misha Brukman8a96c532005-04-21 21:44:41 +000083 if (At > BlockEnd)
Reid Spencer38d54be2004-08-17 07:45:14 +000084 error("Ran out of data while aligning!");
85 }
Reid Spencer060d25d2004-06-29 23:29:38 +000086}
87
Reid Spencer04cde2c2004-07-04 11:33:49 +000088/// Read a whole unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000089inline unsigned BytecodeReader::read_uint() {
Misha Brukman8a96c532005-04-21 21:44:41 +000090 if (At+4 > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000091 error("Ran out of data reading uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +000092 At += 4;
93 return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
94}
95
Reid Spencer04cde2c2004-07-04 11:33:49 +000096/// Read a variable-bit-rate encoded unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000097inline unsigned BytecodeReader::read_vbr_uint() {
98 unsigned Shift = 0;
99 unsigned Result = 0;
100 BufPtr Save = At;
Misha Brukman8a96c532005-04-21 21:44:41 +0000101
Reid Spencer060d25d2004-06-29 23:29:38 +0000102 do {
Misha Brukman8a96c532005-04-21 21:44:41 +0000103 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000104 error("Ran out of data reading vbr_uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000105 Result |= (unsigned)((*At++) & 0x7F) << Shift;
106 Shift += 7;
107 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000108 if (Handler) Handler->handleVBR32(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000109 return Result;
110}
111
Reid Spencer04cde2c2004-07-04 11:33:49 +0000112/// Read a variable-bit-rate encoded unsigned 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000113inline uint64_t BytecodeReader::read_vbr_uint64() {
114 unsigned Shift = 0;
115 uint64_t Result = 0;
116 BufPtr Save = At;
Misha Brukman8a96c532005-04-21 21:44:41 +0000117
Reid Spencer060d25d2004-06-29 23:29:38 +0000118 do {
Misha Brukman8a96c532005-04-21 21:44:41 +0000119 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000120 error("Ran out of data reading vbr_uint64!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000121 Result |= (uint64_t)((*At++) & 0x7F) << Shift;
122 Shift += 7;
123 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000124 if (Handler) Handler->handleVBR64(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000125 return Result;
126}
127
Reid Spencer04cde2c2004-07-04 11:33:49 +0000128/// Read a variable-bit-rate encoded signed 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000129inline int64_t BytecodeReader::read_vbr_int64() {
130 uint64_t R = read_vbr_uint64();
131 if (R & 1) {
132 if (R != 1)
133 return -(int64_t)(R >> 1);
134 else // There is no such thing as -0 with integers. "-0" really means
135 // 0x8000000000000000.
136 return 1LL << 63;
137 } else
138 return (int64_t)(R >> 1);
139}
140
Reid Spencer04cde2c2004-07-04 11:33:49 +0000141/// Read a pascal-style string (length followed by text)
Reid Spencer060d25d2004-06-29 23:29:38 +0000142inline std::string BytecodeReader::read_str() {
143 unsigned Size = read_vbr_uint();
144 const unsigned char *OldAt = At;
145 At += Size;
146 if (At > BlockEnd) // Size invalid?
Reid Spencer24399722004-07-09 22:21:33 +0000147 error("Ran out of data reading a string!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000148 return std::string((char*)OldAt, Size);
149}
150
Reid Spencer04cde2c2004-07-04 11:33:49 +0000151/// Read an arbitrary block of data
Reid Spencer060d25d2004-06-29 23:29:38 +0000152inline void BytecodeReader::read_data(void *Ptr, void *End) {
153 unsigned char *Start = (unsigned char *)Ptr;
154 unsigned Amount = (unsigned char *)End - Start;
Misha Brukman8a96c532005-04-21 21:44:41 +0000155 if (At+Amount > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000156 error("Ran out of data!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000157 std::copy(At, At+Amount, Start);
158 At += Amount;
159}
160
Reid Spencer46b002c2004-07-11 17:28:43 +0000161/// Read a float value in little-endian order
162inline void BytecodeReader::read_float(float& FloatVal) {
Reid Spencerada16182004-07-25 21:36:26 +0000163 /// FIXME: This isn't optimal, it has size problems on some platforms
164 /// where FP is not IEEE.
Jim Laskeycb6682f2005-08-17 19:34:49 +0000165 FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
Reid Spencerada16182004-07-25 21:36:26 +0000166 At+=sizeof(uint32_t);
Reid Spencer46b002c2004-07-11 17:28:43 +0000167}
168
169/// Read a double value in little-endian order
170inline void BytecodeReader::read_double(double& DoubleVal) {
Reid Spencerada16182004-07-25 21:36:26 +0000171 /// FIXME: This isn't optimal, it has size problems on some platforms
172 /// where FP is not IEEE.
Jim Laskeycb6682f2005-08-17 19:34:49 +0000173 DoubleVal = BitsToDouble((uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
174 (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
175 (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
176 (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
Reid Spencerada16182004-07-25 21:36:26 +0000177 At+=sizeof(uint64_t);
Reid Spencer46b002c2004-07-11 17:28:43 +0000178}
179
Reid Spencer04cde2c2004-07-04 11:33:49 +0000180/// Read a block header and obtain its type and size
Reid Spencer060d25d2004-06-29 23:29:38 +0000181inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
Reid Spencerad89bd62004-07-25 18:07:36 +0000182 if ( hasLongBlockHeaders ) {
183 Type = read_uint();
184 Size = read_uint();
185 switch (Type) {
Misha Brukman8a96c532005-04-21 21:44:41 +0000186 case BytecodeFormat::Reserved_DoNotUse :
Reid Spencerad89bd62004-07-25 18:07:36 +0000187 error("Reserved_DoNotUse used as Module Type?");
Reid Spencer5b472d92004-08-21 20:49:23 +0000188 Type = BytecodeFormat::ModuleBlockID; break;
Misha Brukman8a96c532005-04-21 21:44:41 +0000189 case BytecodeFormat::Module:
Reid Spencerad89bd62004-07-25 18:07:36 +0000190 Type = BytecodeFormat::ModuleBlockID; break;
191 case BytecodeFormat::Function:
192 Type = BytecodeFormat::FunctionBlockID; break;
193 case BytecodeFormat::ConstantPool:
194 Type = BytecodeFormat::ConstantPoolBlockID; break;
195 case BytecodeFormat::SymbolTable:
196 Type = BytecodeFormat::SymbolTableBlockID; break;
197 case BytecodeFormat::ModuleGlobalInfo:
198 Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
199 case BytecodeFormat::GlobalTypePlane:
200 Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
201 case BytecodeFormat::InstructionList:
202 Type = BytecodeFormat::InstructionListBlockID; break;
203 case BytecodeFormat::CompactionTable:
204 Type = BytecodeFormat::CompactionTableBlockID; break;
205 case BytecodeFormat::BasicBlock:
206 /// This block type isn't used after version 1.1. However, we have to
207 /// still allow the value in case this is an old bc format file.
208 /// We just let its value creep thru.
209 break;
210 default:
Reid Spencer5b472d92004-08-21 20:49:23 +0000211 error("Invalid block id found: " + utostr(Type));
Reid Spencerad89bd62004-07-25 18:07:36 +0000212 break;
213 }
214 } else {
215 Size = read_uint();
216 Type = Size & 0x1F; // mask low order five bits
217 Size >>= 5; // get rid of five low order bits, leaving high 27
218 }
Reid Spencer060d25d2004-06-29 23:29:38 +0000219 BlockStart = At;
Reid Spencer46b002c2004-07-11 17:28:43 +0000220 if (At + Size > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000221 error("Attempt to size a block past end of memory");
Reid Spencer060d25d2004-06-29 23:29:38 +0000222 BlockEnd = At + Size;
Reid Spencer46b002c2004-07-11 17:28:43 +0000223 if (Handler) Handler->handleBlock(Type, BlockStart, Size);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000224}
225
226
227/// In LLVM 1.2 and before, Types were derived from Value and so they were
228/// written as part of the type planes along with any other Value. In LLVM
229/// 1.3 this changed so that Type does not derive from Value. Consequently,
230/// the BytecodeReader's containers for Values can't contain Types because
231/// there's no inheritance relationship. This means that the "Type Type"
Misha Brukman8a96c532005-04-21 21:44:41 +0000232/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
233/// whenever a bytecode construct must have both types and values together,
Reid Spencer04cde2c2004-07-04 11:33:49 +0000234/// the types are always read/written first and then the Values. Furthermore
235/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
236/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
237/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
238/// For LLVM 1.2 and before, this function will decrement the type id by
239/// one to account for the missing Type::TypeTyID enumerator if the value is
240/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
241/// function returns true, otherwise false. This helps detect situations
242/// where the pre 1.3 bytecode is indicating that what follows is a type.
Misha Brukman8a96c532005-04-21 21:44:41 +0000243/// @returns true iff type id corresponds to pre 1.3 "type type"
Reid Spencer46b002c2004-07-11 17:28:43 +0000244inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
245 if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
246 if (TypeId == Type::LabelTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000247 TypeId = Type::VoidTyID; // sanitize it
248 return true; // indicate we got TypeTyID in pre 1.3 bytecode
Reid Spencer46b002c2004-07-11 17:28:43 +0000249 } else if (TypeId > Type::LabelTyID)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000250 --TypeId; // shift all planes down because type type plane is missing
251 }
252 return false;
253}
254
255/// Reads a vbr uint to read in a type id and does the necessary
256/// conversion on it by calling sanitizeTypeId.
257/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
258/// @see sanitizeTypeId
259inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
260 TypeId = read_vbr_uint();
Reid Spencerad89bd62004-07-25 18:07:36 +0000261 if ( !has32BitTypes )
262 if ( TypeId == 0x00FFFFFF )
263 TypeId = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +0000264 return sanitizeTypeId(TypeId);
Reid Spencer060d25d2004-06-29 23:29:38 +0000265}
266
267//===----------------------------------------------------------------------===//
268// IR Lookup Methods
269//===----------------------------------------------------------------------===//
270
Reid Spencer04cde2c2004-07-04 11:33:49 +0000271/// Determine if a type id has an implicit null value
Reid Spencer46b002c2004-07-11 17:28:43 +0000272inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000273 if (!hasExplicitPrimitiveZeros)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000274 return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
Reid Spencer060d25d2004-06-29 23:29:38 +0000275 return TyID >= Type::FirstDerivedTyID;
276}
277
Reid Spencer04cde2c2004-07-04 11:33:49 +0000278/// Obtain a type given a typeid and account for things like compaction tables,
279/// function level vs module level, and the offsetting for the primitive types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000280const Type *BytecodeReader::getType(unsigned ID) {
Chris Lattner89e02532004-01-18 21:08:15 +0000281 if (ID < Type::FirstDerivedTyID)
Chris Lattnerf70c22b2004-06-17 18:19:28 +0000282 if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
Chris Lattner927b1852003-10-09 20:22:47 +0000283 return T; // Asked for a primitive type...
Chris Lattner36392bc2003-10-08 21:18:57 +0000284
285 // Otherwise, derived types need offset...
Chris Lattner89e02532004-01-18 21:08:15 +0000286 ID -= Type::FirstDerivedTyID;
287
Reid Spencer060d25d2004-06-29 23:29:38 +0000288 if (!CompactionTypes.empty()) {
289 if (ID >= CompactionTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000290 error("Type ID out of range for compaction table!");
Chris Lattner45b5dd22004-08-03 23:41:28 +0000291 return CompactionTypes[ID].first;
Chris Lattner89e02532004-01-18 21:08:15 +0000292 }
Chris Lattner36392bc2003-10-08 21:18:57 +0000293
294 // Is it a module-level type?
Reid Spencer46b002c2004-07-11 17:28:43 +0000295 if (ID < ModuleTypes.size())
296 return ModuleTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000297
Reid Spencer46b002c2004-07-11 17:28:43 +0000298 // Nope, is it a function-level type?
299 ID -= ModuleTypes.size();
300 if (ID < FunctionTypes.size())
301 return FunctionTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000302
Reid Spencer46b002c2004-07-11 17:28:43 +0000303 error("Illegal type reference!");
304 return Type::VoidTy;
Chris Lattner00950542001-06-06 20:29:01 +0000305}
306
Reid Spencer04cde2c2004-07-04 11:33:49 +0000307/// Get a sanitized type id. This just makes sure that the \p ID
308/// is both sanitized and not the "type type" of pre-1.3 bytecode.
309/// @see sanitizeTypeId
310inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
Reid Spencer46b002c2004-07-11 17:28:43 +0000311 if (sanitizeTypeId(ID))
Reid Spencer24399722004-07-09 22:21:33 +0000312 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000313 return getType(ID);
314}
315
316/// This method just saves some coding. It uses read_typeid to read
Reid Spencer24399722004-07-09 22:21:33 +0000317/// in a sanitized type id, errors that its not the type type, and
Reid Spencer04cde2c2004-07-04 11:33:49 +0000318/// then calls getType to return the type value.
319inline const Type* BytecodeReader::readSanitizedType() {
320 unsigned ID;
Reid Spencer46b002c2004-07-11 17:28:43 +0000321 if (read_typeid(ID))
322 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000323 return getType(ID);
324}
325
326/// Get the slot number associated with a type accounting for primitive
327/// types, compaction tables, and function level vs module level.
Reid Spencer060d25d2004-06-29 23:29:38 +0000328unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
329 if (Ty->isPrimitiveType())
330 return Ty->getTypeID();
331
332 // Scan the compaction table for the type if needed.
333 if (!CompactionTypes.empty()) {
Chris Lattner45b5dd22004-08-03 23:41:28 +0000334 for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
335 if (CompactionTypes[i].first == Ty)
Misha Brukman8a96c532005-04-21 21:44:41 +0000336 return Type::FirstDerivedTyID + i;
Reid Spencer060d25d2004-06-29 23:29:38 +0000337
Chris Lattner45b5dd22004-08-03 23:41:28 +0000338 error("Couldn't find type specified in compaction table!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000339 }
340
341 // Check the function level types first...
Chris Lattnera79e7cc2004-10-16 18:18:16 +0000342 TypeListTy::iterator I = std::find(FunctionTypes.begin(),
343 FunctionTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000344
345 if (I != FunctionTypes.end())
Misha Brukman8a96c532005-04-21 21:44:41 +0000346 return Type::FirstDerivedTyID + ModuleTypes.size() +
Reid Spencer46b002c2004-07-11 17:28:43 +0000347 (&*I - &FunctionTypes[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +0000348
Chris Lattnereebac5f2005-10-03 21:26:53 +0000349 // If we don't have our cache yet, build it now.
350 if (ModuleTypeIDCache.empty()) {
351 unsigned N = 0;
352 ModuleTypeIDCache.reserve(ModuleTypes.size());
353 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
354 I != E; ++I, ++N)
355 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
356
357 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
358 }
359
360 // Binary search the cache for the entry.
361 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
362 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
363 std::make_pair(Ty, 0U));
364 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
Reid Spencer24399722004-07-09 22:21:33 +0000365 error("Didn't find type in ModuleTypes.");
Chris Lattnereebac5f2005-10-03 21:26:53 +0000366
367 return Type::FirstDerivedTyID + IT->second;
Chris Lattner80b97342004-01-17 23:25:43 +0000368}
369
Reid Spencer04cde2c2004-07-04 11:33:49 +0000370/// This is just like getType, but when a compaction table is in use, it is
371/// ignored. It also ignores function level types.
372/// @see getType
Reid Spencer060d25d2004-06-29 23:29:38 +0000373const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
374 if (Slot < Type::FirstDerivedTyID) {
375 const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
Reid Spencer46b002c2004-07-11 17:28:43 +0000376 if (!Ty)
Reid Spencer24399722004-07-09 22:21:33 +0000377 error("Not a primitive type ID?");
Reid Spencer060d25d2004-06-29 23:29:38 +0000378 return Ty;
379 }
380 Slot -= Type::FirstDerivedTyID;
381 if (Slot >= ModuleTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000382 error("Illegal compaction table type reference!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000383 return ModuleTypes[Slot];
Chris Lattner52e20b02003-03-19 20:54:26 +0000384}
385
Reid Spencer04cde2c2004-07-04 11:33:49 +0000386/// This is just like getTypeSlot, but when a compaction table is in use, it
387/// is ignored. It also ignores function level types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000388unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
389 if (Ty->isPrimitiveType())
390 return Ty->getTypeID();
Chris Lattnereebac5f2005-10-03 21:26:53 +0000391
392 // If we don't have our cache yet, build it now.
393 if (ModuleTypeIDCache.empty()) {
394 unsigned N = 0;
395 ModuleTypeIDCache.reserve(ModuleTypes.size());
396 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
397 I != E; ++I, ++N)
398 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
399
400 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
401 }
402
403 // Binary search the cache for the entry.
404 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
405 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
406 std::make_pair(Ty, 0U));
407 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
Reid Spencer24399722004-07-09 22:21:33 +0000408 error("Didn't find type in ModuleTypes.");
Chris Lattnereebac5f2005-10-03 21:26:53 +0000409
410 return Type::FirstDerivedTyID + IT->second;
Reid Spencer060d25d2004-06-29 23:29:38 +0000411}
412
Misha Brukman8a96c532005-04-21 21:44:41 +0000413/// Retrieve a value of a given type and slot number, possibly creating
414/// it if it doesn't already exist.
Reid Spencer060d25d2004-06-29 23:29:38 +0000415Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000416 assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
Chris Lattner00950542001-06-06 20:29:01 +0000417 unsigned Num = oNum;
Chris Lattner00950542001-06-06 20:29:01 +0000418
Chris Lattner89e02532004-01-18 21:08:15 +0000419 // If there is a compaction table active, it defines the low-level numbers.
420 // If not, the module values define the low-level numbers.
Reid Spencer060d25d2004-06-29 23:29:38 +0000421 if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
422 if (Num < CompactionValues[type].size())
423 return CompactionValues[type][Num];
424 Num -= CompactionValues[type].size();
Chris Lattner89e02532004-01-18 21:08:15 +0000425 } else {
Reid Spencer060d25d2004-06-29 23:29:38 +0000426 // By default, the global type id is the type id passed in
Chris Lattner52f86d62004-01-20 00:54:06 +0000427 unsigned GlobalTyID = type;
Reid Spencer060d25d2004-06-29 23:29:38 +0000428
Chris Lattner45b5dd22004-08-03 23:41:28 +0000429 // If the type plane was compactified, figure out the global type ID by
430 // adding the derived type ids and the distance.
