blob: d9759c4eb8474c1ea07fddf96fa6dead8fc3b5ad [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000023#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000024#include "llvm/Target/MRegisterInfo.h"
25#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000026
Chris Lattner06925362002-11-17 21:56:38 +000027using namespace MOTy; // Get Use, Def, UseAndDef
28
Chris Lattner333b2fa2002-12-13 10:09:43 +000029
30/// BMI - A special BuildMI variant that takes an iterator to insert the
31/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000032/// this is the version for when you have a destination register in mind.
33inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000034 MachineBasicBlock::iterator &I,
35 MachineOpCode Opcode,
36 unsigned NumOperands,
37 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000038 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000039 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Brian Gaeke71794c02002-12-13 11:22:48 +000040 I = ++MBB->insert(I, MI);
Chris Lattner333b2fa2002-12-13 10:09:43 +000041 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
42}
43
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044/// BMI - A special BuildMI variant that takes an iterator to insert the
45/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000046inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047 MachineBasicBlock::iterator &I,
48 MachineOpCode Opcode,
49 unsigned NumOperands) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000050 assert(I > MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000051 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Brian Gaeke71794c02002-12-13 11:22:48 +000052 I = ++MBB->insert(I, MI);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 return MachineInstrBuilder(MI);
54}
55
Chris Lattner333b2fa2002-12-13 10:09:43 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000058 struct ISel : public FunctionPass, InstVisitor<ISel> {
59 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000060 MachineFunction *F; // The function we are compiling into
61 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000062
63 unsigned CurReg;
64 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
65
Chris Lattner333b2fa2002-12-13 10:09:43 +000066 // MBBMap - Mapping between LLVM BB -> Machine BB
67 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
68
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000069 ISel(TargetMachine &tm)
70 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000071
72 /// runOnFunction - Top level implementation of instruction selection for
73 /// the entire function.
74 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000075 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000076 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000077
78 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
79 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
80
81 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000082 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000083
84 // Select the PHI nodes
85 SelectPHINodes();
86
Chris Lattner72614082002-10-25 22:55:53 +000087 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000088 MBBMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000089 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000090 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000091 return false; // We never modify the LLVM itself.
92 }
93
94 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000095 /// block. This simply creates a new MachineBasicBlock to emit code into
96 /// and adds it to the current MachineFunction. Subsequent visit* for
97 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000098 ///
99 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000100 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000101 }
102
Chris Lattner333b2fa2002-12-13 10:09:43 +0000103
104 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
105 /// because we have to generate our sources into the source basic blocks,
106 /// not the current one.
107 ///
108 void SelectPHINodes();
109
Chris Lattner72614082002-10-25 22:55:53 +0000110 // Visitation methods for various instructions. These methods simply emit
111 // fixed X86 code for each instruction.
112 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000113
114 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000115 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000116 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000117 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000118
119 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000120 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000121 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
122 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Brian Gaeke20244b72002-12-12 15:33:40 +0000123 void doMultiply(unsigned destReg, const Type *resultType,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000124 unsigned op0Reg, unsigned op1Reg,
125 MachineBasicBlock *MBB,
126 MachineBasicBlock::iterator &MBBI);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000127 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000128
Chris Lattnerf01729e2002-11-02 20:54:46 +0000129 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
130 void visitRem(BinaryOperator &B) { visitDivRem(B); }
131 void visitDivRem(BinaryOperator &B);
132
Chris Lattnere2954c82002-11-02 20:04:26 +0000133 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000134 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
135 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
136 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000137
138 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +0000139 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
140 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
141 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
142 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
143 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
144 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
145 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +0000146
147 // Memory Instructions
148 void visitLoadInst(LoadInst &I);
149 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000150 void visitGetElementPtrInst(GetElementPtrInst &I);
151 void visitMallocInst(MallocInst &I);
Brian Gaekee48ec012002-12-13 06:46:31 +0000152 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000153 void visitAllocaInst(AllocaInst &I);
154
Chris Lattnere2954c82002-11-02 20:04:26 +0000155 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000156 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000157 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000158 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000159
160 void visitInstruction(Instruction &I) {
161 std::cerr << "Cannot instruction select: " << I;
162 abort();
163 }
164
Brian Gaeke95780cc2002-12-13 07:56:18 +0000165 /// promote32 - Make a value 32-bits wide, and put it somewhere.
166 void promote32 (const unsigned targetReg, Value *v);
167
168 // emitGEPOperation - Common code shared between visitGetElementPtrInst and
Chris Lattnerc0812d82002-12-13 06:56:29 +0000169 // constant expression GEP support.
