blob: 3abac0646835f6cfcd2b62382323671f02356b17 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/ParameterAttributes.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// These are manifest constants used by the bitcode writer. They do not need to
30/// be kept in sync with the reader, but need to be consistent within this file.
31enum {
32 CurVersion = 0,
33
34 // VALUE_SYMTAB_BLOCK abbrev id's.
35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36 VST_ENTRY_7_ABBREV,
37 VST_ENTRY_6_ABBREV,
38 VST_BBENTRY_6_ABBREV,
39
40 // CONSTANTS_BLOCK abbrev id's.
41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42 CONSTANTS_INTEGER_ABBREV,
43 CONSTANTS_CE_CAST_Abbrev,
44 CONSTANTS_NULL_Abbrev,
45
46 // FUNCTION_BLOCK abbrev id's.
47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 FUNCTION_INST_BINOP_ABBREV,
49 FUNCTION_INST_CAST_ABBREV,
50 FUNCTION_INST_RET_VOID_ABBREV,
51 FUNCTION_INST_RET_VAL_ABBREV,
52 FUNCTION_INST_UNREACHABLE_ABBREV
53};
54
55
56static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57 switch (Opcode) {
58 default: assert(0 && "Unknown cast instruction!");
59 case Instruction::Trunc : return bitc::CAST_TRUNC;
60 case Instruction::ZExt : return bitc::CAST_ZEXT;
61 case Instruction::SExt : return bitc::CAST_SEXT;
62 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
63 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
64 case Instruction::UIToFP : return bitc::CAST_UITOFP;
65 case Instruction::SIToFP : return bitc::CAST_SITOFP;
66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67 case Instruction::FPExt : return bitc::CAST_FPEXT;
68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70 case Instruction::BitCast : return bitc::CAST_BITCAST;
71 }
72}
73
74static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75 switch (Opcode) {
76 default: assert(0 && "Unknown binary instruction!");
77 case Instruction::Add: return bitc::BINOP_ADD;
78 case Instruction::Sub: return bitc::BINOP_SUB;
79 case Instruction::Mul: return bitc::BINOP_MUL;
80 case Instruction::UDiv: return bitc::BINOP_UDIV;
81 case Instruction::FDiv:
82 case Instruction::SDiv: return bitc::BINOP_SDIV;
83 case Instruction::URem: return bitc::BINOP_UREM;
84 case Instruction::FRem:
85 case Instruction::SRem: return bitc::BINOP_SREM;
86 case Instruction::Shl: return bitc::BINOP_SHL;
87 case Instruction::LShr: return bitc::BINOP_LSHR;
88 case Instruction::AShr: return bitc::BINOP_ASHR;
89 case Instruction::And: return bitc::BINOP_AND;
90 case Instruction::Or: return bitc::BINOP_OR;
91 case Instruction::Xor: return bitc::BINOP_XOR;
92 }
93}
94
95
96
97static void WriteStringRecord(unsigned Code, const std::string &Str,
98 unsigned AbbrevToUse, BitstreamWriter &Stream) {
99 SmallVector<unsigned, 64> Vals;
100
101 // Code: [strchar x N]
102 for (unsigned i = 0, e = Str.size(); i != e; ++i)
103 Vals.push_back(Str[i]);
104
105 // Emit the finished record.
106 Stream.EmitRecord(Code, Vals, AbbrevToUse);
107}
108
109// Emit information about parameter attributes.
110static void WriteParamAttrTable(const ValueEnumerator &VE,
111 BitstreamWriter &Stream) {
112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113 if (Attrs.empty()) return;
114
115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117 SmallVector<uint64_t, 64> Record;
118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119 const ParamAttrsList *A = Attrs[i];
120 for (unsigned op = 0, e = A->size(); op != e; ++op) {
121 Record.push_back(A->getParamIndex(op));
122 Record.push_back(A->getParamAttrsAtIndex(op));
123 }
124
125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126 Record.clear();
127 }
128
129 Stream.ExitBlock();
130}
131
132/// WriteTypeTable - Write out the type table for a module.
133static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135
136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137 SmallVector<uint64_t, 64> TypeVals;
138
139 // Abbrev for TYPE_CODE_POINTER.
140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143 Log2_32_Ceil(VE.getTypes().size()+1)));
144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145
146 // Abbrev for TYPE_CODE_FUNCTION.
147 Abbv = new BitCodeAbbrev();
148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Chris Lattner70b644d2007-11-27 17:48:06 +0000150 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
153 Log2_32_Ceil(VE.getTypes().size()+1)));
154 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
155
156 // Abbrev for TYPE_CODE_STRUCT.
157 Abbv = new BitCodeAbbrev();
158 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162 Log2_32_Ceil(VE.getTypes().size()+1)));
163 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
164
165 // Abbrev for TYPE_CODE_ARRAY.
166 Abbv = new BitCodeAbbrev();
167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
170 Log2_32_Ceil(VE.getTypes().size()+1)));
171 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
172
173 // Emit an entry count so the reader can reserve space.
