blob: deea0004d503d5ebee0c9e1cb3311519825c7296 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000130bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
134}
135
Dan Gohman70a1fe72009-05-18 15:22:39 +0000136bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
140}
Chris Lattner53e677a2004-04-02 20:23:17 +0000141
Dan Gohman4d289bf2009-06-24 00:30:26 +0000142bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
146}
147
Owen Anderson753ad612009-06-22 21:57:23 +0000148SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000149 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000150
Chris Lattner53e677a2004-04-02 20:23:17 +0000151bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000158 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000159}
160
161bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000163 return false;
164}
165
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000166bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
167 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
168 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000169}
170
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000171void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000172 OS << "***COULDNOTCOMPUTE***";
173}
174
175bool SCEVCouldNotCompute::classof(const SCEV *S) {
176 return S->getSCEVType() == scCouldNotCompute;
177}
178
Dan Gohman0bba49c2009-07-07 17:06:11 +0000179const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000180 FoldingSetNodeID ID;
181 ID.AddInteger(scConstant);
182 ID.AddPointer(V);
183 void *IP = 0;
184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000185 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000186 UniqueSCEVs.InsertNode(S, IP);
187 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188}
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Dan Gohman0bba49c2009-07-07 17:06:11 +0000190const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000191 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000192}
193
Dan Gohman0bba49c2009-07-07 17:06:11 +0000194const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000195ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000196 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
197 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000198}
199
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000200const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000201
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000202void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000203 WriteAsOperand(OS, V, false);
204}
Chris Lattner53e677a2004-04-02 20:23:17 +0000205
Dan Gohman3bf63762010-06-18 19:54:20 +0000206SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000207 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000208 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000209
Dan Gohman84923602009-04-21 01:25:57 +0000210bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->dominates(BB, DT);
212}
213
Dan Gohman6e70e312009-09-27 15:26:03 +0000214bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
215 return Op->properlyDominates(BB, DT);
216}
217
Dan Gohman3bf63762010-06-18 19:54:20 +0000218SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000219 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000220 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000221 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
222 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224}
Chris Lattner53e677a2004-04-02 20:23:17 +0000225
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000226void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000227 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000228}
229
Dan Gohman3bf63762010-06-18 19:54:20 +0000230SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000231 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000232 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000233 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
234 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236}
237
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000238void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000239 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000240}
241
Dan Gohman3bf63762010-06-18 19:54:20 +0000242SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000243 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000244 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000245 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
246 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000247 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000248}
249
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000252}
253
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000254void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000255 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000256 OS << "(";
257 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
258 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000259 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000260 OS << OpStr;
261 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000262 OS << ")";
263}
264
Dan Gohmanecb403a2009-05-07 14:00:19 +0000265bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000266 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
267 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000268 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000269 return true;
270}
271
Dan Gohman6e70e312009-09-27 15:26:03 +0000272bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000273 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
274 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000275 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000276 return true;
277}
278
Dan Gohman2f199f92010-08-16 16:21:27 +0000279bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
280 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
281 if (!(*I)->isLoopInvariant(L))
282 return false;
283 return true;
284}
285
286// hasComputableLoopEvolution - N-ary expressions have computable loop
287// evolutions iff they have at least one operand that varies with the loop,
288// but that all varying operands are computable.
289bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
290 bool HasVarying = false;
291 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
292 const SCEV *S = *I;
293 if (!S->isLoopInvariant(L)) {
294 if (S->hasComputableLoopEvolution(L))
295 HasVarying = true;
296 else
297 return false;
298 }
299 }
300 return HasVarying;
301}
302
303bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
304 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
305 const SCEV *S = *I;
306 if (O == S || S->hasOperand(O))
307 return true;
308 }
309 return false;
310}
311
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000312bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
314}
315
Dan Gohman6e70e312009-09-27 15:26:03 +0000316bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
317 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
318}
319
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000320void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000321 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322}
323
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000324const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000325 // In most cases the types of LHS and RHS will be the same, but in some
326 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
327 // depend on the type for correctness, but handling types carefully can
328 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
329 // a pointer type than the RHS, so use the RHS' type here.
330 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000331}
332
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000333bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000334 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 if (!QueryLoop)
336 return false;
337
338 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000339 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000340 return false;
341
Dan Gohman71c41442010-08-13 20:11:39 +0000342 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
343 if (L->contains(QueryLoop))
344 return true;
345
Dan Gohmane890eea2009-06-26 22:17:21 +0000346 // This recurrence is variant w.r.t. QueryLoop if any of its operands
347 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000348 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
349 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000350 return false;
351
352 // Otherwise it's loop-invariant.
353 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000354}
355
Dan Gohman39125d82010-02-13 00:19:39 +0000356bool
357SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
358 return DT->dominates(L->getHeader(), BB) &&
359 SCEVNAryExpr::dominates(BB, DT);
360}
361
362bool
363SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
364 // This uses a "dominates" query instead of "properly dominates" query because
365 // the instruction which produces the addrec's value is a PHI, and a PHI
366 // effectively properly dominates its entire containing block.
367 return DT->dominates(L->getHeader(), BB) &&
368 SCEVNAryExpr::properlyDominates(BB, DT);
369}
370
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000371void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000372 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000373 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000374 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000375 OS << "}<";
376 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
377 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000378}
Chris Lattner53e677a2004-04-02 20:23:17 +0000379
Dan Gohmanab37f502010-08-02 23:49:30 +0000380void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000381 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000382 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000383 SE->UnsignedRanges.erase(this);
384 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000385
386 // Remove this SCEVUnknown from the uniquing map.
387 SE->UniqueSCEVs.RemoveNode(this);
388
389 // Release the value.
390 setValPtr(0);
391}
392
393void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000394 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000395 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000396 SE->UnsignedRanges.erase(this);
397 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000398
399 // Remove this SCEVUnknown from the uniquing map.
400 SE->UniqueSCEVs.RemoveNode(this);
401
402 // Update this SCEVUnknown to point to the new value. This is needed
403 // because there may still be outstanding SCEVs which still point to
404 // this SCEVUnknown.
405 setValPtr(New);
406}
407
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000408bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
409 // All non-instruction values are loop invariant. All instructions are loop
410 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000411 // Instructions are never considered invariant in the function body
412 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000413 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000414 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000415 return true;
416}
Chris Lattner53e677a2004-04-02 20:23:17 +0000417
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419 if (Instruction *I = dyn_cast<Instruction>(getValue()))
420 return DT->dominates(I->getParent(), BB);
421 return true;
422}
423
Dan Gohman6e70e312009-09-27 15:26:03 +0000424bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
425 if (Instruction *I = dyn_cast<Instruction>(getValue()))
426 return DT->properlyDominates(I->getParent(), BB);
427 return true;
428}
429
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000430const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000431 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000432}
Chris Lattner53e677a2004-04-02 20:23:17 +0000433
Dan Gohman0f5efe52010-01-28 02:15:55 +0000434bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000435 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000436 if (VCE->getOpcode() == Instruction::PtrToInt)
437 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000438 if (CE->getOpcode() == Instruction::GetElementPtr &&
439 CE->getOperand(0)->isNullValue() &&
440 CE->getNumOperands() == 2)
441 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
442 if (CI->isOne()) {
443 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
444 ->getElementType();
445 return true;
446 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000447
448 return false;
449}
450
451bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000452 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000453 if (VCE->getOpcode() == Instruction::PtrToInt)
454 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000455 if (CE->getOpcode() == Instruction::GetElementPtr &&
456 CE->getOperand(0)->isNullValue()) {
457 const Type *Ty =
458 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
459 if (const StructType *STy = dyn_cast<StructType>(Ty))
460 if (!STy->isPacked() &&
461 CE->getNumOperands() == 3 &&
462 CE->getOperand(1)->isNullValue()) {
463 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
464 if (CI->isOne() &&
465 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000466 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000467 AllocTy = STy->getElementType(1);
468 return true;
469 }
470 }
471 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000472
473 return false;
474}
475
Dan Gohman4f8eea82010-02-01 18:27:38 +0000476bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000477 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000478 if (VCE->getOpcode() == Instruction::PtrToInt)
479 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
480 if (CE->getOpcode() == Instruction::GetElementPtr &&
481 CE->getNumOperands() == 3 &&
482 CE->getOperand(0)->isNullValue() &&
483 CE->getOperand(1)->isNullValue()) {
484 const Type *Ty =
485 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
486 // Ignore vector types here so that ScalarEvolutionExpander doesn't
487 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000488 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000489 CTy = Ty;
490 FieldNo = CE->getOperand(2);
491 return true;
492 }
493 }
494
495 return false;
496}
497
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000498void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000499 const Type *AllocTy;
500 if (isSizeOf(AllocTy)) {
501 OS << "sizeof(" << *AllocTy << ")";
502 return;
503 }
504 if (isAlignOf(AllocTy)) {
505 OS << "alignof(" << *AllocTy << ")";
506 return;
507 }
508
Dan Gohman4f8eea82010-02-01 18:27:38 +0000509 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000510 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000511 if (isOffsetOf(CTy, FieldNo)) {
512 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000513 WriteAsOperand(OS, FieldNo, false);
514 OS << ")";
515 return;
516 }
517
518 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000519 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000520}
521
Chris Lattner8d741b82004-06-20 06:23:15 +0000522//===----------------------------------------------------------------------===//
523// SCEV Utilities
524//===----------------------------------------------------------------------===//
525
526namespace {
527 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
528 /// than the complexity of the RHS. This comparator is used to canonicalize
529 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000530 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000531 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000532 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000533 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000536 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return compare(LHS, RHS) < 0;
538 }
539
540 // Return negative, zero, or positive, if LHS is less than, equal to, or
541 // greater than RHS, respectively. A three-way result allows recursive
542 // comparisons to be more efficient.
543 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000544 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
545 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000547
Dan Gohman72861302009-05-07 14:39:04 +0000548 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000549 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
550 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000552
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 // Aside from the getSCEVType() ordering, the particular ordering
554 // isn't very important except that it's beneficial to be consistent,
555 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000556 switch (LType) {
557 case scUnknown: {
558 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000559 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560
561 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
562 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000563 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000564
565 // Order pointer values after integer values. This helps SCEVExpander
566 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000567 bool LIsPointer = LV->getType()->isPointerTy(),
568 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000569 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000570 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000571
572 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000573 unsigned LID = LV->getValueID(),
574 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000575 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577
578 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000579 if (const Argument *LA = dyn_cast<Argument>(LV)) {
580 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 }
584
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585 // For instructions, compare their loop depth, and their operand
586 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000587 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
588 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000589
590 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000591 const BasicBlock *LParent = LInst->getParent(),
592 *RParent = RInst->getParent();
593 if (LParent != RParent) {
594 unsigned LDepth = LI->getLoopDepth(LParent),
595 RDepth = LI->getLoopDepth(RParent);
596 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000598 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000599
600 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000601 unsigned LNumOps = LInst->getNumOperands(),
602 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000604 }
605
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 }
608
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 case scConstant: {
610 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000612
613 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000614 const APInt &LA = LC->getValue()->getValue();
615 const APInt &RA = RC->getValue()->getValue();
616 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000617 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000618 return (int)LBitWidth - (int)RBitWidth;
619 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000620 }
621
Dan Gohman67ef74e2010-08-27 15:26:01 +0000622 case scAddRecExpr: {
623 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000624 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000627 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
628 if (LLoop != RLoop) {
629 unsigned LDepth = LLoop->getLoopDepth(),
630 RDepth = RLoop->getLoopDepth();
631 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000632 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000633 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000634
635 // Addrec complexity grows with operand count.
636 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
637 if (LNumOps != RNumOps)
638 return (int)LNumOps - (int)RNumOps;
639
640 // Lexicographically compare.
641 for (unsigned i = 0; i != LNumOps; ++i) {
642 long X = compare(LA->getOperand(i), RA->getOperand(i));
643 if (X != 0)
644 return X;
645 }
646
647 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000648 }
649
Dan Gohman67ef74e2010-08-27 15:26:01 +0000650 case scAddExpr:
651 case scMulExpr:
652 case scSMaxExpr:
653 case scUMaxExpr: {
654 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000655 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000656
657 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000658 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
659 for (unsigned i = 0; i != LNumOps; ++i) {
660 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000661 return 1;
662 long X = compare(LC->getOperand(i), RC->getOperand(i));
663 if (X != 0)
664 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000665 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000666 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000667 }
668
Dan Gohman67ef74e2010-08-27 15:26:01 +0000669 case scUDivExpr: {
670 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000671 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000672
673 // Lexicographically compare udiv expressions.
674 long X = compare(LC->getLHS(), RC->getLHS());
675 if (X != 0)
676 return X;
677 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000678 }
679
Dan Gohman67ef74e2010-08-27 15:26:01 +0000680 case scTruncate:
681 case scZeroExtend:
682 case scSignExtend: {
683 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000684 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000685
686 // Compare cast expressions by operand.
687 return compare(LC->getOperand(), RC->getOperand());
688 }
689
690 default:
691 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000692 }
693
694 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000695 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000696 }
697 };
698}
699
700/// GroupByComplexity - Given a list of SCEV objects, order them by their
701/// complexity, and group objects of the same complexity together by value.
702/// When this routine is finished, we know that any duplicates in the vector are
703/// consecutive and that complexity is monotonically increasing.
704///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000705/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000706/// results from this routine. In other words, we don't want the results of
707/// this to depend on where the addresses of various SCEV objects happened to
708/// land in memory.
709///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000710static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000711 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000712 if (Ops.size() < 2) return; // Noop
713 if (Ops.size() == 2) {
714 // This is the common case, which also happens to be trivially simple.
715 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000716 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
717 if (SCEVComplexityCompare(LI)(RHS, LHS))
718 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000719 return;
720 }
721
Dan Gohman3bf63762010-06-18 19:54:20 +0000722 // Do the rough sort by complexity.
723 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
724
725 // Now that we are sorted by complexity, group elements of the same
726 // complexity. Note that this is, at worst, N^2, but the vector is likely to
727 // be extremely short in practice. Note that we take this approach because we
728 // do not want to depend on the addresses of the objects we are grouping.
729 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
730 const SCEV *S = Ops[i];
731 unsigned Complexity = S->getSCEVType();
732
733 // If there are any objects of the same complexity and same value as this
734 // one, group them.
735 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
736 if (Ops[j] == S) { // Found a duplicate.
737 // Move it to immediately after i'th element.
738 std::swap(Ops[i+1], Ops[j]);
739 ++i; // no need to rescan it.
740 if (i == e-2) return; // Done!
741 }
742 }
743 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000744}
745
Chris Lattner53e677a2004-04-02 20:23:17 +0000746
Chris Lattner53e677a2004-04-02 20:23:17 +0000747
748//===----------------------------------------------------------------------===//
749// Simple SCEV method implementations
750//===----------------------------------------------------------------------===//
751
Eli Friedmanb42a6262008-08-04 23:49:06 +0000752/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000753/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000754static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000755 ScalarEvolution &SE,
756 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000757 // Handle the simplest case efficiently.
758 if (K == 1)
759 return SE.getTruncateOrZeroExtend(It, ResultTy);
760
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000761 // We are using the following formula for BC(It, K):
762 //
763 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
764 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // Suppose, W is the bitwidth of the return value. We must be prepared for
766 // overflow. Hence, we must assure that the result of our computation is
767 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
768 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000769 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000770 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000771 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000772 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
773 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000774 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777 // This formula is trivially equivalent to the previous formula. However,
778 // this formula can be implemented much more efficiently. The trick is that
779 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
780 // arithmetic. To do exact division in modular arithmetic, all we have
781 // to do is multiply by the inverse. Therefore, this step can be done at
782 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000783 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000784 // The next issue is how to safely do the division by 2^T. The way this
785 // is done is by doing the multiplication step at a width of at least W + T
786 // bits. This way, the bottom W+T bits of the product are accurate. Then,
787 // when we perform the division by 2^T (which is equivalent to a right shift
788 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
789 // truncated out after the division by 2^T.
790 //
791 // In comparison to just directly using the first formula, this technique
792 // is much more efficient; using the first formula requires W * K bits,
793 // but this formula less than W + K bits. Also, the first formula requires
794 // a division step, whereas this formula only requires multiplies and shifts.
795 //
796 // It doesn't matter whether the subtraction step is done in the calculation
797 // width or the input iteration count's width; if the subtraction overflows,
798 // the result must be zero anyway. We prefer here to do it in the width of
799 // the induction variable because it helps a lot for certain cases; CodeGen
800 // isn't smart enough to ignore the overflow, which leads to much less
801 // efficient code if the width of the subtraction is wider than the native
802 // register width.
803 //
804 // (It's possible to not widen at all by pulling out factors of 2 before
805 // the multiplication; for example, K=2 can be calculated as
806 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
807 // extra arithmetic, so it's not an obvious win, and it gets
808 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000809
Eli Friedmanb42a6262008-08-04 23:49:06 +0000810 // Protection from insane SCEVs; this bound is conservative,
811 // but it probably doesn't matter.
812 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000813 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000814
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000815 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000816
Eli Friedmanb42a6262008-08-04 23:49:06 +0000817 // Calculate K! / 2^T and T; we divide out the factors of two before
818 // multiplying for calculating K! / 2^T to avoid overflow.
819 // Other overflow doesn't matter because we only care about the bottom
820 // W bits of the result.
821 APInt OddFactorial(W, 1);
822 unsigned T = 1;
823 for (unsigned i = 3; i <= K; ++i) {
824 APInt Mult(W, i);
825 unsigned TwoFactors = Mult.countTrailingZeros();
826 T += TwoFactors;
827 Mult = Mult.lshr(TwoFactors);
828 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000829 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000830
Eli Friedmanb42a6262008-08-04 23:49:06 +0000831 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000832 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000833
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000834 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000835 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
836
837 // Calculate the multiplicative inverse of K! / 2^T;
838 // this multiplication factor will perform the exact division by
839 // K! / 2^T.
840 APInt Mod = APInt::getSignedMinValue(W+1);
841 APInt MultiplyFactor = OddFactorial.zext(W+1);
842 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
843 MultiplyFactor = MultiplyFactor.trunc(W);
844
845 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000846 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
847 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000848 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000849 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000850 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000851 Dividend = SE.getMulExpr(Dividend,
852 SE.getTruncateOrZeroExtend(S, CalculationTy));
853 }
854
855 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000857
858 // Truncate the result, and divide by K! / 2^T.
859
860 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
861 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000862}
863
Chris Lattner53e677a2004-04-02 20:23:17 +0000864/// evaluateAtIteration - Return the value of this chain of recurrences at
865/// the specified iteration number. We can evaluate this recurrence by
866/// multiplying each element in the chain by the binomial coefficient
867/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
868///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000869/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000870///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000871/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000872///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000873const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000874 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000877 // The computation is correct in the face of overflow provided that the
878 // multiplication is performed _after_ the evaluation of the binomial
879 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000880 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000881 if (isa<SCEVCouldNotCompute>(Coeff))
882 return Coeff;
883
884 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 }
886 return Result;
887}
888
Chris Lattner53e677a2004-04-02 20:23:17 +0000889//===----------------------------------------------------------------------===//
890// SCEV Expression folder implementations
891//===----------------------------------------------------------------------===//
892
Dan Gohman0bba49c2009-07-07 17:06:11 +0000893const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000894 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000895 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000896 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000897 assert(isSCEVable(Ty) &&
898 "This is not a conversion to a SCEVable type!");
899 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000900
Dan Gohmanc050fd92009-07-13 20:50:19 +0000901 FoldingSetNodeID ID;
902 ID.AddInteger(scTruncate);
903 ID.AddPointer(Op);
904 ID.AddPointer(Ty);
905 void *IP = 0;
906 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
907
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000908 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000910 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000911 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
912 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000913
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000915 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 return getTruncateExpr(ST->getOperand(), Ty);
917
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000918 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000919 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000920 return getTruncateOrSignExtend(SS->getOperand(), Ty);
921
922 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000924 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
925
Dan Gohman6864db62009-06-18 16:24:47 +0000926 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000927 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000928 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000929 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000930 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
931 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 }
933
Dan Gohmanf53462d2010-07-15 20:02:11 +0000934 // As a special case, fold trunc(undef) to undef. We don't want to
935 // know too much about SCEVUnknowns, but this special case is handy
936 // and harmless.