431 if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
432 GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
Chris Lattner00950542001-06-06 20:29:01 +0000433
Reid Spencer060d25d2004-06-29 23:29:38 +0000434 if (hasImplicitNull(GlobalTyID)) {
Chris Lattneraba5ff52005-05-05 20:57:00 +0000435 const Type *Ty = getType(type);
436 if (!isa<OpaqueType>(Ty)) {
437 if (Num == 0)
438 return Constant::getNullValue(Ty);
439 --Num;
440 }
Chris Lattner89e02532004-01-18 21:08:15 +0000441 }
442
Chris Lattner52f86d62004-01-20 00:54:06 +0000443 if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
444 if (Num < ModuleValues[GlobalTyID]->size())
Reid Spencer04cde2c2004-07-04 11:33:49 +0000445 return ModuleValues[GlobalTyID]->getOperand(Num);
Chris Lattner52f86d62004-01-20 00:54:06 +0000446 Num -= ModuleValues[GlobalTyID]->size();
Chris Lattner89e02532004-01-18 21:08:15 +0000447 }
Chris Lattner52e20b02003-03-19 20:54:26 +0000448 }
449
Misha Brukman8a96c532005-04-21 21:44:41 +0000450 if (FunctionValues.size() > type &&
451 FunctionValues[type] &&
Reid Spencer060d25d2004-06-29 23:29:38 +0000452 Num < FunctionValues[type]->size())
453 return FunctionValues[type]->getOperand(Num);
Chris Lattner00950542001-06-06 20:29:01 +0000454
Chris Lattner74734132002-08-17 22:01:27 +0000455 if (!Create) return 0; // Do not create a placeholder?
Chris Lattner00950542001-06-06 20:29:01 +0000456
Reid Spencer551ccae2004-09-01 22:55:40 +0000457 // Did we already create a place holder?
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000458 std::pair<unsigned,unsigned> KeyValue(type, oNum);
Reid Spencer060d25d2004-06-29 23:29:38 +0000459 ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000460 if (I != ForwardReferences.end() && I->first == KeyValue)
461 return I->second; // We have already created this placeholder
462
Reid Spencer551ccae2004-09-01 22:55:40 +0000463 // If the type exists (it should)
464 if (const Type* Ty = getType(type)) {
465 // Create the place holder
466 Value *Val = new Argument(Ty);
467 ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
468 return Val;
469 }
Reid Spencer233fe722006-08-22 16:09:19 +0000470 error("Can't create placeholder for value of type slot #" + utostr(type));
471 return 0; // just silence warning, error calls longjmp
Chris Lattner00950542001-06-06 20:29:01 +0000472}
473
Misha Brukman8a96c532005-04-21 21:44:41 +0000474/// This is just like getValue, but when a compaction table is in use, it
475/// is ignored. Also, no forward references or other fancy features are
Reid Spencer04cde2c2004-07-04 11:33:49 +0000476/// supported.
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000477Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
478 if (SlotNo == 0)
479 return Constant::getNullValue(getType(TyID));
480
481 if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
482 TyID -= Type::FirstDerivedTyID;
483 if (TyID >= CompactionTypes.size())
484 error("Type ID out of range for compaction table!");
485 TyID = CompactionTypes[TyID].second;
Reid Spencer060d25d2004-06-29 23:29:38 +0000486 }
487
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000488 --SlotNo;
489
Reid Spencer060d25d2004-06-29 23:29:38 +0000490 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
491 SlotNo >= ModuleValues[TyID]->size()) {
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000492 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
493 error("Corrupt compaction table entry!"
Misha Brukman8a96c532005-04-21 21:44:41 +0000494 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000495 + utostr(ModuleValues.size()));
Misha Brukman8a96c532005-04-21 21:44:41 +0000496 else
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000497 error("Corrupt compaction table entry!"
Misha Brukman8a96c532005-04-21 21:44:41 +0000498 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000499 + utostr(ModuleValues.size()) + ", "
Reid Spencer9a7e0c52004-08-04 22:56:46 +0000500 + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
501 + ", "
Chris Lattner2c6c14d2004-08-04 00:19:23 +0000502 + utostr(ModuleValues[TyID]->size()));
Reid Spencer060d25d2004-06-29 23:29:38 +0000503 }
504 return ModuleValues[TyID]->getOperand(SlotNo);
505}
506
Reid Spencer04cde2c2004-07-04 11:33:49 +0000507/// Just like getValue, except that it returns a null pointer
508/// only on error. It always returns a constant (meaning that if the value is
509/// defined, but is not a constant, that is an error). If the specified
Misha Brukman8a96c532005-04-21 21:44:41 +0000510/// constant hasn't been parsed yet, a placeholder is defined and used.
Reid Spencer04cde2c2004-07-04 11:33:49 +0000511/// Later, after the real value is parsed, the placeholder is eliminated.
Reid Spencer060d25d2004-06-29 23:29:38 +0000512Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
513 if (Value *V = getValue(TypeSlot, Slot, false))
514 if (Constant *C = dyn_cast<Constant>(V))
515 return C; // If we already have the value parsed, just return it
Reid Spencer060d25d2004-06-29 23:29:38 +0000516 else
Misha Brukman8a96c532005-04-21 21:44:41 +0000517 error("Value for slot " + utostr(Slot) +
Reid Spencera86037e2004-07-18 00:12:03 +0000518 " is expected to be a constant!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000519
Chris Lattner389bd042004-12-09 06:19:44 +0000520 std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
Reid Spencer060d25d2004-06-29 23:29:38 +0000521 ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
522
523 if (I != ConstantFwdRefs.end() && I->first == Key) {
524 return I->second;
525 } else {
526 // Create a placeholder for the constant reference and
527 // keep track of the fact that we have a forward ref to recycle it
Chris Lattner389bd042004-12-09 06:19:44 +0000528 Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
Misha Brukman8a96c532005-04-21 21:44:41 +0000529
Reid Spencer060d25d2004-06-29 23:29:38 +0000530 // Keep track of the fact that we have a forward ref to recycle it
531 ConstantFwdRefs.insert(I, std::make_pair(Key, C));
532 return C;
533 }
534}
535
536//===----------------------------------------------------------------------===//
537// IR Construction Methods
538//===----------------------------------------------------------------------===//
539
Reid Spencer04cde2c2004-07-04 11:33:49 +0000540/// As values are created, they are inserted into the appropriate place
541/// with this method. The ValueTable argument must be one of ModuleValues
542/// or FunctionValues data members of this class.
Misha Brukman8a96c532005-04-21 21:44:41 +0000543unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
Reid Spencer46b002c2004-07-11 17:28:43 +0000544 ValueTable &ValueTab) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000545 if (ValueTab.size() <= type)
546 ValueTab.resize(type+1);
547
548 if (!ValueTab[type]) ValueTab[type] = new ValueList();
549
550 ValueTab[type]->push_back(Val);
551
Chris Lattneraba5ff52005-05-05 20:57:00 +0000552 bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
Reid Spencer060d25d2004-06-29 23:29:38 +0000553 return ValueTab[type]->size()-1 + HasOffset;
554}
555
Reid Spencer04cde2c2004-07-04 11:33:49 +0000556/// Insert the arguments of a function as new values in the reader.
Reid Spencer46b002c2004-07-11 17:28:43 +0000557void BytecodeReader::insertArguments(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000558 const FunctionType *FT = F->getFunctionType();
Chris Lattnere4d5c442005-03-15 04:54:21 +0000559 Function::arg_iterator AI = F->arg_begin();
Reid Spencer060d25d2004-06-29 23:29:38 +0000560 for (FunctionType::param_iterator It = FT->param_begin();
561 It != FT->param_end(); ++It, ++AI)
562 insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
563}
564
Reid Spencer1628cec2006-10-26 06:15:43 +0000565// Convert previous opcode values into the current value and/or construct
566// the instruction. This function handles all *abnormal* cases for instruction
567// generation based on obsolete opcode values. The normal cases are handled
568// in ParseInstruction below. Generally this function just produces a new
569// Opcode value (first argument). In a few cases (VAArg, VANext) the upgrade
570// path requies that the instruction (sequence) be generated differently from
571// the normal case in order to preserve the original semantics. In these
572// cases the result of the function will be a non-zero Instruction pointer. In
573// all other cases, zero will be returned indicating that the *normal*
574// instruction generation should be used, but with the new Opcode value.
575//
576Instruction*
577BytecodeReader::handleObsoleteOpcodes(
578 unsigned &Opcode, ///< The old opcode, possibly updated by this function
579 std::vector<unsigned> &Oprnds, ///< The operands to the instruction
580 unsigned &iType, ///< The type code from the bytecode file
581 const Type* InstTy, ///< The type of the instruction
582 BasicBlock* BB ///< The basic block to insert into, if we need to
583) {
584
585 // First, short circuit this if no conversion is required. When signless
586 // instructions were implemented the entire opcode sequence was revised so
587 // we key on this first which means that the opcode value read is the one
588 // we should use.
589 if (!hasSignlessInstructions)
590 return 0; // The opcode is fine the way it is.
591
592 // Declare the resulting instruction we might build. In general we just
593 // change the Opcode argument but in a few cases we need to generate the
594 // Instruction here because the upgrade case is significantly different from
595 // the normal case.
596 Instruction *Result = 0;
597
598 // If this is a bytecode format that did not include the unreachable
599 // instruction, bump up the opcode number to adjust it.
600 if (hasNoUnreachableInst)
601 if (Opcode >= Instruction::Unreachable && Opcode < 62)
602 ++Opcode;
603
604 // We're dealing with an upgrade situation. For each of the opcode values,
605 // perform the necessary conversion.
606 switch (Opcode) {
607 default: // Error
608 // This switch statement provides cases for all known opcodes prior to
609 // version 6 bytecode format. We know we're in an upgrade situation so
610 // if there isn't a match in this switch, then something is horribly
611 // wrong.
612 error("Unknown obsolete opcode encountered.");
613 break;
614 case 1: // Ret
615 Opcode = Instruction::Ret;
616 break;
617 case 2: // Br
618 Opcode = Instruction::Br;
619 break;
620 case 3: // Switch
621 Opcode = Instruction::Switch;
622 break;
623 case 4: // Invoke
624 Opcode = Instruction::Invoke;
625 break;
626 case 5: // Unwind
627 Opcode = Instruction::Unwind;
628 break;
629 case 6: // Unreachable
630 Opcode = Instruction::Unreachable;
631 break;
632 case 7: // Add
633 Opcode = Instruction::Add;
634 break;
635 case 8: // Sub
636 Opcode = Instruction::Sub;
637 break;
638 case 9: // Mul
639 Opcode = Instruction::Mul;
640 break;
641 case 10: // Div
642 // The type of the instruction is based on the operands. We need to select
643 // fdiv, udiv or sdiv based on that type. The iType values are hardcoded
644 // to the values used in bytecode version 5 (and prior) because it is
645 // likely these codes will change in future versions of LLVM.
646 if (iType == 10 || iType == 11 )
647 Opcode = Instruction::FDiv;
648 else if (iType >= 2 && iType <= 9 && iType % 2 != 0)
649 Opcode = Instruction::SDiv;
650 else
651 Opcode = Instruction::UDiv;
652 break;
653
654 case 11: // Rem
655 Opcode = Instruction::Rem;
656 break;
657 case 12: // And
658 Opcode = Instruction::And;
659 break;
660 case 13: // Or
661 Opcode = Instruction::Or;
662 break;
663 case 14: // Xor
664 Opcode = Instruction::Xor;
665 break;
666 case 15: // SetEQ
667 Opcode = Instruction::SetEQ;
668 break;
669 case 16: // SetNE
670 Opcode = Instruction::SetNE;
671 break;
672 case 17: // SetLE
673 Opcode = Instruction::SetLE;
674 break;
675 case 18: // SetGE
676 Opcode = Instruction::SetGE;
677 break;
678 case 19: // SetLT
679 Opcode = Instruction::SetLT;
680 break;
681 case 20: // SetGT
682 Opcode = Instruction::SetGT;
683 break;
684 case 21: // Malloc
685 Opcode = Instruction::Malloc;
686 break;
687 case 22: // Free
688 Opcode = Instruction::Free;
689 break;
690 case 23: // Alloca
691 Opcode = Instruction::Alloca;
692 break;
693 case 24: // Load
694 Opcode = Instruction::Load;
695 break;
696 case 25: // Store
697 Opcode = Instruction::Store;
698 break;
699 case 26: // GetElementPtr
700 Opcode = Instruction::GetElementPtr;
701 break;
702 case 27: // PHI
703 Opcode = Instruction::PHI;
704 break;
705 case 28: // Cast
706 Opcode = Instruction::Cast;
707 break;
708 case 29: // Call
709 Opcode = Instruction::Call;
710 break;
711 case 30: // Shl
712 Opcode = Instruction::Shl;
713 break;
714 case 31: // Shr
715 Opcode = Instruction::Shr;
716 break;
717 case 32: { //VANext_old ( <= llvm 1.5 )
718 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
719 Function* NF = TheModule->getOrInsertFunction(
720 "llvm.va_copy", ArgTy, ArgTy, (Type *)0);
721
722 // In llvm 1.6 the VANext instruction was dropped because it was only
723 // necessary to have a VAArg instruction. The code below transforms an
724 // old vanext instruction into the equivalent code given only the
725 // availability of the new vaarg instruction. Essentially, the transform
726 // is as follows:
727 // b = vanext a, t ->
728 // foo = alloca 1 of t
729 // bar = vacopy a
730 // store bar -> foo
731 // tmp = vaarg foo, t
732 // b = load foo
733 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
734 BB->getInstList().push_back(foo);
735 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
736 BB->getInstList().push_back(bar);
737 BB->getInstList().push_back(new StoreInst(bar, foo));
738 Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
739 BB->getInstList().push_back(tmp);
740 Result = new LoadInst(foo);
741 break;
742 }
743 case 33: { //VAArg_old
744 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
745 Function* NF = TheModule->getOrInsertFunction(
746 "llvm.va_copy", ArgTy, ArgTy, (Type *)0);
747
748 // In llvm 1.6 the VAArg's instruction semantics were changed. The code
749 // below transforms an old vaarg instruction into the equivalent code
750 // given only the availability of the new vaarg instruction. Essentially,
751 // the transform is as follows:
752 // b = vaarg a, t ->
753 // foo = alloca 1 of t
754 // bar = vacopy a
755 // store bar -> foo
756 // b = vaarg foo, t
757 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
758 BB->getInstList().push_back(foo);
759 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
760 BB->getInstList().push_back(bar);
761 BB->getInstList().push_back(new StoreInst(bar, foo));
762 Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
763 break;
764 }
765 case 34: // Select
766 Opcode = Instruction::Select;
767 break;
768 case 35: // UserOp1
769 Opcode = Instruction::UserOp1;
770 break;
771 case 36: // UserOp2
772 Opcode = Instruction::UserOp2;
773 break;
774 case 37: // VAArg
775 Opcode = Instruction::VAArg;
776 break;
777 case 38: // ExtractElement
778 Opcode = Instruction::ExtractElement;
779 break;
780 case 39: // InsertElement
781 Opcode = Instruction::InsertElement;
782 break;
783 case 40: // ShuffleVector
784 Opcode = Instruction::ShuffleVector;
785 break;
786 case 56: // Invoke with encoded CC
787 case 57: // Invoke Fast CC
788 case 58: // Call with extra operand for calling conv
789 case 59: // tail call, Fast CC
790 case 60: // normal call, Fast CC
791 case 61: // tail call, C Calling Conv
792 case 62: // volatile load
793 case 63: // volatile store
794 // In all these cases, we pass the opcode through. The new version uses
795 // the same code (for now, this might change in 2.0). These are listed
796 // here to document the opcodes in use in vers 5 bytecode and to make it
797 // easier to migrate these opcodes in the future.
798 break;
799 }
800 return Result;
801}
802
Reid Spencer060d25d2004-06-29 23:29:38 +0000803//===----------------------------------------------------------------------===//
804// Bytecode Parsing Methods
805//===----------------------------------------------------------------------===//
806
Reid Spencer04cde2c2004-07-04 11:33:49 +0000807/// This method parses a single instruction. The instruction is
808/// inserted at the end of the \p BB provided. The arguments of
Misha Brukman44666b12004-09-28 16:57:46 +0000809/// the instruction are provided in the \p Oprnds vector.
Reid Spencer060d25d2004-06-29 23:29:38 +0000810void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Reid Spencer46b002c2004-07-11 17:28:43 +0000811 BasicBlock* BB) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000812 BufPtr SaveAt = At;
813
814 // Clear instruction data
815 Oprnds.clear();
816 unsigned iType = 0;
817 unsigned Opcode = 0;
818 unsigned Op = read_uint();
819
820 // bits Instruction format: Common to all formats
821 // --------------------------
822 // 01-00: Opcode type, fixed to 1.
823 // 07-02: Opcode
824 Opcode = (Op >> 2) & 63;
825 Oprnds.resize((Op >> 0) & 03);
826
827 // Extract the operands
828 switch (Oprnds.size()) {
829 case 1:
830 // bits Instruction format:
831 // --------------------------
832 // 19-08: Resulting type plane
833 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
834 //
835 iType = (Op >> 8) & 4095;
836 Oprnds[0] = (Op >> 20) & 4095;
837 if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
838 Oprnds.resize(0);
839 break;
840 case 2:
841 // bits Instruction format:
842 // --------------------------
843 // 15-08: Resulting type plane
844 // 23-16: Operand #1
Misha Brukman8a96c532005-04-21 21:44:41 +0000845 // 31-24: Operand #2
Reid Spencer060d25d2004-06-29 23:29:38 +0000846 //
847 iType = (Op >> 8) & 255;
848 Oprnds[0] = (Op >> 16) & 255;
849 Oprnds[1] = (Op >> 24) & 255;
850 break;
851 case 3:
852 // bits Instruction format:
853 // --------------------------
854 // 13-08: Resulting type plane
855 // 19-14: Operand #1
856 // 25-20: Operand #2
857 // 31-26: Operand #3
858 //
859 iType = (Op >> 8) & 63;
860 Oprnds[0] = (Op >> 14) & 63;
861 Oprnds[1] = (Op >> 20) & 63;
862 Oprnds[2] = (Op >> 26) & 63;
863 break;
864 case 0:
865 At -= 4; // Hrm, try this again...
866 Opcode = read_vbr_uint();
867 Opcode >>= 2;
868 iType = read_vbr_uint();
869
870 unsigned NumOprnds = read_vbr_uint();
871 Oprnds.resize(NumOprnds);
872
873 if (NumOprnds == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000874 error("Zero-argument instruction found; this is invalid.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000875
876 for (unsigned i = 0; i != NumOprnds; ++i)
877 Oprnds[i] = read_vbr_uint();
878 align32();
879 break;
880 }
881
Reid Spencer04cde2c2004-07-04 11:33:49 +0000882 const Type *InstTy = getSanitizedType(iType);
Reid Spencer060d25d2004-06-29 23:29:38 +0000883
Reid Spencer1628cec2006-10-26 06:15:43 +0000884 // Make the necessary adjustments for dealing with backwards compatibility
885 // of opcodes.