174 TypeVals.push_back(TypeList.size());
175 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
176 TypeVals.clear();
177
178 // Loop over all of the types, emitting each in turn.
179 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
180 const Type *T = TypeList[i].first;
181 int AbbrevToUse = 0;
182 unsigned Code = 0;
183
184 switch (T->getTypeID()) {
185 default: assert(0 && "Unknown type!");
186 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
187 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
188 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
Dale Johannesenf325d9f2007-08-03 01:03:46 +0000189 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
190 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
191 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
193 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
194 case Type::IntegerTyID:
195 // INTEGER: [width]
196 Code = bitc::TYPE_CODE_INTEGER;
197 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
198 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000199 case Type::PointerTyID: {
Christopher Lamb44d62f62007-12-11 08:59:05 +0000200 const PointerType *PTy = cast<PointerType>(T);
201 // POINTER: [pointee type] or [pointee type, address space]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 Code = bitc::TYPE_CODE_POINTER;
Christopher Lamb44d62f62007-12-11 08:59:05 +0000203 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
204 if (unsigned AddressSpace = PTy->getAddressSpace())
205 TypeVals.push_back(AddressSpace);
206 else
207 AbbrevToUse = PtrAbbrev;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000209 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210
211 case Type::FunctionTyID: {
212 const FunctionType *FT = cast<FunctionType>(T);
Chris Lattner70b644d2007-11-27 17:48:06 +0000213 // FUNCTION: [isvararg, attrid, retty, paramty x N]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 Code = bitc::TYPE_CODE_FUNCTION;
215 TypeVals.push_back(FT->isVarArg());
Chris Lattner70b644d2007-11-27 17:48:06 +0000216 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
218 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
219 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
220 AbbrevToUse = FunctionAbbrev;
221 break;
222 }
223 case Type::StructTyID: {
224 const StructType *ST = cast<StructType>(T);
225 // STRUCT: [ispacked, eltty x N]
226 Code = bitc::TYPE_CODE_STRUCT;
227 TypeVals.push_back(ST->isPacked());
228 // Output all of the element types.
229 for (StructType::element_iterator I = ST->element_begin(),
230 E = ST->element_end(); I != E; ++I)
231 TypeVals.push_back(VE.getTypeID(*I));
232 AbbrevToUse = StructAbbrev;
233 break;
234 }
235 case Type::ArrayTyID: {
236 const ArrayType *AT = cast<ArrayType>(T);
237 // ARRAY: [numelts, eltty]
238 Code = bitc::TYPE_CODE_ARRAY;
239 TypeVals.push_back(AT->getNumElements());
240 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
241 AbbrevToUse = ArrayAbbrev;
242 break;
243 }
244 case Type::VectorTyID: {
245 const VectorType *VT = cast<VectorType>(T);
246 // VECTOR [numelts, eltty]
247 Code = bitc::TYPE_CODE_VECTOR;
248 TypeVals.push_back(VT->getNumElements());
249 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
250 break;
251 }
252 }
253
254 // Emit the finished record.
255 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
256 TypeVals.clear();
257 }
258
259 Stream.ExitBlock();
260}
261
262static unsigned getEncodedLinkage(const GlobalValue *GV) {
263 switch (GV->getLinkage()) {
264 default: assert(0 && "Invalid linkage!");
265 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
266 case GlobalValue::ExternalLinkage: return 0;
267 case GlobalValue::WeakLinkage: return 1;
268 case GlobalValue::AppendingLinkage: return 2;
269 case GlobalValue::InternalLinkage: return 3;
270 case GlobalValue::LinkOnceLinkage: return 4;
271 case GlobalValue::DLLImportLinkage: return 5;
272 case GlobalValue::DLLExportLinkage: return 6;
273 case GlobalValue::ExternalWeakLinkage: return 7;
274 }
275}
276
277static unsigned getEncodedVisibility(const GlobalValue *GV) {
278 switch (GV->getVisibility()) {
279 default: assert(0 && "Invalid visibility!");
280 case GlobalValue::DefaultVisibility: return 0;
281 case GlobalValue::HiddenVisibility: return 1;
282 case GlobalValue::ProtectedVisibility: return 2;
283 }
284}
285
286// Emit top-level description of module, including target triple, inline asm,
287// descriptors for global variables, and function prototype info.
288static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
289 BitstreamWriter &Stream) {
290 // Emit the list of dependent libraries for the Module.
291 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
292 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
293
294 // Emit various pieces of data attached to a module.