170 //
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000171 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000172 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000173 User::op_iterator IdxEnd, unsigned TargetReg);
174
Chris Lattnerc5291f52002-10-27 21:16:59 +0000175 /// copyConstantToRegister - Output the instructions required to put the
176 /// specified constant into the specified register.
177 ///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000178 void copyConstantToRegister(Constant *C, unsigned Reg,
179 MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000180 MachineBasicBlock::iterator &MBBI);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000181
Brian Gaeke20244b72002-12-12 15:33:40 +0000182 /// makeAnotherReg - This method returns the next register number
183 /// we haven't yet used.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000184 unsigned makeAnotherReg(const Type *Ty) {
185 // Add the mapping of regnumber => reg class to MachineFunction
186 F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
187 return CurReg++;
Brian Gaeke20244b72002-12-12 15:33:40 +0000188 }
189
Chris Lattner72614082002-10-25 22:55:53 +0000190 /// getReg - This method turns an LLVM value into a register number. This
191 /// is guaranteed to produce the same register number for a particular value
192 /// every time it is queried.
193 ///
194 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000195 unsigned getReg(Value *V) {
196 // Just append to the end of the current bb.
197 MachineBasicBlock::iterator It = BB->end();
198 return getReg(V, BB, It);
199 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000200 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000201 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000202 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000203 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000204 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000205 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000206 }
Chris Lattner72614082002-10-25 22:55:53 +0000207
Chris Lattner6f8fd252002-10-27 21:23:43 +0000208 // If this operand is a constant, emit the code to copy the constant into
209 // the register here...
210 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000211 if (Constant *C = dyn_cast<Constant>(V)) {
Brian Gaeke992447f2002-12-13 11:39:18 +0000212 copyConstantToRegister(C, Reg, MBB, IPt);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000213 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
214 // Move the address of the global into the register
Brian Gaeke71794c02002-12-13 11:22:48 +0000215 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addReg(GV);
Chris Lattnerd6c4cfa2002-12-04 17:15:34 +0000216 } else if (Argument *A = dyn_cast<Argument>(V)) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000217 // Find the position of the argument in the argument list.
218 const Function *f = F->getFunction ();
Brian Gaekeed6902c2002-12-13 09:28:50 +0000219 // The function's arguments look like this:
220 // [EBP] -- copy of old EBP
221 // [EBP + 4] -- return address
222 // [EBP + 8] -- first argument (leftmost lexically)
223 // So we want to start with counter = 2.
Chris Lattner333b2fa2002-12-13 10:09:43 +0000224 int counter = 2, argPos = -1;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000225 for (Function::const_aiterator ai = f->abegin (), ae = f->aend ();
226 ai != ae; ++ai) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000227 if (&(*ai) == A) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000228 argPos = counter;
Brian Gaekeed6902c2002-12-13 09:28:50 +0000229 break; // Only need to find it once. ;-)
Brian Gaeke95780cc2002-12-13 07:56:18 +0000230 }
Brian Gaekeed6902c2002-12-13 09:28:50 +0000231 ++counter;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000232 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000233 assert (argPos != -1
Brian Gaeke95780cc2002-12-13 07:56:18 +0000234 && "Argument not found in current function's argument list");
Chris Lattner333b2fa2002-12-13 10:09:43 +0000235 // Load it out of the stack frame at EBP + 4*argPos.
Brian Gaeke71794c02002-12-13 11:22:48 +0000236 addRegOffset(BMI(MBB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000237 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000238
Chris Lattner72614082002-10-25 22:55:53 +0000239 return Reg;
240 }
Chris Lattner72614082002-10-25 22:55:53 +0000241 };
242}
243
Chris Lattner43189d12002-11-17 20:07:45 +0000244/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
245/// Representation.
246///
247enum TypeClass {
248 cByte, cShort, cInt, cLong, cFloat, cDouble
249};
250
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000251/// getClass - Turn a primitive type into a "class" number which is based on the
252/// size of the type, and whether or not it is floating point.
253///
Chris Lattner43189d12002-11-17 20:07:45 +0000254static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000255 switch (Ty->getPrimitiveID()) {
256 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000257 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000258 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000259 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000260 case Type::IntTyID:
261 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000262 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000263
264 case Type::LongTyID:
Chris Lattnerc0812d82002-12-13 06:56:29 +0000265 case Type::ULongTyID: //return cLong; // Longs are class #3
266 return cInt; // FIXME: LONGS ARE TREATED AS INTS!
267
Chris Lattner43189d12002-11-17 20:07:45 +0000268 case Type::FloatTyID: return cFloat; // Float is class #4
269 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000270 default:
271 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000272 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000273 }
274}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000275
Chris Lattner06925362002-11-17 21:56:38 +0000276
Chris Lattnerc5291f52002-10-27 21:16:59 +0000277/// copyConstantToRegister - Output the instructions required to put the
278/// specified constant into the specified register.