937 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
938 if (isa<UndefValue>(U->getValue()))
939 return getSCEV(UndefValue::get(Ty));
940
Dan Gohman420ab912010-06-25 18:47:08 +0000941 // The cast wasn't folded; create an explicit cast node. We can reuse
942 // the existing insert position since if we get here, we won't have
943 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000944 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
945 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000946 UniqueSCEVs.InsertNode(S, IP);
947 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000948}
949
Dan Gohman0bba49c2009-07-07 17:06:11 +0000950const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000951 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000952 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000953 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000954 assert(isSCEVable(Ty) &&
955 "This is not a conversion to a SCEVable type!");
956 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000957
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000958 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000959 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
960 return getConstant(
961 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
962 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000963
Dan Gohman20900ca2009-04-22 16:20:48 +0000964 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000965 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000966 return getZeroExtendExpr(SZ->getOperand(), Ty);
967
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000968 // Before doing any expensive analysis, check to see if we've already
969 // computed a SCEV for this Op and Ty.
970 FoldingSetNodeID ID;
971 ID.AddInteger(scZeroExtend);
972 ID.AddPointer(Op);
973 ID.AddPointer(Ty);
974 void *IP = 0;
975 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
976
Dan Gohman01ecca22009-04-27 20:16:15 +0000977 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000978 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000979 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000980 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000982 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000983 const SCEV *Start = AR->getStart();
984 const SCEV *Step = AR->getStepRecurrence(*this);
985 unsigned BitWidth = getTypeSizeInBits(AR->getType());
986 const Loop *L = AR->getLoop();
987
Dan Gohmaneb490a72009-07-25 01:22:26 +0000988 // If we have special knowledge that this addrec won't overflow,
989 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000990 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getZeroExtendExpr(Step, Ty),
993 L);
994
Dan Gohman01ecca22009-04-27 20:16:15 +0000995 // Check whether the backedge-taken count is SCEVCouldNotCompute.
996 // Note that this serves two purposes: It filters out loops that are
997 // simply not analyzable, and it covers the case where this code is
998 // being called from within backedge-taken count analysis, such that
999 // attempting to ask for the backedge-taken count would likely result
1000 // in infinite recursion. In the later case, the analysis code will
1001 // cope with a conservative value, and it will take care to purge
1002 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001003 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001004 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001005 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001006 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001007
1008 // Check whether the backedge-taken count can be losslessly casted to
1009 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001010 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001011 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001012 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001013 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1014 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001015 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001016 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001017 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001018 const SCEV *Add = getAddExpr(Start, ZMul);
1019 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001020 getAddExpr(getZeroExtendExpr(Start, WideTy),
1021 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1022 getZeroExtendExpr(Step, WideTy)));
1023 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001024 // Return the expression with the addrec on the outside.
1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001028
1029 // Similar to above, only this time treat the step value as signed.
1030 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001031 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001032 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001033 OperandExtendedAdd =
1034 getAddExpr(getZeroExtendExpr(Start, WideTy),
1035 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1036 getSignExtendExpr(Step, WideTy)));
1037 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001038 // Return the expression with the addrec on the outside.
1039 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001041 L);
1042 }
1043
1044 // If the backedge is guarded by a comparison with the pre-inc value
1045 // the addrec is safe. Also, if the entry is guarded by a comparison
1046 // with the start value and the backedge is guarded by a comparison
1047 // with the post-inc value, the addrec is safe.
1048 if (isKnownPositive(Step)) {
1049 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1050 getUnsignedRange(Step).getUnsignedMax());
1051 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001052 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001053 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1054 AR->getPostIncExpr(*this), N)))
1055 // Return the expression with the addrec on the outside.
1056 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1057 getZeroExtendExpr(Step, Ty),
1058 L);
1059 } else if (isKnownNegative(Step)) {
1060 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1061 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001062 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1063 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001064 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1065 AR->getPostIncExpr(*this), N)))
1066 // Return the expression with the addrec on the outside.
1067 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1068 getSignExtendExpr(Step, Ty),
1069 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001070 }
1071 }
1072 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001073
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001074 // The cast wasn't folded; create an explicit cast node.
1075 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001076 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001077 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1078 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001079 UniqueSCEVs.InsertNode(S, IP);
1080 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001081}
1082
Dan Gohman0bba49c2009-07-07 17:06:11 +00001083const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001084 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001085 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001086 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001087 assert(isSCEVable(Ty) &&
1088 "This is not a conversion to a SCEVable type!");
1089 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001090
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001091 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001092 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1093 return getConstant(
1094 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1095 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001096
Dan Gohman20900ca2009-04-22 16:20:48 +00001097 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001098 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001099 return getSignExtendExpr(SS->getOperand(), Ty);
1100
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001101 // Before doing any expensive analysis, check to see if we've already
1102 // computed a SCEV for this Op and Ty.
1103 FoldingSetNodeID ID;
1104 ID.AddInteger(scSignExtend);
1105 ID.AddPointer(Op);
1106 ID.AddPointer(Ty);
1107 void *IP = 0;
1108 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1109
Dan Gohman01ecca22009-04-27 20:16:15 +00001110 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001111 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001112 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001113 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001114 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001115 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001116 const SCEV *Start = AR->getStart();
1117 const SCEV *Step = AR->getStepRecurrence(*this);
1118 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1119 const Loop *L = AR->getLoop();
1120
Dan Gohmaneb490a72009-07-25 01:22:26 +00001121 // If we have special knowledge that this addrec won't overflow,
1122 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001123 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001124 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125 getSignExtendExpr(Step, Ty),
1126 L);
1127
Dan Gohman01ecca22009-04-27 20:16:15 +00001128 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1129 // Note that this serves two purposes: It filters out loops that are
1130 // simply not analyzable, and it covers the case where this code is
1131 // being called from within backedge-taken count analysis, such that
1132 // attempting to ask for the backedge-taken count would likely result
1133 // in infinite recursion. In the later case, the analysis code will
1134 // cope with a conservative value, and it will take care to purge
1135 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001136 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001137 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001138 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001139 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001140
1141 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001142 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001143 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001144 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001145 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001146 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1147 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001148 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001149 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001150 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *Add = getAddExpr(Start, SMul);
1152 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001153 getAddExpr(getSignExtendExpr(Start, WideTy),
1154 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1155 getSignExtendExpr(Step, WideTy)));
1156 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001157 // Return the expression with the addrec on the outside.
1158 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1159 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001160 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001161
1162 // Similar to above, only this time treat the step value as unsigned.
1163 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001164 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001165 Add = getAddExpr(Start, UMul);
1166 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001167 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001168 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1169 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001170 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001171 // Return the expression with the addrec on the outside.
1172 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1173 getZeroExtendExpr(Step, Ty),
1174 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001175 }
1176
1177 // If the backedge is guarded by a comparison with the pre-inc value
1178 // the addrec is safe. Also, if the entry is guarded by a comparison
1179 // with the start value and the backedge is guarded by a comparison
1180 // with the post-inc value, the addrec is safe.
1181 if (isKnownPositive(Step)) {
1182 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1183 getSignedRange(Step).getSignedMax());
1184 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001185 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001186 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1187 AR->getPostIncExpr(*this), N)))
1188 // Return the expression with the addrec on the outside.
1189 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1190 getSignExtendExpr(Step, Ty),
1191 L);
1192 } else if (isKnownNegative(Step)) {
1193 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1194 getSignedRange(Step).getSignedMin());
1195 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001196 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001197 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1198 AR->getPostIncExpr(*this), N)))
1199 // Return the expression with the addrec on the outside.
1200 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1201 getSignExtendExpr(Step, Ty),
1202 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 }
1204 }
1205 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001206
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001207 // The cast wasn't folded; create an explicit cast node.
1208 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001209 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001210 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1211 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001212 UniqueSCEVs.InsertNode(S, IP);
1213 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001214}
1215
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001216/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1217/// unspecified bits out to the given type.
1218///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001219const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001220 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001221 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1222 "This is not an extending conversion!");
1223 assert(isSCEVable(Ty) &&
1224 "This is not a conversion to a SCEVable type!");
1225 Ty = getEffectiveSCEVType(Ty);
1226
1227 // Sign-extend negative constants.
1228 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1229 if (SC->getValue()->getValue().isNegative())
1230 return getSignExtendExpr(Op, Ty);
1231
1232 // Peel off a truncate cast.
1233 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001234 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001235 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1236 return getAnyExtendExpr(NewOp, Ty);
1237 return getTruncateOrNoop(NewOp, Ty);
1238 }
1239
1240 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001242 if (!isa<SCEVZeroExtendExpr>(ZExt))
1243 return ZExt;
1244
1245 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001246 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001247 if (!isa<SCEVSignExtendExpr>(SExt))
1248 return SExt;
1249
Dan Gohmana10756e2010-01-21 02:09:26 +00001250 // Force the cast to be folded into the operands of an addrec.
1251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1252 SmallVector<const SCEV *, 4> Ops;
1253 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1254 I != E; ++I)
1255 Ops.push_back(getAnyExtendExpr(*I, Ty));
1256 return getAddRecExpr(Ops, AR->getLoop());
1257 }
1258
Dan Gohmanf53462d2010-07-15 20:02:11 +00001259 // As a special case, fold anyext(undef) to undef. We don't want to
1260 // know too much about SCEVUnknowns, but this special case is handy
1261 // and harmless.
1262 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1263 if (isa<UndefValue>(U->getValue()))
1264 return getSCEV(UndefValue::get(Ty));
1265
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001266 // If the expression is obviously signed, use the sext cast value.
1267 if (isa<SCEVSMaxExpr>(Op))
1268 return SExt;
1269
1270 // Absent any other information, use the zext cast value.
1271 return ZExt;
1272}
1273
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001274/// CollectAddOperandsWithScales - Process the given Ops list, which is
1275/// a list of operands to be added under the given scale, update the given
1276/// map. This is a helper function for getAddRecExpr. As an example of
1277/// what it does, given a sequence of operands that would form an add
1278/// expression like this:
1279///
1280/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1281///
1282/// where A and B are constants, update the map with these values:
1283///
1284/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1285///
1286/// and add 13 + A*B*29 to AccumulatedConstant.
1287/// This will allow getAddRecExpr to produce this:
1288///
1289/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1290///
1291/// This form often exposes folding opportunities that are hidden in
1292/// the original operand list.
1293///
1294/// Return true iff it appears that any interesting folding opportunities
1295/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1296/// the common case where no interesting opportunities are present, and
1297/// is also used as a check to avoid infinite recursion.
1298///
1299static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001300CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1301 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001302 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001303 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001304 const APInt &Scale,
1305 ScalarEvolution &SE) {
1306 bool Interesting = false;
1307
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001308 // Iterate over the add operands. They are sorted, with constants first.
1309 unsigned i = 0;
1310 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1311 ++i;
1312 // Pull a buried constant out to the outside.
1313 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1314 Interesting = true;
1315 AccumulatedConstant += Scale * C->getValue()->getValue();
1316 }
1317
1318 // Next comes everything else. We're especially interested in multiplies
1319 // here, but they're in the middle, so just visit the rest with one loop.
1320 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001321 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1322 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1323 APInt NewScale =
1324 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1325 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1326 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001327 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001328 Interesting |=
1329 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001330 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001331 NewScale, SE);
1332 } else {
1333 // A multiplication of a constant with some other value. Update
1334 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1336 const SCEV *Key = SE.getMulExpr(MulOps);
1337 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001338 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001340 NewOps.push_back(Pair.first->first);
1341 } else {
1342 Pair.first->second += NewScale;
1343 // The map already had an entry for this value, which may indicate
1344 // a folding opportunity.
1345 Interesting = true;
1346 }
1347 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001348 } else {
1349 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001350 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001351 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001352 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001353 NewOps.push_back(Pair.first->first);
1354 } else {
1355 Pair.first->second += Scale;
1356 // The map already had an entry for this value, which may indicate
1357 // a folding opportunity.
1358 Interesting = true;
1359 }
1360 }
1361 }
1362
1363 return Interesting;
1364}
1365
1366namespace {
1367 struct APIntCompare {
1368 bool operator()(const APInt &LHS, const APInt &RHS) const {
1369 return LHS.ult(RHS);
1370 }
1371 };
1372}
1373
Dan Gohman6c0866c2009-05-24 23:45:28 +00001374/// getAddExpr - Get a canonical add expression, or something simpler if
1375/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001376const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1377 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001378 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001379 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001380#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001381 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001382 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001383 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001384 "SCEVAddExpr operand types don't match!");
1385#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001386
Dan Gohmana10756e2010-01-21 02:09:26 +00001387 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1388 if (!HasNUW && HasNSW) {
1389 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001390 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1391 E = Ops.end(); I != E; ++I)
1392 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001393 All = false;
1394 break;
1395 }
1396 if (All) HasNUW = true;
1397 }
1398
Chris Lattner53e677a2004-04-02 20:23:17 +00001399 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001400 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001401
1402 // If there are any constants, fold them together.
1403 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001404 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001406 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001407 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001409 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1410 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001411 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001412 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001413 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 }
1415
1416 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001417 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 Ops.erase(Ops.begin());
1419 --Idx;
1420 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001421
Dan Gohmanbca091d2010-04-12 23:08:18 +00001422 if (Ops.size() == 1) return Ops[0];
1423 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001424
Dan Gohman68ff7762010-08-27 21:39:59 +00001425 // Okay, check to see if the same value occurs in the operand list more than
1426 // once. If so, merge them together into an multiply expression. Since we
1427 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001428 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001429 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001430 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001432 // Scan ahead to count how many equal operands there are.
1433 unsigned Count = 2;
1434 while (i+Count != e && Ops[i+Count] == Ops[i])
1435 ++Count;
1436 // Merge the values into a multiply.
1437 const SCEV *Scale = getConstant(Ty, Count);
1438 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1439 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001440 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001441 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001442 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001443 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001444 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001445 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001446 if (FoundMatch)
1447 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001448
Dan Gohman728c7f32009-05-08 21:03:19 +00001449 // Check for truncates. If all the operands are truncated from the same
1450 // type, see if factoring out the truncate would permit the result to be
1451 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1452 // if the contents of the resulting outer trunc fold to something simple.
1453 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1454 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1455 const Type *DstType = Trunc->getType();
1456 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001457 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001458 bool Ok = true;
1459 // Check all the operands to see if they can be represented in the
1460 // source type of the truncate.
1461 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1462 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1463 if (T->getOperand()->getType() != SrcType) {
1464 Ok = false;
1465 break;
1466 }
1467 LargeOps.push_back(T->getOperand());
1468 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001469 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001470 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001471 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001472 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1473 if (const SCEVTruncateExpr *T =
1474 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1475 if (T->getOperand()->getType() != SrcType) {
1476 Ok = false;
1477 break;
1478 }
1479 LargeMulOps.push_back(T->getOperand());
1480 } else if (const SCEVConstant *C =
1481 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001482 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001483 } else {
1484 Ok = false;
1485 break;
1486 }
1487 }
1488 if (Ok)
1489 LargeOps.push_back(getMulExpr(LargeMulOps));
1490 } else {
1491 Ok = false;
1492 break;
1493 }
1494 }
1495 if (Ok) {
1496 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001497 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001498 // If it folds to something simple, use it. Otherwise, don't.
1499 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1500 return getTruncateExpr(Fold, DstType);
1501 }
1502 }
1503
1504 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1506 ++Idx;
1507
1508 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 if (Idx < Ops.size()) {
1510 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001511 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 // If we have an add, expand the add operands onto the end of the operands
1513 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001515 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 DeletedAdd = true;
1517 }
1518
1519 // If we deleted at least one add, we added operands to the end of the list,
1520 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001521 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001522 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001523 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 }
1525
1526 // Skip over the add expression until we get to a multiply.
1527 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1528 ++Idx;
1529
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001530 // Check to see if there are any folding opportunities present with
1531 // operands multiplied by constant values.
1532 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1533 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 DenseMap<const SCEV *, APInt> M;
1535 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001536 APInt AccumulatedConstant(BitWidth, 0);
1537 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001538 Ops.data(), Ops.size(),
1539 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001540 // Some interesting folding opportunity is present, so its worthwhile to
1541 // re-generate the operands list. Group the operands by constant scale,
1542 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001544 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001545 E = NewOps.end(); I != E; ++I)
1546 MulOpLists[M.find(*I)->second].push_back(*I);
1547 // Re-generate the operands list.
1548 Ops.clear();
1549 if (AccumulatedConstant != 0)
1550 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001551 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1552 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001553 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001554 Ops.push_back(getMulExpr(getConstant(I->first),
1555 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001556 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001557 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001558 if (Ops.size() == 1)
1559 return Ops[0];
1560 return getAddExpr(Ops);
1561 }
1562 }
1563
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 // If we are adding something to a multiply expression, make sure the
1565 // something is not already an operand of the multiply. If so, merge it into
1566 // the multiply.
1567 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001568 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001569 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001570 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001571 if (isa<SCEVConstant>(MulOpSCEV))
1572 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001574 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001576 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 if (Mul->getNumOperands() != 2) {
1578 // If the multiply has more than two operands, we must get the
1579 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001580 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1581 Mul->op_begin()+MulOp);
1582 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001583 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001585 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001586 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001587 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 if (Ops.size() == 2) return OuterMul;
1589 if (AddOp < Idx) {
1590 Ops.erase(Ops.begin()+AddOp);
1591 Ops.erase(Ops.begin()+Idx-1);
1592 } else {
1593 Ops.erase(Ops.begin()+Idx);
1594 Ops.erase(Ops.begin()+AddOp-1);
1595 }
1596 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001597 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001599
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 // Check this multiply against other multiplies being added together.
1601 for (unsigned OtherMulIdx = Idx+1;
1602 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1603 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001604 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If MulOp occurs in OtherMul, we can fold the two multiplies
1606 // together.
1607 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1608 OMulOp != e; ++OMulOp)
1609 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1610 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001611 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001613 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001614 Mul->op_begin()+MulOp);
1615 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001616 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001618 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001620 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001621 OtherMul->op_begin()+OMulOp);
1622 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001623 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001624 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001625 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1626 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001628 Ops.erase(Ops.begin()+Idx);
1629 Ops.erase(Ops.begin()+OtherMulIdx-1);
1630 Ops.push_back(OuterMul);
1631 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 }
1633 }
1634 }
1635 }
1636
1637 // If there are any add recurrences in the operands list, see if any other
1638 // added values are loop invariant. If so, we can fold them into the
1639 // recurrence.
1640 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1641 ++Idx;
1642
1643 // Scan over all recurrences, trying to fold loop invariants into them.
1644 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1645 // Scan all of the other operands to this add and add them to the vector if
1646 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001647 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001648 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001649 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001651 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 LIOps.push_back(Ops[i]);
1653 Ops.erase(Ops.begin()+i);
1654 --i; --e;
1655 }
1656
1657 // If we found some loop invariants, fold them into the recurrence.