295 if (!M->getTargetTriple().empty())
296 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
297 0/*TODO*/, Stream);
298 if (!M->getDataLayout().empty())
299 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
300 0/*TODO*/, Stream);
301 if (!M->getModuleInlineAsm().empty())
302 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
303 0/*TODO*/, Stream);
304
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000305 // Emit information about sections and collectors, computing how many there
306 // are. Also compute the maximum alignment value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 std::map<std::string, unsigned> SectionMap;
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000308 std::map<std::string, unsigned> CollectorMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 unsigned MaxAlignment = 0;
310 unsigned MaxGlobalType = 0;
311 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
312 GV != E; ++GV) {
313 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
314 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
315
316 if (!GV->hasSection()) continue;
317 // Give section names unique ID's.
318 unsigned &Entry = SectionMap[GV->getSection()];
319 if (Entry != 0) continue;
320 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
321 0/*TODO*/, Stream);
322 Entry = SectionMap.size();
323 }
324 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
325 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000326 if (F->hasSection()) {
327 // Give section names unique ID's.
328 unsigned &Entry = SectionMap[F->getSection()];
329 if (!Entry) {
330 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
331 0/*TODO*/, Stream);
332 Entry = SectionMap.size();
333 }
334 }
335 if (F->hasCollector()) {
336 // Same for collector names.
337 unsigned &Entry = CollectorMap[F->getCollector()];
338 if (!Entry) {
339 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
340 0/*TODO*/, Stream);
341 Entry = CollectorMap.size();
342 }
343 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 }
345
346 // Emit abbrev for globals, now that we know # sections and max alignment.
347 unsigned SimpleGVarAbbrev = 0;
348 if (!M->global_empty()) {
349 // Add an abbrev for common globals with no visibility or thread localness.
350 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
351 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
353 Log2_32_Ceil(MaxGlobalType+1)));
354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
357 if (MaxAlignment == 0) // Alignment.
358 Abbv->Add(BitCodeAbbrevOp(0));
359 else {
360 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
362 Log2_32_Ceil(MaxEncAlignment+1)));
363 }
364 if (SectionMap.empty()) // Section.
365 Abbv->Add(BitCodeAbbrevOp(0));
366 else
367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
368 Log2_32_Ceil(SectionMap.size()+1)));
369 // Don't bother emitting vis + thread local.
370 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
371 }
372
373 // Emit the global variable information.
374 SmallVector<unsigned, 64> Vals;
375 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
376 GV != E; ++GV) {
377 unsigned AbbrevToUse = 0;
378
379 // GLOBALVAR: [type, isconst, initid,
380 // linkage, alignment, section, visibility, threadlocal]
381 Vals.push_back(VE.getTypeID(GV->getType()));
382 Vals.push_back(GV->isConstant());
383 Vals.push_back(GV->isDeclaration() ? 0 :
384 (VE.getValueID(GV->getInitializer()) + 1));
385 Vals.push_back(getEncodedLinkage(GV));
386 Vals.push_back(Log2_32(GV->getAlignment())+1);
387 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
388 if (GV->isThreadLocal() ||
389 GV->getVisibility() != GlobalValue::DefaultVisibility) {
390 Vals.push_back(getEncodedVisibility(GV));
391 Vals.push_back(GV->isThreadLocal());
392 } else {
393 AbbrevToUse = SimpleGVarAbbrev;
394 }
395
396 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
397 Vals.clear();
398 }
399
400 // Emit the function proto information.
401 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000402 // FUNCTION: [type, callingconv, isproto, paramattr,
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000403 // linkage, alignment, section, visibility, collector]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 Vals.push_back(VE.getTypeID(F->getType()));
405 Vals.push_back(F->getCallingConv());
406 Vals.push_back(F->isDeclaration());
407 Vals.push_back(getEncodedLinkage(F));
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000408 Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 Vals.push_back(Log2_32(F->getAlignment())+1);
410 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
411 Vals.push_back(getEncodedVisibility(F));
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000412 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413
414 unsigned AbbrevToUse = 0;
415 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
416 Vals.clear();
417 }
418
419
420 // Emit the alias information.
421 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
422 AI != E; ++AI) {
423 Vals.push_back(VE.getTypeID(AI->getType()));
424 Vals.push_back(VE.getValueID(AI->getAliasee()));
425 Vals.push_back(getEncodedLinkage(AI));
426 unsigned AbbrevToUse = 0;
427 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
428 Vals.clear();
429 }
430}
431
432
433static void WriteConstants(unsigned FirstVal, unsigned LastVal,
434 const ValueEnumerator &VE,
435 BitstreamWriter &Stream, bool isGlobal) {
436 if (FirstVal == LastVal) return;
437
438 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
439
440 unsigned AggregateAbbrev = 0;
441 unsigned String8Abbrev = 0;
442 unsigned CString7Abbrev = 0;
443 unsigned CString6Abbrev = 0;
444 // If this is a constant pool for the module, emit module-specific abbrevs.
445 if (isGlobal) {
446 // Abbrev for CST_CODE_AGGREGATE.
447 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
451 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
452
453 // Abbrev for CST_CODE_STRING.
454 Abbv = new BitCodeAbbrev();
455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
458 String8Abbrev = Stream.EmitAbbrev(Abbv);
459 // Abbrev for CST_CODE_CSTRING.