886 Instruction* Result =
887 handleObsoleteOpcodes(Opcode, Oprnds, iType, InstTy, BB);
888
Reid Spencer46b002c2004-07-11 17:28:43 +0000889 // We have enough info to inform the handler now.
Reid Spencer1628cec2006-10-26 06:15:43 +0000890 if (Handler)
891 Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
Reid Spencer060d25d2004-06-29 23:29:38 +0000892
Reid Spencer1628cec2006-10-26 06:15:43 +0000893 // If the backwards compatibility code didn't produce an instruction then
894 // we do the *normal* thing ..
895 if (!Result) {
896 // First, handle the easy binary operators case
897 if (Opcode >= Instruction::BinaryOpsBegin &&
898 Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
899 Result = BinaryOperator::create(Instruction::BinaryOps(Opcode),
900 getValue(iType, Oprnds[0]),
901 getValue(iType, Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000902
Reid Spencer1628cec2006-10-26 06:15:43 +0000903 // Indicate that we don't think this is a call instruction (yet).
904 // Process based on the Opcode read
905 switch (Opcode) {
906 default: // There was an error, this shouldn't happen.
907 if (Result == 0)
908 error("Illegal instruction read!");
909 break;
910 case Instruction::VAArg:
911 if (Oprnds.size() != 2)
912 error("Invalid VAArg instruction!");
913 Result = new VAArgInst(getValue(iType, Oprnds[0]),
914 getSanitizedType(Oprnds[1]));
915 break;
916 case Instruction::ExtractElement: {
917 if (Oprnds.size() != 2)
918 error("Invalid extractelement instruction!");
919 Value *V1 = getValue(iType, Oprnds[0]);
920 Value *V2 = getValue(Type::UIntTyID, Oprnds[1]);
Chris Lattner59fecec2006-04-08 04:09:19 +0000921
Reid Spencer1628cec2006-10-26 06:15:43 +0000922 if (!ExtractElementInst::isValidOperands(V1, V2))
923 error("Invalid extractelement instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000924
Reid Spencer1628cec2006-10-26 06:15:43 +0000925 Result = new ExtractElementInst(V1, V2);
926 break;
Chris Lattnera65371e2006-05-26 18:42:34 +0000927 }
Reid Spencer1628cec2006-10-26 06:15:43 +0000928 case Instruction::InsertElement: {
929 const PackedType *PackedTy = dyn_cast<PackedType>(InstTy);
930 if (!PackedTy || Oprnds.size() != 3)
931 error("Invalid insertelement instruction!");
932
933 Value *V1 = getValue(iType, Oprnds[0]);
934 Value *V2 = getValue(getTypeSlot(PackedTy->getElementType()),Oprnds[1]);
935 Value *V3 = getValue(Type::UIntTyID, Oprnds[2]);
936
937 if (!InsertElementInst::isValidOperands(V1, V2, V3))
938 error("Invalid insertelement instruction!");
939 Result = new InsertElementInst(V1, V2, V3);
940 break;
941 }
942 case Instruction::ShuffleVector: {
943 const PackedType *PackedTy = dyn_cast<PackedType>(InstTy);
944 if (!PackedTy || Oprnds.size() != 3)
945 error("Invalid shufflevector instruction!");
946 Value *V1 = getValue(iType, Oprnds[0]);
947 Value *V2 = getValue(iType, Oprnds[1]);
948 const PackedType *EltTy =
949 PackedType::get(Type::UIntTy, PackedTy->getNumElements());
950 Value *V3 = getValue(getTypeSlot(EltTy), Oprnds[2]);
951 if (!ShuffleVectorInst::isValidOperands(V1, V2, V3))
952 error("Invalid shufflevector instruction!");
953 Result = new ShuffleVectorInst(V1, V2, V3);
954 break;
955 }
956 case Instruction::Cast:
957 if (Oprnds.size() != 2)
958 error("Invalid Cast instruction!");
959 Result = new CastInst(getValue(iType, Oprnds[0]),
960 getSanitizedType(Oprnds[1]));
961 break;
962 case Instruction::Select:
963 if (Oprnds.size() != 3)
964 error("Invalid Select instruction!");
965 Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
966 getValue(iType, Oprnds[1]),
967 getValue(iType, Oprnds[2]));
968 break;
969 case Instruction::PHI: {
970 if (Oprnds.size() == 0 || (Oprnds.size() & 1))
971 error("Invalid phi node encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000972
Reid Spencer1628cec2006-10-26 06:15:43 +0000973 PHINode *PN = new PHINode(InstTy);
974 PN->reserveOperandSpace(Oprnds.size());
975 for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
976 PN->addIncoming(
977 getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
978 Result = PN;
979 break;
980 }
Reid Spencer060d25d2004-06-29 23:29:38 +0000981
Reid Spencer1628cec2006-10-26 06:15:43 +0000982 case Instruction::Shl:
983 case Instruction::Shr:
984 Result = new ShiftInst(Instruction::OtherOps(Opcode),
985 getValue(iType, Oprnds[0]),
986 getValue(Type::UByteTyID, Oprnds[1]));
987 break;
988 case Instruction::Ret:
989 if (Oprnds.size() == 0)
990 Result = new ReturnInst();
991 else if (Oprnds.size() == 1)
992 Result = new ReturnInst(getValue(iType, Oprnds[0]));
993 else
994 error("Unrecognized instruction!");
995 break;
996
997 case Instruction::Br:
998 if (Oprnds.size() == 1)
999 Result = new BranchInst(getBasicBlock(Oprnds[0]));
1000 else if (Oprnds.size() == 3)
1001 Result = new BranchInst(getBasicBlock(Oprnds[0]),
1002 getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
1003 else
1004 error("Invalid number of operands for a 'br' instruction!");
1005 break;
1006 case Instruction::Switch: {
1007 if (Oprnds.size() & 1)
1008 error("Switch statement with odd number of arguments!");
1009
1010 SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
1011 getBasicBlock(Oprnds[1]),
1012 Oprnds.size()/2-1);
1013 for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
1014 I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
1015 getBasicBlock(Oprnds[i+1]));
1016 Result = I;
1017 break;
1018 }
1019 case 58: // Call with extra operand for calling conv
1020 case 59: // tail call, Fast CC
1021 case 60: // normal call, Fast CC
1022 case 61: // tail call, C Calling Conv
1023 case Instruction::Call: { // Normal Call, C Calling Convention
1024 if (Oprnds.size() == 0)
1025 error("Invalid call instruction encountered!");
1026
1027 Value *F = getValue(iType, Oprnds[0]);
1028
1029 unsigned CallingConv = CallingConv::C;
1030 bool isTailCall = false;
1031
1032 if (Opcode == 61 || Opcode == 59)
1033 isTailCall = true;
1034
1035 if (Opcode == 58) {
1036 isTailCall = Oprnds.back() & 1;
1037 CallingConv = Oprnds.back() >> 1;
1038 Oprnds.pop_back();
1039 } else if (Opcode == 59 || Opcode == 60) {
1040 CallingConv = CallingConv::Fast;
1041 }
1042
1043 // Check to make sure we have a pointer to function type
1044 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
1045 if (PTy == 0) error("Call to non function pointer value!");
1046 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
1047 if (FTy == 0) error("Call to non function pointer value!");
1048
1049 std::vector<Value *> Params;
1050 if (!FTy->isVarArg()) {
1051 FunctionType::param_iterator It = FTy->param_begin();
1052
1053 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
1054 if (It == FTy->param_end())
1055 error("Invalid call instruction!");
1056 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
1057 }
1058 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +00001059 error("Invalid call instruction!");
Reid Spencer1628cec2006-10-26 06:15:43 +00001060 } else {
1061 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
1062
1063 unsigned FirstVariableOperand;
1064 if (Oprnds.size() < FTy->getNumParams())
1065 error("Call instruction missing operands!");
1066
1067 // Read all of the fixed arguments
1068 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1069 Params.push_back(
1070 getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
1071
1072 FirstVariableOperand = FTy->getNumParams();
1073
1074 if ((Oprnds.size()-FirstVariableOperand) & 1)
1075 error("Invalid call instruction!"); // Must be pairs of type/value
1076
1077 for (unsigned i = FirstVariableOperand, e = Oprnds.size();
1078 i != e; i += 2)
1079 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
Reid Spencer060d25d2004-06-29 23:29:38 +00001080 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001081
Reid Spencer1628cec2006-10-26 06:15:43 +00001082 Result = new CallInst(F, Params);
1083 if (isTailCall) cast<CallInst>(Result)->setTailCall();
1084 if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
1085 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001086 }
Reid Spencer1628cec2006-10-26 06:15:43 +00001087 case 56: // Invoke with encoded CC
1088 case 57: // Invoke Fast CC
1089 case Instruction::Invoke: { // Invoke C CC
1090 if (Oprnds.size() < 3)
1091 error("Invalid invoke instruction!");
1092 Value *F = getValue(iType, Oprnds[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +00001093
Reid Spencer1628cec2006-10-26 06:15:43 +00001094 // Check to make sure we have a pointer to function type
1095 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
1096 if (PTy == 0)
1097 error("Invoke to non function pointer value!");
1098 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
1099 if (FTy == 0)
1100 error("Invoke to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001101
Reid Spencer1628cec2006-10-26 06:15:43 +00001102 std::vector<Value *> Params;
1103 BasicBlock *Normal, *Except;
1104 unsigned CallingConv = CallingConv::C;
Reid Spencer060d25d2004-06-29 23:29:38 +00001105
Reid Spencer1628cec2006-10-26 06:15:43 +00001106 if (Opcode == 57)
1107 CallingConv = CallingConv::Fast;
1108 else if (Opcode == 56) {
1109 CallingConv = Oprnds.back();
1110 Oprnds.pop_back();
1111 }
Chris Lattnerdee199f2005-05-06 22:34:01 +00001112
Reid Spencer1628cec2006-10-26 06:15:43 +00001113 if (!FTy->isVarArg()) {
1114 Normal = getBasicBlock(Oprnds[1]);
1115 Except = getBasicBlock(Oprnds[2]);
Reid Spencer060d25d2004-06-29 23:29:38 +00001116
Reid Spencer1628cec2006-10-26 06:15:43 +00001117 FunctionType::param_iterator It = FTy->param_begin();
1118 for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
1119 if (It == FTy->param_end())
1120 error("Invalid invoke instruction!");
1121 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
1122 }
1123 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +00001124 error("Invalid invoke instruction!");
Reid Spencer1628cec2006-10-26 06:15:43 +00001125 } else {
1126 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
1127
1128 Normal = getBasicBlock(Oprnds[0]);
1129 Except = getBasicBlock(Oprnds[1]);
1130
1131 unsigned FirstVariableArgument = FTy->getNumParams()+2;
1132 for (unsigned i = 2; i != FirstVariableArgument; ++i)
1133 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
1134 Oprnds[i]));
1135
1136 // Must be type/value pairs. If not, error out.
1137 if (Oprnds.size()-FirstVariableArgument & 1)
1138 error("Invalid invoke instruction!");
1139
1140 for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
1141 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
Reid Spencer060d25d2004-06-29 23:29:38 +00001142 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001143
Reid Spencer1628cec2006-10-26 06:15:43 +00001144 Result = new InvokeInst(F, Normal, Except, Params);
1145 if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
1146 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001147 }
Reid Spencer1628cec2006-10-26 06:15:43 +00001148 case Instruction::Malloc: {
1149 unsigned Align = 0;
1150 if (Oprnds.size() == 2)
1151 Align = (1 << Oprnds[1]) >> 1;
1152 else if (Oprnds.size() > 2)
1153 error("Invalid malloc instruction!");
1154 if (!isa<PointerType>(InstTy))
1155 error("Invalid malloc instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001156
Reid Spencer1628cec2006-10-26 06:15:43 +00001157 Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
1158 getValue(Type::UIntTyID, Oprnds[0]), Align);
1159 break;
1160 }
1161 case Instruction::Alloca: {
1162 unsigned Align = 0;
1163 if (Oprnds.size() == 2)
1164 Align = (1 << Oprnds[1]) >> 1;
1165 else if (Oprnds.size() > 2)
1166 error("Invalid alloca instruction!");
1167 if (!isa<PointerType>(InstTy))
1168 error("Invalid alloca instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001169
Reid Spencer1628cec2006-10-26 06:15:43 +00001170 Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
1171 getValue(Type::UIntTyID, Oprnds[0]), Align);
1172 break;
1173 }
1174 case Instruction::Free:
1175 if (!isa<PointerType>(InstTy))
1176 error("Invalid free instruction!");
1177 Result = new FreeInst(getValue(iType, Oprnds[0]));
1178 break;
1179 case Instruction::GetElementPtr: {
1180 if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
Misha Brukman8a96c532005-04-21 21:44:41 +00001181 error("Invalid getelementptr instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001182
Reid Spencer1628cec2006-10-26 06:15:43 +00001183 std::vector<Value*> Idx;
1184
1185 const Type *NextTy = InstTy;
1186 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
1187 const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
1188 if (!TopTy)
1189 error("Invalid getelementptr instruction!");
1190
1191 unsigned ValIdx = Oprnds[i];
1192 unsigned IdxTy = 0;
1193 if (!hasRestrictedGEPTypes) {
1194 // Struct indices are always uints, sequential type indices can be
1195 // any of the 32 or 64-bit integer types. The actual choice of
1196 // type is encoded in the low two bits of the slot number.
1197 if (isa<StructType>(TopTy))
1198 IdxTy = Type::UIntTyID;
1199 else {
1200 switch (ValIdx & 3) {
1201 default:
1202 case 0: IdxTy = Type::UIntTyID; break;
1203 case 1: IdxTy = Type::IntTyID; break;
1204 case 2: IdxTy = Type::ULongTyID; break;
1205 case 3: IdxTy = Type::LongTyID; break;
1206 }
1207 ValIdx >>= 2;
Reid Spencer060d25d2004-06-29 23:29:38 +00001208 }
Reid Spencer1628cec2006-10-26 06:15:43 +00001209 } else {
1210 IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
Reid Spencer060d25d2004-06-29 23:29:38 +00001211 }
Reid Spencer1628cec2006-10-26 06:15:43 +00001212
1213 Idx.push_back(getValue(IdxTy, ValIdx));
1214
1215 // Convert ubyte struct indices into uint struct indices.
1216 if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
1217 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx.back()))
1218 if (C->getType() == Type::UByteTy)
1219 Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
1220
1221 NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
Reid Spencer060d25d2004-06-29 23:29:38 +00001222 }
1223
Reid Spencer1628cec2006-10-26 06:15:43 +00001224 Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
1225 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001226 }
Reid Spencer1628cec2006-10-26 06:15:43 +00001227 case 62: // volatile load
1228 case Instruction::Load:
1229 if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
1230 error("Invalid load instruction!");
1231 Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
1232 break;
1233 case 63: // volatile store
1234 case Instruction::Store: {
1235 if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
1236 error("Invalid store instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001237
Reid Spencer1628cec2006-10-26 06:15:43 +00001238 Value *Ptr = getValue(iType, Oprnds[1]);
1239 const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
1240 Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
1241 Opcode == 63);
1242 break;
1243 }
1244 case Instruction::Unwind:
1245 if (Oprnds.size() != 0) error("Invalid unwind instruction!");
1246 Result = new UnwindInst();
1247 break;
1248 case Instruction::Unreachable:
1249 if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
1250 Result = new UnreachableInst();
1251 break;
1252 } // end switch(Opcode)
1253 } // end if *normal*
Reid Spencer060d25d2004-06-29 23:29:38 +00001254
Reid Spencere1e96c02006-01-19 07:02:16 +00001255 BB->getInstList().push_back(Result);
1256
Reid Spencer060d25d2004-06-29 23:29:38 +00001257 unsigned TypeSlot;
1258 if (Result->getType() == InstTy)
1259 TypeSlot = iType;
1260 else
1261 TypeSlot = getTypeSlot(Result->getType());
1262
1263 insertValue(Result, TypeSlot, FunctionValues);
Reid Spencer060d25d2004-06-29 23:29:38 +00001264}
1265
Reid Spencer04cde2c2004-07-04 11:33:49 +00001266/// Get a particular numbered basic block, which might be a forward reference.
1267/// This works together with ParseBasicBlock to handle these forward references
Chris Lattner4a242b32004-10-14 01:39:18 +00001268/// in a clean manner. This function is used when constructing phi, br, switch,
1269/// and other instructions that reference basic blocks. Blocks are numbered
Reid Spencer04cde2c2004-07-04 11:33:49 +00001270/// sequentially as they appear in the function.
Reid Spencer060d25d2004-06-29 23:29:38 +00001271BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001272 // Make sure there is room in the table...
1273 if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
1274
1275 // First check to see if this is a backwards reference, i.e., ParseBasicBlock
1276 // has already created this block, or if the forward reference has already
1277 // been created.
1278 if (ParsedBasicBlocks[ID])
1279 return ParsedBasicBlocks[ID];
1280
1281 // Otherwise, the basic block has not yet been created. Do so and add it to
1282 // the ParsedBasicBlocks list.