279///
Chris Lattner333b2fa2002-12-13 10:09:43 +0000280void ISel::copyConstantToRegister(Constant *C, unsigned R,
Brian Gaeke71794c02002-12-13 11:22:48 +0000281 MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000282 MachineBasicBlock::iterator &IP) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
284 if (CE->getOpcode() == Instruction::GetElementPtr) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000285 emitGEPOperation(BB, IP, CE->getOperand(0),
286 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000287 return;
288 }
289
Brian Gaeke20244b72002-12-12 15:33:40 +0000290 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerc0812d82002-12-13 06:56:29 +0000291 assert (0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000292 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000293
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 if (C->getType()->isIntegral()) {
295 unsigned Class = getClass(C->getType());
296 assert(Class != 3 && "Type not handled yet!");
297
298 static const unsigned IntegralOpcodeTab[] = {
299 X86::MOVir8, X86::MOVir16, X86::MOVir32
300 };
301
302 if (C->getType()->isSigned()) {
303 ConstantSInt *CSI = cast<ConstantSInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000304 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000305 } else {
306 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000307 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000308 }
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000309 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000310 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000311 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000312 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000313 unsigned SrcReg = getReg(CPR->getValue(), BB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000314 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000315 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000316 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000317 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000318 }
319}
320
Chris Lattner333b2fa2002-12-13 10:09:43 +0000321/// SelectPHINodes - Insert machine code to generate phis. This is tricky
322/// because we have to generate our sources into the source basic blocks, not
323/// the current one.
324///
325void ISel::SelectPHINodes() {
326 const Function &LF = *F->getFunction(); // The LLVM function...
327 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
328 const BasicBlock *BB = I;
329 MachineBasicBlock *MBB = MBBMap[I];
330
331 // Loop over all of the PHI nodes in the LLVM basic block...
332 unsigned NumPHIs = 0;
333 for (BasicBlock::const_iterator I = BB->begin();
334 PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
335 // Create a new machine instr PHI node, and insert it.
336 MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
337 MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB
338
339 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
340 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
341
342 // Get the incoming value into a virtual register. If it is not already
343 // available in a virtual register, insert the computation code into
344 // PredMBB
Chris Lattner92053632002-12-13 11:52:34 +0000345 //
346
347 MachineBasicBlock::iterator PI = PredMBB->begin();
348 while ((*PI)->getOpcode() == X86::PHI) ++PI;
349
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000350 MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI));
Chris Lattner333b2fa2002-12-13 10:09:43 +0000351
352 // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks...
353 MI->addPCDispOperand(PN->getIncomingBlock(i)); // PredMBB
354 }
355 }
356 }
357}
358
359
Chris Lattner06925362002-11-17 21:56:38 +0000360
Brian Gaeke1749d632002-11-07 17:59:21 +0000361/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
362/// register, then move it to wherever the result should be.
363/// We handle FP setcc instructions by pushing them, doing a
364/// compare-and-pop-twice, and then copying the concodes to the main
365/// processor's concodes (I didn't make this up, it's in the Intel manual)
366///
Chris Lattner05093a52002-11-21 15:52:38 +0000367void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000368 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000369 const Type *CompTy = I.getOperand(0)->getType();
370 unsigned reg1 = getReg(I.getOperand(0));
371 unsigned reg2 = getReg(I.getOperand(1));
372
373 unsigned Class = getClass(CompTy);
374 switch (Class) {
375 // Emit: cmp <var1>, <var2> (do the comparison). We can
376 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
377 // 32-bit.
378 case cByte:
379 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
380 break;
381 case cShort:
382 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
383 break;
384 case cInt:
385 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
386 break;
387
388 // Push the variables on the stack with fldl opcodes.
389 // FIXME: assuming var1, var2 are in memory, if not, spill to
390 // stack first
391 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000392 BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
393 BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000394 break;
395 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000396 BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
397 BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000398 break;
399 case cLong:
400 default:
401 visitInstruction(I);
402 }
403
404 if (CompTy->isFloatingPoint()) {
405 // (Non-trapping) compare and pop twice.
406 BuildMI (BB, X86::FUCOMPP, 0);
407 // Move fp status word (concodes) to ax.
408 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
409 // Load real concodes from ax.