1658 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001659 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 LIOps.push_back(AddRec->getStart());
1661
Dan Gohman0bba49c2009-07-07 17:06:11 +00001662 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001663 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001664 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001665
Dan Gohmanb9f96512010-06-30 07:16:37 +00001666 // Build the new addrec. Propagate the NUW and NSW flags if both the
1667 // outer add and the inner addrec are guaranteed to have no overflow.
1668 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1669 HasNUW && AddRec->hasNoUnsignedWrap(),
1670 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001671
Chris Lattner53e677a2004-04-02 20:23:17 +00001672 // If all of the other operands were loop invariant, we are done.
1673 if (Ops.size() == 1) return NewRec;
1674
1675 // Otherwise, add the folded AddRec by the non-liv parts.
1676 for (unsigned i = 0;; ++i)
1677 if (Ops[i] == AddRec) {
1678 Ops[i] = NewRec;
1679 break;
1680 }
Dan Gohman246b2562007-10-22 18:31:58 +00001681 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 }
1683
1684 // Okay, if there weren't any loop invariants to be folded, check to see if
1685 // there are multiple AddRec's with the same loop induction variable being
1686 // added together. If so, we can fold them.
1687 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001688 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1689 ++OtherIdx)
1690 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1691 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1692 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1693 AddRec->op_end());
1694 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1695 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001696 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001697 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001698 if (OtherAddRec->getLoop() == AddRecLoop) {
1699 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1700 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001701 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001702 AddRecOps.append(OtherAddRec->op_begin()+i,
1703 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001704 break;
1705 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001706 AddRecOps[i] = getAddExpr(AddRecOps[i],
1707 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001708 }
1709 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 }
Dan Gohman32527152010-08-27 20:45:56 +00001711 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1712 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 }
1714
1715 // Otherwise couldn't fold anything into this recurrence. Move onto the
1716 // next one.
1717 }
1718
1719 // Okay, it looks like we really DO need an add expr. Check to see if we
1720 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001721 FoldingSetNodeID ID;
1722 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001723 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1724 ID.AddPointer(Ops[i]);
1725 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001726 SCEVAddExpr *S =
1727 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1728 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001729 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1730 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001731 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1732 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001733 UniqueSCEVs.InsertNode(S, IP);
1734 }
Dan Gohman3645b012009-10-09 00:10:36 +00001735 if (HasNUW) S->setHasNoUnsignedWrap(true);
1736 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001737 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001738}
1739
Dan Gohman6c0866c2009-05-24 23:45:28 +00001740/// getMulExpr - Get a canonical multiply expression, or something simpler if
1741/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001742const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1743 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001744 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001745 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001746#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001747 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001748 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001749 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001750 "SCEVMulExpr operand types don't match!");
1751#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001752
Dan Gohmana10756e2010-01-21 02:09:26 +00001753 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1754 if (!HasNUW && HasNSW) {
1755 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001756 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1757 E = Ops.end(); I != E; ++I)
1758 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001759 All = false;
1760 break;
1761 }
1762 if (All) HasNUW = true;
1763 }
1764
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001766 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
1768 // If there are any constants, fold them together.
1769 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001770 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001771
1772 // C1*(C2+V) -> C1*C2 + C1*V
1773 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001774 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 if (Add->getNumOperands() == 2 &&
1776 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001777 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1778 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001779
Chris Lattner53e677a2004-04-02 20:23:17 +00001780 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001781 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001782 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001783 ConstantInt *Fold = ConstantInt::get(getContext(),
1784 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001785 RHSC->getValue()->getValue());
1786 Ops[0] = getConstant(Fold);
1787 Ops.erase(Ops.begin()+1); // Erase the folded element
1788 if (Ops.size() == 1) return Ops[0];
1789 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001790 }
1791
1792 // If we are left with a constant one being multiplied, strip it off.
1793 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1794 Ops.erase(Ops.begin());
1795 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001796 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 // If we have a multiply of zero, it will always be zero.
1798 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001799 } else if (Ops[0]->isAllOnesValue()) {
1800 // If we have a mul by -1 of an add, try distributing the -1 among the
1801 // add operands.
1802 if (Ops.size() == 2)
1803 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1804 SmallVector<const SCEV *, 4> NewOps;
1805 bool AnyFolded = false;
1806 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1807 I != E; ++I) {
1808 const SCEV *Mul = getMulExpr(Ops[0], *I);
1809 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1810 NewOps.push_back(Mul);
1811 }
1812 if (AnyFolded)
1813 return getAddExpr(NewOps);
1814 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001815 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001816
1817 if (Ops.size() == 1)
1818 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 }
1820
1821 // Skip over the add expression until we get to a multiply.
1822 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1823 ++Idx;
1824
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 // If there are mul operands inline them all into this expression.
1826 if (Idx < Ops.size()) {
1827 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001828 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001829 // If we have an mul, expand the mul operands onto the end of the operands
1830 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001831 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001832 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 DeletedMul = true;
1834 }
1835
1836 // If we deleted at least one mul, we added operands to the end of the list,
1837 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001838 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001839 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001840 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001841 }
1842
1843 // If there are any add recurrences in the operands list, see if any other
1844 // added values are loop invariant. If so, we can fold them into the
1845 // recurrence.
1846 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1847 ++Idx;
1848
1849 // Scan over all recurrences, trying to fold loop invariants into them.
1850 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1851 // Scan all of the other operands to this mul and add them to the vector if
1852 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001853 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001854 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001855 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001856 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001857 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 LIOps.push_back(Ops[i]);
1859 Ops.erase(Ops.begin()+i);
1860 --i; --e;
1861 }
1862
1863 // If we found some loop invariants, fold them into the recurrence.
1864 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001865 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001866 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001867 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001868 const SCEV *Scale = getMulExpr(LIOps);
1869 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1870 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001871
Dan Gohmanb9f96512010-06-30 07:16:37 +00001872 // Build the new addrec. Propagate the NUW and NSW flags if both the
1873 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001874 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001875 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001876 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001877
1878 // If all of the other operands were loop invariant, we are done.
1879 if (Ops.size() == 1) return NewRec;
1880
1881 // Otherwise, multiply the folded AddRec by the non-liv parts.
1882 for (unsigned i = 0;; ++i)
1883 if (Ops[i] == AddRec) {
1884 Ops[i] = NewRec;
1885 break;
1886 }
Dan Gohman246b2562007-10-22 18:31:58 +00001887 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001888 }
1889
1890 // Okay, if there weren't any loop invariants to be folded, check to see if
1891 // there are multiple AddRec's with the same loop induction variable being
1892 // multiplied together. If so, we can fold them.
1893 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001894 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895 ++OtherIdx)
1896 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1897 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1898 // {A*C,+,F*D + G*B + B*D}<L>
1899 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1900 ++OtherIdx)
1901 if (const SCEVAddRecExpr *OtherAddRec =
1902 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1903 if (OtherAddRec->getLoop() == AddRecLoop) {
1904 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1905 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1906 const SCEV *B = F->getStepRecurrence(*this);
1907 const SCEV *D = G->getStepRecurrence(*this);
1908 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1909 getMulExpr(G, B),
1910 getMulExpr(B, D));
1911 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1912 F->getLoop());
1913 if (Ops.size() == 2) return NewAddRec;
1914 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1915 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1916 }
1917 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 }
1919
1920 // Otherwise couldn't fold anything into this recurrence. Move onto the
1921 // next one.
1922 }
1923
1924 // Okay, it looks like we really DO need an mul expr. Check to see if we
1925 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001926 FoldingSetNodeID ID;
1927 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1929 ID.AddPointer(Ops[i]);
1930 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001931 SCEVMulExpr *S =
1932 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1933 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1935 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001936 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1937 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001938 UniqueSCEVs.InsertNode(S, IP);
1939 }
Dan Gohman3645b012009-10-09 00:10:36 +00001940 if (HasNUW) S->setHasNoUnsignedWrap(true);
1941 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001942 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001943}
1944
Andreas Bolka8a11c982009-08-07 22:55:26 +00001945/// getUDivExpr - Get a canonical unsigned division expression, or something
1946/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001947const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1948 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001949 assert(getEffectiveSCEVType(LHS->getType()) ==
1950 getEffectiveSCEVType(RHS->getType()) &&
1951 "SCEVUDivExpr operand types don't match!");
1952
Dan Gohman622ed672009-05-04 22:02:23 +00001953 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001955 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001956 // If the denominator is zero, the result of the udiv is undefined. Don't
1957 // try to analyze it, because the resolution chosen here may differ from
1958 // the resolution chosen in other parts of the compiler.
1959 if (!RHSC->getValue()->isZero()) {
1960 // Determine if the division can be folded into the operands of
1961 // its operands.
1962 // TODO: Generalize this to non-constants by using known-bits information.
1963 const Type *Ty = LHS->getType();
1964 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001965 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001966 // For non-power-of-two values, effectively round the value up to the
1967 // nearest power of two.
1968 if (!RHSC->getValue()->getValue().isPowerOf2())
1969 ++MaxShiftAmt;
1970 const IntegerType *ExtTy =
1971 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1972 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1974 if (const SCEVConstant *Step =
1975 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1976 if (!Step->getValue()->getValue()
1977 .urem(RHSC->getValue()->getValue()) &&
1978 getZeroExtendExpr(AR, ExtTy) ==
1979 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1980 getZeroExtendExpr(Step, ExtTy),
1981 AR->getLoop())) {
1982 SmallVector<const SCEV *, 4> Operands;
1983 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1984 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1985 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001986 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001987 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1988 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1989 SmallVector<const SCEV *, 4> Operands;
1990 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1991 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1992 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1993 // Find an operand that's safely divisible.
1994 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1995 const SCEV *Op = M->getOperand(i);
1996 const SCEV *Div = getUDivExpr(Op, RHSC);
1997 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1998 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1999 M->op_end());
2000 Operands[i] = Div;
2001 return getMulExpr(Operands);
2002 }
2003 }
Dan Gohman185cf032009-05-08 20:18:49 +00002004 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002005 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2006 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2007 SmallVector<const SCEV *, 4> Operands;
2008 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2009 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2010 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2011 Operands.clear();
2012 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2013 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2014 if (isa<SCEVUDivExpr>(Op) ||
2015 getMulExpr(Op, RHS) != A->getOperand(i))
2016 break;
2017 Operands.push_back(Op);
2018 }
2019 if (Operands.size() == A->getNumOperands())
2020 return getAddExpr(Operands);
2021 }
2022 }
Dan Gohman185cf032009-05-08 20:18:49 +00002023
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002024 // Fold if both operands are constant.
2025 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2026 Constant *LHSCV = LHSC->getValue();
2027 Constant *RHSCV = RHSC->getValue();
2028 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2029 RHSCV)));
2030 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002031 }
2032 }
2033
Dan Gohman1c343752009-06-27 21:21:31 +00002034 FoldingSetNodeID ID;
2035 ID.AddInteger(scUDivExpr);
2036 ID.AddPointer(LHS);
2037 ID.AddPointer(RHS);
2038 void *IP = 0;
2039 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002040 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2041 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002042 UniqueSCEVs.InsertNode(S, IP);
2043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044}
2045
2046
Dan Gohman6c0866c2009-05-24 23:45:28 +00002047/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2048/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002049const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002050 const SCEV *Step, const Loop *L,
2051 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002052 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002053 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002054 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002055 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002056 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002057 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002058 }
2059
2060 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002061 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002062}
2063
Dan Gohman6c0866c2009-05-24 23:45:28 +00002064/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2065/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002066const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002067ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002068 const Loop *L,
2069 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002070 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002071#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002072 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002073 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002074 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002075 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002076 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2077 assert(Operands[i]->isLoopInvariant(L) &&
2078 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002079#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002080
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002081 if (Operands.back()->isZero()) {
2082 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002083 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002084 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002085
Dan Gohmanbc028532010-02-19 18:49:22 +00002086 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2087 // use that information to infer NUW and NSW flags. However, computing a
2088 // BE count requires calling getAddRecExpr, so we may not yet have a
2089 // meaningful BE count at this point (and if we don't, we'd be stuck
2090 // with a SCEVCouldNotCompute as the cached BE count).
2091
Dan Gohmana10756e2010-01-21 02:09:26 +00002092 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2093 if (!HasNUW && HasNSW) {
2094 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002095 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2096 E = Operands.end(); I != E; ++I)
2097 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002098 All = false;
2099 break;
2100 }
2101 if (All) HasNUW = true;
2102 }
2103
Dan Gohmand9cc7492008-08-08 18:33:12 +00002104 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002105 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002106 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002107 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002108 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002109 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002110 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002111 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002112 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002113 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002114 // AddRecs require their operands be loop-invariant with respect to their
2115 // loops. Don't perform this transformation if it would break this
2116 // requirement.
2117 bool AllInvariant = true;
2118 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2119 if (!Operands[i]->isLoopInvariant(L)) {
2120 AllInvariant = false;
2121 break;
2122 }
2123 if (AllInvariant) {
2124 NestedOperands[0] = getAddRecExpr(Operands, L);
2125 AllInvariant = true;
2126 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2127 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2128 AllInvariant = false;
2129 break;
2130 }
2131 if (AllInvariant)
2132 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002133 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002134 }
2135 // Reset Operands to its original state.
2136 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002137 }
2138 }
2139
Dan Gohman67847532010-01-19 22:27:22 +00002140 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2141 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002142 FoldingSetNodeID ID;
2143 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002144 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2145 ID.AddPointer(Operands[i]);
2146 ID.AddPointer(L);
2147 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002148 SCEVAddRecExpr *S =
2149 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2150 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002151 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2152 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002153 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2154 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002155 UniqueSCEVs.InsertNode(S, IP);
2156 }
Dan Gohman3645b012009-10-09 00:10:36 +00002157 if (HasNUW) S->setHasNoUnsignedWrap(true);
2158 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002159 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002160}
2161
Dan Gohman9311ef62009-06-24 14:49:00 +00002162const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2163 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002164 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002165 Ops.push_back(LHS);
2166 Ops.push_back(RHS);
2167 return getSMaxExpr(Ops);
2168}
2169
Dan Gohman0bba49c2009-07-07 17:06:11 +00002170const SCEV *
2171ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002172 assert(!Ops.empty() && "Cannot get empty smax!");
2173 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002174#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002175 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002176 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002177 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002178 "SCEVSMaxExpr operand types don't match!");
2179#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002180
2181 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002182 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002183
2184 // If there are any constants, fold them together.
2185 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002186 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002187 ++Idx;
2188 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002189 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002190 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002191 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002192 APIntOps::smax(LHSC->getValue()->getValue(),
2193 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002194 Ops[0] = getConstant(Fold);
2195 Ops.erase(Ops.begin()+1); // Erase the folded element
2196 if (Ops.size() == 1) return Ops[0];
2197 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002198 }
2199
Dan Gohmane5aceed2009-06-24 14:46:22 +00002200 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002201 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2202 Ops.erase(Ops.begin());
2203 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002204 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2205 // If we have an smax with a constant maximum-int, it will always be
2206 // maximum-int.
2207 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002208 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002209
Dan Gohman3ab13122010-04-13 16:49:23 +00002210 if (Ops.size() == 1) return Ops[0];
2211 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002212
2213 // Find the first SMax
2214 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2215 ++Idx;
2216
2217 // Check to see if one of the operands is an SMax. If so, expand its operands
2218 // onto our operand list, and recurse to simplify.
2219 if (Idx < Ops.size()) {
2220 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002221 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002222 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002223 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002224 DeletedSMax = true;
2225 }
2226
2227 if (DeletedSMax)
2228 return getSMaxExpr(Ops);
2229 }
2230
2231 // Okay, check to see if the same value occurs in the operand list twice. If
2232 // so, delete one. Since we sorted the list, these values are required to
2233 // be adjacent.
2234 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002235 // X smax Y smax Y --> X smax Y
2236 // X smax Y --> X, if X is always greater than Y
2237 if (Ops[i] == Ops[i+1] ||
2238 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2239 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2240 --i; --e;
2241 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002242 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2243 --i; --e;
2244 }
2245
2246 if (Ops.size() == 1) return Ops[0];
2247
2248 assert(!Ops.empty() && "Reduced smax down to nothing!");
2249
Nick Lewycky3e630762008-02-20 06:48:22 +00002250 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002251 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002252 FoldingSetNodeID ID;
2253 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002254 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2255 ID.AddPointer(Ops[i]);
2256 void *IP = 0;
2257 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002258 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2259 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002260 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2261 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002262 UniqueSCEVs.InsertNode(S, IP);
2263 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002264}
2265
Dan Gohman9311ef62009-06-24 14:49:00 +00002266const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2267 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002268 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002269 Ops.push_back(LHS);
2270 Ops.push_back(RHS);
2271 return getUMaxExpr(Ops);
2272}
2273
Dan Gohman0bba49c2009-07-07 17:06:11 +00002274const SCEV *
2275ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002276 assert(!Ops.empty() && "Cannot get empty umax!");
2277 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002278#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002279 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002280 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002281 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002282 "SCEVUMaxExpr operand types don't match!");
2283#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002284
2285 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002286 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002287
2288 // If there are any constants, fold them together.
2289 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002290 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002291 ++Idx;
2292 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002293 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002294 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002295 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002296 APIntOps::umax(LHSC->getValue()->getValue(),
2297 RHSC->getValue()->getValue()));
2298 Ops[0] = getConstant(Fold);
2299 Ops.erase(Ops.begin()+1); // Erase the folded element
2300 if (Ops.size() == 1) return Ops[0];
2301 LHSC = cast<SCEVConstant>(Ops[0]);
2302 }
2303
Dan Gohmane5aceed2009-06-24 14:46:22 +00002304 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002305 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2306 Ops.erase(Ops.begin());
2307 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002308 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2309 // If we have an umax with a constant maximum-int, it will always be
2310 // maximum-int.
2311 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002312 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002313
Dan Gohman3ab13122010-04-13 16:49:23 +00002314 if (Ops.size() == 1) return Ops[0];
2315 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002316
2317 // Find the first UMax
2318 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2319 ++Idx;
2320
2321 // Check to see if one of the operands is a UMax. If so, expand its operands
2322 // onto our operand list, and recurse to simplify.
2323 if (Idx < Ops.size()) {
2324 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002325 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002326 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002327 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002328 DeletedUMax = true;
2329 }
2330
2331 if (DeletedUMax)
2332 return getUMaxExpr(Ops);
2333 }
2334
2335 // Okay, check to see if the same value occurs in the operand list twice. If
2336 // so, delete one. Since we sorted the list, these values are required to
2337 // be adjacent.
2338 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002339 // X umax Y umax Y --> X umax Y
2340 // X umax Y --> X, if X is always greater than Y
2341 if (Ops[i] == Ops[i+1] ||
2342 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2343 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2344 --i; --e;
2345 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002346 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2347 --i; --e;
2348 }
2349
2350 if (Ops.size() == 1) return Ops[0];
2351
2352 assert(!Ops.empty() && "Reduced umax down to nothing!");
2353
2354 // Okay, it looks like we really DO need a umax expr. Check to see if we
2355 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002356 FoldingSetNodeID ID;
2357 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002358 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2359 ID.AddPointer(Ops[i]);
2360 void *IP = 0;
2361 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002362 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2363 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002364 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2365 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002366 UniqueSCEVs.InsertNode(S, IP);
2367 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002368}
2369
Dan Gohman9311ef62009-06-24 14:49:00 +00002370const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2371 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002372 // ~smax(~x, ~y) == smin(x, y).
2373 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2374}
2375
Dan Gohman9311ef62009-06-24 14:49:00 +00002376const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2377 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002378 // ~umax(~x, ~y) == umin(x, y)
2379 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2380}
2381
Dan Gohman4f8eea82010-02-01 18:27:38 +00002382const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002383 // If we have TargetData, we can bypass creating a target-independent
2384 // constant expression and then folding it back into a ConstantInt.