460 Abbv = new BitCodeAbbrev();
461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
464 CString7Abbrev = Stream.EmitAbbrev(Abbv);
465 // Abbrev for CST_CODE_CSTRING.
466 Abbv = new BitCodeAbbrev();
467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
470 CString6Abbrev = Stream.EmitAbbrev(Abbv);
471 }
472
473 SmallVector<uint64_t, 64> Record;
474
475 const ValueEnumerator::ValueList &Vals = VE.getValues();
476 const Type *LastTy = 0;
477 for (unsigned i = FirstVal; i != LastVal; ++i) {
478 const Value *V = Vals[i].first;
479 // If we need to switch types, do so now.
480 if (V->getType() != LastTy) {
481 LastTy = V->getType();
482 Record.push_back(VE.getTypeID(LastTy));
483 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
484 CONSTANTS_SETTYPE_ABBREV);
485 Record.clear();
486 }
487
488 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
489 Record.push_back(unsigned(IA->hasSideEffects()));
490
491 // Add the asm string.
492 const std::string &AsmStr = IA->getAsmString();
493 Record.push_back(AsmStr.size());
494 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
495 Record.push_back(AsmStr[i]);
496
497 // Add the constraint string.
498 const std::string &ConstraintStr = IA->getConstraintString();
499 Record.push_back(ConstraintStr.size());
500 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
501 Record.push_back(ConstraintStr[i]);
502 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
503 Record.clear();
504 continue;
505 }
506 const Constant *C = cast<Constant>(V);
507 unsigned Code = -1U;
508 unsigned AbbrevToUse = 0;
509 if (C->isNullValue()) {
510 Code = bitc::CST_CODE_NULL;
511 } else if (isa<UndefValue>(C)) {
512 Code = bitc::CST_CODE_UNDEF;
513 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
514 if (IV->getBitWidth() <= 64) {
515 int64_t V = IV->getSExtValue();
516 if (V >= 0)
517 Record.push_back(V << 1);
518 else
519 Record.push_back((-V << 1) | 1);
520 Code = bitc::CST_CODE_INTEGER;
521 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
522 } else { // Wide integers, > 64 bits in size.
523 // We have an arbitrary precision integer value to write whose
524 // bit width is > 64. However, in canonical unsigned integer
525 // format it is likely that the high bits are going to be zero.
526 // So, we only write the number of active words.
527 unsigned NWords = IV->getValue().getActiveWords();
528 const uint64_t *RawWords = IV->getValue().getRawData();
529 for (unsigned i = 0; i != NWords; ++i) {
530 int64_t V = RawWords[i];
531 if (V >= 0)
532 Record.push_back(V << 1);
533 else
534 Record.push_back((-V << 1) | 1);
535 }
536 Code = bitc::CST_CODE_WIDE_INTEGER;
537 }
538 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
539 Code = bitc::CST_CODE_FLOAT;
Dale Johannesene617f912007-08-09 22:51:36 +0000540 const Type *Ty = CFP->getType();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000541 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
542 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
Dale Johannesen1616e902007-09-11 18:32:33 +0000543 } else if (Ty == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000544 // api needed to prevent premature destruction
545 APInt api = CFP->getValueAPF().convertToAPInt();
546 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000547 Record.push_back(p[0]);
548 Record.push_back((uint16_t)p[1]);
Dale Johannesen2aef5692007-10-11 18:07:22 +0000549 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000550 APInt api = CFP->getValueAPF().convertToAPInt();
551 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000552 Record.push_back(p[0]);
553 Record.push_back(p[1]);
Dale Johannesene617f912007-08-09 22:51:36 +0000554 } else {
555 assert (0 && "Unknown FP type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556 }
557 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
558 // Emit constant strings specially.
559 unsigned NumOps = C->getNumOperands();
560 // If this is a null-terminated string, use the denser CSTRING encoding.
561 if (C->getOperand(NumOps-1)->isNullValue()) {
562 Code = bitc::CST_CODE_CSTRING;
563 --NumOps; // Don't encode the null, which isn't allowed by char6.
