blob: db5ce2118cb5c7979d9c8038bd9c79f603c8bf31 [file] [log] [blame]
Chris Lattnercf3056d2003-10-13 03:32:08 +00001//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner0bbe58f2001-11-26 18:41:20 +00009//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG. Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
Misha Brukman10d208d2004-01-30 17:26:24 +000017#include "llvm/Analysis/LoopInfo.h"
Chris Lattner92020fa2004-04-15 15:16:02 +000018#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
Chris Lattnera59cbb22002-07-27 01:12:17 +000021#include "llvm/Assembly/Writer.h"
Misha Brukman10d208d2004-01-30 17:26:24 +000022#include "llvm/Support/CFG.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000023#include "llvm/Support/Streams.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000024#include "llvm/ADT/DepthFirstIterator.h"
Chris Lattnerb1f5d8b2007-03-04 04:06:39 +000025#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000026#include <algorithm>
Chris Lattner46758a82004-04-12 20:26:17 +000027using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000028
Devang Patel19974732007-05-03 01:11:54 +000029char LoopInfo::ID = 0;
Chris Lattner5d8925c2006-08-27 22:30:17 +000030static RegisterPass<LoopInfo>
Dan Gohman7e544042009-05-01 21:58:05 +000031X("loops", "Natural Loop Information", true, true);
Chris Lattner93193f82002-01-31 00:42:27 +000032
33//===----------------------------------------------------------------------===//
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000034// Loop implementation
Chris Lattner93193f82002-01-31 00:42:27 +000035//
Misha Brukman6b290a52002-10-11 05:31:10 +000036
Dan Gohman16a2c922009-07-13 22:02:44 +000037/// isLoopInvariant - Return true if the specified value is loop invariant
38///
39bool Loop::isLoopInvariant(Value *V) const {
40 if (Instruction *I = dyn_cast<Instruction>(V))
41 return !contains(I->getParent());
42 return true; // All non-instructions are loop invariant
43}
44
45/// getCanonicalInductionVariable - Check to see if the loop has a canonical
46/// induction variable: an integer recurrence that starts at 0 and increments
47/// by one each time through the loop. If so, return the phi node that
48/// corresponds to it.
49///
50/// The IndVarSimplify pass transforms loops to have a canonical induction
51/// variable.
52///
53PHINode *Loop::getCanonicalInductionVariable() const {
54 BasicBlock *H = getHeader();
55
56 BasicBlock *Incoming = 0, *Backedge = 0;
57 typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
58 InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
59 assert(PI != InvBlockTraits::child_end(H) &&
60 "Loop must have at least one backedge!");
61 Backedge = *PI++;
62 if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
63 Incoming = *PI++;
64 if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
65
66 if (contains(Incoming)) {
67 if (contains(Backedge))
68 return 0;
69 std::swap(Incoming, Backedge);
70 } else if (!contains(Backedge))
71 return 0;
72
73 // Loop over all of the PHI nodes, looking for a canonical indvar.
74 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
75 PHINode *PN = cast<PHINode>(I);
76 if (ConstantInt *CI =
77 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
78 if (CI->isNullValue())
79 if (Instruction *Inc =
80 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
81 if (Inc->getOpcode() == Instruction::Add &&
82 Inc->getOperand(0) == PN)
83 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
84 if (CI->equalsInt(1))
85 return PN;
86 }
87 return 0;
88}
89
90/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
91/// the canonical induction variable value for the "next" iteration of the
92/// loop. This always succeeds if getCanonicalInductionVariable succeeds.
93///
94Instruction *Loop::getCanonicalInductionVariableIncrement() const {
95 if (PHINode *PN = getCanonicalInductionVariable()) {
96 bool P1InLoop = contains(PN->getIncomingBlock(1));
97 return cast<Instruction>(PN->getIncomingValue(P1InLoop));
98 }
99 return 0;
100}
101
102/// getTripCount - Return a loop-invariant LLVM value indicating the number of
103/// times the loop will be executed. Note that this means that the backedge
104/// of the loop executes N-1 times. If the trip-count cannot be determined,
105/// this returns null.