2385 // This is just a compile-time optimization.
2386 if (TD)
2387 return getConstant(TD->getIntPtrType(getContext()),
2388 TD->getTypeAllocSize(AllocTy));
2389
Dan Gohman4f8eea82010-02-01 18:27:38 +00002390 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002392 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2393 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002394 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2395 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2396}
2397
2398const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2399 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002401 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2402 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002403 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2404 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2405}
2406
2407const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2408 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002409 // If we have TargetData, we can bypass creating a target-independent
2410 // constant expression and then folding it back into a ConstantInt.
2411 // This is just a compile-time optimization.
2412 if (TD)
2413 return getConstant(TD->getIntPtrType(getContext()),
2414 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2415
Dan Gohman0f5efe52010-01-28 02:15:55 +00002416 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2417 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002418 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2419 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002420 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002421 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002422}
2423
Dan Gohman4f8eea82010-02-01 18:27:38 +00002424const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2425 Constant *FieldNo) {
2426 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002428 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2429 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002430 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002431 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002432}
2433
Dan Gohman0bba49c2009-07-07 17:06:11 +00002434const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002435 // Don't attempt to do anything other than create a SCEVUnknown object
2436 // here. createSCEV only calls getUnknown after checking for all other
2437 // interesting possibilities, and any other code that calls getUnknown
2438 // is doing so in order to hide a value from SCEV canonicalization.
2439
Dan Gohman1c343752009-06-27 21:21:31 +00002440 FoldingSetNodeID ID;
2441 ID.AddInteger(scUnknown);
2442 ID.AddPointer(V);
2443 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002444 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2445 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2446 "Stale SCEVUnknown in uniquing map!");
2447 return S;
2448 }
2449 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2450 FirstUnknown);
2451 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002452 UniqueSCEVs.InsertNode(S, IP);
2453 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002454}
2455
Chris Lattner53e677a2004-04-02 20:23:17 +00002456//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002457// Basic SCEV Analysis and PHI Idiom Recognition Code
2458//
2459
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002460/// isSCEVable - Test if values of the given type are analyzable within
2461/// the SCEV framework. This primarily includes integer types, and it
2462/// can optionally include pointer types if the ScalarEvolution class
2463/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002464bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002465 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002466 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002467}
2468
2469/// getTypeSizeInBits - Return the size in bits of the specified type,
2470/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002471uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002472 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2473
2474 // If we have a TargetData, use it!
2475 if (TD)
2476 return TD->getTypeSizeInBits(Ty);
2477
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002478 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002479 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002480 return Ty->getPrimitiveSizeInBits();
2481
2482 // The only other support type is pointer. Without TargetData, conservatively
2483 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002484 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002485 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002486}
2487
2488/// getEffectiveSCEVType - Return a type with the same bitwidth as
2489/// the given type and which represents how SCEV will treat the given
2490/// type, for which isSCEVable must return true. For pointer types,
2491/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002492const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002493 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2494
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002495 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002496 return Ty;
2497
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002498 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002499 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002500 if (TD) return TD->getIntPtrType(getContext());
2501
2502 // Without TargetData, conservatively assume pointers are 64-bit.
2503 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002504}
Chris Lattner53e677a2004-04-02 20:23:17 +00002505
Dan Gohman0bba49c2009-07-07 17:06:11 +00002506const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002507 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002508}
2509
Chris Lattner53e677a2004-04-02 20:23:17 +00002510/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2511/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002512const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002513 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002514
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002515 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2516 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002517 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002518
2519 // The process of creating a SCEV for V may have caused other SCEVs
2520 // to have been created, so it's necessary to insert the new entry
2521 // from scratch, rather than trying to remember the insert position
2522 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002523 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002524 return S;
2525}
2526
Dan Gohman2d1be872009-04-16 03:18:22 +00002527/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2528///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002529const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002530 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002531 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002532 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002533
2534 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002535 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002536 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002537 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002538}
2539
2540/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002541const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002542 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002543 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002544 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002545
2546 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002547 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002548 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002549 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002550 return getMinusSCEV(AllOnes, V);
2551}
2552
2553/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2554///
Dan Gohman9311ef62009-06-24 14:49:00 +00002555const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2556 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002557 // Fast path: X - X --> 0.
2558 if (LHS == RHS)
2559 return getConstant(LHS->getType(), 0);
2560
Dan Gohman2d1be872009-04-16 03:18:22 +00002561 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002562 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002563}
2564
2565/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2566/// input value to the specified type. If the type must be extended, it is zero
2567/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002568const SCEV *
2569ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002570 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002571 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002572 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2573 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002574 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002576 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002577 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002578 return getTruncateExpr(V, Ty);
2579 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002580}
2581
2582/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2583/// input value to the specified type. If the type must be extended, it is sign
2584/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002585const SCEV *
2586ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002587 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002588 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002589 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2590 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002591 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002592 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002593 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002594 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002595 return getTruncateExpr(V, Ty);
2596 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002597}
2598
Dan Gohman467c4302009-05-13 03:46:30 +00002599/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2600/// input value to the specified type. If the type must be extended, it is zero
2601/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002602const SCEV *
2603ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002604 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002605 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2606 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002607 "Cannot noop or zero extend with non-integer arguments!");
2608 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2609 "getNoopOrZeroExtend cannot truncate!");
2610 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2611 return V; // No conversion
2612 return getZeroExtendExpr(V, Ty);
2613}
2614
2615/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2616/// input value to the specified type. If the type must be extended, it is sign
2617/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002618const SCEV *
2619ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002620 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002621 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2622 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002623 "Cannot noop or sign extend with non-integer arguments!");
2624 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2625 "getNoopOrSignExtend cannot truncate!");
2626 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2627 return V; // No conversion
2628 return getSignExtendExpr(V, Ty);
2629}
2630
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002631/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2632/// the input value to the specified type. If the type must be extended,
2633/// it is extended with unspecified bits. The conversion must not be
2634/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002635const SCEV *
2636ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002637 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002638 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2639 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002640 "Cannot noop or any extend with non-integer arguments!");
2641 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2642 "getNoopOrAnyExtend cannot truncate!");
2643 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2644 return V; // No conversion
2645 return getAnyExtendExpr(V, Ty);
2646}
2647
Dan Gohman467c4302009-05-13 03:46:30 +00002648/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2649/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002650const SCEV *
2651ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002652 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002653 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2654 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002655 "Cannot truncate or noop with non-integer arguments!");
2656 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2657 "getTruncateOrNoop cannot extend!");
2658 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2659 return V; // No conversion
2660 return getTruncateExpr(V, Ty);
2661}
2662
Dan Gohmana334aa72009-06-22 00:31:57 +00002663/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2664/// the types using zero-extension, and then perform a umax operation
2665/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002666const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2667 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002668 const SCEV *PromotedLHS = LHS;
2669 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002670
2671 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2672 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2673 else
2674 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2675
2676 return getUMaxExpr(PromotedLHS, PromotedRHS);
2677}
2678
Dan Gohmanc9759e82009-06-22 15:03:27 +00002679/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2680/// the types using zero-extension, and then perform a umin operation
2681/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002682const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2683 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002684 const SCEV *PromotedLHS = LHS;
2685 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002686
2687 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2688 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2689 else
2690 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2691
2692 return getUMinExpr(PromotedLHS, PromotedRHS);
2693}
2694
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002695/// PushDefUseChildren - Push users of the given Instruction
2696/// onto the given Worklist.
2697static void
2698PushDefUseChildren(Instruction *I,
2699 SmallVectorImpl<Instruction *> &Worklist) {
2700 // Push the def-use children onto the Worklist stack.
2701 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2702 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002703 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002704}
2705
2706/// ForgetSymbolicValue - This looks up computed SCEV values for all
2707/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002708/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002709/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002710void
Dan Gohman85669632010-02-25 06:57:05 +00002711ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002712 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002713 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002714
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002715 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002716 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002717 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002718 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002719 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002720
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002721 ValueExprMapType::iterator It =
2722 ValueExprMap.find(static_cast<Value *>(I));
2723 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002724 const SCEV *Old = It->second;
2725
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002726 // Short-circuit the def-use traversal if the symbolic name
2727 // ceases to appear in expressions.
Dan Gohman6678e7b2010-11-17 02:44:44 +00002728 if (Old != SymName && !Old->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002729 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002730
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002731 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002732 // structure, it's a PHI that's in the progress of being computed
2733 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2734 // additional loop trip count information isn't going to change anything.
2735 // In the second case, createNodeForPHI will perform the necessary
2736 // updates on its own when it gets to that point. In the third, we do
2737 // want to forget the SCEVUnknown.
2738 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002739 !isa<SCEVUnknown>(Old) ||
2740 (I != PN && Old == SymName)) {
2741 ValuesAtScopes.erase(Old);
2742 UnsignedRanges.erase(Old);
2743 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002744 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002745 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002746 }
2747
2748 PushDefUseChildren(I, Worklist);
2749 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002750}
Chris Lattner53e677a2004-04-02 20:23:17 +00002751
2752/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2753/// a loop header, making it a potential recurrence, or it doesn't.
2754///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002755const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002756 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2757 if (L->getHeader() == PN->getParent()) {
2758 // The loop may have multiple entrances or multiple exits; we can analyze
2759 // this phi as an addrec if it has a unique entry value and a unique
2760 // backedge value.
2761 Value *BEValueV = 0, *StartValueV = 0;
2762 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2763 Value *V = PN->getIncomingValue(i);
2764 if (L->contains(PN->getIncomingBlock(i))) {
2765 if (!BEValueV) {
2766 BEValueV = V;
2767 } else if (BEValueV != V) {
2768 BEValueV = 0;
2769 break;
2770 }
2771 } else if (!StartValueV) {
2772 StartValueV = V;
2773 } else if (StartValueV != V) {
2774 StartValueV = 0;
2775 break;
2776 }
2777 }
2778 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002779 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002780 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002781 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002782 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002783 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002784
2785 // Using this symbolic name for the PHI, analyze the value coming around
2786 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002787 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002788
2789 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2790 // has a special value for the first iteration of the loop.
2791
2792 // If the value coming around the backedge is an add with the symbolic
2793 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002794 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002795 // If there is a single occurrence of the symbolic value, replace it
2796 // with a recurrence.
2797 unsigned FoundIndex = Add->getNumOperands();
2798 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2799 if (Add->getOperand(i) == SymbolicName)
2800 if (FoundIndex == e) {
2801 FoundIndex = i;
2802 break;
2803 }
2804
2805 if (FoundIndex != Add->getNumOperands()) {
2806 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002807 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002808 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2809 if (i != FoundIndex)
2810 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002811 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002812
2813 // This is not a valid addrec if the step amount is varying each
2814 // loop iteration, but is not itself an addrec in this loop.
2815 if (Accum->isLoopInvariant(L) ||
2816 (isa<SCEVAddRecExpr>(Accum) &&
2817 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002818 bool HasNUW = false;
2819 bool HasNSW = false;
2820
2821 // If the increment doesn't overflow, then neither the addrec nor
2822 // the post-increment will overflow.
2823 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2824 if (OBO->hasNoUnsignedWrap())
2825 HasNUW = true;
2826 if (OBO->hasNoSignedWrap())
2827 HasNSW = true;
2828 }
2829
Dan Gohman27dead42010-04-12 07:49:36 +00002830 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002831 const SCEV *PHISCEV =
2832 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002833
Dan Gohmana10756e2010-01-21 02:09:26 +00002834 // Since the no-wrap flags are on the increment, they apply to the
2835 // post-incremented value as well.
2836 if (Accum->isLoopInvariant(L))
2837 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2838 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002839
2840 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002841 // to be symbolic. We now need to go back and purge all of the
2842 // entries for the scalars that use the symbolic expression.
2843 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002844 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002845 return PHISCEV;
2846 }
2847 }
Dan Gohman622ed672009-05-04 22:02:23 +00002848 } else if (const SCEVAddRecExpr *AddRec =
2849 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002850 // Otherwise, this could be a loop like this:
2851 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2852 // In this case, j = {1,+,1} and BEValue is j.
2853 // Because the other in-value of i (0) fits the evolution of BEValue
2854 // i really is an addrec evolution.
2855 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002856 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002857
2858 // If StartVal = j.start - j.stride, we can use StartVal as the
2859 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002860 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002861 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002862 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002863 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002864
2865 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002866 // to be symbolic. We now need to go back and purge all of the
2867 // entries for the scalars that use the symbolic expression.
2868 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002869 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002870 return PHISCEV;
2871 }
2872 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002873 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002874 }
Dan Gohman27dead42010-04-12 07:49:36 +00002875 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002876
Dan Gohman85669632010-02-25 06:57:05 +00002877 // If the PHI has a single incoming value, follow that value, unless the
2878 // PHI's incoming blocks are in a different loop, in which case doing so
2879 // risks breaking LCSSA form. Instcombine would normally zap these, but
2880 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsa0c52442010-11-17 04:18:45 +00002881 if (Value *V = SimplifyInstruction(PN, TD, DT)) {
2882 // TODO: The following check is suboptimal. For example, it is pointless
2883 // if V is a constant. Since the problematic case is if V is defined inside
2884 // a deeper loop, it would be better to check for that directly.
Dan Gohman85669632010-02-25 06:57:05 +00002885 bool AllSameLoop = true;
2886 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2887 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2888 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2889 AllSameLoop = false;
2890 break;
2891 }
2892 if (AllSameLoop)
2893 return getSCEV(V);
2894 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002895
Chris Lattner53e677a2004-04-02 20:23:17 +00002896 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002897 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002898}
2899
Dan Gohman26466c02009-05-08 20:26:55 +00002900/// createNodeForGEP - Expand GEP instructions into add and multiply
2901/// operations. This allows them to be analyzed by regular SCEV code.
2902///
Dan Gohmand281ed22009-12-18 02:09:29 +00002903const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002904
Dan Gohmanb9f96512010-06-30 07:16:37 +00002905 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2906 // Add expression, because the Instruction may be guarded by control flow
2907 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002908 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002909
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002910 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002911 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002912 // Don't attempt to analyze GEPs over unsized objects.
2913 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2914 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002915 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002916 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002917 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002918 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002919 I != E; ++I) {
2920 Value *Index = *I;
2921 // Compute the (potentially symbolic) offset in bytes for this index.
2922 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2923 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002924 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002925 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2926
Dan Gohmanb9f96512010-06-30 07:16:37 +00002927 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002928 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002929 } else {
2930 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002931 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2932 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002933 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002934 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2935
Dan Gohmanb9f96512010-06-30 07:16:37 +00002936 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002937 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002938
2939 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002940 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002941 }
2942 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002943
2944 // Get the SCEV for the GEP base.
2945 const SCEV *BaseS = getSCEV(Base);
2946
Dan Gohmanb9f96512010-06-30 07:16:37 +00002947 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002948 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002949}
2950
Nick Lewycky83bb0052007-11-22 07:59:40 +00002951/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2952/// guaranteed to end in (at every loop iteration). It is, at the same time,
2953/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2954/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002955uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002956ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002957 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002958 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002959
Dan Gohman622ed672009-05-04 22:02:23 +00002960 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002961 return std::min(GetMinTrailingZeros(T->getOperand()),
2962 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963
Dan Gohman622ed672009-05-04 22:02:23 +00002964 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002965 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2966 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2967 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002968 }
2969
Dan Gohman622ed672009-05-04 22:02:23 +00002970 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002971 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2972 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2973 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002974 }
2975
Dan Gohman622ed672009-05-04 22:02:23 +00002976 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002977 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002978 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002979 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002980 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002981 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002982 }
2983
Dan Gohman622ed672009-05-04 22:02:23 +00002984 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002985 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002986 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2987 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002988 for (unsigned i = 1, e = M->getNumOperands();
2989 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002990 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002991 BitWidth);
2992 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002993 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002994
Dan Gohman622ed672009-05-04 22:02:23 +00002995 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002996 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002997 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002998 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002999 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003000 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003001 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003002
Dan Gohman622ed672009-05-04 22:02:23 +00003003 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003004 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003005 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003006 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003007 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003008 return MinOpRes;
3009 }
3010
Dan Gohman622ed672009-05-04 22:02:23 +00003011 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003012 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003013 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003014 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003015 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003016 return MinOpRes;
3017 }
3018
Dan Gohman2c364ad2009-06-19 23:29:04 +00003019 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3020 // For a SCEVUnknown, ask ValueTracking.
3021 unsigned BitWidth = getTypeSizeInBits(U->getType());
3022 APInt Mask = APInt::getAllOnesValue(BitWidth);
3023 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3024 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3025 return Zeros.countTrailingOnes();
3026 }
3027
3028 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003029 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003030}
Chris Lattner53e677a2004-04-02 20:23:17 +00003031
Dan Gohman85b05a22009-07-13 21:35:55 +00003032/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3033///
3034ConstantRange
3035ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003036 // See if we've computed this range already.
3037 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3038 if (I != UnsignedRanges.end())
3039 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003040
3041 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003042 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003043
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003044 unsigned BitWidth = getTypeSizeInBits(S->getType());
3045 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3046
3047 // If the value has known zeros, the maximum unsigned value will have those
3048 // known zeros as well.
3049 uint32_t TZ = GetMinTrailingZeros(S);
3050 if (TZ != 0)
3051 ConservativeResult =
3052 ConstantRange(APInt::getMinValue(BitWidth),
3053 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3054
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3056 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3057 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3058 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003059 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 }
3061
3062 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3063 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3064 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3065 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003066 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 }
3068
3069 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3070 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3071 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3072 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003073 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
3075
3076 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3077 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3078 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3079 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003080 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003081 }
3082
3083 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3084 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3085 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003086 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003087 }
3088
3089 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3090 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003091 return setUnsignedRange(ZExt,
3092 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003093 }
3094
3095 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3096 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003097 return setUnsignedRange(SExt,
3098 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003099 }
3100
3101 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3102 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003103 return setUnsignedRange(Trunc,
3104 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003105 }
3106
Dan Gohman85b05a22009-07-13 21:35:55 +00003107 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003108 // If there's no unsigned wrap, the value will never be less than its
3109 // initial value.
3110 if (AddRec->hasNoUnsignedWrap())
3111 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003112 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003113 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003114 ConservativeResult.intersectWith(
3115 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003116
3117 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003118 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 const Type *Ty = AddRec->getType();
3120 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003121 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3122 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003123 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3124
3125 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003126 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003127
3128 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003129 ConstantRange StepRange = getSignedRange(Step);
3130 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3131 ConstantRange EndRange =
3132 StartRange.add(MaxBECountRange.multiply(StepRange));
3133
3134 // Check for overflow. This must be done with ConstantRange arithmetic
3135 // because we could be called from within the ScalarEvolution overflow
3136 // checking code.
3137 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3138 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3139 ConstantRange ExtMaxBECountRange =
3140 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3141 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3142 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3143 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003144 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003145
Dan Gohman85b05a22009-07-13 21:35:55 +00003146 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3147 EndRange.getUnsignedMin());
3148 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3149 EndRange.getUnsignedMax());
3150 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003151 return setUnsignedRange(AddRec, ConservativeResult);
3152 return setUnsignedRange(AddRec,
3153 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003154 }
3155 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003156
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003157 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003158 }
3159
3160 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3161 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003162 APInt Mask = APInt::getAllOnesValue(BitWidth);
3163 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3164 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003165 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003166 return setUnsignedRange(U, ConservativeResult);
3167 return setUnsignedRange(U,
3168 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003169 }
3170
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003171 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003172}
3173
Dan Gohman85b05a22009-07-13 21:35:55 +00003174/// getSignedRange - Determine the signed range for a particular SCEV.