564 } else {
565 Code = bitc::CST_CODE_STRING;
566 AbbrevToUse = String8Abbrev;
567 }
568 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
569 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
570 for (unsigned i = 0; i != NumOps; ++i) {
571 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
572 Record.push_back(V);
573 isCStr7 &= (V & 128) == 0;
574 if (isCStrChar6)
575 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
576 }
577
578 if (isCStrChar6)
579 AbbrevToUse = CString6Abbrev;
580 else if (isCStr7)
581 AbbrevToUse = CString7Abbrev;
582 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
583 isa<ConstantVector>(V)) {
584 Code = bitc::CST_CODE_AGGREGATE;
585 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
586 Record.push_back(VE.getValueID(C->getOperand(i)));
587 AbbrevToUse = AggregateAbbrev;
588 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
589 switch (CE->getOpcode()) {
590 default:
591 if (Instruction::isCast(CE->getOpcode())) {
592 Code = bitc::CST_CODE_CE_CAST;
593 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
594 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
595 Record.push_back(VE.getValueID(C->getOperand(0)));
596 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
597 } else {
598 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
599 Code = bitc::CST_CODE_CE_BINOP;
600 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
601 Record.push_back(VE.getValueID(C->getOperand(0)));
602 Record.push_back(VE.getValueID(C->getOperand(1)));
603 }
604 break;
605 case Instruction::GetElementPtr:
606 Code = bitc::CST_CODE_CE_GEP;
607 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
608 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
609 Record.push_back(VE.getValueID(C->getOperand(i)));
610 }
611 break;
612 case Instruction::Select:
613 Code = bitc::CST_CODE_CE_SELECT;
614 Record.push_back(VE.getValueID(C->getOperand(0)));
615 Record.push_back(VE.getValueID(C->getOperand(1)));
616 Record.push_back(VE.getValueID(C->getOperand(2)));
617 break;
618 case Instruction::ExtractElement:
619 Code = bitc::CST_CODE_CE_EXTRACTELT;
620 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
621 Record.push_back(VE.getValueID(C->getOperand(0)));
622 Record.push_back(VE.getValueID(C->getOperand(1)));
623 break;
624 case Instruction::InsertElement:
625 Code = bitc::CST_CODE_CE_INSERTELT;
626 Record.push_back(VE.getValueID(C->getOperand(0)));
627 Record.push_back(VE.getValueID(C->getOperand(1)));
628 Record.push_back(VE.getValueID(C->getOperand(2)));
629 break;
630 case Instruction::ShuffleVector:
631 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
632 Record.push_back(VE.getValueID(C->getOperand(0)));
633 Record.push_back(VE.getValueID(C->getOperand(1)));
634 Record.push_back(VE.getValueID(C->getOperand(2)));
635 break;
636 case Instruction::ICmp:
637 case Instruction::FCmp:
638 Code = bitc::CST_CODE_CE_CMP;
639 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
640 Record.push_back(VE.getValueID(C->getOperand(0)));
641 Record.push_back(VE.getValueID(C->getOperand(1)));
642 Record.push_back(CE->getPredicate());
643 break;
644 }
645 } else {
646 assert(0 && "Unknown constant!");
647 }
648 Stream.EmitRecord(Code, Record, AbbrevToUse);
649 Record.clear();
650 }
651
652 Stream.ExitBlock();
653}
654
655static void WriteModuleConstants(const ValueEnumerator &VE,
656 BitstreamWriter &Stream) {
657 const ValueEnumerator::ValueList &Vals = VE.getValues();
658
659 // Find the first constant to emit, which is the first non-globalvalue value.
660 // We know globalvalues have been emitted by WriteModuleInfo.
661 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
662 if (!isa<GlobalValue>(Vals[i].first)) {
663 WriteConstants(i, Vals.size(), VE, Stream, true);
664 return;
665 }
666 }
667}
668
669/// PushValueAndType - The file has to encode both the value and type id for
670/// many values, because we need to know what type to create for forward
671/// references. However, most operands are not forward references, so this type
672/// field is not needed.
673///
674/// This function adds V's value ID to Vals. If the value ID is higher than the
675/// instruction ID, then it is a forward reference, and it also includes the
676/// type ID.
677static bool PushValueAndType(Value *V, unsigned InstID,
678 SmallVector<unsigned, 64> &Vals,
679 ValueEnumerator &VE) {
680 unsigned ValID = VE.getValueID(V);
681 Vals.push_back(ValID);
682 if (ValID >= InstID) {
683 Vals.push_back(VE.getTypeID(V->getType()));
684 return true;
685 }
686 return false;
687}
688
689/// WriteInstruction - Emit an instruction to the specified stream.