1283 return ParsedBasicBlocks[ID] = new BasicBlock();
1284}
1285
Misha Brukman8a96c532005-04-21 21:44:41 +00001286/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001287/// This method reads in one of the basicblock packets. This method is not used
1288/// for bytecode files after LLVM 1.0
1289/// @returns The basic block constructed.
Reid Spencer46b002c2004-07-11 17:28:43 +00001290BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
1291 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Reid Spencer060d25d2004-06-29 23:29:38 +00001292
1293 BasicBlock *BB = 0;
1294
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001295 if (ParsedBasicBlocks.size() == BlockNo)
1296 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1297 else if (ParsedBasicBlocks[BlockNo] == 0)
1298 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1299 else
1300 BB = ParsedBasicBlocks[BlockNo];
Chris Lattner00950542001-06-06 20:29:01 +00001301
Reid Spencer060d25d2004-06-29 23:29:38 +00001302 std::vector<unsigned> Operands;
Reid Spencer46b002c2004-07-11 17:28:43 +00001303 while (moreInBlock())
Reid Spencer060d25d2004-06-29 23:29:38 +00001304 ParseInstruction(Operands, BB);
Chris Lattner00950542001-06-06 20:29:01 +00001305
Reid Spencer46b002c2004-07-11 17:28:43 +00001306 if (Handler) Handler->handleBasicBlockEnd(BlockNo);
Misha Brukman12c29d12003-09-22 23:38:23 +00001307 return BB;
Chris Lattner00950542001-06-06 20:29:01 +00001308}
1309
Reid Spencer04cde2c2004-07-04 11:33:49 +00001310/// Parse all of the BasicBlock's & Instruction's in the body of a function.
Misha Brukman8a96c532005-04-21 21:44:41 +00001311/// In post 1.0 bytecode files, we no longer emit basic block individually,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001312/// in order to avoid per-basic-block overhead.
1313/// @returns Rhe number of basic blocks encountered.
Reid Spencer060d25d2004-06-29 23:29:38 +00001314unsigned BytecodeReader::ParseInstructionList(Function* F) {
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001315 unsigned BlockNo = 0;
1316 std::vector<unsigned> Args;
1317
Reid Spencer46b002c2004-07-11 17:28:43 +00001318 while (moreInBlock()) {
1319 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001320 BasicBlock *BB;
1321 if (ParsedBasicBlocks.size() == BlockNo)
1322 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1323 else if (ParsedBasicBlocks[BlockNo] == 0)
1324 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1325 else
1326 BB = ParsedBasicBlocks[BlockNo];
1327 ++BlockNo;
1328 F->getBasicBlockList().push_back(BB);
1329
1330 // Read instructions into this basic block until we get to a terminator
Reid Spencer46b002c2004-07-11 17:28:43 +00001331 while (moreInBlock() && !BB->getTerminator())
Reid Spencer060d25d2004-06-29 23:29:38 +00001332 ParseInstruction(Args, BB);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001333
1334 if (!BB->getTerminator())
Reid Spencer24399722004-07-09 22:21:33 +00001335 error("Non-terminated basic block found!");
Reid Spencer5c15fe52004-07-05 00:57:50 +00001336
Reid Spencer46b002c2004-07-11 17:28:43 +00001337 if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001338 }
1339
1340 return BlockNo;
1341}
1342
Reid Spencer04cde2c2004-07-04 11:33:49 +00001343/// Parse a symbol table. This works for both module level and function
1344/// level symbol tables. For function level symbol tables, the CurrentFunction
1345/// parameter must be non-zero and the ST parameter must correspond to
1346/// CurrentFunction's symbol table. For Module level symbol tables, the
1347/// CurrentFunction argument must be zero.
Reid Spencer060d25d2004-06-29 23:29:38 +00001348void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001349 SymbolTable *ST) {
1350 if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
Reid Spencer060d25d2004-06-29 23:29:38 +00001351
Chris Lattner39cacce2003-10-10 05:43:47 +00001352 // Allow efficient basic block lookup by number.
1353 std::vector<BasicBlock*> BBMap;
1354 if (CurrentFunction)
1355 for (Function::iterator I = CurrentFunction->begin(),
1356 E = CurrentFunction->end(); I != E; ++I)
1357 BBMap.push_back(I);
1358
Reid Spencer04cde2c2004-07-04 11:33:49 +00001359 /// In LLVM 1.3 we write types separately from values so
1360 /// The types are always first in the symbol table. This is
1361 /// because Type no longer derives from Value.
Reid Spencer46b002c2004-07-11 17:28:43 +00001362 if (!hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001363 // Symtab block header: [num entries]
1364 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001365 for (unsigned i = 0; i < NumEntries; ++i) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001366 // Symtab entry: [def slot #][name]
1367 unsigned slot = read_vbr_uint();
1368 std::string Name = read_str();
1369 const Type* T = getType(slot);
1370 ST->insert(Name, T);
1371 }
1372 }
1373
Reid Spencer46b002c2004-07-11 17:28:43 +00001374 while (moreInBlock()) {
Chris Lattner00950542001-06-06 20:29:01 +00001375 // Symtab block header: [num entries][type id number]
Reid Spencer060d25d2004-06-29 23:29:38 +00001376 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001377 unsigned Typ = 0;
1378 bool isTypeType = read_typeid(Typ);
Chris Lattner00950542001-06-06 20:29:01 +00001379 const Type *Ty = getType(Typ);
Chris Lattner1d670cc2001-09-07 16:37:43 +00001380
Chris Lattner7dc3a2e2003-10-13 14:57:53 +00001381 for (unsigned i = 0; i != NumEntries; ++i) {
Chris Lattner00950542001-06-06 20:29:01 +00001382 // Symtab entry: [def slot #][name]
Reid Spencer060d25d2004-06-29 23:29:38 +00001383 unsigned slot = read_vbr_uint();
1384 std::string Name = read_str();
Chris Lattner00950542001-06-06 20:29:01 +00001385
Reid Spencer04cde2c2004-07-04 11:33:49 +00001386 // if we're reading a pre 1.3 bytecode file and the type plane
1387 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +00001388 if (isTypeType) {
1389 const Type* T = getType(slot);
1390 if (T == 0)
1391 error("Failed type look-up for name '" + Name + "'");
1392 ST->insert(Name, T);
1393 continue; // code below must be short circuited
Chris Lattner39cacce2003-10-10 05:43:47 +00001394 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001395 Value *V = 0;
1396 if (Typ == Type::LabelTyID) {
1397 if (slot < BBMap.size())
1398 V = BBMap[slot];
1399 } else {
1400 V = getValue(Typ, slot, false); // Find mapping...
1401 }
1402 if (V == 0)
1403 error("Failed value look-up for name '" + Name + "'");
Chris Lattner7acff252005-03-05 19:05:20 +00001404 V->setName(Name);
Chris Lattner39cacce2003-10-10 05:43:47 +00001405 }
Chris Lattner00950542001-06-06 20:29:01 +00001406 }
1407 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001408 checkPastBlockEnd("Symbol Table");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001409 if (Handler) Handler->handleSymbolTableEnd();
Chris Lattner00950542001-06-06 20:29:01 +00001410}
1411
Misha Brukman8a96c532005-04-21 21:44:41 +00001412/// Read in the types portion of a compaction table.
Reid Spencer46b002c2004-07-11 17:28:43 +00001413void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001414 for (unsigned i = 0; i != NumEntries; ++i) {
1415 unsigned TypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001416 if (read_typeid(TypeSlot))
Reid Spencer24399722004-07-09 22:21:33 +00001417 error("Invalid type in compaction table: type type");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001418 const Type *Typ = getGlobalTableType(TypeSlot);
Chris Lattner45b5dd22004-08-03 23:41:28 +00001419 CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
Reid Spencer46b002c2004-07-11 17:28:43 +00001420 if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001421 }
1422}
1423
1424/// Parse a compaction table.
Reid Spencer060d25d2004-06-29 23:29:38 +00001425void BytecodeReader::ParseCompactionTable() {
1426
Reid Spencer46b002c2004-07-11 17:28:43 +00001427 // Notify handler that we're beginning a compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001428 if (Handler) Handler->handleCompactionTableBegin();
1429
Misha Brukman8a96c532005-04-21 21:44:41 +00001430 // In LLVM 1.3 Type no longer derives from Value. So,
Reid Spencer46b002c2004-07-11 17:28:43 +00001431 // we always write them first in the compaction table
1432 // because they can't occupy a "type plane" where the
1433 // Values reside.
1434 if (! hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001435 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001436 ParseCompactionTypes(NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001437 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001438
Reid Spencer46b002c2004-07-11 17:28:43 +00001439 // Compaction tables live in separate blocks so we have to loop
1440 // until we've read the whole thing.
1441 while (moreInBlock()) {
1442 // Read the number of Value* entries in the compaction table
Reid Spencer060d25d2004-06-29 23:29:38 +00001443 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001444 unsigned Ty = 0;
1445 unsigned isTypeType = false;
Reid Spencer060d25d2004-06-29 23:29:38 +00001446
Reid Spencer46b002c2004-07-11 17:28:43 +00001447 // Decode the type from value read in. Most compaction table
1448 // planes will have one or two entries in them. If that's the
1449 // case then the length is encoded in the bottom two bits and
1450 // the higher bits encode the type. This saves another VBR value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001451 if ((NumEntries & 3) == 3) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001452 // In this case, both low-order bits are set (value 3). This
1453 // is a signal that the typeid follows.
Reid Spencer060d25d2004-06-29 23:29:38 +00001454 NumEntries >>= 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001455 isTypeType = read_typeid(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001456 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001457 // In this case, the low-order bits specify the number of entries
1458 // and the high order bits specify the type.
Reid Spencer060d25d2004-06-29 23:29:38 +00001459 Ty = NumEntries >> 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001460 isTypeType = sanitizeTypeId(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001461 NumEntries &= 3;
1462 }
1463
Reid Spencer04cde2c2004-07-04 11:33:49 +00001464 // if we're reading a pre 1.3 bytecode file and the type plane
1465 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +00001466 if (isTypeType) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001467 ParseCompactionTypes(NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001468 } else {
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001469 // Make sure we have enough room for the plane.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001470 if (Ty >= CompactionValues.size())
Reid Spencer46b002c2004-07-11 17:28:43 +00001471 CompactionValues.resize(Ty+1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001472
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001473 // Make sure the plane is empty or we have some kind of error.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001474 if (!CompactionValues[Ty].empty())
Reid Spencer46b002c2004-07-11 17:28:43 +00001475 error("Compaction table plane contains multiple entries!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001476
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001477 // Notify handler about the plane.
Reid Spencer46b002c2004-07-11 17:28:43 +00001478 if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001479
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001480 // Push the implicit zero.
1481 CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
Reid Spencer46b002c2004-07-11 17:28:43 +00001482
1483 // Read in each of the entries, put them in the compaction table
1484 // and notify the handler that we have a new compaction table value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001485 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001486 unsigned ValSlot = read_vbr_uint();
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001487 Value *V = getGlobalTableValue(Ty, ValSlot);
Reid Spencer46b002c2004-07-11 17:28:43 +00001488 CompactionValues[Ty].push_back(V);
Chris Lattner2c6c14d2004-08-04 00:19:23 +00001489 if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
Reid Spencer060d25d2004-06-29 23:29:38 +00001490 }
1491 }
1492 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001493 // Notify handler that the compaction table is done.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001494 if (Handler) Handler->handleCompactionTableEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00001495}
Misha Brukman8a96c532005-04-21 21:44:41 +00001496
Reid Spencer46b002c2004-07-11 17:28:43 +00001497// Parse a single type. The typeid is read in first. If its a primitive type
1498// then nothing else needs to be read, we know how to instantiate it. If its
Misha Brukman8a96c532005-04-21 21:44:41 +00001499// a derived type, then additional data is read to fill out the type
Reid Spencer46b002c2004-07-11 17:28:43 +00001500// definition.
1501const Type *BytecodeReader::ParseType() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001502 unsigned PrimType = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001503 if (read_typeid(PrimType))
Reid Spencer24399722004-07-09 22:21:33 +00001504 error("Invalid type (type type) in type constants!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001505
1506 const Type *Result = 0;
1507 if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
1508 return Result;
Misha Brukman8a96c532005-04-21 21:44:41 +00001509
Reid Spencer060d25d2004-06-29 23:29:38 +00001510 switch (PrimType) {
1511 case Type::FunctionTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001512 const Type *RetType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001513
1514 unsigned NumParams = read_vbr_uint();
1515
1516 std::vector<const Type*> Params;
Misha Brukman8a96c532005-04-21 21:44:41 +00001517 while (NumParams--)
Reid Spencer04cde2c2004-07-04 11:33:49 +00001518 Params.push_back(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001519
1520 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1521 if (isVarArg) Params.pop_back();
1522
1523 Result = FunctionType::get(RetType, Params, isVarArg);
1524 break;
1525 }
1526 case Type::ArrayTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001527 const Type *ElementType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001528 unsigned NumElements = read_vbr_uint();
Reid Spencer060d25d2004-06-29 23:29:38 +00001529 Result = ArrayType::get(ElementType, NumElements);
1530 break;
1531 }
Brian Gaeke715c90b2004-08-20 06:00:58 +00001532 case Type::PackedTyID: {
1533 const Type *ElementType = readSanitizedType();
1534 unsigned NumElements = read_vbr_uint();
1535 Result = PackedType::get(ElementType, NumElements);
1536 break;
1537 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001538 case Type::StructTyID: {
1539 std::vector<const Type*> Elements;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001540 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001541 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001542 error("Invalid element type (type type) for structure!");
1543
Reid Spencer060d25d2004-06-29 23:29:38 +00001544 while (Typ) { // List is terminated by void/0 typeid
1545 Elements.push_back(getType(Typ));
Reid Spencer46b002c2004-07-11 17:28:43 +00001546 if (read_typeid(Typ))
1547 error("Invalid element type (type type) for structure!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001548 }
1549
1550 Result = StructType::get(Elements);
1551 break;
1552 }
1553 case Type::PointerTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001554 Result = PointerType::get(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001555 break;
1556 }
1557
1558 case Type::OpaqueTyID: {
1559 Result = OpaqueType::get();
1560 break;
1561 }
1562
1563 default:
Reid Spencer24399722004-07-09 22:21:33 +00001564 error("Don't know how to deserialize primitive type " + utostr(PrimType));
Reid Spencer060d25d2004-06-29 23:29:38 +00001565 break;
1566 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001567 if (Handler) Handler->handleType(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001568 return Result;
1569}
1570
Reid Spencer5b472d92004-08-21 20:49:23 +00001571// ParseTypes - We have to use this weird code to handle recursive
Reid Spencer060d25d2004-06-29 23:29:38 +00001572// types. We know that recursive types will only reference the current slab of
1573// values in the type plane, but they can forward reference types before they
1574// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
1575// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
1576// this ugly problem, we pessimistically insert an opaque type for each type we
1577// are about to read. This means that forward references will resolve to
1578// something and when we reread the type later, we can replace the opaque type
1579// with a new resolved concrete type.
1580//
Reid Spencer46b002c2004-07-11 17:28:43 +00001581void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
Reid Spencer060d25d2004-06-29 23:29:38 +00001582 assert(Tab.size() == 0 && "should not have read type constants in before!");
1583
1584 // Insert a bunch of opaque types to be resolved later...
1585 Tab.reserve(NumEntries);
1586 for (unsigned i = 0; i != NumEntries; ++i)
1587 Tab.push_back(OpaqueType::get());
1588
Misha Brukman8a96c532005-04-21 21:44:41 +00001589 if (Handler)
Reid Spencer5b472d92004-08-21 20:49:23 +00001590 Handler->handleTypeList(NumEntries);
1591
Chris Lattnereebac5f2005-10-03 21:26:53 +00001592 // If we are about to resolve types, make sure the type cache is clear.
1593 if (NumEntries)
1594 ModuleTypeIDCache.clear();
1595
Reid Spencer060d25d2004-06-29 23:29:38 +00001596 // Loop through reading all of the types. Forward types will make use of the
1597 // opaque types just inserted.
1598 //
1599 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001600 const Type* NewTy = ParseType();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001601 const Type* OldTy = Tab[i].get();
Misha Brukman8a96c532005-04-21 21:44:41 +00001602 if (NewTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +00001603 error("Couldn't parse type!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001604
Misha Brukman8a96c532005-04-21 21:44:41 +00001605 // Don't directly push the new type on the Tab. Instead we want to replace
Reid Spencer060d25d2004-06-29 23:29:38 +00001606 // the opaque type we previously inserted with the new concrete value. This
1607 // approach helps with forward references to types. The refinement from the
1608 // abstract (opaque) type to the new type causes all uses of the abstract
1609 // type to use the concrete type (NewTy). This will also cause the opaque
1610 // type to be deleted.
1611 cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
1612
1613 // This should have replaced the old opaque type with the new type in the
1614 // value table... or with a preexisting type that was already in the system.
1615 // Let's just make sure it did.
1616 assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
1617 }
1618}
1619
Reid Spencer1628cec2006-10-26 06:15:43 +00001620// Upgrade obsolete constant expression opcodes (ver. 5 and prior) to the new
1621// values used after ver 6. bytecode format. The operands are provided to the
1622// function so that decisions based on the operand type can be made when
1623// auto-upgrading obsolete opcodes to the new ones.
1624// NOTE: This code needs to be kept synchronized with handleObsoleteOpcodes.
1625// We can't use that function because of that functions argument requirements.
1626// This function only deals with the subset of opcodes that are applicable to
1627// constant expressions and is therefore simpler than handleObsoleteOpcodes.
1628inline unsigned fixCEOpcodes(
1629 unsigned Opcode, const std::vector<Constant*> &ArgVec
1630) {
1631 switch (Opcode) {
1632 default: // Pass Through
1633 // If we don't match any of the cases here then the opcode is fine the
1634 // way it is.
1635 break;
1636 case 7: // Add
1637 Opcode = Instruction::Add;
1638 break;
1639 case 8: // Sub
1640 Opcode = Instruction::Sub;
1641 break;
1642 case 9: // Mul
1643 Opcode = Instruction::Mul;
1644 break;
1645 case 10: // Div
1646 // The type of the instruction is based on the operands. We need to select
1647 // either udiv or sdiv based on that type. This expression selects the
1648 // cases where the type is floating point or signed in which case we
1649 // generated an sdiv instruction.