3175///
3176ConstantRange
3177ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003178 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3179 if (I != SignedRanges.end())
3180 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003181
Dan Gohman85b05a22009-07-13 21:35:55 +00003182 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003183 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003184
Dan Gohman52fddd32010-01-26 04:40:18 +00003185 unsigned BitWidth = getTypeSizeInBits(S->getType());
3186 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3187
3188 // If the value has known zeros, the maximum signed value will have those
3189 // known zeros as well.
3190 uint32_t TZ = GetMinTrailingZeros(S);
3191 if (TZ != 0)
3192 ConservativeResult =
3193 ConstantRange(APInt::getSignedMinValue(BitWidth),
3194 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3195
Dan Gohman85b05a22009-07-13 21:35:55 +00003196 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3197 ConstantRange X = getSignedRange(Add->getOperand(0));
3198 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3199 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003200 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003201 }
3202
Dan Gohman85b05a22009-07-13 21:35:55 +00003203 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3204 ConstantRange X = getSignedRange(Mul->getOperand(0));
3205 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3206 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003207 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003208 }
3209
Dan Gohman85b05a22009-07-13 21:35:55 +00003210 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3211 ConstantRange X = getSignedRange(SMax->getOperand(0));
3212 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3213 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003214 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003215 }
Dan Gohman62849c02009-06-24 01:05:09 +00003216
Dan Gohman85b05a22009-07-13 21:35:55 +00003217 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3218 ConstantRange X = getSignedRange(UMax->getOperand(0));
3219 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3220 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003221 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 }
Dan Gohman62849c02009-06-24 01:05:09 +00003223
Dan Gohman85b05a22009-07-13 21:35:55 +00003224 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3225 ConstantRange X = getSignedRange(UDiv->getLHS());
3226 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003227 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003228 }
Dan Gohman62849c02009-06-24 01:05:09 +00003229
Dan Gohman85b05a22009-07-13 21:35:55 +00003230 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3231 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003232 return setSignedRange(ZExt,
3233 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003234 }
3235
3236 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3237 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003238 return setSignedRange(SExt,
3239 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 }
3241
3242 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3243 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003244 return setSignedRange(Trunc,
3245 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003246 }
3247
Dan Gohman85b05a22009-07-13 21:35:55 +00003248 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003249 // If there's no signed wrap, and all the operands have the same sign or
3250 // zero, the value won't ever change sign.
3251 if (AddRec->hasNoSignedWrap()) {
3252 bool AllNonNeg = true;
3253 bool AllNonPos = true;
3254 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3255 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3256 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3257 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003258 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003259 ConservativeResult = ConservativeResult.intersectWith(
3260 ConstantRange(APInt(BitWidth, 0),
3261 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003262 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003263 ConservativeResult = ConservativeResult.intersectWith(
3264 ConstantRange(APInt::getSignedMinValue(BitWidth),
3265 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003266 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003267
3268 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003269 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003270 const Type *Ty = AddRec->getType();
3271 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003272 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3273 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003274 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3275
3276 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003277 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003278
3279 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003280 ConstantRange StepRange = getSignedRange(Step);
3281 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3282 ConstantRange EndRange =
3283 StartRange.add(MaxBECountRange.multiply(StepRange));
3284
3285 // Check for overflow. This must be done with ConstantRange arithmetic
3286 // because we could be called from within the ScalarEvolution overflow
3287 // checking code.
3288 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3289 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3290 ConstantRange ExtMaxBECountRange =
3291 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3292 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3293 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3294 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003295 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003296
Dan Gohman85b05a22009-07-13 21:35:55 +00003297 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3298 EndRange.getSignedMin());
3299 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3300 EndRange.getSignedMax());
3301 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003302 return setSignedRange(AddRec, ConservativeResult);
3303 return setSignedRange(AddRec,
3304 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003305 }
Dan Gohman62849c02009-06-24 01:05:09 +00003306 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003307
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003308 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003309 }
3310
Dan Gohman2c364ad2009-06-19 23:29:04 +00003311 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3312 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003313 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003314 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003315 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3316 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 return setSignedRange(U, ConservativeResult);
3318 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003319 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003320 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003321 }
3322
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003323 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003324}
3325
Chris Lattner53e677a2004-04-02 20:23:17 +00003326/// createSCEV - We know that there is no SCEV for the specified value.
3327/// Analyze the expression.
3328///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003329const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003330 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003331 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003332
Dan Gohman6c459a22008-06-22 19:56:46 +00003333 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003334 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003335 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003336
3337 // Don't attempt to analyze instructions in blocks that aren't
3338 // reachable. Such instructions don't matter, and they aren't required
3339 // to obey basic rules for definitions dominating uses which this
3340 // analysis depends on.
3341 if (!DT->isReachableFromEntry(I->getParent()))
3342 return getUnknown(V);
3343 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003344 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003345 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3346 return getConstant(CI);
3347 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003348 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003349 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3350 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003351 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003352 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003353
Dan Gohmanca178902009-07-17 20:47:02 +00003354 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003355 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003356 case Instruction::Add: {
3357 // The simple thing to do would be to just call getSCEV on both operands
3358 // and call getAddExpr with the result. However if we're looking at a
3359 // bunch of things all added together, this can be quite inefficient,
3360 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3361 // Instead, gather up all the operands and make a single getAddExpr call.
3362 // LLVM IR canonical form means we need only traverse the left operands.
3363 SmallVector<const SCEV *, 4> AddOps;
3364 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003365 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3366 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3367 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3368 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003369 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003370 const SCEV *Op1 = getSCEV(U->getOperand(1));
3371 if (Opcode == Instruction::Sub)
3372 AddOps.push_back(getNegativeSCEV(Op1));
3373 else
3374 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003375 }
3376 AddOps.push_back(getSCEV(U->getOperand(0)));
3377 return getAddExpr(AddOps);
3378 }
3379 case Instruction::Mul: {
3380 // See the Add code above.
3381 SmallVector<const SCEV *, 4> MulOps;
3382 MulOps.push_back(getSCEV(U->getOperand(1)));
3383 for (Value *Op = U->getOperand(0);
3384 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3385 Op = U->getOperand(0)) {
3386 U = cast<Operator>(Op);
3387 MulOps.push_back(getSCEV(U->getOperand(1)));
3388 }
3389 MulOps.push_back(getSCEV(U->getOperand(0)));
3390 return getMulExpr(MulOps);
3391 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003392 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 return getUDivExpr(getSCEV(U->getOperand(0)),
3394 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003395 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003396 return getMinusSCEV(getSCEV(U->getOperand(0)),
3397 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003398 case Instruction::And:
3399 // For an expression like x&255 that merely masks off the high bits,
3400 // use zext(trunc(x)) as the SCEV expression.
3401 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003402 if (CI->isNullValue())
3403 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003404 if (CI->isAllOnesValue())
3405 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003406 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003407
3408 // Instcombine's ShrinkDemandedConstant may strip bits out of
3409 // constants, obscuring what would otherwise be a low-bits mask.
3410 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3411 // knew about to reconstruct a low-bits mask value.
3412 unsigned LZ = A.countLeadingZeros();
3413 unsigned BitWidth = A.getBitWidth();
3414 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3415 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3416 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3417
3418 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3419
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003420 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003421 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003422 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003423 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003424 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003425 }
3426 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003427
Dan Gohman6c459a22008-06-22 19:56:46 +00003428 case Instruction::Or:
3429 // If the RHS of the Or is a constant, we may have something like:
3430 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3431 // optimizations will transparently handle this case.
3432 //
3433 // In order for this transformation to be safe, the LHS must be of the
3434 // form X*(2^n) and the Or constant must be less than 2^n.
3435 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003436 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003437 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003438 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003439 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3440 // Build a plain add SCEV.
3441 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3442 // If the LHS of the add was an addrec and it has no-wrap flags,
3443 // transfer the no-wrap flags, since an or won't introduce a wrap.
3444 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3445 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3446 if (OldAR->hasNoUnsignedWrap())
3447 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3448 if (OldAR->hasNoSignedWrap())
3449 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3450 }
3451 return S;
3452 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003453 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003454 break;
3455 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003456 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003457 // If the RHS of the xor is a signbit, then this is just an add.
3458 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003459 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003460 return getAddExpr(getSCEV(U->getOperand(0)),
3461 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003462
3463 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003464 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003465 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003466
3467 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3468 // This is a variant of the check for xor with -1, and it handles
3469 // the case where instcombine has trimmed non-demanded bits out
3470 // of an xor with -1.
3471 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3472 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3473 if (BO->getOpcode() == Instruction::And &&
3474 LCI->getValue() == CI->getValue())
3475 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003476 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003477 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003478 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003479 const Type *Z0Ty = Z0->getType();
3480 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3481
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003482 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003483 // mask off the high bits. Complement the operand and
3484 // re-apply the zext.
3485 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3486 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3487
3488 // If C is a single bit, it may be in the sign-bit position
3489 // before the zero-extend. In this case, represent the xor
3490 // using an add, which is equivalent, and re-apply the zext.
3491 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3492 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3493 Trunc.isSignBit())
3494 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3495 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003496 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003497 }
3498 break;
3499
3500 case Instruction::Shl:
3501 // Turn shift left of a constant amount into a multiply.
3502 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003503 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003504
3505 // If the shift count is not less than the bitwidth, the result of
3506 // the shift is undefined. Don't try to analyze it, because the
3507 // resolution chosen here may differ from the resolution chosen in
3508 // other parts of the compiler.
3509 if (SA->getValue().uge(BitWidth))
3510 break;
3511
Owen Andersoneed707b2009-07-24 23:12:02 +00003512 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003513 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003514 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003515 }
3516 break;
3517
Nick Lewycky01eaf802008-07-07 06:15:49 +00003518 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003519 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003520 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003521 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003522
3523 // If the shift count is not less than the bitwidth, the result of
3524 // the shift is undefined. Don't try to analyze it, because the
3525 // resolution chosen here may differ from the resolution chosen in
3526 // other parts of the compiler.
3527 if (SA->getValue().uge(BitWidth))
3528 break;
3529
Owen Andersoneed707b2009-07-24 23:12:02 +00003530 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003531 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003532 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003533 }
3534 break;
3535
Dan Gohman4ee29af2009-04-21 02:26:00 +00003536 case Instruction::AShr:
3537 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3538 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003539 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003540 if (L->getOpcode() == Instruction::Shl &&
3541 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003542 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3543
3544 // If the shift count is not less than the bitwidth, the result of
3545 // the shift is undefined. Don't try to analyze it, because the
3546 // resolution chosen here may differ from the resolution chosen in
3547 // other parts of the compiler.
3548 if (CI->getValue().uge(BitWidth))
3549 break;
3550
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003551 uint64_t Amt = BitWidth - CI->getZExtValue();
3552 if (Amt == BitWidth)
3553 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003554 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003555 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003556 IntegerType::get(getContext(),
3557 Amt)),
3558 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003559 }
3560 break;
3561
Dan Gohman6c459a22008-06-22 19:56:46 +00003562 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003564
3565 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003566 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003567
3568 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003569 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003570
3571 case Instruction::BitCast:
3572 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003573 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003574 return getSCEV(U->getOperand(0));
3575 break;
3576
Dan Gohman4f8eea82010-02-01 18:27:38 +00003577 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3578 // lead to pointer expressions which cannot safely be expanded to GEPs,
3579 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3580 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003581
Dan Gohman26466c02009-05-08 20:26:55 +00003582 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003583 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003584
Dan Gohman6c459a22008-06-22 19:56:46 +00003585 case Instruction::PHI:
3586 return createNodeForPHI(cast<PHINode>(U));
3587
3588 case Instruction::Select:
3589 // This could be a smax or umax that was lowered earlier.
3590 // Try to recover it.
3591 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3592 Value *LHS = ICI->getOperand(0);
3593 Value *RHS = ICI->getOperand(1);
3594 switch (ICI->getPredicate()) {
3595 case ICmpInst::ICMP_SLT:
3596 case ICmpInst::ICMP_SLE:
3597 std::swap(LHS, RHS);
3598 // fall through
3599 case ICmpInst::ICMP_SGT:
3600 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003601 // a >s b ? a+x : b+x -> smax(a, b)+x
3602 // a >s b ? b+x : a+x -> smin(a, b)+x
3603 if (LHS->getType() == U->getType()) {
3604 const SCEV *LS = getSCEV(LHS);
3605 const SCEV *RS = getSCEV(RHS);
3606 const SCEV *LA = getSCEV(U->getOperand(1));
3607 const SCEV *RA = getSCEV(U->getOperand(2));
3608 const SCEV *LDiff = getMinusSCEV(LA, LS);
3609 const SCEV *RDiff = getMinusSCEV(RA, RS);
3610 if (LDiff == RDiff)
3611 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3612 LDiff = getMinusSCEV(LA, RS);
3613 RDiff = getMinusSCEV(RA, LS);
3614 if (LDiff == RDiff)
3615 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3616 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003617 break;
3618 case ICmpInst::ICMP_ULT:
3619 case ICmpInst::ICMP_ULE:
3620 std::swap(LHS, RHS);
3621 // fall through
3622 case ICmpInst::ICMP_UGT:
3623 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003624 // a >u b ? a+x : b+x -> umax(a, b)+x
3625 // a >u b ? b+x : a+x -> umin(a, b)+x
3626 if (LHS->getType() == U->getType()) {
3627 const SCEV *LS = getSCEV(LHS);
3628 const SCEV *RS = getSCEV(RHS);
3629 const SCEV *LA = getSCEV(U->getOperand(1));
3630 const SCEV *RA = getSCEV(U->getOperand(2));
3631 const SCEV *LDiff = getMinusSCEV(LA, LS);
3632 const SCEV *RDiff = getMinusSCEV(RA, RS);
3633 if (LDiff == RDiff)
3634 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3635 LDiff = getMinusSCEV(LA, RS);
3636 RDiff = getMinusSCEV(RA, LS);
3637 if (LDiff == RDiff)
3638 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3639 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003640 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003641 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003642 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3643 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003644 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003645 cast<ConstantInt>(RHS)->isZero()) {
3646 const SCEV *One = getConstant(LHS->getType(), 1);
3647 const SCEV *LS = getSCEV(LHS);
3648 const SCEV *LA = getSCEV(U->getOperand(1));
3649 const SCEV *RA = getSCEV(U->getOperand(2));
3650 const SCEV *LDiff = getMinusSCEV(LA, LS);
3651 const SCEV *RDiff = getMinusSCEV(RA, One);
3652 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003653 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003654 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003655 break;
3656 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003657 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3658 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003659 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003660 cast<ConstantInt>(RHS)->isZero()) {
3661 const SCEV *One = getConstant(LHS->getType(), 1);
3662 const SCEV *LS = getSCEV(LHS);
3663 const SCEV *LA = getSCEV(U->getOperand(1));
3664 const SCEV *RA = getSCEV(U->getOperand(2));
3665 const SCEV *LDiff = getMinusSCEV(LA, One);
3666 const SCEV *RDiff = getMinusSCEV(RA, LS);
3667 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003668 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003669 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003670 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003671 default:
3672 break;
3673 }
3674 }
3675
3676 default: // We cannot analyze this expression.
3677 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003678 }
3679
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003680 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003681}
3682
3683
3684
3685//===----------------------------------------------------------------------===//
3686// Iteration Count Computation Code
3687//
3688
Dan Gohman46bdfb02009-02-24 18:55:53 +00003689/// getBackedgeTakenCount - If the specified loop has a predictable
3690/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3691/// object. The backedge-taken count is the number of times the loop header
3692/// will be branched to from within the loop. This is one less than the
3693/// trip count of the loop, since it doesn't count the first iteration,
3694/// when the header is branched to from outside the loop.
3695///
3696/// Note that it is not valid to call this method on a loop without a
3697/// loop-invariant backedge-taken count (see
3698/// hasLoopInvariantBackedgeTakenCount).
3699///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003700const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003701 return getBackedgeTakenInfo(L).Exact;
3702}
3703
3704/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3705/// return the least SCEV value that is known never to be less than the
3706/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003707const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003708 return getBackedgeTakenInfo(L).Max;
3709}
3710
Dan Gohman59ae6b92009-07-08 19:23:34 +00003711/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3712/// onto the given Worklist.
3713static void
3714PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3715 BasicBlock *Header = L->getHeader();
3716
3717 // Push all Loop-header PHIs onto the Worklist stack.
3718 for (BasicBlock::iterator I = Header->begin();
3719 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3720 Worklist.push_back(PN);
3721}
3722
Dan Gohmana1af7572009-04-30 20:47:05 +00003723const ScalarEvolution::BackedgeTakenInfo &
3724ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003725 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003726 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003727 // update the value. The temporary CouldNotCompute value tells SCEV
3728 // code elsewhere that it shouldn't attempt to request a new
3729 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003730 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003731 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3732 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003733 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3734 if (BECount.Exact != getCouldNotCompute()) {
3735 assert(BECount.Exact->isLoopInvariant(L) &&
3736 BECount.Max->isLoopInvariant(L) &&
3737 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003738 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003739
Dan Gohman01ecca22009-04-27 20:16:15 +00003740 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003741 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003743 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003744 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003745 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 if (isa<PHINode>(L->getHeader()->begin()))
3747 // Only count loops that have phi nodes as not being computable.
3748 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003749 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003750
3751 // Now that we know more about the trip count for this loop, forget any
3752 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003753 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003754 // information. This is similar to the code in forgetLoop, except that
3755 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003756 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003757 SmallVector<Instruction *, 16> Worklist;
3758 PushLoopPHIs(L, Worklist);
3759
3760 SmallPtrSet<Instruction *, 8> Visited;
3761 while (!Worklist.empty()) {
3762 Instruction *I = Worklist.pop_back_val();
3763 if (!Visited.insert(I)) continue;
3764
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003765 ValueExprMapType::iterator It =
3766 ValueExprMap.find(static_cast<Value *>(I));
3767 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003768 const SCEV *Old = It->second;
3769
Dan Gohman59ae6b92009-07-08 19:23:34 +00003770 // SCEVUnknown for a PHI either means that it has an unrecognized
3771 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003772 // by createNodeForPHI. In the former case, additional loop trip
3773 // count information isn't going to change anything. In the later
3774 // case, createNodeForPHI will perform the necessary updates on its
3775 // own when it gets to that point.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003776 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3777 ValuesAtScopes.erase(Old);
3778 UnsignedRanges.erase(Old);
3779 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003780 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003781 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003782 if (PHINode *PN = dyn_cast<PHINode>(I))
3783 ConstantEvolutionLoopExitValue.erase(PN);
3784 }
3785
3786 PushDefUseChildren(I, Worklist);
3787 }
3788 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003789 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003790 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003791}
3792
Dan Gohman4c7279a2009-10-31 15:04:55 +00003793/// forgetLoop - This method should be called by the client when it has
3794/// changed a loop in a way that may effect ScalarEvolution's ability to
3795/// compute a trip count, or if the loop is deleted.
3796void ScalarEvolution::forgetLoop(const Loop *L) {
3797 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003798 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003799
Dan Gohman4c7279a2009-10-31 15:04:55 +00003800 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003801 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003802 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003803
Dan Gohman59ae6b92009-07-08 19:23:34 +00003804 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003805 while (!Worklist.empty()) {
3806 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003807 if (!Visited.insert(I)) continue;
3808
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003809 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3810 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003811 const SCEV *Old = It->second;
3812 ValuesAtScopes.erase(Old);
3813 UnsignedRanges.erase(Old);
3814 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003815 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003816 if (PHINode *PN = dyn_cast<PHINode>(I))
3817 ConstantEvolutionLoopExitValue.erase(PN);
3818 }
3819
3820 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003821 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003822
3823 // Forget all contained loops too, to avoid dangling entries in the
3824 // ValuesAtScopes map.