690static void WriteInstruction(const Instruction &I, unsigned InstID,
691 ValueEnumerator &VE, BitstreamWriter &Stream,
692 SmallVector<unsigned, 64> &Vals) {
693 unsigned Code = 0;
694 unsigned AbbrevToUse = 0;
695 switch (I.getOpcode()) {
696 default:
697 if (Instruction::isCast(I.getOpcode())) {
698 Code = bitc::FUNC_CODE_INST_CAST;
699 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
700 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
701 Vals.push_back(VE.getTypeID(I.getType()));
702 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
703 } else {
704 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
705 Code = bitc::FUNC_CODE_INST_BINOP;
706 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
707 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
708 Vals.push_back(VE.getValueID(I.getOperand(1)));
709 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
710 }
711 break;
712
713 case Instruction::GetElementPtr:
714 Code = bitc::FUNC_CODE_INST_GEP;
715 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
716 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
717 break;
718 case Instruction::Select:
719 Code = bitc::FUNC_CODE_INST_SELECT;
720 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
721 Vals.push_back(VE.getValueID(I.getOperand(2)));
722 Vals.push_back(VE.getValueID(I.getOperand(0)));
723 break;
724 case Instruction::ExtractElement:
725 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
726 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
727 Vals.push_back(VE.getValueID(I.getOperand(1)));
728 break;
729 case Instruction::InsertElement:
730 Code = bitc::FUNC_CODE_INST_INSERTELT;
731 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
732 Vals.push_back(VE.getValueID(I.getOperand(1)));
733 Vals.push_back(VE.getValueID(I.getOperand(2)));
734 break;
735 case Instruction::ShuffleVector:
736 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
737 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
738 Vals.push_back(VE.getValueID(I.getOperand(1)));
739 Vals.push_back(VE.getValueID(I.getOperand(2)));
740 break;
741 case Instruction::ICmp:
742 case Instruction::FCmp:
743 Code = bitc::FUNC_CODE_INST_CMP;
744 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
745 Vals.push_back(VE.getValueID(I.getOperand(1)));
746 Vals.push_back(cast<CmpInst>(I).getPredicate());
747 break;
748
749 case Instruction::Ret:
750 Code = bitc::FUNC_CODE_INST_RET;
751 if (!I.getNumOperands())
752 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
753 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
754 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
755 break;
756 case Instruction::Br:
757 Code = bitc::FUNC_CODE_INST_BR;
758 Vals.push_back(VE.getValueID(I.getOperand(0)));
759 if (cast<BranchInst>(I).isConditional()) {
760 Vals.push_back(VE.getValueID(I.getOperand(1)));
761 Vals.push_back(VE.getValueID(I.getOperand(2)));
762 }
763 break;
764 case Instruction::Switch:
765 Code = bitc::FUNC_CODE_INST_SWITCH;
766 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
767 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
768 Vals.push_back(VE.getValueID(I.getOperand(i)));
769 break;
770 case Instruction::Invoke: {
771 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
772 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
773 Code = bitc::FUNC_CODE_INST_INVOKE;
774
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000775 const InvokeInst *II = cast<InvokeInst>(&I);
776 Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
777 Vals.push_back(II->getCallingConv());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000778 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
779 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
780 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
781
782 // Emit value #'s for the fixed parameters.
783 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
784 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
785
786 // Emit type/value pairs for varargs params.
787 if (FTy->isVarArg()) {
788 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
789 i != e; ++i)
790 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
791 }
792 break;
793 }
794 case Instruction::Unwind:
795 Code = bitc::FUNC_CODE_INST_UNWIND;
796 break;
797 case Instruction::Unreachable:
798 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
799 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
800 break;
801
802 case Instruction::PHI:
803 Code = bitc::FUNC_CODE_INST_PHI;
804 Vals.push_back(VE.getTypeID(I.getType()));
805 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
806 Vals.push_back(VE.getValueID(I.getOperand(i)));
807 break;
808
809 case Instruction::Malloc:
810 Code = bitc::FUNC_CODE_INST_MALLOC;
811 Vals.push_back(VE.getTypeID(I.getType()));
812 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
813 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
814 break;
815
816 case Instruction::Free:
817 Code = bitc::FUNC_CODE_INST_FREE;
818 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
819 break;
820
821 case Instruction::Alloca:
822 Code = bitc::FUNC_CODE_INST_ALLOCA;
823 Vals.push_back(VE.getTypeID(I.getType()));
824 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
825 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
826 break;
827
828 case Instruction::Load:
829 Code = bitc::FUNC_CODE_INST_LOAD;
830 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
831 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
832
833 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
834 Vals.push_back(cast<LoadInst>(I).isVolatile());
835 break;
836 case Instruction::Store:
Christopher Lamb44d62f62007-12-11 08:59:05 +0000837 Code = bitc::FUNC_CODE_INST_STORE2;
838 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
839 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
841 Vals.push_back(cast<StoreInst>(I).isVolatile());
842 break;
843 case Instruction::Call: {
844 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
845 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
846
847 Code = bitc::FUNC_CODE_INST_CALL;
848
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000849 const CallInst *CI = cast<CallInst>(&I);
850 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
851 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
852 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853
854 // Emit value #'s for the fixed parameters.
855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
856 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
857
858 // Emit type/value pairs for varargs params.
859 if (FTy->isVarArg()) {
860 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
861 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
862 i != e; ++i)
863 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
864 }
865 break;
866 }
867 case Instruction::VAArg:
868 Code = bitc::FUNC_CODE_INST_VAARG;
869 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
870 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
871 Vals.push_back(VE.getTypeID(I.getType())); // restype.
872 break;
873 }
874
875 Stream.EmitRecord(Code, Vals, AbbrevToUse);
876 Vals.clear();
877}
878
879// Emit names for globals/functions etc.
880static void WriteValueSymbolTable(const ValueSymbolTable &VST,
881 const ValueEnumerator &VE,
882 BitstreamWriter &Stream) {
883 if (VST.empty()) return;
884 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
885
886 // FIXME: Set up the abbrev, we know how many values there are!