410 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
411 }
412
Brian Gaeke1749d632002-11-07 17:59:21 +0000413 // Emit setOp instruction (extract concode; clobbers ax),
414 // using the following mapping:
415 // LLVM -> X86 signed X86 unsigned
416 // ----- ----- -----
417 // seteq -> sete sete
418 // setne -> setne setne
419 // setlt -> setl setb
420 // setgt -> setg seta
421 // setle -> setle setbe
422 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000423
424 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000425 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
426 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000427 };
428
429 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
430
Brian Gaeke1749d632002-11-07 17:59:21 +0000431 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000432 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000433}
Chris Lattner51b49a92002-11-02 19:45:49 +0000434
Brian Gaekec2505982002-11-30 11:57:28 +0000435/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
436/// operand, in the specified target register.
437void
Chris Lattnerc0812d82002-12-13 06:56:29 +0000438ISel::promote32 (unsigned targetReg, Value *v)
Brian Gaekec2505982002-11-30 11:57:28 +0000439{
440 unsigned vReg = getReg (v);
441 unsigned Class = getClass (v->getType ());
442 bool isUnsigned = v->getType ()->isUnsigned ();
443 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
444 && "Unpromotable operand class in promote32");
445 switch (Class)
446 {
447 case cByte:
448 // Extend value into target register (8->32)
449 if (isUnsigned)
450 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
451 else
452 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
453 break;
454 case cShort:
455 // Extend value into target register (16->32)
456 if (isUnsigned)
457 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
458 else
459 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
460 break;
461 case cInt:
462 // Move value into target register (32->32)
463 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
464 break;
465 }
466}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000467
Chris Lattner72614082002-10-25 22:55:53 +0000468/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
469/// we have the following possibilities:
470///
471/// ret void: No return value, simply emit a 'ret' instruction
472/// ret sbyte, ubyte : Extend value into EAX and return
473/// ret short, ushort: Extend value into EAX and return
474/// ret int, uint : Move value into EAX and return
475/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000476/// ret long, ulong : Move value into EAX/EDX and return
477/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000478///
Brian Gaekec2505982002-11-30 11:57:28 +0000479void
480ISel::visitReturnInst (ReturnInst &I)
481{
482 if (I.getNumOperands () == 0)
483 {
484 // Emit a 'ret' instruction
485 BuildMI (BB, X86::RET, 0);
486 return;
487 }
488 Value *rv = I.getOperand (0);
489 unsigned Class = getClass (rv->getType ());
490 switch (Class)
491 {
492 // integral return values: extend or move into EAX and return.
493 case cByte:
494 case cShort:
495 case cInt:
496 promote32 (X86::EAX, rv);
497 break;
498 // ret float/double: top of FP stack
499 // FLD <val>
500 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000501 BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000502 break;
503 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000504 BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000505 break;
506 case cLong:
507 // ret long: use EAX(least significant 32 bits)/EDX (most
508 // significant 32)...uh, I think so Brain, but how do i call
509 // up the two parts of the value from inside this mouse
510 // cage? *zort*
511 default:
512 visitInstruction (I);
513 }
Chris Lattner43189d12002-11-17 20:07:45 +0000514 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000515 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000516}
517
Chris Lattner51b49a92002-11-02 19:45:49 +0000518/// visitBranchInst - Handle conditional and unconditional branches here. Note
519/// that since code layout is frozen at this point, that if we are trying to
520/// jump to a block that is the immediate successor of the current block, we can
521/// just make a fall-through. (but we don't currently).
522///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000523void
524ISel::visitBranchInst (BranchInst & BI)
525{
526 if (BI.isConditional ())
527 {
528 BasicBlock *ifTrue = BI.getSuccessor (0);
529 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000530
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000531 // simplest thing I can think of: compare condition with zero,
532 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
533 // ifTrue
534 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000535 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000536 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
537 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
538 }
539 else // unconditional branch
540 {
541 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
542 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000543}
544
Brian Gaeke18a20212002-11-29 12:01:58 +0000545/// visitCallInst - Push args on stack and do a procedure call instruction.
546void
547ISel::visitCallInst (CallInst & CI)
548{
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000549 // keep a counter of how many bytes we pushed on the stack
550 unsigned bytesPushed = 0;
551
Brian Gaeke18a20212002-11-29 12:01:58 +0000552 // Push the arguments on the stack in reverse order, as specified by
553 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000554 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000555 {
556 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000557 switch (getClass (v->getType ()))
558 {
Brian Gaekec2505982002-11-30 11:57:28 +0000559 case cByte:
560 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000561 // Promote V to 32 bits wide, and move the result into EAX,
562 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000563 promote32 (X86::EAX, v);
564 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000565 bytesPushed += 4;
Brian Gaekec2505982002-11-30 11:57:28 +0000566 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000567 case cInt:
Chris Lattner33ced562002-12-04 06:56:56 +0000568 case cFloat: {
569 unsigned Reg = getReg(v);
570 BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000571 bytesPushed += 4;
Brian Gaeke18a20212002-11-29 12:01:58 +0000572 break;
Chris Lattner33ced562002-12-04 06:56:56 +0000573 }
Brian Gaeke18a20212002-11-29 12:01:58 +0000574 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000575 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000576 visitInstruction (CI);
577 break;
578 }
579 }
580 // Emit a CALL instruction with PC-relative displacement.