3825 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3826 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003827}
3828
Eric Christophere6cbfa62010-07-29 01:25:38 +00003829/// forgetValue - This method should be called by the client when it has
3830/// changed a value in a way that may effect its value, or which may
3831/// disconnect it from a def-use chain linking it to a loop.
3832void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003833 Instruction *I = dyn_cast<Instruction>(V);
3834 if (!I) return;
3835
3836 // Drop information about expressions based on loop-header PHIs.
3837 SmallVector<Instruction *, 16> Worklist;
3838 Worklist.push_back(I);
3839
3840 SmallPtrSet<Instruction *, 8> Visited;
3841 while (!Worklist.empty()) {
3842 I = Worklist.pop_back_val();
3843 if (!Visited.insert(I)) continue;
3844
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003845 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3846 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003847 const SCEV *Old = It->second;
3848 ValuesAtScopes.erase(Old);
3849 UnsignedRanges.erase(Old);
3850 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003851 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003852 if (PHINode *PN = dyn_cast<PHINode>(I))
3853 ConstantEvolutionLoopExitValue.erase(PN);
3854 }
3855
3856 PushDefUseChildren(I, Worklist);
3857 }
3858}
3859
Dan Gohman46bdfb02009-02-24 18:55:53 +00003860/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3861/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003862ScalarEvolution::BackedgeTakenInfo
3863ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003864 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003865 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003866
Dan Gohmana334aa72009-06-22 00:31:57 +00003867 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003868 const SCEV *BECount = getCouldNotCompute();
3869 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003870 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3872 BackedgeTakenInfo NewBTI =
3873 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003874
Dan Gohman1c343752009-06-27 21:21:31 +00003875 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003877 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003879 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003880 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003881 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003882 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003883 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003884 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003885 }
Dan Gohman1c343752009-06-27 21:21:31 +00003886 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003887 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003888 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003889 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003890 }
3891
3892 return BackedgeTakenInfo(BECount, MaxBECount);
3893}
3894
3895/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3896/// of the specified loop will execute if it exits via the specified block.
3897ScalarEvolution::BackedgeTakenInfo
3898ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3899 BasicBlock *ExitingBlock) {
3900
3901 // Okay, we've chosen an exiting block. See what condition causes us to
3902 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003903 //
3904 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003905 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003906 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003907 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003908
Chris Lattner8b0e3602007-01-07 02:24:26 +00003909 // At this point, we know we have a conditional branch that determines whether
3910 // the loop is exited. However, we don't know if the branch is executed each
3911 // time through the loop. If not, then the execution count of the branch will
3912 // not be equal to the trip count of the loop.
3913 //
3914 // Currently we check for this by checking to see if the Exit branch goes to
3915 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003916 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003917 // loop header. This is common for un-rotated loops.
3918 //
3919 // If both of those tests fail, walk up the unique predecessor chain to the
3920 // header, stopping if there is an edge that doesn't exit the loop. If the
3921 // header is reached, the execution count of the branch will be equal to the
3922 // trip count of the loop.
3923 //
3924 // More extensive analysis could be done to handle more cases here.
3925 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003926 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003927 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 ExitBr->getParent() != L->getHeader()) {
3929 // The simple checks failed, try climbing the unique predecessor chain
3930 // up to the header.
3931 bool Ok = false;
3932 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3933 BasicBlock *Pred = BB->getUniquePredecessor();
3934 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003935 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003936 TerminatorInst *PredTerm = Pred->getTerminator();
3937 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3938 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3939 if (PredSucc == BB)
3940 continue;
3941 // If the predecessor has a successor that isn't BB and isn't
3942 // outside the loop, assume the worst.
3943 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003944 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003945 }
3946 if (Pred == L->getHeader()) {
3947 Ok = true;
3948 break;
3949 }
3950 BB = Pred;
3951 }
3952 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003953 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003954 }
3955
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003956 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003957 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3958 ExitBr->getSuccessor(0),
3959 ExitBr->getSuccessor(1));
3960}
3961
3962/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3963/// backedge of the specified loop will execute if its exit condition
3964/// were a conditional branch of ExitCond, TBB, and FBB.
3965ScalarEvolution::BackedgeTakenInfo
3966ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3967 Value *ExitCond,
3968 BasicBlock *TBB,
3969 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003970 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003971 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3972 if (BO->getOpcode() == Instruction::And) {
3973 // Recurse on the operands of the and.
3974 BackedgeTakenInfo BTI0 =
3975 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3976 BackedgeTakenInfo BTI1 =
3977 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003978 const SCEV *BECount = getCouldNotCompute();
3979 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003980 if (L->contains(TBB)) {
3981 // Both conditions must be true for the loop to continue executing.
3982 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003983 if (BTI0.Exact == getCouldNotCompute() ||
3984 BTI1.Exact == getCouldNotCompute())
3985 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003986 else
3987 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003988 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003989 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003990 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003991 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003992 else
3993 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003994 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003995 // Both conditions must be true at the same time for the loop to exit.
3996 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003997 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003998 if (BTI0.Max == BTI1.Max)
3999 MaxBECount = BTI0.Max;
4000 if (BTI0.Exact == BTI1.Exact)
4001 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004002 }
4003
4004 return BackedgeTakenInfo(BECount, MaxBECount);
4005 }
4006 if (BO->getOpcode() == Instruction::Or) {
4007 // Recurse on the operands of the or.
4008 BackedgeTakenInfo BTI0 =
4009 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4010 BackedgeTakenInfo BTI1 =
4011 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004012 const SCEV *BECount = getCouldNotCompute();
4013 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004014 if (L->contains(FBB)) {
4015 // Both conditions must be false for the loop to continue executing.
4016 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00004017 if (BTI0.Exact == getCouldNotCompute() ||
4018 BTI1.Exact == getCouldNotCompute())
4019 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004020 else
4021 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00004022 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004023 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004024 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004025 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004026 else
4027 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004028 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004029 // Both conditions must be false at the same time for the loop to exit.
4030 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004031 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00004032 if (BTI0.Max == BTI1.Max)
4033 MaxBECount = BTI0.Max;
4034 if (BTI0.Exact == BTI1.Exact)
4035 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004036 }
4037
4038 return BackedgeTakenInfo(BECount, MaxBECount);
4039 }
4040 }
4041
4042 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004043 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004044 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4045 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004046
Dan Gohman00cb5b72010-02-19 18:12:07 +00004047 // Check for a constant condition. These are normally stripped out by
4048 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4049 // preserve the CFG and is temporarily leaving constant conditions
4050 // in place.
4051 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4052 if (L->contains(FBB) == !CI->getZExtValue())
4053 // The backedge is always taken.
4054 return getCouldNotCompute();
4055 else
4056 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004057 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004058 }
4059
Eli Friedman361e54d2009-05-09 12:32:42 +00004060 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004061 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4062}
4063
4064/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4065/// backedge of the specified loop will execute if its exit condition
4066/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4067ScalarEvolution::BackedgeTakenInfo
4068ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4069 ICmpInst *ExitCond,
4070 BasicBlock *TBB,
4071 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004072
Reid Spencere4d87aa2006-12-23 06:05:41 +00004073 // If the condition was exit on true, convert the condition to exit on false
4074 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004075 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004076 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004077 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004078 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004079
4080 // Handle common loops like: for (X = "string"; *X; ++X)
4081 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4082 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004083 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004084 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004085 if (ItCnt.hasAnyInfo())
4086 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004087 }
4088
Dan Gohman0bba49c2009-07-07 17:06:11 +00004089 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4090 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004091
4092 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004093 LHS = getSCEVAtScope(LHS, L);
4094 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004095
Dan Gohman64a845e2009-06-24 04:48:43 +00004096 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004097 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004098 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4099 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004100 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004101 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004102 }
4103
Dan Gohman03557dc2010-05-03 16:35:17 +00004104 // Simplify the operands before analyzing them.
4105 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4106
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 // If we have a comparison of a chrec against a constant, try to use value
4108 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004109 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4110 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004111 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004112 // Form the constant range.
4113 ConstantRange CompRange(
4114 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004115
Dan Gohman0bba49c2009-07-07 17:06:11 +00004116 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004117 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004118 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004119
Chris Lattner53e677a2004-04-02 20:23:17 +00004120 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004121 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004122 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004123 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4124 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004125 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004126 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004127 case ICmpInst::ICMP_EQ: { // while (X == Y)
4128 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004129 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4130 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004131 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004132 }
4133 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004134 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4135 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004136 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004137 }
4138 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004139 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4140 getNotSCEV(RHS), L, true);
4141 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004142 break;
4143 }
4144 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004145 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4146 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004147 break;
4148 }
4149 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004150 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4151 getNotSCEV(RHS), L, false);
4152 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004153 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004154 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004155 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004156#if 0
David Greene25e0e872009-12-23 22:18:14 +00004157 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004158 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004159 dbgs() << "[unsigned] ";
4160 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004161 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004162 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004163#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004164 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004165 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004166 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004167 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004168}
4169
Chris Lattner673e02b2004-10-12 01:49:27 +00004170static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004171EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4172 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004173 const SCEV *InVal = SE.getConstant(C);
4174 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004175 assert(isa<SCEVConstant>(Val) &&
4176 "Evaluation of SCEV at constant didn't fold correctly?");
4177 return cast<SCEVConstant>(Val)->getValue();
4178}
4179
4180/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4181/// and a GEP expression (missing the pointer index) indexing into it, return
4182/// the addressed element of the initializer or null if the index expression is
4183/// invalid.
4184static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004185GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004186 const std::vector<ConstantInt*> &Indices) {
4187 Constant *Init = GV->getInitializer();
4188 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004189 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004190 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4191 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4192 Init = cast<Constant>(CS->getOperand(Idx));
4193 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4194 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4195 Init = cast<Constant>(CA->getOperand(Idx));
4196 } else if (isa<ConstantAggregateZero>(Init)) {
4197 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4198 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004199 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004200 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4201 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004202 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004203 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004204 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004205 }
4206 return 0;
4207 } else {
4208 return 0; // Unknown initializer type
4209 }
4210 }
4211 return Init;
4212}
4213
Dan Gohman46bdfb02009-02-24 18:55:53 +00004214/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4215/// 'icmp op load X, cst', try to see if we can compute the backedge
4216/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004217ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004218ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4219 LoadInst *LI,
4220 Constant *RHS,
4221 const Loop *L,
4222 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004223 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004224
4225 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004226 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004227 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004228 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004229
4230 // Make sure that it is really a constant global we are gepping, with an
4231 // initializer, and make sure the first IDX is really 0.
4232 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004233 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004234 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4235 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004236 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004237
4238 // Okay, we allow one non-constant index into the GEP instruction.
4239 Value *VarIdx = 0;
4240 std::vector<ConstantInt*> Indexes;
4241 unsigned VarIdxNum = 0;
4242 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4243 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4244 Indexes.push_back(CI);
4245 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004246 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004247 VarIdx = GEP->getOperand(i);
4248 VarIdxNum = i-2;
4249 Indexes.push_back(0);
4250 }
4251
4252 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4253 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004254 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004255 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004256
4257 // We can only recognize very limited forms of loop index expressions, in
4258 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004259 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004260 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4261 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4262 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004263 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004264
4265 unsigned MaxSteps = MaxBruteForceIterations;
4266 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004267 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004268 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004269 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004270
4271 // Form the GEP offset.
4272 Indexes[VarIdxNum] = Val;
4273
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004274 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004275 if (Result == 0) break; // Cannot compute!
4276
4277 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004278 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004279 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004280 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004281#if 0
David Greene25e0e872009-12-23 22:18:14 +00004282 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004283 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4284 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004285#endif
4286 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004287 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004288 }
4289 }
Dan Gohman1c343752009-06-27 21:21:31 +00004290 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004291}
4292
4293
Chris Lattner3221ad02004-04-17 22:58:41 +00004294/// CanConstantFold - Return true if we can constant fold an instruction of the
4295/// specified type, assuming that all operands were constants.
4296static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004297 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004298 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4299 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004300
Chris Lattner3221ad02004-04-17 22:58:41 +00004301 if (const CallInst *CI = dyn_cast<CallInst>(I))
4302 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004303 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004304 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004305}
4306
Chris Lattner3221ad02004-04-17 22:58:41 +00004307/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4308/// in the loop that V is derived from. We allow arbitrary operations along the
4309/// way, but the operands of an operation must either be constants or a value
4310/// derived from a constant PHI. If this expression does not fit with these
4311/// constraints, return null.
4312static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4313 // If this is not an instruction, or if this is an instruction outside of the
4314 // loop, it can't be derived from a loop PHI.
4315 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004316 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004317
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004318 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004319 if (L->getHeader() == I->getParent())
4320 return PN;
4321 else
4322 // We don't currently keep track of the control flow needed to evaluate
4323 // PHIs, so we cannot handle PHIs inside of loops.
4324 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004325 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004326
4327 // If we won't be able to constant fold this expression even if the operands
4328 // are constants, return early.
4329 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004330
Chris Lattner3221ad02004-04-17 22:58:41 +00004331 // Otherwise, we can evaluate this instruction if all of its operands are
4332 // constant or derived from a PHI node themselves.
4333 PHINode *PHI = 0;
4334 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004335 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4337 if (P == 0) return 0; // Not evolving from PHI
4338 if (PHI == 0)
4339 PHI = P;
4340 else if (PHI != P)
4341 return 0; // Evolving from multiple different PHIs.
4342 }
4343
4344 // This is a expression evolving from a constant PHI!
4345 return PHI;
4346}
4347
4348/// EvaluateExpression - Given an expression that passes the
4349/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4350/// in the loop has the value PHIVal. If we can't fold this expression for some
4351/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004352static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4353 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004354 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004355 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004356 Instruction *I = cast<Instruction>(V);
4357
Dan Gohman9d4588f2010-06-22 13:15:46 +00004358 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004359
4360 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004361 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004362 if (Operands[i] == 0) return 0;
4363 }
4364
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004365 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004366 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004367 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004368 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004369 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004370}
4371
4372/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4373/// in the header of its containing loop, we know the loop executes a
4374/// constant number of times, and the PHI node is just a recurrence
4375/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004376Constant *
4377ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004378 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004379 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004380 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004381 ConstantEvolutionLoopExitValue.find(PN);
4382 if (I != ConstantEvolutionLoopExitValue.end())
4383 return I->second;
4384
Dan Gohmane0567812010-04-08 23:03:40 +00004385 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004386 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4387
4388 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4389
4390 // Since the loop is canonicalized, the PHI node must have two entries. One
4391 // entry must be a constant (coming in from outside of the loop), and the
4392 // second must be derived from the same PHI.
4393 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4394 Constant *StartCST =
4395 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4396 if (StartCST == 0)
4397 return RetVal = 0; // Must be a constant.
4398
4399 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004400 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4401 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004402 return RetVal = 0; // Not derived from same PHI.
4403
4404 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004405 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004406 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004407
Dan Gohman46bdfb02009-02-24 18:55:53 +00004408 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004409 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004410 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4411 if (IterationNum == NumIterations)
4412 return RetVal = PHIVal; // Got exit value!
4413
4414 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004415 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004416 if (NextPHI == PHIVal)
4417 return RetVal = NextPHI; // Stopped evolving!
4418 if (NextPHI == 0)
4419 return 0; // Couldn't evaluate!
4420 PHIVal = NextPHI;
4421 }
4422}
4423
Dan Gohman07ad19b2009-07-27 16:09:48 +00004424/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004425/// constant number of times (the condition evolves only from constants),
4426/// try to evaluate a few iterations of the loop until we get the exit
4427/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004428/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004429const SCEV *
4430ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4431 Value *Cond,
4432 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004433 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004434 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004435
Dan Gohmanb92654d2010-06-19 14:17:24 +00004436 // If the loop is canonicalized, the PHI will have exactly two entries.
4437 // That's the only form we support here.
4438 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4439
4440 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004441 // second must be derived from the same PHI.
4442 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4443 Constant *StartCST =
4444 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004445 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004446
4447 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004448 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4449 !isa<Constant>(BEValue))
4450 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004451
4452 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4453 // the loop symbolically to determine when the condition gets a value of
4454 // "ExitWhen".
4455 unsigned IterationNum = 0;
4456 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4457 for (Constant *PHIVal = StartCST;
4458 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004459 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004460 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004461
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004462 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004463 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004464
Reid Spencere8019bb2007-03-01 07:25:48 +00004465 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004466 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004467 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004468 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004469
Chris Lattner3221ad02004-04-17 22:58:41 +00004470 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004471 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004472 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004473 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004474 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004475 }
4476
4477 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004478 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004479}
4480
Dan Gohmane7125f42009-09-03 15:00:26 +00004481/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004482/// at the specified scope in the program. The L value specifies a loop
4483/// nest to evaluate the expression at, where null is the top-level or a
4484/// specified loop is immediately inside of the loop.
4485///
4486/// This method can be used to compute the exit value for a variable defined
4487/// in a loop by querying what the value will hold in the parent loop.
4488///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004489/// In the case that a relevant loop exit value cannot be computed, the
4490/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004491const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004492 // Check to see if we've folded this expression at this loop before.
4493 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4494 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4495 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4496 if (!Pair.second)
4497 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004498
Dan Gohman42214892009-08-31 21:15:23 +00004499 // Otherwise compute it.
4500 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004501 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004502 return C;
4503}
4504
4505const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004506 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004507
Nick Lewycky3e630762008-02-20 06:48:22 +00004508 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004509 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004510 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004511 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004512 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004513 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4514 if (PHINode *PN = dyn_cast<PHINode>(I))
4515 if (PN->getParent() == LI->getHeader()) {
4516 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004517 // to see if the loop that contains it has a known backedge-taken
4518 // count. If so, we may be able to force computation of the exit
4519 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004520 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004521 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004522 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004523 // Okay, we know how many times the containing loop executes. If
4524 // this is a constant evolving PHI node, get the final value at
4525 // the specified iteration number.
4526 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004527 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004528 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004529 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004530 }
4531 }
4532
Reid Spencer09906f32006-12-04 21:33:23 +00004533 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004534 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004535 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004536 // result. This is particularly useful for computing loop exit values.
4537 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004538 SmallVector<Constant *, 4> Operands;
4539 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004540 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4541 Value *Op = I->getOperand(i);
4542 if (Constant *C = dyn_cast<Constant>(Op)) {
4543 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004544 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004545 }
Dan Gohman11046452010-06-29 23:43:06 +00004546
4547 // If any of the operands is non-constant and if they are
4548 // non-integer and non-pointer, don't even try to analyze them
4549 // with scev techniques.
4550 if (!isSCEVable(Op->getType()))
4551 return V;
4552
4553 const SCEV *OrigV = getSCEV(Op);
4554 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4555 MadeImprovement |= OrigV != OpV;
4556
4557 Constant *C = 0;
4558 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4559 C = SC->getValue();
4560 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4561 C = dyn_cast<Constant>(SU->getValue());
4562 if (!C) return V;
4563 if (C->getType() != Op->getType())
4564 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4565 Op->getType(),
4566 false),
4567 C, Op->getType());
4568 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004569 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004570
Dan Gohman11046452010-06-29 23:43:06 +00004571 // Check to see if getSCEVAtScope actually made an improvement.
4572 if (MadeImprovement) {
4573 Constant *C = 0;
4574 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4575 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4576 Operands[0], Operands[1], TD);
4577 else
4578 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4579 &Operands[0], Operands.size(), TD);
4580 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004581 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004582 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004583 }
4584 }
4585
4586 // This is some other type of SCEVUnknown, just return it.