887 // FIXME: We know if the type names can use 7-bit ascii.
888 SmallVector<unsigned, 64> NameVals;
889
890 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
891 SI != SE; ++SI) {
892
893 const ValueName &Name = *SI;
894
895 // Figure out the encoding to use for the name.
896 bool is7Bit = true;
897 bool isChar6 = true;
898 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
899 C != E; ++C) {
900 if (isChar6)
901 isChar6 = BitCodeAbbrevOp::isChar6(*C);
902 if ((unsigned char)*C & 128) {
903 is7Bit = false;
904 break; // don't bother scanning the rest.
905 }
906 }
907
908 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
909
910 // VST_ENTRY: [valueid, namechar x N]
911 // VST_BBENTRY: [bbid, namechar x N]
912 unsigned Code;
913 if (isa<BasicBlock>(SI->getValue())) {
914 Code = bitc::VST_CODE_BBENTRY;
915 if (isChar6)
916 AbbrevToUse = VST_BBENTRY_6_ABBREV;
917 } else {
918 Code = bitc::VST_CODE_ENTRY;
919 if (isChar6)
920 AbbrevToUse = VST_ENTRY_6_ABBREV;
921 else if (is7Bit)
922 AbbrevToUse = VST_ENTRY_7_ABBREV;
923 }
924
925 NameVals.push_back(VE.getValueID(SI->getValue()));
926 for (const char *P = Name.getKeyData(),
927 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
928 NameVals.push_back((unsigned char)*P);
929
930 // Emit the finished record.
931 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
932 NameVals.clear();
933 }
934 Stream.ExitBlock();
935}
936
937/// WriteFunction - Emit a function body to the module stream.
938static void WriteFunction(const Function &F, ValueEnumerator &VE,
939 BitstreamWriter &Stream) {
940 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
941 VE.incorporateFunction(F);
942
943 SmallVector<unsigned, 64> Vals;
944
945 // Emit the number of basic blocks, so the reader can create them ahead of
946 // time.
947 Vals.push_back(VE.getBasicBlocks().size());
948 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
949 Vals.clear();
950
951 // If there are function-local constants, emit them now.
952 unsigned CstStart, CstEnd;
953 VE.getFunctionConstantRange(CstStart, CstEnd);
954 WriteConstants(CstStart, CstEnd, VE, Stream, false);
955
956 // Keep a running idea of what the instruction ID is.
957 unsigned InstID = CstEnd;
958
959 // Finally, emit all the instructions, in order.
960 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
961 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
962 I != E; ++I) {
963 WriteInstruction(*I, InstID, VE, Stream, Vals);
964 if (I->getType() != Type::VoidTy)
965 ++InstID;
966 }
967
968 // Emit names for all the instructions etc.
969 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
970
971 VE.purgeFunction();
972 Stream.ExitBlock();
973}
974
975/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
976static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
977 const ValueEnumerator &VE,
978 BitstreamWriter &Stream) {
979 if (TST.empty()) return;
980
981 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
982
983 // 7-bit fixed width VST_CODE_ENTRY strings.
984 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
985 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
987 Log2_32_Ceil(VE.getTypes().size()+1)));
988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
990 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
991
992 SmallVector<unsigned, 64> NameVals;
993
994 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
995 TI != TE; ++TI) {
996 // TST_ENTRY: [typeid, namechar x N]
997 NameVals.push_back(VE.getTypeID(TI->second));
998
999 const std::string &Str = TI->first;
1000 bool is7Bit = true;
1001 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1002 NameVals.push_back((unsigned char)Str[i]);
1003 if (Str[i] & 128)
1004 is7Bit = false;
1005 }
1006
1007 // Emit the finished record.
1008 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1009 NameVals.clear();
1010 }
1011
1012 Stream.ExitBlock();
1013}
1014
1015// Emit blockinfo, which defines the standard abbreviations etc.
1016static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1017 // We only want to emit block info records for blocks that have multiple
1018 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1019 // blocks can defined their abbrevs inline.
1020 Stream.EnterBlockInfoBlock(2);
1021
1022 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1023 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1028 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1029 Abbv) != VST_ENTRY_8_ABBREV)
1030 assert(0 && "Unexpected abbrev ordering!");
1031 }
1032
1033 { // 7-bit fixed width VST_ENTRY strings.
1034 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1035 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1039 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1040 Abbv) != VST_ENTRY_7_ABBREV)
1041 assert(0 && "Unexpected abbrev ordering!");
1042 }
1043 { // 6-bit char6 VST_ENTRY strings.
1044 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1045 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1049 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1050 Abbv) != VST_ENTRY_6_ABBREV)
1051 assert(0 && "Unexpected abbrev ordering!");
1052 }
1053 { // 6-bit char6 VST_BBENTRY strings.