1650 if (ArgVec[0]->getType()->isFloatingPoint())
1651 Opcode = Instruction::FDiv;
1652 else if (ArgVec[0]->getType()->isSigned())
1653 Opcode = Instruction::SDiv;
1654 else
1655 Opcode = Instruction::UDiv;
1656 break;
1657
1658 case 11: // Rem
1659 // As with "Div", make the signed/unsigned Rem instruction choice based
1660 // on the type of the instruction.
1661 if (ArgVec[0]->getType()->isFloatingPoint())
1662 Opcode = Instruction::Rem;
1663 else if (ArgVec[0]->getType()->isSigned())
1664 Opcode = Instruction::Rem;
1665 else
1666 Opcode = Instruction::Rem;
1667 break;
1668
1669 case 12: // And
1670 Opcode = Instruction::And;
1671 break;
1672 case 13: // Or
1673 Opcode = Instruction::Or;
1674 break;
1675 case 14: // Xor
1676 Opcode = Instruction::Xor;
1677 break;
1678 case 15: // SetEQ
1679 Opcode = Instruction::SetEQ;
1680 break;
1681 case 16: // SetNE
1682 Opcode = Instruction::SetNE;
1683 break;
1684 case 17: // SetLE
1685 Opcode = Instruction::SetLE;
1686 break;
1687 case 18: // SetGE
1688 Opcode = Instruction::SetGE;
1689 break;
1690 case 19: // SetLT
1691 Opcode = Instruction::SetLT;
1692 break;
1693 case 20: // SetGT
1694 Opcode = Instruction::SetGT;
1695 break;
1696 case 26: // GetElementPtr
1697 Opcode = Instruction::GetElementPtr;
1698 break;
1699 case 28: // Cast
1700 Opcode = Instruction::Cast;
1701 break;
1702 case 30: // Shl
1703 Opcode = Instruction::Shl;
1704 break;
1705 case 31: // Shr
1706 Opcode = Instruction::Shr;
1707 break;
1708 case 34: // Select
1709 Opcode = Instruction::Select;
1710 break;
1711 case 38: // ExtractElement
1712 Opcode = Instruction::ExtractElement;
1713 break;
1714 case 39: // InsertElement
1715 Opcode = Instruction::InsertElement;
1716 break;
1717 case 40: // ShuffleVector
1718 Opcode = Instruction::ShuffleVector;
1719 break;
1720 }
1721 return Opcode;
1722}
1723
Reid Spencer04cde2c2004-07-04 11:33:49 +00001724/// Parse a single constant value
Chris Lattner3bc5a602006-01-25 23:08:15 +00001725Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001726 // We must check for a ConstantExpr before switching by type because
1727 // a ConstantExpr can be of any type, and has no explicit value.
Misha Brukman8a96c532005-04-21 21:44:41 +00001728 //
Reid Spencer060d25d2004-06-29 23:29:38 +00001729 // 0 if not expr; numArgs if is expr
1730 unsigned isExprNumArgs = read_vbr_uint();
Chris Lattnera79e7cc2004-10-16 18:18:16 +00001731
Reid Spencer060d25d2004-06-29 23:29:38 +00001732 if (isExprNumArgs) {
Chris Lattner3bc5a602006-01-25 23:08:15 +00001733 if (!hasNoUndefValue) {
1734 // 'undef' is encoded with 'exprnumargs' == 1.
1735 if (isExprNumArgs == 1)
Chris Lattnera79e7cc2004-10-16 18:18:16 +00001736 return UndefValue::get(getType(TypeID));
Misha Brukman8a96c532005-04-21 21:44:41 +00001737
Chris Lattner3bc5a602006-01-25 23:08:15 +00001738 // Inline asm is encoded with exprnumargs == ~0U.
1739 if (isExprNumArgs == ~0U) {
1740 std::string AsmStr = read_str();
1741 std::string ConstraintStr = read_str();
1742 unsigned Flags = read_vbr_uint();
1743
1744 const PointerType *PTy = dyn_cast<PointerType>(getType(TypeID));
1745 const FunctionType *FTy =
1746 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1747
1748 if (!FTy || !InlineAsm::Verify(FTy, ConstraintStr))
1749 error("Invalid constraints for inline asm");
1750 if (Flags & ~1U)
1751 error("Invalid flags for inline asm");
1752 bool HasSideEffects = Flags & 1;
1753 return InlineAsm::get(FTy, AsmStr, ConstraintStr, HasSideEffects);
1754 }
1755
1756 --isExprNumArgs;
1757 }
1758
Reid Spencer060d25d2004-06-29 23:29:38 +00001759 // FIXME: Encoding of constant exprs could be much more compact!
1760 std::vector<Constant*> ArgVec;
1761 ArgVec.reserve(isExprNumArgs);
1762 unsigned Opcode = read_vbr_uint();
Chris Lattnera79e7cc2004-10-16 18:18:16 +00001763
1764 // Bytecode files before LLVM 1.4 need have a missing terminator inst.
1765 if (hasNoUnreachableInst) Opcode++;
Misha Brukman8a96c532005-04-21 21:44:41 +00001766
Reid Spencer060d25d2004-06-29 23:29:38 +00001767 // Read the slot number and types of each of the arguments
1768 for (unsigned i = 0; i != isExprNumArgs; ++i) {
1769 unsigned ArgValSlot = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001770 unsigned ArgTypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001771 if (read_typeid(ArgTypeSlot))
1772 error("Invalid argument type (type type) for constant value");
Misha Brukman8a96c532005-04-21 21:44:41 +00001773
Reid Spencer060d25d2004-06-29 23:29:38 +00001774 // Get the arg value from its slot if it exists, otherwise a placeholder
1775 ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
1776 }
Misha Brukman8a96c532005-04-21 21:44:41 +00001777
Reid Spencer1628cec2006-10-26 06:15:43 +00001778 // Handle backwards compatibility for the opcode numbers
1779 if (hasSignlessInstructions)
1780 Opcode = fixCEOpcodes(Opcode, ArgVec);
1781
Reid Spencer060d25d2004-06-29 23:29:38 +00001782 // Construct a ConstantExpr of the appropriate kind
1783 if (isExprNumArgs == 1) { // All one-operand expressions
Reid Spencer46b002c2004-07-11 17:28:43 +00001784 if (Opcode != Instruction::Cast)
Chris Lattner02dce162004-12-04 05:28:27 +00001785 error("Only cast instruction has one argument for ConstantExpr");
Reid Spencer46b002c2004-07-11 17:28:43 +00001786
Reid Spencer060d25d2004-06-29 23:29:38 +00001787 Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
Reid Spencer04cde2c2004-07-04 11:33:49 +00001788 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001789 return Result;
1790 } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
1791 std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
1792
1793 if (hasRestrictedGEPTypes) {
1794 const Type *BaseTy = ArgVec[0]->getType();
1795 generic_gep_type_iterator<std::vector<Constant*>::iterator>
1796 GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
1797 E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
1798 for (unsigned i = 0; GTI != E; ++GTI, ++i)
1799 if (isa<StructType>(*GTI)) {
1800 if (IdxList[i]->getType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00001801 error("Invalid index for getelementptr!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001802 IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
1803 }
1804 }
1805
1806 Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001807 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001808 return Result;
1809 } else if (Opcode == Instruction::Select) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001810 if (ArgVec.size() != 3)
1811 error("Select instruction must have three arguments.");
Misha Brukman8a96c532005-04-21 21:44:41 +00001812 Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
Reid Spencer04cde2c2004-07-04 11:33:49 +00001813 ArgVec[2]);
1814 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001815 return Result;
Robert Bocchinofee31b32006-01-10 19:04:39 +00001816 } else if (Opcode == Instruction::ExtractElement) {
Chris Lattner59fecec2006-04-08 04:09:19 +00001817 if (ArgVec.size() != 2 ||
1818 !ExtractElementInst::isValidOperands(ArgVec[0], ArgVec[1]))
1819 error("Invalid extractelement constand expr arguments");
Robert Bocchinofee31b32006-01-10 19:04:39 +00001820 Constant* Result = ConstantExpr::getExtractElement(ArgVec[0], ArgVec[1]);
1821 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1822 return Result;
Robert Bocchinob1f240b2006-01-17 20:06:35 +00001823 } else if (Opcode == Instruction::InsertElement) {
Chris Lattner59fecec2006-04-08 04:09:19 +00001824 if (ArgVec.size() != 3 ||
1825 !InsertElementInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
1826 error("Invalid insertelement constand expr arguments");
1827
1828 Constant *Result =
Robert Bocchinob1f240b2006-01-17 20:06:35 +00001829 ConstantExpr::getInsertElement(ArgVec[0], ArgVec[1], ArgVec[2]);
1830 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1831 return Result;
Chris Lattner30b44b62006-04-08 01:17:59 +00001832 } else if (Opcode == Instruction::ShuffleVector) {
1833 if (ArgVec.size() != 3 ||
1834 !ShuffleVectorInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
Chris Lattner59fecec2006-04-08 04:09:19 +00001835 error("Invalid shufflevector constant expr arguments.");
Chris Lattner30b44b62006-04-08 01:17:59 +00001836 Constant *Result =
1837 ConstantExpr::getShuffleVector(ArgVec[0], ArgVec[1], ArgVec[2]);
1838 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1839 return Result;
Reid Spencer060d25d2004-06-29 23:29:38 +00001840 } else { // All other 2-operand expressions
1841 Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001842 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001843 return Result;
1844 }
1845 }
Misha Brukman8a96c532005-04-21 21:44:41 +00001846
Reid Spencer060d25d2004-06-29 23:29:38 +00001847 // Ok, not an ConstantExpr. We now know how to read the given type...
1848 const Type *Ty = getType(TypeID);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001849 Constant *Result = 0;
Reid Spencer060d25d2004-06-29 23:29:38 +00001850 switch (Ty->getTypeID()) {
1851 case Type::BoolTyID: {
1852 unsigned Val = read_vbr_uint();
Misha Brukman8a96c532005-04-21 21:44:41 +00001853 if (Val != 0 && Val != 1)
Reid Spencer24399722004-07-09 22:21:33 +00001854 error("Invalid boolean value read.");
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001855 Result = ConstantBool::get(Val == 1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001856 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001857 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001858 }
1859
1860 case Type::UByteTyID: // Unsigned integer types...
1861 case Type::UShortTyID:
1862 case Type::UIntTyID: {
1863 unsigned Val = read_vbr_uint();
Reid Spencerb83eb642006-10-20 07:07:24 +00001864 if (!ConstantInt::isValueValidForType(Ty, uint64_t(Val)))
Reid Spencer24399722004-07-09 22:21:33 +00001865 error("Invalid unsigned byte/short/int read.");
Reid Spencerb83eb642006-10-20 07:07:24 +00001866 Result = ConstantInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001867 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001868 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001869 }
1870
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001871 case Type::ULongTyID:
Reid Spencerb83eb642006-10-20 07:07:24 +00001872 Result = ConstantInt::get(Ty, read_vbr_uint64());
Reid Spencer04cde2c2004-07-04 11:33:49 +00001873 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001874 break;
1875
Reid Spencer060d25d2004-06-29 23:29:38 +00001876 case Type::SByteTyID: // Signed integer types...
1877 case Type::ShortTyID:
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001878 case Type::IntTyID:
1879 case Type::LongTyID: {
Reid Spencer060d25d2004-06-29 23:29:38 +00001880 int64_t Val = read_vbr_int64();
Reid Spencerb83eb642006-10-20 07:07:24 +00001881 if (!ConstantInt::isValueValidForType(Ty, Val))
Reid Spencer24399722004-07-09 22:21:33 +00001882 error("Invalid signed byte/short/int/long read.");
Reid Spencerb83eb642006-10-20 07:07:24 +00001883 Result = ConstantInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001884 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001885 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001886 }
1887
1888 case Type::FloatTyID: {
Reid Spencer46b002c2004-07-11 17:28:43 +00001889 float Val;
1890 read_float(Val);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001891 Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001892 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001893 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001894 }
1895
1896 case Type::DoubleTyID: {
1897 double Val;
Reid Spencer46b002c2004-07-11 17:28:43 +00001898 read_double(Val);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001899 Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001900 if (Handler) Handler->handleConstantValue(Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001901 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001902 }
1903
Reid Spencer060d25d2004-06-29 23:29:38 +00001904 case Type::ArrayTyID: {
1905 const ArrayType *AT = cast<ArrayType>(Ty);
1906 unsigned NumElements = AT->getNumElements();
1907 unsigned TypeSlot = getTypeSlot(AT->getElementType());
1908 std::vector<Constant*> Elements;
1909 Elements.reserve(NumElements);
1910 while (NumElements--) // Read all of the elements of the constant.
1911 Elements.push_back(getConstantValue(TypeSlot,
1912 read_vbr_uint()));
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001913 Result = ConstantArray::get(AT, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001914 if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001915 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001916 }
1917
1918 case Type::StructTyID: {
1919 const StructType *ST = cast<StructType>(Ty);
1920
1921 std::vector<Constant *> Elements;
1922 Elements.reserve(ST->getNumElements());
1923 for (unsigned i = 0; i != ST->getNumElements(); ++i)
1924 Elements.push_back(getConstantValue(ST->getElementType(i),
1925 read_vbr_uint()));
1926
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001927 Result = ConstantStruct::get(ST, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001928 if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001929 break;
Misha Brukman8a96c532005-04-21 21:44:41 +00001930 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001931
Brian Gaeke715c90b2004-08-20 06:00:58 +00001932 case Type::PackedTyID: {
1933 const PackedType *PT = cast<PackedType>(Ty);
1934 unsigned NumElements = PT->getNumElements();
1935 unsigned TypeSlot = getTypeSlot(PT->getElementType());
1936 std::vector<Constant*> Elements;
1937 Elements.reserve(NumElements);
1938 while (NumElements--) // Read all of the elements of the constant.
1939 Elements.push_back(getConstantValue(TypeSlot,
1940 read_vbr_uint()));
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001941 Result = ConstantPacked::get(PT, Elements);
Brian Gaeke715c90b2004-08-20 06:00:58 +00001942 if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001943 break;
Brian Gaeke715c90b2004-08-20 06:00:58 +00001944 }
1945
Chris Lattner638c3812004-11-19 16:24:05 +00001946 case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
Reid Spencer060d25d2004-06-29 23:29:38 +00001947 const PointerType *PT = cast<PointerType>(Ty);
1948 unsigned Slot = read_vbr_uint();
Misha Brukman8a96c532005-04-21 21:44:41 +00001949
Reid Spencer060d25d2004-06-29 23:29:38 +00001950 // Check to see if we have already read this global variable...
1951 Value *Val = getValue(TypeID, Slot, false);
Reid Spencer060d25d2004-06-29 23:29:38 +00001952 if (Val) {
Chris Lattnerbcb11cf2004-07-27 02:34:49 +00001953 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
1954 if (!GV) error("GlobalValue not in ValueTable!");
1955 if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
1956 return GV;
Reid Spencer060d25d2004-06-29 23:29:38 +00001957 } else {
Reid Spencer24399722004-07-09 22:21:33 +00001958 error("Forward references are not allowed here.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001959 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001960 }
1961
1962 default:
Reid Spencer24399722004-07-09 22:21:33 +00001963 error("Don't know how to deserialize constant value of type '" +
Reid Spencer060d25d2004-06-29 23:29:38 +00001964 Ty->getDescription());
1965 break;
1966 }
Chris Lattnerd2cfb7a2006-04-07 05:00:02 +00001967
1968 // Check that we didn't read a null constant if they are implicit for this
1969 // type plane. Do not do this check for constantexprs, as they may be folded
1970 // to a null value in a way that isn't predicted when a .bc file is initially
1971 // produced.
1972 assert((!isa<Constant>(Result) || !cast<Constant>(Result)->isNullValue()) ||
1973 !hasImplicitNull(TypeID) &&
1974 "Cannot read null values from bytecode!");
1975 return Result;
Reid Spencer060d25d2004-06-29 23:29:38 +00001976}
1977
Misha Brukman8a96c532005-04-21 21:44:41 +00001978/// Resolve references for constants. This function resolves the forward
1979/// referenced constants in the ConstantFwdRefs map. It uses the
Reid Spencer04cde2c2004-07-04 11:33:49 +00001980/// replaceAllUsesWith method of Value class to substitute the placeholder
1981/// instance with the actual instance.
Chris Lattner389bd042004-12-09 06:19:44 +00001982void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
1983 unsigned Slot) {
Chris Lattner29b789b2003-11-19 17:27:18 +00001984 ConstantRefsType::iterator I =
Chris Lattner389bd042004-12-09 06:19:44 +00001985 ConstantFwdRefs.find(std::make_pair(Typ, Slot));
Chris Lattner29b789b2003-11-19 17:27:18 +00001986 if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
Chris Lattner00950542001-06-06 20:29:01 +00001987
Chris Lattner29b789b2003-11-19 17:27:18 +00001988 Value *PH = I->second; // Get the placeholder...
1989 PH->replaceAllUsesWith(NewV);
1990 delete PH; // Delete the old placeholder
1991 ConstantFwdRefs.erase(I); // Remove the map entry for it
Vikram S. Advec1e4a812002-07-14 23:04:18 +00001992}
1993
Reid Spencer04cde2c2004-07-04 11:33:49 +00001994/// Parse the constant strings section.
Reid Spencer060d25d2004-06-29 23:29:38 +00001995void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
1996 for (; NumEntries; --NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001997 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001998 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001999 error("Invalid type (type type) for string constant");
Reid Spencer060d25d2004-06-29 23:29:38 +00002000 const Type *Ty = getType(Typ);
2001 if (!isa<ArrayType>(Ty))
Reid Spencer24399722004-07-09 22:21:33 +00002002 error("String constant data invalid!");
Misha Brukman8a96c532005-04-21 21:44:41 +00002003
Reid Spencer060d25d2004-06-29 23:29:38 +00002004 const ArrayType *ATy = cast<ArrayType>(Ty);
2005 if (ATy->getElementType() != Type::SByteTy &&
2006 ATy->getElementType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00002007 error("String constant data invalid!");
Misha Brukman8a96c532005-04-21 21:44:41 +00002008
Reid Spencer060d25d2004-06-29 23:29:38 +00002009 // Read character data. The type tells us how long the string is.