4587 return V;
4588 }
4589
Dan Gohman622ed672009-05-04 22:02:23 +00004590 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004591 // Avoid performing the look-up in the common case where the specified
4592 // expression has no loop-variant portions.
4593 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004594 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004596 // Okay, at least one of these operands is loop variant but might be
4597 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004598 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4599 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004600 NewOps.push_back(OpAtScope);
4601
4602 for (++i; i != e; ++i) {
4603 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004604 NewOps.push_back(OpAtScope);
4605 }
4606 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004607 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004608 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004609 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004610 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004611 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004612 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004613 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004614 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004615 }
4616 }
4617 // If we got here, all operands are loop invariant.
4618 return Comm;
4619 }
4620
Dan Gohman622ed672009-05-04 22:02:23 +00004621 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004622 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4623 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004624 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4625 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004626 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004627 }
4628
4629 // If this is a loop recurrence for a loop that does not contain L, then we
4630 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004631 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004632 // First, attempt to evaluate each operand.
4633 // Avoid performing the look-up in the common case where the specified
4634 // expression has no loop-variant portions.
4635 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4636 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4637 if (OpAtScope == AddRec->getOperand(i))
4638 continue;
4639
4640 // Okay, at least one of these operands is loop variant but might be
4641 // foldable. Build a new instance of the folded commutative expression.
4642 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4643 AddRec->op_begin()+i);
4644 NewOps.push_back(OpAtScope);
4645 for (++i; i != e; ++i)
4646 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4647
4648 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4649 break;
4650 }
4651
4652 // If the scope is outside the addrec's loop, evaluate it by using the
4653 // loop exit value of the addrec.
4654 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004655 // To evaluate this recurrence, we need to know how many times the AddRec
4656 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004657 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004658 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004659
Eli Friedmanb42a6262008-08-04 23:49:06 +00004660 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004661 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004662 }
Dan Gohman11046452010-06-29 23:43:06 +00004663
Dan Gohmand594e6f2009-05-24 23:25:42 +00004664 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004665 }
4666
Dan Gohman622ed672009-05-04 22:02:23 +00004667 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004668 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004669 if (Op == Cast->getOperand())
4670 return Cast; // must be loop invariant
4671 return getZeroExtendExpr(Op, Cast->getType());
4672 }
4673
Dan Gohman622ed672009-05-04 22:02:23 +00004674 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004675 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004676 if (Op == Cast->getOperand())
4677 return Cast; // must be loop invariant
4678 return getSignExtendExpr(Op, Cast->getType());
4679 }
4680
Dan Gohman622ed672009-05-04 22:02:23 +00004681 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004682 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004683 if (Op == Cast->getOperand())
4684 return Cast; // must be loop invariant
4685 return getTruncateExpr(Op, Cast->getType());
4686 }
4687
Torok Edwinc23197a2009-07-14 16:55:14 +00004688 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004689 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004690}
4691
Dan Gohman66a7e852009-05-08 20:38:54 +00004692/// getSCEVAtScope - This is a convenience function which does
4693/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004694const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004695 return getSCEVAtScope(getSCEV(V), L);
4696}
4697
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004698/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4699/// following equation:
4700///
4701/// A * X = B (mod N)
4702///
4703/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4704/// A and B isn't important.
4705///
4706/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004707static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004708 ScalarEvolution &SE) {
4709 uint32_t BW = A.getBitWidth();
4710 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4711 assert(A != 0 && "A must be non-zero.");
4712
4713 // 1. D = gcd(A, N)
4714 //
4715 // The gcd of A and N may have only one prime factor: 2. The number of
4716 // trailing zeros in A is its multiplicity
4717 uint32_t Mult2 = A.countTrailingZeros();
4718 // D = 2^Mult2
4719
4720 // 2. Check if B is divisible by D.
4721 //
4722 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4723 // is not less than multiplicity of this prime factor for D.
4724 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004725 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004726
4727 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4728 // modulo (N / D).
4729 //
4730 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4731 // bit width during computations.
4732 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4733 APInt Mod(BW + 1, 0);
4734 Mod.set(BW - Mult2); // Mod = N / D
4735 APInt I = AD.multiplicativeInverse(Mod);
4736
4737 // 4. Compute the minimum unsigned root of the equation:
4738 // I * (B / D) mod (N / D)
4739 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4740
4741 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4742 // bits.
4743 return SE.getConstant(Result.trunc(BW));
4744}
Chris Lattner53e677a2004-04-02 20:23:17 +00004745
4746/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4747/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4748/// might be the same) or two SCEVCouldNotCompute objects.
4749///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004750static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004751SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004752 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004753 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4754 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4755 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004756
Chris Lattner53e677a2004-04-02 20:23:17 +00004757 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004758 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004759 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004760 return std::make_pair(CNC, CNC);
4761 }
4762
Reid Spencere8019bb2007-03-01 07:25:48 +00004763 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004764 const APInt &L = LC->getValue()->getValue();
4765 const APInt &M = MC->getValue()->getValue();
4766 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004767 APInt Two(BitWidth, 2);
4768 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004769
Dan Gohman64a845e2009-06-24 04:48:43 +00004770 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004771 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004772 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004773 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4774 // The B coefficient is M-N/2
4775 APInt B(M);
4776 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004777
Reid Spencere8019bb2007-03-01 07:25:48 +00004778 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004779 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004780
Reid Spencere8019bb2007-03-01 07:25:48 +00004781 // Compute the B^2-4ac term.
4782 APInt SqrtTerm(B);
4783 SqrtTerm *= B;
4784 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004785
Reid Spencere8019bb2007-03-01 07:25:48 +00004786 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4787 // integer value or else APInt::sqrt() will assert.
4788 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004789
Dan Gohman64a845e2009-06-24 04:48:43 +00004790 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004791 // The divisions must be performed as signed divisions.
4792 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004793 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004794 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004795 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004796 return std::make_pair(CNC, CNC);
4797 }
4798
Owen Andersone922c022009-07-22 00:24:57 +00004799 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004800
4801 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004802 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004803 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004804 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004805
Dan Gohman64a845e2009-06-24 04:48:43 +00004806 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004807 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004808 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004809}
4810
4811/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004812/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004813ScalarEvolution::BackedgeTakenInfo
4814ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004815 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004816 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004817 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004818 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004819 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004820 }
4821
Dan Gohman35738ac2009-05-04 22:30:44 +00004822 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004823 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004824 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004825
4826 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004827 // If this is an affine expression, the execution count of this branch is
4828 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004829 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004830 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004831 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004832 // equivalent to:
4833 //
4834 // Step*N = -Start (mod 2^BW)
4835 //
4836 // where BW is the common bit width of Start and Step.
4837
Chris Lattner53e677a2004-04-02 20:23:17 +00004838 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004839 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4840 L->getParentLoop());
4841 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4842 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004843
Dan Gohman622ed672009-05-04 22:02:23 +00004844 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004845 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004846
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004847 // First, handle unitary steps.
4848 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004849 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004850 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4851 return Start; // N = Start (as unsigned)
4852
4853 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004854 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004855 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004856 -StartC->getValue()->getValue(),
4857 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004858 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004859 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004860 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4861 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004862 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004863 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004864 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4865 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004866 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004867#if 0
David Greene25e0e872009-12-23 22:18:14 +00004868 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004869 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004870#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004871 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004872 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004873 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004874 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004875 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004876 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004877
Chris Lattner53e677a2004-04-02 20:23:17 +00004878 // We can only use this value if the chrec ends up with an exact zero
4879 // value at this index. When solving for "X*X != 5", for example, we
4880 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004881 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004882 if (Val->isZero())
4883 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004884 }
4885 }
4886 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004887
Dan Gohman1c343752009-06-27 21:21:31 +00004888 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004889}
4890
4891/// HowFarToNonZero - Return the number of times a backedge checking the
4892/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004893/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004894ScalarEvolution::BackedgeTakenInfo
4895ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004896 // Loops that look like: while (X == 0) are very strange indeed. We don't
4897 // handle them yet except for the trivial case. This could be expanded in the
4898 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004899
Chris Lattner53e677a2004-04-02 20:23:17 +00004900 // If the value is a constant, check to see if it is known to be non-zero
4901 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004902 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004903 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004904 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004905 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004906 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004907
Chris Lattner53e677a2004-04-02 20:23:17 +00004908 // We could implement others, but I really doubt anyone writes loops like
4909 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004910 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004911}
4912
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004913/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4914/// (which may not be an immediate predecessor) which has exactly one
4915/// successor from which BB is reachable, or null if no such block is
4916/// found.
4917///
Dan Gohman005752b2010-04-15 16:19:08 +00004918std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004919ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004920 // If the block has a unique predecessor, then there is no path from the
4921 // predecessor to the block that does not go through the direct edge
4922 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004923 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004924 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004925
4926 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004927 // If the header has a unique predecessor outside the loop, it must be
4928 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004929 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004930 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004931
Dan Gohman005752b2010-04-15 16:19:08 +00004932 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004933}
4934
Dan Gohman763bad12009-06-20 00:35:32 +00004935/// HasSameValue - SCEV structural equivalence is usually sufficient for
4936/// testing whether two expressions are equal, however for the purposes of
4937/// looking for a condition guarding a loop, it can be useful to be a little
4938/// more general, since a front-end may have replicated the controlling
4939/// expression.
4940///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004941static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004942 // Quick check to see if they are the same SCEV.
4943 if (A == B) return true;
4944
4945 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4946 // two different instructions with the same value. Check for this case.
4947 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4948 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4949 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4950 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004951 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004952 return true;
4953
4954 // Otherwise assume they may have a different value.
4955 return false;
4956}
4957
Dan Gohmane9796502010-04-24 01:28:42 +00004958/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4959/// predicate Pred. Return true iff any changes were made.
4960///
4961bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4962 const SCEV *&LHS, const SCEV *&RHS) {
4963 bool Changed = false;
4964
4965 // Canonicalize a constant to the right side.
4966 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4967 // Check for both operands constant.
4968 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4969 if (ConstantExpr::getICmp(Pred,
4970 LHSC->getValue(),
4971 RHSC->getValue())->isNullValue())
4972 goto trivially_false;
4973 else
4974 goto trivially_true;
4975 }
4976 // Otherwise swap the operands to put the constant on the right.
4977 std::swap(LHS, RHS);
4978 Pred = ICmpInst::getSwappedPredicate(Pred);
4979 Changed = true;
4980 }
4981
4982 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004983 // addrec's loop, put the addrec on the left. Also make a dominance check,
4984 // as both operands could be addrecs loop-invariant in each other's loop.
4985 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4986 const Loop *L = AR->getLoop();
4987 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004988 std::swap(LHS, RHS);
4989 Pred = ICmpInst::getSwappedPredicate(Pred);
4990 Changed = true;
4991 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004992 }
Dan Gohmane9796502010-04-24 01:28:42 +00004993
4994 // If there's a constant operand, canonicalize comparisons with boundary
4995 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4996 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4997 const APInt &RA = RC->getValue()->getValue();
4998 switch (Pred) {
4999 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5000 case ICmpInst::ICMP_EQ:
5001 case ICmpInst::ICMP_NE:
5002 break;
5003 case ICmpInst::ICMP_UGE:
5004 if ((RA - 1).isMinValue()) {
5005 Pred = ICmpInst::ICMP_NE;
5006 RHS = getConstant(RA - 1);
5007 Changed = true;
5008 break;
5009 }
5010 if (RA.isMaxValue()) {
5011 Pred = ICmpInst::ICMP_EQ;
5012 Changed = true;
5013 break;
5014 }
5015 if (RA.isMinValue()) goto trivially_true;
5016
5017 Pred = ICmpInst::ICMP_UGT;
5018 RHS = getConstant(RA - 1);
5019 Changed = true;
5020 break;
5021 case ICmpInst::ICMP_ULE:
5022 if ((RA + 1).isMaxValue()) {
5023 Pred = ICmpInst::ICMP_NE;
5024 RHS = getConstant(RA + 1);
5025 Changed = true;
5026 break;
5027 }
5028 if (RA.isMinValue()) {
5029 Pred = ICmpInst::ICMP_EQ;
5030 Changed = true;
5031 break;
5032 }
5033 if (RA.isMaxValue()) goto trivially_true;
5034
5035 Pred = ICmpInst::ICMP_ULT;
5036 RHS = getConstant(RA + 1);
5037 Changed = true;
5038 break;
5039 case ICmpInst::ICMP_SGE:
5040 if ((RA - 1).isMinSignedValue()) {
5041 Pred = ICmpInst::ICMP_NE;
5042 RHS = getConstant(RA - 1);
5043 Changed = true;
5044 break;
5045 }
5046 if (RA.isMaxSignedValue()) {
5047 Pred = ICmpInst::ICMP_EQ;
5048 Changed = true;
5049 break;
5050 }
5051 if (RA.isMinSignedValue()) goto trivially_true;
5052
5053 Pred = ICmpInst::ICMP_SGT;
5054 RHS = getConstant(RA - 1);
5055 Changed = true;
5056 break;
5057 case ICmpInst::ICMP_SLE:
5058 if ((RA + 1).isMaxSignedValue()) {
5059 Pred = ICmpInst::ICMP_NE;
5060 RHS = getConstant(RA + 1);
5061 Changed = true;
5062 break;
5063 }
5064 if (RA.isMinSignedValue()) {
5065 Pred = ICmpInst::ICMP_EQ;
5066 Changed = true;
5067 break;
5068 }
5069 if (RA.isMaxSignedValue()) goto trivially_true;
5070
5071 Pred = ICmpInst::ICMP_SLT;
5072 RHS = getConstant(RA + 1);
5073 Changed = true;
5074 break;
5075 case ICmpInst::ICMP_UGT:
5076 if (RA.isMinValue()) {
5077 Pred = ICmpInst::ICMP_NE;
5078 Changed = true;
5079 break;
5080 }
5081 if ((RA + 1).isMaxValue()) {
5082 Pred = ICmpInst::ICMP_EQ;
5083 RHS = getConstant(RA + 1);
5084 Changed = true;
5085 break;
5086 }
5087 if (RA.isMaxValue()) goto trivially_false;
5088 break;
5089 case ICmpInst::ICMP_ULT:
5090 if (RA.isMaxValue()) {
5091 Pred = ICmpInst::ICMP_NE;
5092 Changed = true;
5093 break;
5094 }
5095 if ((RA - 1).isMinValue()) {
5096 Pred = ICmpInst::ICMP_EQ;
5097 RHS = getConstant(RA - 1);
5098 Changed = true;
5099 break;
5100 }
5101 if (RA.isMinValue()) goto trivially_false;
5102 break;
5103 case ICmpInst::ICMP_SGT:
5104 if (RA.isMinSignedValue()) {
5105 Pred = ICmpInst::ICMP_NE;
5106 Changed = true;
5107 break;
5108 }
5109 if ((RA + 1).isMaxSignedValue()) {
5110 Pred = ICmpInst::ICMP_EQ;
5111 RHS = getConstant(RA + 1);
5112 Changed = true;
5113 break;
5114 }
5115 if (RA.isMaxSignedValue()) goto trivially_false;
5116 break;
5117 case ICmpInst::ICMP_SLT:
5118 if (RA.isMaxSignedValue()) {
5119 Pred = ICmpInst::ICMP_NE;
5120 Changed = true;
5121 break;
5122 }
5123 if ((RA - 1).isMinSignedValue()) {
5124 Pred = ICmpInst::ICMP_EQ;
5125 RHS = getConstant(RA - 1);
5126 Changed = true;
5127 break;
5128 }
5129 if (RA.isMinSignedValue()) goto trivially_false;
5130 break;
5131 }
5132 }
5133
5134 // Check for obvious equality.
5135 if (HasSameValue(LHS, RHS)) {
5136 if (ICmpInst::isTrueWhenEqual(Pred))
5137 goto trivially_true;
5138 if (ICmpInst::isFalseWhenEqual(Pred))
5139 goto trivially_false;
5140 }
5141
Dan Gohman03557dc2010-05-03 16:35:17 +00005142 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5143 // adding or subtracting 1 from one of the operands.
5144 switch (Pred) {
5145 case ICmpInst::ICMP_SLE:
5146 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5147 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5148 /*HasNUW=*/false, /*HasNSW=*/true);
5149 Pred = ICmpInst::ICMP_SLT;
5150 Changed = true;
5151 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005152 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005153 /*HasNUW=*/false, /*HasNSW=*/true);
5154 Pred = ICmpInst::ICMP_SLT;
5155 Changed = true;
5156 }
5157 break;
5158 case ICmpInst::ICMP_SGE:
5159 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005160 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005161 /*HasNUW=*/false, /*HasNSW=*/true);
5162 Pred = ICmpInst::ICMP_SGT;
5163 Changed = true;
5164 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5165 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5166 /*HasNUW=*/false, /*HasNSW=*/true);
5167 Pred = ICmpInst::ICMP_SGT;
5168 Changed = true;
5169 }
5170 break;
5171 case ICmpInst::ICMP_ULE:
5172 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005173 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005174 /*HasNUW=*/true, /*HasNSW=*/false);
5175 Pred = ICmpInst::ICMP_ULT;
5176 Changed = true;
5177 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005178 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005179 /*HasNUW=*/true, /*HasNSW=*/false);
5180 Pred = ICmpInst::ICMP_ULT;
5181 Changed = true;
5182 }
5183 break;
5184 case ICmpInst::ICMP_UGE:
5185 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005186 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005187 /*HasNUW=*/true, /*HasNSW=*/false);
5188 Pred = ICmpInst::ICMP_UGT;
5189 Changed = true;
5190 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005191 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005192 /*HasNUW=*/true, /*HasNSW=*/false);
5193 Pred = ICmpInst::ICMP_UGT;
5194 Changed = true;
5195 }
5196 break;
5197 default:
5198 break;
5199 }
5200
Dan Gohmane9796502010-04-24 01:28:42 +00005201 // TODO: More simplifications are possible here.
5202
5203 return Changed;
5204
5205trivially_true:
5206 // Return 0 == 0.
5207 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5208 Pred = ICmpInst::ICMP_EQ;
5209 return true;
5210
5211trivially_false:
5212 // Return 0 != 0.
5213 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5214 Pred = ICmpInst::ICMP_NE;
5215 return true;
5216}
5217
Dan Gohman85b05a22009-07-13 21:35:55 +00005218bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5219 return getSignedRange(S).getSignedMax().isNegative();
5220}
5221
5222bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5223 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5224}
5225
5226bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5227 return !getSignedRange(S).getSignedMin().isNegative();
5228}
5229
5230bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5231 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5232}
5233
5234bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5235 return isKnownNegative(S) || isKnownPositive(S);
5236}
5237
5238bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5239 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005240 // Canonicalize the inputs first.
5241 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5242
Dan Gohman53c66ea2010-04-11 22:16:48 +00005243 // If LHS or RHS is an addrec, check to see if the condition is true in
5244 // every iteration of the loop.
5245 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5246 if (isLoopEntryGuardedByCond(
5247 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5248 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005249 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005250 return true;
5251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5252 if (isLoopEntryGuardedByCond(
5253 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5254 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005255 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005256 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005257
Dan Gohman53c66ea2010-04-11 22:16:48 +00005258 // Otherwise see what can be done with known constant ranges.