581 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000582
583 // Adjust the stack by `bytesPushed' amount if non-zero
584 if (bytesPushed > 0)
585 BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);
Chris Lattnera3243642002-12-04 23:45:28 +0000586
587 // If there is a return value, scavenge the result from the location the call
588 // leaves it in...
589 //
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000590 if (CI.getType() != Type::VoidTy) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000591 unsigned resultTypeClass = getClass (CI.getType ());
592 switch (resultTypeClass) {
593 case cByte:
594 case cShort:
595 case cInt: {
596 // Integral results are in %eax, or the appropriate portion
597 // thereof.
598 static const unsigned regRegMove[] = {
599 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
600 };
601 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
602 BuildMI (BB, regRegMove[resultTypeClass], 1,
603 getReg (CI)).addReg (AReg[resultTypeClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000604 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000605 }
606 case cFloat:
607 // Floating-point return values live in %st(0) (i.e., the top of
608 // the FP stack.) The general way to approach this is to do a
609 // FSTP to save the top of the FP stack on the real stack, then
610 // do a MOV to load the top of the real stack into the target
611 // register.
612 visitInstruction (CI); // FIXME: add the right args for the calls below
613 // BuildMI (BB, X86::FSTPm32, 0);
614 // BuildMI (BB, X86::MOVmr32, 0);
615 break;
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000616 default:
617 std::cerr << "Cannot get return value for call of type '"
618 << *CI.getType() << "'\n";
619 visitInstruction(CI);
620 }
Chris Lattnera3243642002-12-04 23:45:28 +0000621 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000622}
Chris Lattner2df035b2002-11-02 19:27:56 +0000623
Chris Lattner68aad932002-11-02 20:13:22 +0000624/// visitSimpleBinary - Implement simple binary operators for integral types...
625/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
626/// 4 for Xor.
627///
628void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
629 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000630 visitInstruction(B);
631
632 unsigned Class = getClass(B.getType());
633 if (Class > 2) // FIXME: Handle longs
634 visitInstruction(B);
635
636 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000637 // Arithmetic operators
638 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
639 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
640
641 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000642 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
643 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
644 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
645 };
646
647 unsigned Opcode = OpcodeTab[OperatorClass][Class];
648 unsigned Op0r = getReg(B.getOperand(0));
649 unsigned Op1r = getReg(B.getOperand(1));
650 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
651}
652
Brian Gaeke20244b72002-12-12 15:33:40 +0000653/// doMultiply - Emit appropriate instructions to multiply together
654/// the registers op0Reg and op1Reg, and put the result in destReg.
655/// The type of the result should be given as resultType.
656void
657ISel::doMultiply(unsigned destReg, const Type *resultType,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000658 unsigned op0Reg, unsigned op1Reg,
659 MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI)
Brian Gaeke20244b72002-12-12 15:33:40 +0000660{
661 unsigned Class = getClass (resultType);
662
663 // FIXME:
664 assert (Class <= 2 && "Someday, we will learn how to multiply"
665 "longs and floating-point numbers. This is not that day.");
666
667 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
668 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
669 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
670 unsigned Reg = Regs[Class];
671
672 // Emit a MOV to put the first operand into the appropriately-sized
673 // subreg of EAX.
Brian Gaeke71794c02002-12-13 11:22:48 +0000674 BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg (op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000675
676 // Emit the appropriate multiply instruction.
Brian Gaeke71794c02002-12-13 11:22:48 +0000677 BMI(MBB, MBBI, MulOpcode[Class], 1).addReg (op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000678
679 // Emit another MOV to put the result into the destination register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000680 BMI(MBB, MBBI, MovOpcode[Class], 1, destReg).addReg (Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000681}
682
Chris Lattnerca9671d2002-11-02 20:28:58 +0000683/// visitMul - Multiplies are not simple binary operators because they must deal
684/// with the EAX register explicitly.
685///
686void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +0000687 unsigned DestReg = getReg(I);
688 unsigned Op0Reg = getReg(I.getOperand(0));
689 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000690 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner202a2d02002-12-13 13:07:42 +0000691 doMultiply(DestReg, I.getType(), Op0Reg, Op1Reg, BB, MBBI);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000692}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000693
Chris Lattner06925362002-11-17 21:56:38 +0000694
Chris Lattnerf01729e2002-11-02 20:54:46 +0000695/// visitDivRem - Handle division and remainder instructions... these
696/// instruction both require the same instructions to be generated, they just
697/// select the result from a different register. Note that both of these
698/// instructions work differently for signed and unsigned operands.