Misha Brukman8a96c532005-04-21 21:44:41 +00002010 char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
Reid Spencer060d25d2004-06-29 23:29:38 +00002011 read_data(Data, Data+ATy->getNumElements());
Chris Lattner52e20b02003-03-19 20:54:26 +00002012
Reid Spencer060d25d2004-06-29 23:29:38 +00002013 std::vector<Constant*> Elements(ATy->getNumElements());
Reid Spencerb83eb642006-10-20 07:07:24 +00002014 const Type* ElemType = ATy->getElementType();
2015 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
2016 Elements[i] = ConstantInt::get(ElemType, (unsigned char)Data[i]);
Misha Brukman12c29d12003-09-22 23:38:23 +00002017
Reid Spencer060d25d2004-06-29 23:29:38 +00002018 // Create the constant, inserting it as needed.
2019 Constant *C = ConstantArray::get(ATy, Elements);
2020 unsigned Slot = insertValue(C, Typ, Tab);
Chris Lattner389bd042004-12-09 06:19:44 +00002021 ResolveReferencesToConstant(C, Typ, Slot);
Reid Spencer04cde2c2004-07-04 11:33:49 +00002022 if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
Reid Spencer060d25d2004-06-29 23:29:38 +00002023 }
Misha Brukman12c29d12003-09-22 23:38:23 +00002024}
2025
Reid Spencer04cde2c2004-07-04 11:33:49 +00002026/// Parse the constant pool.
Misha Brukman8a96c532005-04-21 21:44:41 +00002027void BytecodeReader::ParseConstantPool(ValueTable &Tab,
Reid Spencer04cde2c2004-07-04 11:33:49 +00002028 TypeListTy &TypeTab,
Reid Spencer46b002c2004-07-11 17:28:43 +00002029 bool isFunction) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002030 if (Handler) Handler->handleGlobalConstantsBegin();
2031
2032 /// In LLVM 1.3 Type does not derive from Value so the types
2033 /// do not occupy a plane. Consequently, we read the types
2034 /// first in the constant pool.
Reid Spencer46b002c2004-07-11 17:28:43 +00002035 if (isFunction && !hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002036 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00002037 ParseTypes(TypeTab, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00002038 }
2039
Reid Spencer46b002c2004-07-11 17:28:43 +00002040 while (moreInBlock()) {
Reid Spencer060d25d2004-06-29 23:29:38 +00002041 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00002042 unsigned Typ = 0;
2043 bool isTypeType = read_typeid(Typ);
2044
2045 /// In LLVM 1.2 and before, Types were written to the
2046 /// bytecode file in the "Type Type" plane (#12).
2047 /// In 1.3 plane 12 is now the label plane. Handle this here.
Reid Spencer46b002c2004-07-11 17:28:43 +00002048 if (isTypeType) {
2049 ParseTypes(TypeTab, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00002050 } else if (Typ == Type::VoidTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002051 /// Use of Type::VoidTyID is a misnomer. It actually means
2052 /// that the following plane is constant strings
Reid Spencer060d25d2004-06-29 23:29:38 +00002053 assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
2054 ParseStringConstants(NumEntries, Tab);
2055 } else {
2056 for (unsigned i = 0; i < NumEntries; ++i) {
Chris Lattner3bc5a602006-01-25 23:08:15 +00002057 Value *V = ParseConstantPoolValue(Typ);
2058 assert(V && "ParseConstantPoolValue returned NULL!");
2059 unsigned Slot = insertValue(V, Typ, Tab);
Chris Lattner29b789b2003-11-19 17:27:18 +00002060
Reid Spencer060d25d2004-06-29 23:29:38 +00002061 // If we are reading a function constant table, make sure that we adjust
2062 // the slot number to be the real global constant number.
2063 //
2064 if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
2065 ModuleValues[Typ])
2066 Slot += ModuleValues[Typ]->size();
Chris Lattner3bc5a602006-01-25 23:08:15 +00002067 if (Constant *C = dyn_cast<Constant>(V))
2068 ResolveReferencesToConstant(C, Typ, Slot);
Reid Spencer060d25d2004-06-29 23:29:38 +00002069 }
2070 }
2071 }
Chris Lattner02dce162004-12-04 05:28:27 +00002072
2073 // After we have finished parsing the constant pool, we had better not have
2074 // any dangling references left.
Reid Spencer3c391272004-12-04 22:19:53 +00002075 if (!ConstantFwdRefs.empty()) {
Reid Spencer3c391272004-12-04 22:19:53 +00002076 ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
Reid Spencer3c391272004-12-04 22:19:53 +00002077 Constant* missingConst = I->second;
Misha Brukman8a96c532005-04-21 21:44:41 +00002078 error(utostr(ConstantFwdRefs.size()) +
2079 " unresolved constant reference exist. First one is '" +
2080 missingConst->getName() + "' of type '" +
Chris Lattner389bd042004-12-09 06:19:44 +00002081 missingConst->getType()->getDescription() + "'.");
Reid Spencer3c391272004-12-04 22:19:53 +00002082 }
Chris Lattner02dce162004-12-04 05:28:27 +00002083
Reid Spencer060d25d2004-06-29 23:29:38 +00002084 checkPastBlockEnd("Constant Pool");
Reid Spencer04cde2c2004-07-04 11:33:49 +00002085 if (Handler) Handler->handleGlobalConstantsEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00002086}
Chris Lattner00950542001-06-06 20:29:01 +00002087
Reid Spencer04cde2c2004-07-04 11:33:49 +00002088/// Parse the contents of a function. Note that this function can be
2089/// called lazily by materializeFunction
2090/// @see materializeFunction
Reid Spencer46b002c2004-07-11 17:28:43 +00002091void BytecodeReader::ParseFunctionBody(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +00002092
2093 unsigned FuncSize = BlockEnd - At;
Chris Lattnere3869c82003-04-16 21:16:05 +00002094 GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
2095
Reid Spencer060d25d2004-06-29 23:29:38 +00002096 unsigned LinkageType = read_vbr_uint();
Chris Lattnerc08912f2004-01-14 16:44:44 +00002097 switch (LinkageType) {
2098 case 0: Linkage = GlobalValue::ExternalLinkage; break;
2099 case 1: Linkage = GlobalValue::WeakLinkage; break;
2100 case 2: Linkage = GlobalValue::AppendingLinkage; break;
2101 case 3: Linkage = GlobalValue::InternalLinkage; break;
2102 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Anton Korobeynikovb74ed072006-09-14 18:23:27 +00002103 case 5: Linkage = GlobalValue::DLLImportLinkage; break;
2104 case 6: Linkage = GlobalValue::DLLExportLinkage; break;
2105 case 7: Linkage = GlobalValue::ExternalWeakLinkage; break;
Reid Spencer060d25d2004-06-29 23:29:38 +00002106 default:
Reid Spencer24399722004-07-09 22:21:33 +00002107 error("Invalid linkage type for Function.");
Reid Spencer060d25d2004-06-29 23:29:38 +00002108 Linkage = GlobalValue::InternalLinkage;
2109 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00002110 }
Chris Lattnerd23b1d32001-11-26 18:56:10 +00002111
Reid Spencer46b002c2004-07-11 17:28:43 +00002112 F->setLinkage(Linkage);
Reid Spencer04cde2c2004-07-04 11:33:49 +00002113 if (Handler) Handler->handleFunctionBegin(F,FuncSize);
Chris Lattner00950542001-06-06 20:29:01 +00002114
Chris Lattner4ee8ef22003-10-08 22:52:54 +00002115 // Keep track of how many basic blocks we have read in...
2116 unsigned BlockNum = 0;
Chris Lattner89e02532004-01-18 21:08:15 +00002117 bool InsertedArguments = false;
Chris Lattner4ee8ef22003-10-08 22:52:54 +00002118
Reid Spencer060d25d2004-06-29 23:29:38 +00002119 BufPtr MyEnd = BlockEnd;
Reid Spencer46b002c2004-07-11 17:28:43 +00002120 while (At < MyEnd) {
Chris Lattner00950542001-06-06 20:29:01 +00002121 unsigned Type, Size;
Reid Spencer060d25d2004-06-29 23:29:38 +00002122 BufPtr OldAt = At;
2123 read_block(Type, Size);
Chris Lattner00950542001-06-06 20:29:01 +00002124
2125 switch (Type) {
Reid Spencerad89bd62004-07-25 18:07:36 +00002126 case BytecodeFormat::ConstantPoolBlockID:
Chris Lattner89e02532004-01-18 21:08:15 +00002127 if (!InsertedArguments) {
2128 // Insert arguments into the value table before we parse the first basic
2129 // block in the function, but after we potentially read in the
2130 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00002131 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00002132 InsertedArguments = true;
2133 }
2134
Reid Spencer04cde2c2004-07-04 11:33:49 +00002135 ParseConstantPool(FunctionValues, FunctionTypes, true);
Chris Lattner00950542001-06-06 20:29:01 +00002136 break;
2137
Reid Spencerad89bd62004-07-25 18:07:36 +00002138 case BytecodeFormat::CompactionTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00002139 ParseCompactionTable();
Chris Lattner89e02532004-01-18 21:08:15 +00002140 break;
2141
Chris Lattner00950542001-06-06 20:29:01 +00002142 case BytecodeFormat::BasicBlock: {
Chris Lattner89e02532004-01-18 21:08:15 +00002143 if (!InsertedArguments) {
2144 // Insert arguments into the value table before we parse the first basic
2145 // block in the function, but after we potentially read in the
2146 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00002147 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00002148 InsertedArguments = true;
2149 }
2150
Reid Spencer060d25d2004-06-29 23:29:38 +00002151 BasicBlock *BB = ParseBasicBlock(BlockNum++);
Chris Lattner4ee8ef22003-10-08 22:52:54 +00002152 F->getBasicBlockList().push_back(BB);
Chris Lattner00950542001-06-06 20:29:01 +00002153 break;
2154 }
2155
Reid Spencerad89bd62004-07-25 18:07:36 +00002156 case BytecodeFormat::InstructionListBlockID: {
Chris Lattner89e02532004-01-18 21:08:15 +00002157 // Insert arguments into the value table before we parse the instruction
2158 // list for the function, but after we potentially read in the compaction
2159 // table.
2160 if (!InsertedArguments) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002161 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00002162 InsertedArguments = true;
2163 }
2164
Misha Brukman8a96c532005-04-21 21:44:41 +00002165 if (BlockNum)
Reid Spencer24399722004-07-09 22:21:33 +00002166 error("Already parsed basic blocks!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002167 BlockNum = ParseInstructionList(F);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00002168 break;
2169 }
2170
Reid Spencerad89bd62004-07-25 18:07:36 +00002171 case BytecodeFormat::SymbolTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00002172 ParseSymbolTable(F, &F->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00002173 break;
2174
2175 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00002176 At += Size;
Misha Brukman8a96c532005-04-21 21:44:41 +00002177 if (OldAt > At)
Reid Spencer24399722004-07-09 22:21:33 +00002178 error("Wrapped around reading bytecode.");
Chris Lattner00950542001-06-06 20:29:01 +00002179 break;
2180 }
Reid Spencer060d25d2004-06-29 23:29:38 +00002181 BlockEnd = MyEnd;
Chris Lattner1d670cc2001-09-07 16:37:43 +00002182
Misha Brukman12c29d12003-09-22 23:38:23 +00002183 // Malformed bc file if read past end of block.
Reid Spencer060d25d2004-06-29 23:29:38 +00002184 align32();
Chris Lattner00950542001-06-06 20:29:01 +00002185 }
2186
Chris Lattner4ee8ef22003-10-08 22:52:54 +00002187 // Make sure there were no references to non-existant basic blocks.
2188 if (BlockNum != ParsedBasicBlocks.size())
Reid Spencer24399722004-07-09 22:21:33 +00002189 error("Illegal basic block operand reference");
Reid Spencer060d25d2004-06-29 23:29:38 +00002190
Chris Lattner4ee8ef22003-10-08 22:52:54 +00002191 ParsedBasicBlocks.clear();
2192
Chris Lattner97330cf2003-10-09 23:10:14 +00002193 // Resolve forward references. Replace any uses of a forward reference value
2194 // with the real value.
Chris Lattner8eb10ce2003-10-09 06:05:40 +00002195 while (!ForwardReferences.empty()) {
Chris Lattnerc4d69162004-12-09 04:51:50 +00002196 std::map<std::pair<unsigned,unsigned>, Value*>::iterator
2197 I = ForwardReferences.begin();
2198 Value *V = getValue(I->first.first, I->first.second, false);
Chris Lattner8eb10ce2003-10-09 06:05:40 +00002199 Value *PlaceHolder = I->second;
Chris Lattnerc4d69162004-12-09 04:51:50 +00002200 PlaceHolder->replaceAllUsesWith(V);
Chris Lattner8eb10ce2003-10-09 06:05:40 +00002201 ForwardReferences.erase(I);
Chris Lattner8eb10ce2003-10-09 06:05:40 +00002202 delete PlaceHolder;
Chris Lattner6e448022003-10-08 21:51:46 +00002203 }
Chris Lattner00950542001-06-06 20:29:01 +00002204
Reid Spencere2a5fb02006-01-27 11:49:27 +00002205 // If upgraded intrinsic functions were detected during reading of the
2206 // module information, then we need to look for instructions that need to
2207 // be upgraded. This can't be done while the instructions are read in because
2208 // additional instructions inserted mess up the slot numbering.
2209 if (!upgradedFunctions.empty()) {
2210 for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
2211 for (BasicBlock::iterator II = BI->begin(), IE = BI->end();
Jim Laskeyf4321a32006-03-13 13:07:37 +00002212 II != IE;)
2213 if (CallInst* CI = dyn_cast<CallInst>(II++)) {
Reid Spencere2a5fb02006-01-27 11:49:27 +00002214 std::map<Function*,Function*>::iterator FI =
2215 upgradedFunctions.find(CI->getCalledFunction());
Chris Lattnerbad08002006-03-02 23:59:12 +00002216 if (FI != upgradedFunctions.end())
2217 UpgradeIntrinsicCall(CI, FI->second);
Reid Spencere2a5fb02006-01-27 11:49:27 +00002218 }
2219 }
2220
Misha Brukman12c29d12003-09-22 23:38:23 +00002221 // Clear out function-level types...
Reid Spencer060d25d2004-06-29 23:29:38 +00002222 FunctionTypes.clear();
2223 CompactionTypes.clear();
2224 CompactionValues.clear();
2225 freeTable(FunctionValues);
2226
Reid Spencer04cde2c2004-07-04 11:33:49 +00002227 if (Handler) Handler->handleFunctionEnd(F);
Chris Lattner00950542001-06-06 20:29:01 +00002228}
2229
Reid Spencer04cde2c2004-07-04 11:33:49 +00002230/// This function parses LLVM functions lazily. It obtains the type of the
2231/// function and records where the body of the function is in the bytecode
Misha Brukman8a96c532005-04-21 21:44:41 +00002232/// buffer. The caller can then use the ParseNextFunction and
Reid Spencer04cde2c2004-07-04 11:33:49 +00002233/// ParseAllFunctionBodies to get handler events for the functions.
Reid Spencer060d25d2004-06-29 23:29:38 +00002234void BytecodeReader::ParseFunctionLazily() {
2235 if (FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00002236 error("FunctionSignatureList empty!");
Chris Lattner89e02532004-01-18 21:08:15 +00002237
Reid Spencer060d25d2004-06-29 23:29:38 +00002238 Function *Func = FunctionSignatureList.back();
2239 FunctionSignatureList.pop_back();
Chris Lattner24102432004-01-18 22:35:34 +00002240
Reid Spencer060d25d2004-06-29 23:29:38 +00002241 // Save the information for future reading of the function
2242 LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
Chris Lattner89e02532004-01-18 21:08:15 +00002243
Misha Brukmana3e6ad62004-11-14 21:02:55 +00002244 // This function has a body but it's not loaded so it appears `External'.
2245 // Mark it as a `Ghost' instead to notify the users that it has a body.
2246 Func->setLinkage(GlobalValue::GhostLinkage);
2247
Reid Spencer060d25d2004-06-29 23:29:38 +00002248 // Pretend we've `parsed' this function
2249 At = BlockEnd;
2250}
Chris Lattner89e02532004-01-18 21:08:15 +00002251
Misha Brukman8a96c532005-04-21 21:44:41 +00002252/// The ParserFunction method lazily parses one function. Use this method to
2253/// casue the parser to parse a specific function in the module. Note that
2254/// this will remove the function from what is to be included by
Reid Spencer04cde2c2004-07-04 11:33:49 +00002255/// ParseAllFunctionBodies.
2256/// @see ParseAllFunctionBodies
2257/// @see ParseBytecode
Reid Spencer99655e12006-08-25 19:54:53 +00002258bool BytecodeReader::ParseFunction(Function* Func, std::string* ErrMsg) {
2259
2260 if (setjmp(context))
2261 return true;
2262
Reid Spencer060d25d2004-06-29 23:29:38 +00002263 // Find {start, end} pointers and slot in the map. If not there, we're done.
2264 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
Chris Lattner89e02532004-01-18 21:08:15 +00002265
Reid Spencer060d25d2004-06-29 23:29:38 +00002266 // Make sure we found it
Reid Spencer46b002c2004-07-11 17:28:43 +00002267 if (Fi == LazyFunctionLoadMap.end()) {
Reid Spencer24399722004-07-09 22:21:33 +00002268 error("Unrecognized function of type " + Func->getType()->getDescription());
Reid Spencer99655e12006-08-25 19:54:53 +00002269 return true;
Chris Lattner89e02532004-01-18 21:08:15 +00002270 }
2271
Reid Spencer060d25d2004-06-29 23:29:38 +00002272 BlockStart = At = Fi->second.Buf;
2273 BlockEnd = Fi->second.EndBuf;
Reid Spencer24399722004-07-09 22:21:33 +00002274 assert(Fi->first == Func && "Found wrong function?");
Reid Spencer060d25d2004-06-29 23:29:38 +00002275
2276 LazyFunctionLoadMap.erase(Fi);
2277
Reid Spencer46b002c2004-07-11 17:28:43 +00002278 this->ParseFunctionBody(Func);
Reid Spencer99655e12006-08-25 19:54:53 +00002279 return false;
Chris Lattner89e02532004-01-18 21:08:15 +00002280}
2281
Reid Spencer04cde2c2004-07-04 11:33:49 +00002282/// The ParseAllFunctionBodies method parses through all the previously
2283/// unparsed functions in the bytecode file. If you want to completely parse
2284/// a bytecode file, this method should be called after Parsebytecode because
2285/// Parsebytecode only records the locations in the bytecode file of where
2286/// the function definitions are located. This function uses that information
2287/// to materialize the functions.