5259 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5260}
5261
5262bool
5263ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5264 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005265 if (HasSameValue(LHS, RHS))
5266 return ICmpInst::isTrueWhenEqual(Pred);
5267
Dan Gohman53c66ea2010-04-11 22:16:48 +00005268 // This code is split out from isKnownPredicate because it is called from
5269 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005270 switch (Pred) {
5271 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005272 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005273 break;
5274 case ICmpInst::ICMP_SGT:
5275 Pred = ICmpInst::ICMP_SLT;
5276 std::swap(LHS, RHS);
5277 case ICmpInst::ICMP_SLT: {
5278 ConstantRange LHSRange = getSignedRange(LHS);
5279 ConstantRange RHSRange = getSignedRange(RHS);
5280 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5281 return true;
5282 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5283 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005284 break;
5285 }
5286 case ICmpInst::ICMP_SGE:
5287 Pred = ICmpInst::ICMP_SLE;
5288 std::swap(LHS, RHS);
5289 case ICmpInst::ICMP_SLE: {
5290 ConstantRange LHSRange = getSignedRange(LHS);
5291 ConstantRange RHSRange = getSignedRange(RHS);
5292 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5293 return true;
5294 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5295 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005296 break;
5297 }
5298 case ICmpInst::ICMP_UGT:
5299 Pred = ICmpInst::ICMP_ULT;
5300 std::swap(LHS, RHS);
5301 case ICmpInst::ICMP_ULT: {
5302 ConstantRange LHSRange = getUnsignedRange(LHS);
5303 ConstantRange RHSRange = getUnsignedRange(RHS);
5304 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5305 return true;
5306 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5307 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005308 break;
5309 }
5310 case ICmpInst::ICMP_UGE:
5311 Pred = ICmpInst::ICMP_ULE;
5312 std::swap(LHS, RHS);
5313 case ICmpInst::ICMP_ULE: {
5314 ConstantRange LHSRange = getUnsignedRange(LHS);
5315 ConstantRange RHSRange = getUnsignedRange(RHS);
5316 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5317 return true;
5318 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5319 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005320 break;
5321 }
5322 case ICmpInst::ICMP_NE: {
5323 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5324 return true;
5325 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5326 return true;
5327
5328 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5329 if (isKnownNonZero(Diff))
5330 return true;
5331 break;
5332 }
5333 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005334 // The check at the top of the function catches the case where
5335 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005336 break;
5337 }
5338 return false;
5339}
5340
5341/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5342/// protected by a conditional between LHS and RHS. This is used to
5343/// to eliminate casts.
5344bool
5345ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5346 ICmpInst::Predicate Pred,
5347 const SCEV *LHS, const SCEV *RHS) {
5348 // Interpret a null as meaning no loop, where there is obviously no guard
5349 // (interprocedural conditions notwithstanding).
5350 if (!L) return true;
5351
5352 BasicBlock *Latch = L->getLoopLatch();
5353 if (!Latch)
5354 return false;
5355
5356 BranchInst *LoopContinuePredicate =
5357 dyn_cast<BranchInst>(Latch->getTerminator());
5358 if (!LoopContinuePredicate ||
5359 LoopContinuePredicate->isUnconditional())
5360 return false;
5361
Dan Gohmanaf08a362010-08-10 23:46:30 +00005362 return isImpliedCond(Pred, LHS, RHS,
5363 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005364 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005365}
5366
Dan Gohman3948d0b2010-04-11 19:27:13 +00005367/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005368/// by a conditional between LHS and RHS. This is used to help avoid max
5369/// expressions in loop trip counts, and to eliminate casts.
5370bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005371ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5372 ICmpInst::Predicate Pred,
5373 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005374 // Interpret a null as meaning no loop, where there is obviously no guard
5375 // (interprocedural conditions notwithstanding).
5376 if (!L) return false;
5377
Dan Gohman859b4822009-05-18 15:36:09 +00005378 // Starting at the loop predecessor, climb up the predecessor chain, as long
5379 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005380 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005381 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005382 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005383 Pair.first;
5384 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005385
5386 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005387 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005388 if (!LoopEntryPredicate ||
5389 LoopEntryPredicate->isUnconditional())
5390 continue;
5391
Dan Gohmanaf08a362010-08-10 23:46:30 +00005392 if (isImpliedCond(Pred, LHS, RHS,
5393 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005394 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005395 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005396 }
5397
Dan Gohman38372182008-08-12 20:17:31 +00005398 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005399}
5400
Dan Gohman0f4b2852009-07-21 23:03:19 +00005401/// isImpliedCond - Test whether the condition described by Pred, LHS,
5402/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005403bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005404 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005405 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005406 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005407 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005408 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005409 if (BO->getOpcode() == Instruction::And) {
5410 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005411 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5412 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005413 } else if (BO->getOpcode() == Instruction::Or) {
5414 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005415 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5416 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005417 }
5418 }
5419
Dan Gohmanaf08a362010-08-10 23:46:30 +00005420 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005421 if (!ICI) return false;
5422
Dan Gohman85b05a22009-07-13 21:35:55 +00005423 // Bail if the ICmp's operands' types are wider than the needed type
5424 // before attempting to call getSCEV on them. This avoids infinite
5425 // recursion, since the analysis of widening casts can require loop
5426 // exit condition information for overflow checking, which would
5427 // lead back here.
5428 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005429 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005430 return false;
5431
Dan Gohman0f4b2852009-07-21 23:03:19 +00005432 // Now that we found a conditional branch that dominates the loop, check to
5433 // see if it is the comparison we are looking for.
5434 ICmpInst::Predicate FoundPred;
5435 if (Inverse)
5436 FoundPred = ICI->getInversePredicate();
5437 else
5438 FoundPred = ICI->getPredicate();
5439
5440 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5441 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005442
5443 // Balance the types. The case where FoundLHS' type is wider than
5444 // LHS' type is checked for above.
5445 if (getTypeSizeInBits(LHS->getType()) >
5446 getTypeSizeInBits(FoundLHS->getType())) {
5447 if (CmpInst::isSigned(Pred)) {
5448 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5449 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5450 } else {
5451 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5452 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5453 }
5454 }
5455
Dan Gohman0f4b2852009-07-21 23:03:19 +00005456 // Canonicalize the query to match the way instcombine will have
5457 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005458 if (SimplifyICmpOperands(Pred, LHS, RHS))
5459 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005460 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005461 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5462 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005463 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005464
5465 // Check to see if we can make the LHS or RHS match.
5466 if (LHS == FoundRHS || RHS == FoundLHS) {
5467 if (isa<SCEVConstant>(RHS)) {
5468 std::swap(FoundLHS, FoundRHS);
5469 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5470 } else {
5471 std::swap(LHS, RHS);
5472 Pred = ICmpInst::getSwappedPredicate(Pred);
5473 }
5474 }
5475
5476 // Check whether the found predicate is the same as the desired predicate.
5477 if (FoundPred == Pred)
5478 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5479
5480 // Check whether swapping the found predicate makes it the same as the
5481 // desired predicate.
5482 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5483 if (isa<SCEVConstant>(RHS))
5484 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5485 else
5486 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5487 RHS, LHS, FoundLHS, FoundRHS);
5488 }
5489
5490 // Check whether the actual condition is beyond sufficient.
5491 if (FoundPred == ICmpInst::ICMP_EQ)
5492 if (ICmpInst::isTrueWhenEqual(Pred))
5493 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5494 return true;
5495 if (Pred == ICmpInst::ICMP_NE)
5496 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5497 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5498 return true;
5499
5500 // Otherwise assume the worst.
5501 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005502}
5503
Dan Gohman0f4b2852009-07-21 23:03:19 +00005504/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005505/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005506/// and FoundRHS is true.
5507bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5508 const SCEV *LHS, const SCEV *RHS,
5509 const SCEV *FoundLHS,
5510 const SCEV *FoundRHS) {
5511 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5512 FoundLHS, FoundRHS) ||
5513 // ~x < ~y --> x > y
5514 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5515 getNotSCEV(FoundRHS),
5516 getNotSCEV(FoundLHS));
5517}
5518
5519/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005520/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005521/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005522bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005523ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5524 const SCEV *LHS, const SCEV *RHS,
5525 const SCEV *FoundLHS,
5526 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005527 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005528 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5529 case ICmpInst::ICMP_EQ:
5530 case ICmpInst::ICMP_NE:
5531 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5532 return true;
5533 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005534 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005535 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005536 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5537 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005538 return true;
5539 break;
5540 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005541 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005542 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5543 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005544 return true;
5545 break;
5546 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005547 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005548 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5549 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005550 return true;
5551 break;
5552 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005553 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005554 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5555 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005556 return true;
5557 break;
5558 }
5559
5560 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005561}
5562
Dan Gohman51f53b72009-06-21 23:46:38 +00005563/// getBECount - Subtract the end and start values and divide by the step,
5564/// rounding up, to get the number of times the backedge is executed. Return
5565/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005566const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005567 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005568 const SCEV *Step,
5569 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005570 assert(!isKnownNegative(Step) &&
5571 "This code doesn't handle negative strides yet!");
5572
Dan Gohman51f53b72009-06-21 23:46:38 +00005573 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005574 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005575 const SCEV *Diff = getMinusSCEV(End, Start);
5576 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005577
5578 // Add an adjustment to the difference between End and Start so that
5579 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005580 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005581
Dan Gohman1f96e672009-09-17 18:05:20 +00005582 if (!NoWrap) {
5583 // Check Add for unsigned overflow.
5584 // TODO: More sophisticated things could be done here.
5585 const Type *WideTy = IntegerType::get(getContext(),
5586 getTypeSizeInBits(Ty) + 1);
5587 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5588 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5589 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5590 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5591 return getCouldNotCompute();
5592 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005593
5594 return getUDivExpr(Add, Step);
5595}
5596
Chris Lattnerdb25de42005-08-15 23:33:51 +00005597/// HowManyLessThans - Return the number of times a backedge containing the
5598/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005599/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005600ScalarEvolution::BackedgeTakenInfo
5601ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5602 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005603 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005604 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005605
Dan Gohman35738ac2009-05-04 22:30:44 +00005606 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005607 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005608 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005609
Dan Gohman1f96e672009-09-17 18:05:20 +00005610 // Check to see if we have a flag which makes analysis easy.
5611 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5612 AddRec->hasNoUnsignedWrap();
5613
Chris Lattnerdb25de42005-08-15 23:33:51 +00005614 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005615 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005616 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005617
Dan Gohman52fddd32010-01-26 04:40:18 +00005618 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005619 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005620 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005621 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005622 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005623 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005624 // value and past the maximum value for its type in a single step.
5625 // Note that it's not sufficient to check NoWrap here, because even
5626 // though the value after a wrap is undefined, it's not undefined
5627 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005628 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005629 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005630 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005631 if (isSigned) {
5632 APInt Max = APInt::getSignedMaxValue(BitWidth);
5633 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5634 .slt(getSignedRange(RHS).getSignedMax()))
5635 return getCouldNotCompute();
5636 } else {
5637 APInt Max = APInt::getMaxValue(BitWidth);
5638 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5639 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5640 return getCouldNotCompute();
5641 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005642 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005643 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005644 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005645
Dan Gohmana1af7572009-04-30 20:47:05 +00005646 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5647 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5648 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005649 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005650
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005651 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005652 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005653
Dan Gohmana1af7572009-04-30 20:47:05 +00005654 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005655 const SCEV *MinStart = getConstant(isSigned ?
5656 getSignedRange(Start).getSignedMin() :
5657 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005658
Dan Gohmana1af7572009-04-30 20:47:05 +00005659 // If we know that the condition is true in order to enter the loop,
5660 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005661 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5662 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005663 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005664 if (!isLoopEntryGuardedByCond(L,
5665 isSigned ? ICmpInst::ICMP_SLT :
5666 ICmpInst::ICMP_ULT,
5667 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005668 End = isSigned ? getSMaxExpr(RHS, Start)
5669 : getUMaxExpr(RHS, Start);
5670
5671 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005672 const SCEV *MaxEnd = getConstant(isSigned ?
5673 getSignedRange(End).getSignedMax() :
5674 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005675
Dan Gohman52fddd32010-01-26 04:40:18 +00005676 // If MaxEnd is within a step of the maximum integer value in its type,
5677 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005678 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005679 // compute the correct value.
5680 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005681 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005682 MaxEnd = isSigned ?
5683 getSMinExpr(MaxEnd,
5684 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5685 StepMinusOne)) :
5686 getUMinExpr(MaxEnd,
5687 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5688 StepMinusOne));
5689
Dan Gohmana1af7572009-04-30 20:47:05 +00005690 // Finally, we subtract these two values and divide, rounding up, to get
5691 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005692 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005693
5694 // The maximum backedge count is similar, except using the minimum start
5695 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005696 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005697
5698 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005699 }
5700
Dan Gohman1c343752009-06-27 21:21:31 +00005701 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005702}
5703
Chris Lattner53e677a2004-04-02 20:23:17 +00005704/// getNumIterationsInRange - Return the number of iterations of this loop that
5705/// produce values in the specified constant range. Another way of looking at
5706/// this is that it returns the first iteration number where the value is not in
5707/// the condition, thus computing the exit count. If the iteration count can't
5708/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005709const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005710 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005711 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005712 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005713
5714 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005715 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005716 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005717 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005718 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005719 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005720 if (const SCEVAddRecExpr *ShiftedAddRec =
5721 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005722 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005723 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005724 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005725 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005726 }
5727
5728 // The only time we can solve this is when we have all constant indices.
5729 // Otherwise, we cannot determine the overflow conditions.
5730 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5731 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005732 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005733
5734
5735 // Okay at this point we know that all elements of the chrec are constants and
5736 // that the start element is zero.
5737
5738 // First check to see if the range contains zero. If not, the first
5739 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005740 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005741 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005742 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005743
Chris Lattner53e677a2004-04-02 20:23:17 +00005744 if (isAffine()) {
5745 // If this is an affine expression then we have this situation:
5746 // Solve {0,+,A} in Range === Ax in Range
5747
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005748 // We know that zero is in the range. If A is positive then we know that
5749 // the upper value of the range must be the first possible exit value.
5750 // If A is negative then the lower of the range is the last possible loop
5751 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005752 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005753 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5754 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005755
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005756 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005757 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005758 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005759
5760 // Evaluate at the exit value. If we really did fall out of the valid
5761 // range, then we computed our trip count, otherwise wrap around or other
5762 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005763 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005764 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005765 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005766
5767 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005768 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005769 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005770 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005771 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005772 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005773 } else if (isQuadratic()) {
5774 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5775 // quadratic equation to solve it. To do this, we must frame our problem in
5776 // terms of figuring out when zero is crossed, instead of when
5777 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005778 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005779 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005780 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005781
5782 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005783 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005784 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005785 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5786 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005787 if (R1) {
5788 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005789 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005790 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005791 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005792 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005793 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005794
Chris Lattner53e677a2004-04-02 20:23:17 +00005795 // Make sure the root is not off by one. The returned iteration should
5796 // not be in the range, but the previous one should be. When solving
5797 // for "X*X < 5", for example, we should not return a root of 2.
5798 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005799 R1->getValue(),
5800 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005801 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005802 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005803 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005804 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005805
Dan Gohman246b2562007-10-22 18:31:58 +00005806 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005807 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005808 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005809 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005810 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005811
Chris Lattner53e677a2004-04-02 20:23:17 +00005812 // If R1 was not in the range, then it is a good return value. Make
5813 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005814 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005815 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005816 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005817 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005818 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005819 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005820 }
5821 }
5822 }
5823
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005824 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005825}
5826
5827
5828
5829//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005830// SCEVCallbackVH Class Implementation
5831//===----------------------------------------------------------------------===//
5832
Dan Gohman1959b752009-05-19 19:22:47 +00005833void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005834 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005835 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5836 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005837 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005838 // this now dangles!
5839}
5840
Dan Gohman81f91212010-07-28 01:09:07 +00005841void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005842 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005843
Dan Gohman35738ac2009-05-04 22:30:44 +00005844 // Forget all the expressions associated with users of the old value,
5845 // so that future queries will recompute the expressions using the new
5846 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005847 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005848 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005849 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005850 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5851 UI != UE; ++UI)
5852 Worklist.push_back(*UI);
5853 while (!Worklist.empty()) {
5854 User *U = Worklist.pop_back_val();
5855 // Deleting the Old value will cause this to dangle. Postpone
5856 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005857 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005858 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005859 if (!Visited.insert(U))
5860 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005861 if (PHINode *PN = dyn_cast<PHINode>(U))
5862 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005863 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005864 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5865 UI != UE; ++UI)
5866 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005867 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005868 // Delete the Old value.
5869 if (PHINode *PN = dyn_cast<PHINode>(Old))
5870 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005871 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005872 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005873}
5874
Dan Gohman1959b752009-05-19 19:22:47 +00005875ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005876 : CallbackVH(V), SE(se) {}
5877
5878//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005879// ScalarEvolution Class Implementation
5880//===----------------------------------------------------------------------===//
5881
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005882ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005883 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005884 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005885}
5886
Chris Lattner53e677a2004-04-02 20:23:17 +00005887bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005888 this->F = &F;
5889 LI = &getAnalysis<LoopInfo>();
5890 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005891 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005892 return false;
5893}
5894
5895void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005896 // Iterate through all the SCEVUnknown instances and call their
5897 // destructors, so that they release their references to their values.
5898 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5899 U->~SCEVUnknown();
5900 FirstUnknown = 0;
5901
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005902 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005903 BackedgeTakenCounts.clear();
5904 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005905 ValuesAtScopes.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005906 UnsignedRanges.clear();
5907 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005908 UniqueSCEVs.clear();
5909 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005910}
5911
5912void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5913 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005914 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005915 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005916}
5917
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005918bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005919 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005920}
5921
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005922static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005923 const Loop *L) {
5924 // Print all inner loops first
5925 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5926 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005927
Dan Gohman30733292010-01-09 18:17:45 +00005928 OS << "Loop ";
5929 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5930 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005931
Dan Gohman5d984912009-12-18 01:14:11 +00005932 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005933 L->getExitBlocks(ExitBlocks);
5934 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005935 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005936
Dan Gohman46bdfb02009-02-24 18:55:53 +00005937 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5938 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005939 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005940 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005941 }
5942
Dan Gohman30733292010-01-09 18:17:45 +00005943 OS << "\n"
5944 "Loop ";
5945 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5946 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005947
5948 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5949 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5950 } else {
5951 OS << "Unpredictable max backedge-taken count. ";
5952 }
5953
5954 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005955}
5956
Dan Gohman5d984912009-12-18 01:14:11 +00005957void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005958 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005959 // out SCEV values of all instructions that are interesting. Doing
5960 // this potentially causes it to create new SCEV objects though,
5961 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005962 // observable from outside the class though, so casting away the
5963 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005964 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005965
Dan Gohman30733292010-01-09 18:17:45 +00005966 OS << "Classifying expressions for: ";
5967 WriteAsOperand(OS, F, /*PrintType=*/false);
5968 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005969 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005970 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005971 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005972 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005973 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005974 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005975
Dan Gohman0c689c52009-06-19 17:49:54 +00005976 const Loop *L = LI->getLoopFor((*I).getParent());
5977
Dan Gohman0bba49c2009-07-07 17:06:11 +00005978 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005979 if (AtUse != SV) {
5980 OS << " --> ";
5981 AtUse->print(OS);
5982 }
5983
5984 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005985 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005986 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005987 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005988 OS << "<<Unknown>>";
5989 } else {
5990 OS << *ExitValue;
5991 }
5992 }
5993
Chris Lattner53e677a2004-04-02 20:23:17 +00005994 OS << "\n";
5995 }
5996
Dan Gohman30733292010-01-09 18:17:45 +00005997 OS << "Determining loop execution counts for: ";
5998 WriteAsOperand(OS, F, /*PrintType=*/false);
5999 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006000 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6001 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006002}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006003