699///
700void ISel::visitDivRem(BinaryOperator &I) {
701 unsigned Class = getClass(I.getType());
702 if (Class > 2) // FIXME: Handle longs
703 visitInstruction(I);
704
705 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
706 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000707 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000708 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
709 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
710
711 static const unsigned DivOpcode[][4] = {
712 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
713 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
714 };
715
716 bool isSigned = I.getType()->isSigned();
717 unsigned Reg = Regs[Class];
718 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000719 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000720 unsigned Op1Reg = getReg(I.getOperand(1));
721
722 // Put the first operand into one of the A registers...
723 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
724
725 if (isSigned) {
726 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000727 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000728 } else {
729 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
730 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
731 }
732
Chris Lattner06925362002-11-17 21:56:38 +0000733 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000734 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000735
Chris Lattnerf01729e2002-11-02 20:54:46 +0000736 // Figure out which register we want to pick the result out of...
737 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
738
Chris Lattnerf01729e2002-11-02 20:54:46 +0000739 // Put the result into the destination register...
740 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000741}
Chris Lattnere2954c82002-11-02 20:04:26 +0000742
Chris Lattner06925362002-11-17 21:56:38 +0000743
Brian Gaekea1719c92002-10-31 23:03:59 +0000744/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
745/// for constant immediate shift values, and for constant immediate
746/// shift values equal to 1. Even the general case is sort of special,
747/// because the shift amount has to be in CL, not just any old register.
748///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000749void ISel::visitShiftInst (ShiftInst &I) {
750 unsigned Op0r = getReg (I.getOperand(0));
751 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000752 bool isLeftShift = I.getOpcode() == Instruction::Shl;
753 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000754 unsigned OperandClass = getClass(I.getType());
755
756 if (OperandClass > 2)
757 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000758
Brian Gaekea1719c92002-10-31 23:03:59 +0000759 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
760 {
Chris Lattner796df732002-11-02 00:44:25 +0000761 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
762 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
763 unsigned char shAmt = CUI->getValue();
764
Chris Lattnere9913f22002-11-02 01:41:55 +0000765 static const unsigned ConstantOperand[][4] = {
766 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
767 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
768 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
769 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000770 };
771
Chris Lattnere9913f22002-11-02 01:41:55 +0000772 const unsigned *OpTab = // Figure out the operand table to use
773 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000774
Brian Gaekea1719c92002-10-31 23:03:59 +0000775 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000776 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000777 }
778 else
779 {
780 // The shift amount is non-constant.
781 //
782 // In fact, you can only shift with a variable shift amount if
783 // that amount is already in the CL register, so we have to put it
784 // there first.
785 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000786
Brian Gaekea1719c92002-10-31 23:03:59 +0000787 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000788 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000789
790 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000791 static const unsigned NonConstantOperand[][4] = {
792 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
793 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
794 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
795 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000796 };
797
Chris Lattnere9913f22002-11-02 01:41:55 +0000798 const unsigned *OpTab = // Figure out the operand table to use
799 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000800
Chris Lattner3a9a6932002-11-21 22:49:20 +0000801 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000802 }
803}
804
Chris Lattner06925362002-11-17 21:56:38 +0000805
Chris Lattner6fc3c522002-11-17 21:11:55 +0000806/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
807/// instruction.
808///
809void ISel::visitLoadInst(LoadInst &I) {
810 unsigned Class = getClass(I.getType());
811 if (Class > 2) // FIXME: Handle longs and others...
812 visitInstruction(I);
813
814 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
815
816 unsigned AddressReg = getReg(I.getOperand(0));
817 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
818}
819
Chris Lattner06925362002-11-17 21:56:38 +0000820
Chris Lattner6fc3c522002-11-17 21:11:55 +0000821/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
822/// instruction.
823///
824void ISel::visitStoreInst(StoreInst &I) {
825 unsigned Class = getClass(I.getOperand(0)->getType());
826 if (Class > 2) // FIXME: Handle longs and others...