2288/// @see ParseBytecode
Reid Spencer99655e12006-08-25 19:54:53 +00002289bool BytecodeReader::ParseAllFunctionBodies(std::string* ErrMsg) {
2290 if (setjmp(context))
2291 return true;
2292
Reid Spencer060d25d2004-06-29 23:29:38 +00002293 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
2294 LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
Chris Lattner89e02532004-01-18 21:08:15 +00002295
Reid Spencer46b002c2004-07-11 17:28:43 +00002296 while (Fi != Fe) {
Reid Spencer060d25d2004-06-29 23:29:38 +00002297 Function* Func = Fi->first;
2298 BlockStart = At = Fi->second.Buf;
2299 BlockEnd = Fi->second.EndBuf;
Chris Lattnerb52f1c22005-02-13 17:48:18 +00002300 ParseFunctionBody(Func);
Reid Spencer060d25d2004-06-29 23:29:38 +00002301 ++Fi;
2302 }
Chris Lattnerb52f1c22005-02-13 17:48:18 +00002303 LazyFunctionLoadMap.clear();
Reid Spencer99655e12006-08-25 19:54:53 +00002304 return false;
Reid Spencer060d25d2004-06-29 23:29:38 +00002305}
Chris Lattner89e02532004-01-18 21:08:15 +00002306
Reid Spencer04cde2c2004-07-04 11:33:49 +00002307/// Parse the global type list
Reid Spencer060d25d2004-06-29 23:29:38 +00002308void BytecodeReader::ParseGlobalTypes() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002309 // Read the number of types
2310 unsigned NumEntries = read_vbr_uint();
Reid Spencer011bed52004-07-09 21:13:53 +00002311
2312 // Ignore the type plane identifier for types if the bc file is pre 1.3
2313 if (hasTypeDerivedFromValue)
2314 read_vbr_uint();
2315
Reid Spencer46b002c2004-07-11 17:28:43 +00002316 ParseTypes(ModuleTypes, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00002317}
2318
Reid Spencer04cde2c2004-07-04 11:33:49 +00002319/// Parse the Global info (types, global vars, constants)
Reid Spencer060d25d2004-06-29 23:29:38 +00002320void BytecodeReader::ParseModuleGlobalInfo() {
2321
Reid Spencer04cde2c2004-07-04 11:33:49 +00002322 if (Handler) Handler->handleModuleGlobalsBegin();
Chris Lattner00950542001-06-06 20:29:01 +00002323
Chris Lattner404cddf2005-11-12 01:33:40 +00002324 // SectionID - If a global has an explicit section specified, this map
2325 // remembers the ID until we can translate it into a string.
2326 std::map<GlobalValue*, unsigned> SectionID;
2327
Chris Lattner70cc3392001-09-10 07:58:01 +00002328 // Read global variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00002329 unsigned VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00002330 while (VarType != Type::VoidTyID) { // List is terminated by Void
Chris Lattner9dd87702004-04-03 23:43:42 +00002331 // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
2332 // Linkage, bit4+ = slot#
2333 unsigned SlotNo = VarType >> 5;
Reid Spencer46b002c2004-07-11 17:28:43 +00002334 if (sanitizeTypeId(SlotNo))
Reid Spencer24399722004-07-09 22:21:33 +00002335 error("Invalid type (type type) for global var!");
Chris Lattner9dd87702004-04-03 23:43:42 +00002336 unsigned LinkageID = (VarType >> 2) & 7;
Reid Spencer060d25d2004-06-29 23:29:38 +00002337 bool isConstant = VarType & 1;
Chris Lattnerce5e04e2005-11-06 08:23:17 +00002338 bool hasInitializer = (VarType & 2) != 0;
Chris Lattner8eb52dd2005-11-06 07:11:04 +00002339 unsigned Alignment = 0;
Chris Lattner404cddf2005-11-12 01:33:40 +00002340 unsigned GlobalSectionID = 0;
Chris Lattner8eb52dd2005-11-06 07:11:04 +00002341
2342 // An extension word is present when linkage = 3 (internal) and hasinit = 0.
2343 if (LinkageID == 3 && !hasInitializer) {
2344 unsigned ExtWord = read_vbr_uint();
2345 // The extension word has this format: bit 0 = has initializer, bit 1-3 =
2346 // linkage, bit 4-8 = alignment (log2), bits 10+ = future use.
2347 hasInitializer = ExtWord & 1;
2348 LinkageID = (ExtWord >> 1) & 7;
2349 Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1;
Chris Lattner404cddf2005-11-12 01:33:40 +00002350
2351 if (ExtWord & (1 << 9)) // Has a section ID.
2352 GlobalSectionID = read_vbr_uint();
Chris Lattner8eb52dd2005-11-06 07:11:04 +00002353 }
Chris Lattnere3869c82003-04-16 21:16:05 +00002354
Chris Lattnerce5e04e2005-11-06 08:23:17 +00002355 GlobalValue::LinkageTypes Linkage;
Chris Lattnerc08912f2004-01-14 16:44:44 +00002356 switch (LinkageID) {
Chris Lattnerc08912f2004-01-14 16:44:44 +00002357 case 0: Linkage = GlobalValue::ExternalLinkage; break;
2358 case 1: Linkage = GlobalValue::WeakLinkage; break;
2359 case 2: Linkage = GlobalValue::AppendingLinkage; break;
2360 case 3: Linkage = GlobalValue::InternalLinkage; break;
2361 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Anton Korobeynikovb74ed072006-09-14 18:23:27 +00002362 case 5: Linkage = GlobalValue::DLLImportLinkage; break;
2363 case 6: Linkage = GlobalValue::DLLExportLinkage; break;
2364 case 7: Linkage = GlobalValue::ExternalWeakLinkage; break;
Misha Brukman8a96c532005-04-21 21:44:41 +00002365 default:
Reid Spencer24399722004-07-09 22:21:33 +00002366 error("Unknown linkage type: " + utostr(LinkageID));
Reid Spencer060d25d2004-06-29 23:29:38 +00002367 Linkage = GlobalValue::InternalLinkage;
2368 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00002369 }
2370
2371 const Type *Ty = getType(SlotNo);
Chris Lattnere73bd452005-11-06 07:43:39 +00002372 if (!Ty)
Reid Spencer24399722004-07-09 22:21:33 +00002373 error("Global has no type! SlotNo=" + utostr(SlotNo));
Reid Spencer060d25d2004-06-29 23:29:38 +00002374
Chris Lattnere73bd452005-11-06 07:43:39 +00002375 if (!isa<PointerType>(Ty))
Reid Spencer24399722004-07-09 22:21:33 +00002376 error("Global not a pointer type! Ty= " + Ty->getDescription());
Chris Lattner70cc3392001-09-10 07:58:01 +00002377
Chris Lattner52e20b02003-03-19 20:54:26 +00002378 const Type *ElTy = cast<PointerType>(Ty)->getElementType();
Chris Lattnerd70684f2001-09-18 04:01:05 +00002379
Chris Lattner70cc3392001-09-10 07:58:01 +00002380 // Create the global variable...
Reid Spencer060d25d2004-06-29 23:29:38 +00002381 GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
Chris Lattner52e20b02003-03-19 20:54:26 +00002382 0, "", TheModule);
Chris Lattner8eb52dd2005-11-06 07:11:04 +00002383 GV->setAlignment(Alignment);
Chris Lattner29b789b2003-11-19 17:27:18 +00002384 insertValue(GV, SlotNo, ModuleValues);
Chris Lattner05950c32001-10-13 06:47:01 +00002385
Chris Lattner404cddf2005-11-12 01:33:40 +00002386 if (GlobalSectionID != 0)
2387 SectionID[GV] = GlobalSectionID;
2388
Reid Spencer060d25d2004-06-29 23:29:38 +00002389 unsigned initSlot = 0;
Misha Brukman8a96c532005-04-21 21:44:41 +00002390 if (hasInitializer) {
Reid Spencer060d25d2004-06-29 23:29:38 +00002391 initSlot = read_vbr_uint();
2392 GlobalInits.push_back(std::make_pair(GV, initSlot));
2393 }
2394
2395 // Notify handler about the global value.
Chris Lattner4a242b32004-10-14 01:39:18 +00002396 if (Handler)
2397 Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
Reid Spencer060d25d2004-06-29 23:29:38 +00002398
2399 // Get next item
2400 VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00002401 }
2402
Chris Lattner52e20b02003-03-19 20:54:26 +00002403 // Read the function objects for all of the functions that are coming
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002404 unsigned FnSignature = read_vbr_uint();
Reid Spencer24399722004-07-09 22:21:33 +00002405
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002406 if (hasNoFlagsForFunctions)
2407 FnSignature = (FnSignature << 5) + 1;
2408
2409 // List is terminated by VoidTy.
Chris Lattnere73bd452005-11-06 07:43:39 +00002410 while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) {
2411 const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5);
Chris Lattner927b1852003-10-09 20:22:47 +00002412 if (!isa<PointerType>(Ty) ||
Reid Spencer060d25d2004-06-29 23:29:38 +00002413 !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
Misha Brukman8a96c532005-04-21 21:44:41 +00002414 error("Function not a pointer to function type! Ty = " +
Reid Spencer46b002c2004-07-11 17:28:43 +00002415 Ty->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00002416 }
Chris Lattner8cdc6b72002-10-23 00:51:54 +00002417
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002418 // We create functions by passing the underlying FunctionType to create...
Misha Brukman8a96c532005-04-21 21:44:41 +00002419 const FunctionType* FTy =
Reid Spencer060d25d2004-06-29 23:29:38 +00002420 cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
Chris Lattner00950542001-06-06 20:29:01 +00002421
Chris Lattner18549c22004-11-15 21:43:03 +00002422 // Insert the place holder.
Chris Lattner404cddf2005-11-12 01:33:40 +00002423 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
Reid Spencer04cde2c2004-07-04 11:33:49 +00002424 "", TheModule);
Reid Spencere1e96c02006-01-19 07:02:16 +00002425
Chris Lattnere73bd452005-11-06 07:43:39 +00002426 insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues);
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002427
2428 // Flags are not used yet.
Chris Lattner97fbc502004-11-15 22:38:52 +00002429 unsigned Flags = FnSignature & 31;
Chris Lattner00950542001-06-06 20:29:01 +00002430
Chris Lattner97fbc502004-11-15 22:38:52 +00002431 // Save this for later so we know type of lazily instantiated functions.
2432 // Note that known-external functions do not have FunctionInfo blocks, so we
2433 // do not add them to the FunctionSignatureList.
2434 if ((Flags & (1 << 4)) == 0)
2435 FunctionSignatureList.push_back(Func);
Chris Lattner52e20b02003-03-19 20:54:26 +00002436
Chris Lattnere73bd452005-11-06 07:43:39 +00002437 // Get the calling convention from the low bits.
2438 unsigned CC = Flags & 15;
2439 unsigned Alignment = 0;
2440 if (FnSignature & (1 << 31)) { // Has extension word?
2441 unsigned ExtWord = read_vbr_uint();
2442 Alignment = (1 << (ExtWord & 31)) >> 1;
2443 CC |= ((ExtWord >> 5) & 15) << 4;
Chris Lattner404cddf2005-11-12 01:33:40 +00002444
2445 if (ExtWord & (1 << 10)) // Has a section ID.
2446 SectionID[Func] = read_vbr_uint();
Anton Korobeynikovb74ed072006-09-14 18:23:27 +00002447
2448 // Parse external declaration linkage
2449 switch ((ExtWord >> 11) & 3) {
2450 case 0: break;
2451 case 1: Func->setLinkage(Function::DLLImportLinkage); break;
2452 case 2: Func->setLinkage(Function::ExternalWeakLinkage); break;
2453 default: assert(0 && "Unsupported external linkage");
2454 }
Chris Lattnere73bd452005-11-06 07:43:39 +00002455 }
2456
Chris Lattner54b369e2005-11-06 07:46:13 +00002457 Func->setCallingConv(CC-1);
Chris Lattnere73bd452005-11-06 07:43:39 +00002458 Func->setAlignment(Alignment);
Chris Lattner479ffeb2005-05-06 20:42:57 +00002459
Reid Spencer04cde2c2004-07-04 11:33:49 +00002460 if (Handler) Handler->handleFunctionDeclaration(Func);
Reid Spencer060d25d2004-06-29 23:29:38 +00002461
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002462 // Get the next function signature.
2463 FnSignature = read_vbr_uint();
2464 if (hasNoFlagsForFunctions)
2465 FnSignature = (FnSignature << 5) + 1;
Chris Lattner00950542001-06-06 20:29:01 +00002466 }
2467
Misha Brukman8a96c532005-04-21 21:44:41 +00002468 // Now that the function signature list is set up, reverse it so that we can
Chris Lattner74734132002-08-17 22:01:27 +00002469 // remove elements efficiently from the back of the vector.
2470 std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
Chris Lattner00950542001-06-06 20:29:01 +00002471
Chris Lattner404cddf2005-11-12 01:33:40 +00002472 /// SectionNames - This contains the list of section names encoded in the
2473 /// moduleinfoblock. Functions and globals with an explicit section index
2474 /// into this to get their section name.
2475 std::vector<std::string> SectionNames;
2476
2477 if (hasInconsistentModuleGlobalInfo) {
2478 align32();
2479 } else if (!hasNoDependentLibraries) {
2480 // If this bytecode format has dependent library information in it, read in
2481 // the number of dependent library items that follow.
Reid Spencerad89bd62004-07-25 18:07:36 +00002482 unsigned num_dep_libs = read_vbr_uint();
2483 std::string dep_lib;
Chris Lattner404cddf2005-11-12 01:33:40 +00002484 while (num_dep_libs--) {
Reid Spencerad89bd62004-07-25 18:07:36 +00002485 dep_lib = read_str();
Reid Spencerada16182004-07-25 21:36:26 +00002486 TheModule->addLibrary(dep_lib);
Reid Spencer5b472d92004-08-21 20:49:23 +00002487 if (Handler)
2488 Handler->handleDependentLibrary(dep_lib);
Reid Spencerad89bd62004-07-25 18:07:36 +00002489 }
2490
Chris Lattner404cddf2005-11-12 01:33:40 +00002491 // Read target triple and place into the module.
Reid Spencerad89bd62004-07-25 18:07:36 +00002492 std::string triple = read_str();
2493 TheModule->setTargetTriple(triple);
Reid Spencer5b472d92004-08-21 20:49:23 +00002494 if (Handler)
2495 Handler->handleTargetTriple(triple);
Chris Lattner404cddf2005-11-12 01:33:40 +00002496
Chris Lattner7e6db762006-01-23 23:43:17 +00002497 if (!hasAlignment && At != BlockEnd) {
Chris Lattner404cddf2005-11-12 01:33:40 +00002498 // If the file has section info in it, read the section names now.
2499 unsigned NumSections = read_vbr_uint();
2500 while (NumSections--)
2501 SectionNames.push_back(read_str());
2502 }
Chris Lattner7e6db762006-01-23 23:43:17 +00002503
2504 // If the file has module-level inline asm, read it now.
2505 if (!hasAlignment && At != BlockEnd)
Chris Lattner66316012006-01-24 04:14:29 +00002506 TheModule->setModuleInlineAsm(read_str());
Reid Spencerad89bd62004-07-25 18:07:36 +00002507 }
2508
Chris Lattner404cddf2005-11-12 01:33:40 +00002509 // If any globals are in specified sections, assign them now.
2510 for (std::map<GlobalValue*, unsigned>::iterator I = SectionID.begin(), E =
2511 SectionID.end(); I != E; ++I)
2512 if (I->second) {
2513 if (I->second > SectionID.size())
2514 error("SectionID out of range for global!");
2515 I->first->setSection(SectionNames[I->second-1]);
2516 }
Reid Spencerad89bd62004-07-25 18:07:36 +00002517
Chris Lattner00950542001-06-06 20:29:01 +00002518 // This is for future proofing... in the future extra fields may be added that
2519 // we don't understand, so we transparently ignore them.
2520 //
Reid Spencer060d25d2004-06-29 23:29:38 +00002521 At = BlockEnd;
2522
Reid Spencer04cde2c2004-07-04 11:33:49 +00002523 if (Handler) Handler->handleModuleGlobalsEnd();
Chris Lattner00950542001-06-06 20:29:01 +00002524}
2525
Reid Spencer04cde2c2004-07-04 11:33:49 +00002526/// Parse the version information and decode it by setting flags on the
2527/// Reader that enable backward compatibility of the reader.