106///
107/// The IndVarSimplify pass transforms loops to have a form that this
108/// function easily understands.
109///
110Value *Loop::getTripCount() const {
111 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
112 // canonical induction variable and V is the trip count of the loop.
113 Instruction *Inc = getCanonicalInductionVariableIncrement();
114 if (Inc == 0) return 0;
115 PHINode *IV = cast<PHINode>(Inc->getOperand(0));
116
117 BasicBlock *BackedgeBlock =
118 IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
119
120 if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
121 if (BI->isConditional()) {
122 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
123 if (ICI->getOperand(0) == Inc) {
124 if (BI->getSuccessor(0) == getHeader()) {
125 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
126 return ICI->getOperand(1);
127 } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
128 return ICI->getOperand(1);
129 }
130 }
131 }
132 }
133
134 return 0;
135}
136
137/// getSmallConstantTripCount - Returns the trip count of this loop as a
138/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
139/// of not constant. Will also return 0 if the trip count is very large
140/// (>= 2^32)
141unsigned Loop::getSmallConstantTripCount() const {
142 Value* TripCount = this->getTripCount();
143 if (TripCount) {
144 if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
145 // Guard against huge trip counts.
146 if (TripCountC->getValue().getActiveBits() <= 32) {
147 return (unsigned)TripCountC->getZExtValue();
148 }
149 }
150 }
151 return 0;
152}
153
154/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
155/// trip count of this loop as a normal unsigned value, if possible. This
156/// means that the actual trip count is always a multiple of the returned
157/// value (don't forget the trip count could very well be zero as well!).
158///
159/// Returns 1 if the trip count is unknown or not guaranteed to be the
160/// multiple of a constant (which is also the case if the trip count is simply
161/// constant, use getSmallConstantTripCount for that case), Will also return 1
162/// if the trip count is very large (>= 2^32).
163unsigned Loop::getSmallConstantTripMultiple() const {
164 Value* TripCount = this->getTripCount();
165 // This will hold the ConstantInt result, if any
166 ConstantInt *Result = NULL;
167 if (TripCount) {
168 // See if the trip count is constant itself
169 Result = dyn_cast<ConstantInt>(TripCount);
170 // if not, see if it is a multiplication
171 if (!Result)
172 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
173 switch (BO->getOpcode()) {
174 case BinaryOperator::Mul:
175 Result = dyn_cast<ConstantInt>(BO->getOperand(1));
176 break;
177 default:
178 break;
179 }
180 }
181 }
182 // Guard against huge trip counts.
183 if (Result && Result->getValue().getActiveBits() <= 32) {
184 return (unsigned)Result->getZExtValue();
185 } else {
186 return 1;
187 }
188}
189
190/// isLCSSAForm - Return true if the Loop is in LCSSA form
191bool Loop::isLCSSAForm() const {
192 // Sort the blocks vector so that we can use binary search to do quick
193 // lookups.
194 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
195
196 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
197 BasicBlock *BB = *BI;
198 for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
199 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
200 ++UI) {
201 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
202 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
203 UserBB = P->getIncomingBlock(UI);
204 }
205
206 // Check the current block, as a fast-path. Most values are used in
207 // the same block they are defined in.
208 if (UserBB != BB && !LoopBBs.count(UserBB))
209 return false;
210 }
211 }
212
213 return true;
214}
Chris Lattnera59cbb22002-07-27 01:12:17 +0000215//===----------------------------------------------------------------------===//
216// LoopInfo implementation
217//
Chris Lattnera59cbb22002-07-27 01:12:17 +0000218bool LoopInfo::runOnFunction(Function &) {
219 releaseMemory();
Dan Gohman9d59d9f2009-06-27 21:22:48 +0000220 LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
Chris Lattnera59cbb22002-07-27 01:12:17 +0000221 return false;
222}
223
Chris Lattner1b7f7dc2002-04-28 16:21:30 +0000224void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf57b8452002-04-27 06:56:12 +0000225 AU.setPreservesAll();
Devang Patel53c279b2007-06-08 00:17:13 +0000226 AU.addRequired<DominatorTree>();
Chris Lattner93193f82002-01-31 00:42:27 +0000227}