827 visitInstruction(I);
828
829 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
830
831 unsigned ValReg = getReg(I.getOperand(0));
832 unsigned AddressReg = getReg(I.getOperand(1));
833 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
834}
835
836
Brian Gaekec11232a2002-11-26 10:43:30 +0000837/// visitCastInst - Here we have various kinds of copying with or without
838/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000839void
840ISel::visitCastInst (CastInst &CI)
841{
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000842 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000843 Value *operand = CI.getOperand (0);
844 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000845 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000846 unsigned int destReg = getReg (CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000847 //
848 // Currently we handle:
849 //
850 // 1) cast * to bool
851 //
852 // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
853 // cast {short, ushort} to {ushort, short}
854 // cast {int, uint, ptr} to {int, uint, ptr}
855 //
856 // 3) cast {sbyte, ubyte} to {ushort, short}
857 // cast {sbyte, ubyte} to {int, uint, ptr}
858 // cast {short, ushort} to {int, uint, ptr}
859 //
860 // 4) cast {int, uint, ptr} to {short, ushort}
861 // cast {int, uint, ptr} to {sbyte, ubyte}
862 // cast {short, ushort} to {sbyte, ubyte}
Chris Lattner7d255892002-12-13 11:31:59 +0000863
Brian Gaeked474e9c2002-12-06 10:49:33 +0000864 // 1) Implement casts to bool by using compare on the operand followed
865 // by set if not zero on the result.
866 if (targetType == Type::BoolTy)
867 {
868 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
869 BuildMI (BB, X86::SETNEr, 1, destReg);
870 return;
871 }
Chris Lattner7d255892002-12-13 11:31:59 +0000872
Brian Gaeked474e9c2002-12-06 10:49:33 +0000873 // 2) Implement casts between values of the same type class (as determined
874 // by getClass) by using a register-to-register move.
Chris Lattner7d255892002-12-13 11:31:59 +0000875 unsigned srcClass = sourceType == Type::BoolTy ? cByte : getClass(sourceType);
876 unsigned targClass = getClass (targetType);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000877 static const unsigned regRegMove[] = {
878 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
879 };
880 if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
881 {
882 BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
883 return;
884 }
885 // 3) Handle cast of SMALLER int to LARGER int using a move with sign
886 // extension or zero extension, depending on whether the source type
887 // was signed.
888 if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
889 {
890 static const unsigned ops[] = {
891 X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
892 X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
893 };
894 unsigned srcSigned = sourceType->isSigned ();
895 BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
896 destReg).addReg (operandReg);
897 return;
898 }
899 // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
900 // followed by a move out of AX or AL.
901 if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
902 {
903 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
904 BuildMI (BB, regRegMove[srcClass], 1,
905 AReg[srcClass]).addReg (operandReg);
906 BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
907 return;
908 }
909 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaeke20244b72002-12-12 15:33:40 +0000910 //
911 // FP to integral casts can be handled with FISTP to store onto the
912 // stack while converting to integer, followed by a MOV to load from
913 // the stack into the result register. Integral to FP casts can be
914 // handled with MOV to store onto the stack, followed by a FILD to
915 // load from the stack while converting to FP. For the moment, I
916 // can't quite get straight in my head how to borrow myself some
917 // stack space and write on it. Otherwise, this would be trivial.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000918 visitInstruction (CI);
919}
Brian Gaekea1719c92002-10-31 23:03:59 +0000920
Brian Gaeke20244b72002-12-12 15:33:40 +0000921/// visitGetElementPtrInst - I don't know, most programs don't have
922/// getelementptr instructions, right? That means we can put off
923/// implementing this, right? Right. This method emits machine
924/// instructions to perform type-safe pointer arithmetic. I am
925/// guessing this could be cleaned up somewhat to use fewer temporary
926/// registers.
927void
928ISel::visitGetElementPtrInst (GetElementPtrInst &I)
929{
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000930 MachineBasicBlock::iterator MI = BB->end();
931 emitGEPOperation(BB, MI, I.getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000932 I.op_begin()+1, I.op_end(), getReg(I));
Chris Lattnerc0812d82002-12-13 06:56:29 +0000933}
934
Brian Gaeke71794c02002-12-13 11:22:48 +0000935void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000936 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000937 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000938 User::op_iterator IdxEnd, unsigned TargetReg) {
939 const TargetData &TD = TM.getTargetData();
940 const Type *Ty = Src->getType();
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000941 unsigned basePtrReg = getReg(Src, BB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000942
Brian Gaeke20244b72002-12-12 15:33:40 +0000943 // GEPs have zero or more indices; we must perform a struct access
944 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000945 for (GetElementPtrInst::op_iterator oi = IdxBegin,
946 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000947 Value *idx = *oi;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000948 unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000949 if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
950 // It's a struct access. idx is the index into the structure,
951 // which names the field. This index must have ubyte type.
952 const ConstantUInt *CUI = cast <ConstantUInt> (idx);
953 assert (CUI->getType () == Type::UByteTy
954 && "Funny-looking structure index in GEP");
955 // Use the TargetData structure to pick out what the layout of
956 // the structure is in memory. Since the structure index must
957 // be constant, we can get its value and use it to find the
958 // right byte offset from the StructLayout class's list of
959 // structure member offsets.