Reid Spencer060d25d2004-06-29 23:29:38 +00002528void BytecodeReader::ParseVersionInfo() {
2529 unsigned Version = read_vbr_uint();
Chris Lattner036b8aa2003-03-06 17:55:45 +00002530
2531 // Unpack version number: low four bits are for flags, top bits = version
Chris Lattnerd445c6b2003-08-24 13:47:36 +00002532 Module::Endianness Endianness;
2533 Module::PointerSize PointerSize;
2534 Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
2535 PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
2536
2537 bool hasNoEndianness = Version & 4;
2538 bool hasNoPointerSize = Version & 8;
Misha Brukman8a96c532005-04-21 21:44:41 +00002539
Chris Lattnerd445c6b2003-08-24 13:47:36 +00002540 RevisionNum = Version >> 4;
Chris Lattnere3869c82003-04-16 21:16:05 +00002541
2542 // Default values for the current bytecode version
Chris Lattner44d0eeb2004-01-15 17:55:01 +00002543 hasInconsistentModuleGlobalInfo = false;
Chris Lattner80b97342004-01-17 23:25:43 +00002544 hasExplicitPrimitiveZeros = false;
Chris Lattner5fa428f2004-04-05 01:27:26 +00002545 hasRestrictedGEPTypes = false;
Reid Spencer04cde2c2004-07-04 11:33:49 +00002546 hasTypeDerivedFromValue = false;
Reid Spencerad89bd62004-07-25 18:07:36 +00002547 hasLongBlockHeaders = false;
Reid Spencerad89bd62004-07-25 18:07:36 +00002548 has32BitTypes = false;
2549 hasNoDependentLibraries = false;
Reid Spencer38d54be2004-08-17 07:45:14 +00002550 hasAlignment = false;
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002551 hasNoUndefValue = false;
2552 hasNoFlagsForFunctions = false;
2553 hasNoUnreachableInst = false;
Reid Spencer1628cec2006-10-26 06:15:43 +00002554 hasSignlessInstructions = false;
Chris Lattner036b8aa2003-03-06 17:55:45 +00002555
Reid Spencer1628cec2006-10-26 06:15:43 +00002556 // Determine which backwards compatibility flags to set based on the
2557 // bytecode file's version number
Chris Lattner036b8aa2003-03-06 17:55:45 +00002558 switch (RevisionNum) {
Reid Spencer5b472d92004-08-21 20:49:23 +00002559 case 0: // LLVM 1.0, 1.1 (Released)
Chris Lattner9e893e82004-01-14 23:35:21 +00002560 // Base LLVM 1.0 bytecode format.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00002561 hasInconsistentModuleGlobalInfo = true;
Chris Lattner80b97342004-01-17 23:25:43 +00002562 hasExplicitPrimitiveZeros = true;
Reid Spencer04cde2c2004-07-04 11:33:49 +00002563
Chris Lattner80b97342004-01-17 23:25:43 +00002564 // FALL THROUGH
Reid Spencer5b472d92004-08-21 20:49:23 +00002565
2566 case 1: // LLVM 1.2 (Released)
Chris Lattner9e893e82004-01-14 23:35:21 +00002567 // LLVM 1.2 added explicit support for emitting strings efficiently.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00002568
2569 // Also, it fixed the problem where the size of the ModuleGlobalInfo block
2570 // included the size for the alignment at the end, where the rest of the
2571 // blocks did not.
Chris Lattner5fa428f2004-04-05 01:27:26 +00002572
2573 // LLVM 1.2 and before required that GEP indices be ubyte constants for
2574 // structures and longs for sequential types.
2575 hasRestrictedGEPTypes = true;
2576
Reid Spencer04cde2c2004-07-04 11:33:49 +00002577 // LLVM 1.2 and before had the Type class derive from Value class. This
2578 // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
Misha Brukman8a96c532005-04-21 21:44:41 +00002579 // written differently because Types can no longer be part of the
Reid Spencer04cde2c2004-07-04 11:33:49 +00002580 // type planes for Values.
2581 hasTypeDerivedFromValue = true;
2582
Chris Lattner5fa428f2004-04-05 01:27:26 +00002583 // FALL THROUGH
Misha Brukman8a96c532005-04-21 21:44:41 +00002584
Reid Spencer5b472d92004-08-21 20:49:23 +00002585 case 2: // 1.2.5 (Not Released)
Reid Spencerad89bd62004-07-25 18:07:36 +00002586
Reid Spencer5b472d92004-08-21 20:49:23 +00002587 // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
Chris Lattner4a242b32004-10-14 01:39:18 +00002588 // especially for small files where the 8 bytes per block is a large
2589 // fraction of the total block size. In LLVM 1.3, the block type and length
2590 // are compressed into a single 32-bit unsigned integer. 27 bits for length,
2591 // 5 bits for block type.
Reid Spencerad89bd62004-07-25 18:07:36 +00002592 hasLongBlockHeaders = true;
2593
Reid Spencer5b472d92004-08-21 20:49:23 +00002594 // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
Chris Lattner4a242b32004-10-14 01:39:18 +00002595 // this has been reduced to vbr_uint24. It shouldn't make much difference
2596 // since we haven't run into a module with > 24 million types, but for
2597 // safety the 24-bit restriction has been enforced in 1.3 to free some bits
2598 // in various places and to ensure consistency.
Reid Spencerad89bd62004-07-25 18:07:36 +00002599 has32BitTypes = true;
2600
Misha Brukman8a96c532005-04-21 21:44:41 +00002601 // LLVM 1.2 and earlier did not provide a target triple nor a list of
Reid Spencer5b472d92004-08-21 20:49:23 +00002602 // libraries on which the bytecode is dependent. LLVM 1.3 provides these
2603 // features, for use in future versions of LLVM.
Reid Spencerad89bd62004-07-25 18:07:36 +00002604 hasNoDependentLibraries = true;
2605
2606 // FALL THROUGH
Reid Spencer5b472d92004-08-21 20:49:23 +00002607
2608 case 3: // LLVM 1.3 (Released)
2609 // LLVM 1.3 and earlier caused alignment bytes to be written on some block
Misha Brukman8a96c532005-04-21 21:44:41 +00002610 // boundaries and at the end of some strings. In extreme cases (e.g. lots
Reid Spencer5b472d92004-08-21 20:49:23 +00002611 // of GEP references to a constant array), this can increase the file size
2612 // by 30% or more. In version 1.4 alignment is done away with completely.
Reid Spencer38d54be2004-08-17 07:45:14 +00002613 hasAlignment = true;
2614
2615 // FALL THROUGH
Misha Brukman8a96c532005-04-21 21:44:41 +00002616
Reid Spencer5b472d92004-08-21 20:49:23 +00002617 case 4: // 1.3.1 (Not Released)
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002618 // In version 4, we did not support the 'undef' constant.
2619 hasNoUndefValue = true;
2620
2621 // In version 4 and above, we did not include space for flags for functions
2622 // in the module info block.
2623 hasNoFlagsForFunctions = true;
2624
2625 // In version 4 and above, we did not include the 'unreachable' instruction
2626 // in the opcode numbering in the bytecode file.
2627 hasNoUnreachableInst = true;
2628
2629 // FALL THROUGH
2630
Chris Lattnerdee199f2005-05-06 22:34:01 +00002631 case 5: // 1.4 (Released)
Reid Spencer1628cec2006-10-26 06:15:43 +00002632 // In version 5 and prior, instructions were signless while integer types
2633 // were signed. In version 6, instructions became signed and types became
2634 // signless. For example in version 5 we have the DIV instruction but in
2635 // version 6 we have FDIV, SDIV and UDIV to replace it. This caused a
2636 // renumbering of the instruction codes in version 6 that must be dealt with
2637 // when reading old bytecode files.
2638 hasSignlessInstructions = true;
2639
2640 // FALL THROUGH
2641
2642 case 6: // SignlessTypes Implementation (1.9 release)
Chris Lattnera79e7cc2004-10-16 18:18:16 +00002643 break;
2644
Chris Lattner036b8aa2003-03-06 17:55:45 +00002645 default:
Reid Spencer24399722004-07-09 22:21:33 +00002646 error("Unknown bytecode version number: " + itostr(RevisionNum));
Chris Lattner036b8aa2003-03-06 17:55:45 +00002647 }
2648
Chris Lattnerd445c6b2003-08-24 13:47:36 +00002649 if (hasNoEndianness) Endianness = Module::AnyEndianness;
2650 if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
Chris Lattner76e38962003-04-22 18:15:10 +00002651
Brian Gaekefe2102b2004-07-14 20:33:13 +00002652 TheModule->setEndianness(Endianness);
2653 TheModule->setPointerSize(PointerSize);
2654
Reid Spencer46b002c2004-07-11 17:28:43 +00002655 if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
Chris Lattner036b8aa2003-03-06 17:55:45 +00002656}
2657
Reid Spencer04cde2c2004-07-04 11:33:49 +00002658/// Parse a whole module.
Reid Spencer060d25d2004-06-29 23:29:38 +00002659void BytecodeReader::ParseModule() {
Chris Lattner00950542001-06-06 20:29:01 +00002660 unsigned Type, Size;
Chris Lattner00950542001-06-06 20:29:01 +00002661
Reid Spencer060d25d2004-06-29 23:29:38 +00002662 FunctionSignatureList.clear(); // Just in case...
Chris Lattner00950542001-06-06 20:29:01 +00002663
2664 // Read into instance variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00002665 ParseVersionInfo();
Reid Spencerad89bd62004-07-25 18:07:36 +00002666 align32();
Chris Lattner00950542001-06-06 20:29:01 +00002667
Reid Spencer060d25d2004-06-29 23:29:38 +00002668 bool SeenModuleGlobalInfo = false;
2669 bool SeenGlobalTypePlane = false;
2670 BufPtr MyEnd = BlockEnd;
2671 while (At < MyEnd) {
2672 BufPtr OldAt = At;
2673 read_block(Type, Size);
2674
Chris Lattner00950542001-06-06 20:29:01 +00002675 switch (Type) {
Reid Spencer060d25d2004-06-29 23:29:38 +00002676
Reid Spencerad89bd62004-07-25 18:07:36 +00002677 case BytecodeFormat::GlobalTypePlaneBlockID:
Reid Spencer46b002c2004-07-11 17:28:43 +00002678 if (SeenGlobalTypePlane)
Reid Spencer24399722004-07-09 22:21:33 +00002679 error("Two GlobalTypePlane Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002680
Reid Spencer5b472d92004-08-21 20:49:23 +00002681 if (Size > 0)
2682 ParseGlobalTypes();
Reid Spencer060d25d2004-06-29 23:29:38 +00002683 SeenGlobalTypePlane = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00002684 break;
2685
Misha Brukman8a96c532005-04-21 21:44:41 +00002686 case BytecodeFormat::ModuleGlobalInfoBlockID:
Reid Spencer46b002c2004-07-11 17:28:43 +00002687 if (SeenModuleGlobalInfo)
Reid Spencer24399722004-07-09 22:21:33 +00002688 error("Two ModuleGlobalInfo Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002689 ParseModuleGlobalInfo();
2690 SeenModuleGlobalInfo = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00002691 break;
2692
Reid Spencerad89bd62004-07-25 18:07:36 +00002693 case BytecodeFormat::ConstantPoolBlockID:
Reid Spencer04cde2c2004-07-04 11:33:49 +00002694 ParseConstantPool(ModuleValues, ModuleTypes,false);
Chris Lattner00950542001-06-06 20:29:01 +00002695 break;
2696
Reid Spencerad89bd62004-07-25 18:07:36 +00002697 case BytecodeFormat::FunctionBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00002698 ParseFunctionLazily();
Chris Lattner00950542001-06-06 20:29:01 +00002699 break;
Chris Lattner00950542001-06-06 20:29:01 +00002700
Reid Spencerad89bd62004-07-25 18:07:36 +00002701 case BytecodeFormat::SymbolTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00002702 ParseSymbolTable(0, &TheModule->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00002703 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00002704
Chris Lattner00950542001-06-06 20:29:01 +00002705 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00002706 At += Size;
2707 if (OldAt > At) {
Reid Spencer46b002c2004-07-11 17:28:43 +00002708 error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002709 }
Chris Lattner00950542001-06-06 20:29:01 +00002710 break;
2711 }
Reid Spencer060d25d2004-06-29 23:29:38 +00002712 BlockEnd = MyEnd;
2713 align32();
Chris Lattner00950542001-06-06 20:29:01 +00002714 }
2715
Chris Lattner52e20b02003-03-19 20:54:26 +00002716 // After the module constant pool has been read, we can safely initialize
2717 // global variables...
2718 while (!GlobalInits.empty()) {
2719 GlobalVariable *GV = GlobalInits.back().first;
2720 unsigned Slot = GlobalInits.back().second;
2721 GlobalInits.pop_back();
2722
2723 // Look up the initializer value...
Chris Lattner29b789b2003-11-19 17:27:18 +00002724 // FIXME: Preserve this type ID!
Reid Spencer060d25d2004-06-29 23:29:38 +00002725
2726 const llvm::PointerType* GVType = GV->getType();
2727 unsigned TypeSlot = getTypeSlot(GVType->getElementType());
Chris Lattner93361992004-01-15 18:45:25 +00002728 if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
Misha Brukman8a96c532005-04-21 21:44:41 +00002729 if (GV->hasInitializer())
Reid Spencer24399722004-07-09 22:21:33 +00002730 error("Global *already* has an initializer?!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00002731 if (Handler) Handler->handleGlobalInitializer(GV,CV);
Chris Lattner93361992004-01-15 18:45:25 +00002732 GV->setInitializer(CV);
Chris Lattner52e20b02003-03-19 20:54:26 +00002733 } else
Reid Spencer24399722004-07-09 22:21:33 +00002734 error("Cannot find initializer value.");
Chris Lattner52e20b02003-03-19 20:54:26 +00002735 }
2736
Chris Lattneraba5ff52005-05-05 20:57:00 +00002737 if (!ConstantFwdRefs.empty())
2738 error("Use of undefined constants in a module");
2739
Reid Spencer060d25d2004-06-29 23:29:38 +00002740 /// Make sure we pulled them all out. If we didn't then there's a declaration
2741 /// but a missing body. That's not allowed.
Misha Brukman12c29d12003-09-22 23:38:23 +00002742 if (!FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00002743 error("Function declared, but bytecode stream ended before definition");
Chris Lattner00950542001-06-06 20:29:01 +00002744}
2745
Reid Spencer04cde2c2004-07-04 11:33:49 +00002746/// This function completely parses a bytecode buffer given by the \p Buf
2747/// and \p Length parameters.
Anton Korobeynikov7d515442006-09-01 20:35:17 +00002748bool BytecodeReader::ParseBytecode(volatile BufPtr Buf, unsigned Length,
Reid Spencer233fe722006-08-22 16:09:19 +00002749 const std::string &ModuleID,
2750 std::string* ErrMsg) {
Misha Brukmane0dd0d42003-09-23 16:15:29 +00002751
Reid Spencer233fe722006-08-22 16:09:19 +00002752 /// We handle errors by
2753 if (setjmp(context)) {
2754 // Cleanup after error
2755 if (Handler) Handler->handleError(ErrorMsg);
Reid Spencer060d25d2004-06-29 23:29:38 +00002756 freeState();
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002757 delete TheModule;
2758 TheModule = 0;
Chris Lattner3bdad692004-11-15 21:55:33 +00002759 if (decompressedBlock != 0 ) {
Reid Spencer61aaf2e2004-11-14 21:59:21 +00002760 ::free(decompressedBlock);
Chris Lattner3bdad692004-11-15 21:55:33 +00002761 decompressedBlock = 0;
2762 }
Reid Spencer233fe722006-08-22 16:09:19 +00002763 // Set caller's error message, if requested
2764 if (ErrMsg)
2765 *ErrMsg = ErrorMsg;
2766 // Indicate an error occurred
2767 return true;
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002768 }
Reid Spencer233fe722006-08-22 16:09:19 +00002769
2770 RevisionNum = 0;
2771 At = MemStart = BlockStart = Buf;
2772 MemEnd = BlockEnd = Buf + Length;
2773
2774 // Create the module
2775 TheModule = new Module(ModuleID);
2776
2777 if (Handler) Handler->handleStart(TheModule, Length);
2778
2779 // Read the four bytes of the signature.
2780 unsigned Sig = read_uint();
2781
2782 // If this is a compressed file
2783 if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
2784
2785 // Invoke the decompression of the bytecode. Note that we have to skip the
2786 // file's magic number which is not part of the compressed block. Hence,
2787 // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
2788 // member for retention until BytecodeReader is destructed.
2789 unsigned decompressedLength = Compressor::decompressToNewBuffer(
2790 (char*)Buf+4,Length-4,decompressedBlock);
2791
2792 // We must adjust the buffer pointers used by the bytecode reader to point
2793 // into the new decompressed block. After decompression, the
2794 // decompressedBlock will point to a contiguous memory area that has
2795 // the decompressed data.
2796 At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
2797 MemEnd = BlockEnd = Buf + decompressedLength;
2798
2799 // else if this isn't a regular (uncompressed) bytecode file, then its
2800 // and error, generate that now.
2801 } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
2802 error("Invalid bytecode signature: " + utohexstr(Sig));
2803 }
2804
2805 // Tell the handler we're starting a module
2806 if (Handler) Handler->handleModuleBegin(ModuleID);
2807
2808 // Get the module block and size and verify. This is handled specially
2809 // because the module block/size is always written in long format. Other
2810 // blocks are written in short format so the read_block method is used.
2811 unsigned Type, Size;
2812 Type = read_uint();
2813 Size = read_uint();
2814 if (Type != BytecodeFormat::ModuleBlockID) {
2815 error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
2816 + utostr(Size));
2817 }
2818
2819 // It looks like the darwin ranlib program is broken, and adds trailing
2820 // garbage to the end of some bytecode files. This hack allows the bc
2821 // reader to ignore trailing garbage on bytecode files.
2822 if (At + Size < MemEnd)
2823 MemEnd = BlockEnd = At+Size;
2824
2825 if (At + Size != MemEnd)
2826 error("Invalid Top Level Block Length! Type:" + utostr(Type)
2827 + ", Size:" + utostr(Size));
2828
2829 // Parse the module contents
2830 this->ParseModule();
2831
2832 // Check for missing functions
2833 if (hasFunctions())
2834 error("Function expected, but bytecode stream ended!");
2835
2836 // Look for intrinsic functions to upgrade, upgrade them, and save the
2837 // mapping from old function to new for use later when instructions are
2838 // converted.
2839 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2840 FI != FE; ++FI)
2841 if (Function* newF = UpgradeIntrinsicFunction(FI)) {
2842 upgradedFunctions.insert(std::make_pair(FI, newF));
2843 FI->setName("");
2844 }
2845
2846 // Tell the handler we're done with the module
2847 if (Handler)
2848 Handler->handleModuleEnd(ModuleID);
2849
2850 // Tell the handler we're finished the parse
2851 if (Handler) Handler->handleFinish();
2852
2853 return false;
2854
Chris Lattner00950542001-06-06 20:29:01 +00002855}
Reid Spencer060d25d2004-06-29 23:29:38 +00002856
2857//===----------------------------------------------------------------------===//
2858//=== Default Implementations of Handler Methods
2859//===----------------------------------------------------------------------===//
2860
2861BytecodeHandler::~BytecodeHandler() {}
Reid Spencer060d25d2004-06-29 23:29:38 +00002862