1054 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1055 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1059 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1060 Abbv) != VST_BBENTRY_6_ABBREV)
1061 assert(0 && "Unexpected abbrev ordering!");
1062 }
1063
1064
1065
1066 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1070 Log2_32_Ceil(VE.getTypes().size()+1)));
1071 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1072 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1073 assert(0 && "Unexpected abbrev ordering!");
1074 }
1075
1076 { // INTEGER abbrev for CONSTANTS_BLOCK.
1077 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1078 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1080 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1081 Abbv) != CONSTANTS_INTEGER_ABBREV)
1082 assert(0 && "Unexpected abbrev ordering!");
1083 }
1084
1085 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1086 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1087 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1090 Log2_32_Ceil(VE.getTypes().size()+1)));
1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1092
1093 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1094 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1095 assert(0 && "Unexpected abbrev ordering!");
1096 }
1097 { // NULL abbrev for CONSTANTS_BLOCK.
1098 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1099 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1100 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1101 Abbv) != CONSTANTS_NULL_Abbrev)
1102 assert(0 && "Unexpected abbrev ordering!");
1103 }
1104
1105 // FIXME: This should only use space for first class types!
1106
1107 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1108 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1109 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1113 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1114 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1115 assert(0 && "Unexpected abbrev ordering!");
1116 }
1117 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1118 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1119 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1123 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1124 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1125 assert(0 && "Unexpected abbrev ordering!");
1126 }
1127 { // INST_CAST abbrev for FUNCTION_BLOCK.
1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1132 Log2_32_Ceil(VE.getTypes().size()+1)));
1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1134 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1135 Abbv) != FUNCTION_INST_CAST_ABBREV)
1136 assert(0 && "Unexpected abbrev ordering!");
1137 }
1138
1139 { // INST_RET abbrev for FUNCTION_BLOCK.
1140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1141 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1142 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1143 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1144 assert(0 && "Unexpected abbrev ordering!");
1145 }
1146 { // INST_RET abbrev for FUNCTION_BLOCK.
1147 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1148 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1150 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1151 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1152 assert(0 && "Unexpected abbrev ordering!");
1153 }
1154 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1155 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1156 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1157 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1158 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1159 assert(0 && "Unexpected abbrev ordering!");
1160 }
1161
1162 Stream.ExitBlock();
1163}
1164
1165
1166/// WriteModule - Emit the specified module to the bitstream.
1167static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1168 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1169
1170 // Emit the version number if it is non-zero.
1171 if (CurVersion) {
1172 SmallVector<unsigned, 1> Vals;
1173 Vals.push_back(CurVersion);
1174 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1175 }
1176
1177 // Analyze the module, enumerating globals, functions, etc.
1178 ValueEnumerator VE(M);
1179
1180 // Emit blockinfo, which defines the standard abbreviations etc.
1181 WriteBlockInfo(VE, Stream);
1182
1183 // Emit information about parameter attributes.
1184 WriteParamAttrTable(VE, Stream);
1185
1186 // Emit information describing all of the types in the module.
1187 WriteTypeTable(VE, Stream);
1188
1189 // Emit top-level description of module, including target triple, inline asm,
1190 // descriptors for global variables, and function prototype info.
1191 WriteModuleInfo(M, VE, Stream);
1192
1193 // Emit constants.
1194 WriteModuleConstants(VE, Stream);
1195
1196 // If we have any aggregate values in the value table, purge them - these can
1197 // only be used to initialize global variables. Doing so makes the value
1198 // namespace smaller for code in functions.
1199 int NumNonAggregates = VE.PurgeAggregateValues();
1200 if (NumNonAggregates != -1) {
1201 SmallVector<unsigned, 1> Vals;
1202 Vals.push_back(NumNonAggregates);
1203 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1204 }
1205
1206 // Emit function bodies.
1207 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1208 if (!I->isDeclaration())
1209 WriteFunction(*I, VE, Stream);
1210
1211 // Emit the type symbol table information.
1212 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1213
1214 // Emit names for globals/functions etc.
1215 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1216
1217 Stream.ExitBlock();
1218}
1219
1220
1221/// WriteBitcodeToFile - Write the specified module to the specified output
1222/// stream.
1223void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1224 std::vector<unsigned char> Buffer;
1225 BitstreamWriter Stream(Buffer);
1226
1227 Buffer.reserve(256*1024);
1228
1229 // Emit the file header.
1230 Stream.Emit((unsigned)'B', 8);
1231 Stream.Emit((unsigned)'C', 8);
1232 Stream.Emit(0x0, 4);
1233 Stream.Emit(0xC, 4);
1234 Stream.Emit(0xE, 4);
1235 Stream.Emit(0xD, 4);
1236
1237 // Emit the module.
1238 WriteModule(M, Stream);
1239
1240 // Write the generated bitstream to "Out".
1241 Out.write((char*)&Buffer.front(), Buffer.size());
1242
1243 // Make sure it hits disk now.
1244 Out.flush();
1245}