960 unsigned idxValue = CUI->getValue ();
961 unsigned memberOffset =
962 TD.getStructLayout (StTy)->MemberOffsets[idxValue];
963 // Emit an ADD to add memberOffset to the basePtr.
Brian Gaeke71794c02002-12-13 11:22:48 +0000964 BMI(MBB, IP, X86::ADDri32, 2,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000965 nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
Brian Gaeke20244b72002-12-12 15:33:40 +0000966 // The next type is the member of the structure selected by the
967 // index.
968 Ty = StTy->getElementTypes ()[idxValue];
969 } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
970 // It's an array or pointer access: [ArraySize x ElementType].
Brian Gaeke20244b72002-12-12 15:33:40 +0000971 const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
972 // idx is the index into the array. Unlike with structure
973 // indices, we may not know its actual value at code-generation
974 // time.
975 assert (idx->getType () == typeOfSequentialTypeIndex
976 && "Funny-looking array index in GEP");
977 // We want to add basePtrReg to (idxReg * sizeof
978 // ElementType). First, we must find the size of the pointed-to
979 // type. (Not coincidentally, the next type is the type of the
980 // elements in the array.)
981 Ty = SqTy->getElementType ();
982 unsigned elementSize = TD.getTypeSize (Ty);
Brian Gaeke71794c02002-12-13 11:22:48 +0000983 unsigned elementSizeReg = makeAnotherReg(typeOfSequentialTypeIndex);
984 copyConstantToRegister(ConstantSInt::get(typeOfSequentialTypeIndex,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000985 elementSize), elementSizeReg,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000986 BB, IP);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000987
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000988 unsigned idxReg = getReg(idx, BB, IP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000989 // Emit a MUL to multiply the register holding the index by
990 // elementSize, putting the result in memberOffsetReg.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000991 unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000992 doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000993 elementSizeReg, idxReg, BB, IP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000994 // Emit an ADD to add memberOffsetReg to the basePtr.
Brian Gaeke71794c02002-12-13 11:22:48 +0000995 BMI(MBB, IP, X86::ADDrr32, 2,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000996 nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000997 }
998 // Now that we are here, further indices refer to subtypes of this
999 // one, so we don't need to worry about basePtrReg itself, anymore.
1000 basePtrReg = nextBasePtrReg;
1001 }
1002 // After we have processed all the indices, the result is left in
1003 // basePtrReg. Move it to the register where we were expected to
1004 // put the answer. A 32-bit move should do it, because we are in
1005 // ILP32 land.
Brian Gaeke71794c02002-12-13 11:22:48 +00001006 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001007}
1008
1009
1010/// visitMallocInst - I know that personally, whenever I want to remember
1011/// something, I have to clear off some space in my brain.
1012void
1013ISel::visitMallocInst (MallocInst &I)
1014{
Brian Gaekee48ec012002-12-13 06:46:31 +00001015 // We assume that by this point, malloc instructions have been
1016 // lowered to calls, and dlsym will magically find malloc for us.
1017 // So we do not want to see malloc instructions here.
1018 visitInstruction (I);
1019}
1020
1021
1022/// visitFreeInst - same story as MallocInst
1023void
1024ISel::visitFreeInst (FreeInst &I)
1025{
1026 // We assume that by this point, free instructions have been
1027 // lowered to calls, and dlsym will magically find free for us.
1028 // So we do not want to see free instructions here.
Brian Gaeke20244b72002-12-12 15:33:40 +00001029 visitInstruction (I);
1030}
1031
1032
1033/// visitAllocaInst - I want some stack space. Come on, man, I said I
1034/// want some freakin' stack space.
1035void
1036ISel::visitAllocaInst (AllocaInst &I)
1037{
Brian Gaekee48ec012002-12-13 06:46:31 +00001038 // Find the data size of the alloca inst's getAllocatedType.
1039 const Type *allocatedType = I.getAllocatedType ();
1040 const TargetData &TD = TM.DataLayout;
1041 unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
1042 // Keep stack 32-bit aligned.
1043 unsigned int allocatedTypeWords = allocatedTypeSize / 4;
1044 if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
1045 // Subtract size from stack pointer, thereby allocating some space.
1046 BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
1047 // Put a pointer to the space into the result register, by copying
1048 // the stack pointer.
1049 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
Brian Gaeke20244b72002-12-12 15:33:40 +00001050}
1051
1052
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001053/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1054/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001055/// generated code sucks but the implementation is nice and simple.
1056///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001057Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1058 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001059}