blob: 01b4cfffcc7c140fd99c384ff5facf65a8f1b055 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "X86RegisterInfo.h"
19
Brian Gaeked0fde302003-11-11 22:41:34 +000020namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000021 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000022 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000023
Chris Lattner9d177402002-10-30 01:09:34 +000024/// X86II - This namespace holds all of the target specific flags that
25/// instruction info tracks.
26///
27namespace X86II {
28 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000029 //===------------------------------------------------------------------===//
30 // Instruction types. These are the standard/most common forms for X86
31 // instructions.
32 //
33
Chris Lattner4c299f52002-12-25 05:09:59 +000034 // PseudoFrm - This represents an instruction that is a pseudo instruction
35 // or one that has not been implemented yet. It is illegal to code generate
36 // it, but tolerated for intermediate implementation stages.
37 Pseudo = 0,
38
Chris Lattner6aab9cf2002-11-18 05:37:11 +000039 /// Raw - This form is for instructions that don't have any operands, so
40 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000041 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000042
Chris Lattner6aab9cf2002-11-18 05:37:11 +000043 /// AddRegFrm - This form is used for instructions like 'push r32' that have
44 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000045 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000046
47 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
48 /// to specify a destination, which in this case is a register.
49 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000050 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000051
52 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
53 /// to specify a destination, which in this case is memory.
54 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000055 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000056
57 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
58 /// to specify a source, which in this case is a register.
59 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000060 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000061
62 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
63 /// to specify a source, which in this case is memory.
64 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000065 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000066
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000067 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +000068 /// a Mod/RM byte, and use the middle field to hold extended opcode
69 /// information. In the intel manual these are represented as /0, /1, ...
70 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +000071
Chris Lattner85b39f22002-11-21 17:08:49 +000072 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000073 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
74 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +000075
76 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000077 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
78 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +000079
Evan Cheng3c55c542006-02-01 06:13:50 +000080 // MRMInitReg - This form is used for instructions whose source and
81 // destinations are the same register.
82 MRMInitReg = 32,
83
84 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000085
86 //===------------------------------------------------------------------===//
87 // Actual flags...
88
Chris Lattner11e53e32002-11-21 01:32:55 +000089 // OpSize - Set if this instruction requires an operand size prefix (0x66),
90 // which most often indicates that the instruction operates on 16 bit data
91 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +000092 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +000093
Evan Cheng25ab6902006-09-08 06:48:29 +000094 // AsSize - Set if this instruction requires an operand size prefix (0x67),
95 // which most often indicates that the instruction address 16 bit address
96 // instead of 32 bit address (or 32 bit address in 64 bit mode).
97 AdSize = 1 << 7,
98
99 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000100 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000101 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
102 // used to obtain the setting of this field. If no bits in this field is
103 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000104 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000105 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000106 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000107
108 // TB - TwoByte - Set if this instruction has a two byte opcode, which
109 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000110 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000111
Chris Lattner915e5e52004-02-12 17:53:22 +0000112 // REP - The 0xF3 prefix byte indicating repetition of the following
113 // instruction.
114 REP = 2 << Op0Shift,
115
Chris Lattner4c299f52002-12-25 05:09:59 +0000116 // D8-DF - These escape opcodes are used by the floating point unit. These
117 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000118 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
119 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
120 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
121 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000122
Nate Begemanf63be7d2005-07-06 18:59:04 +0000123 // XS, XD - These prefix codes are for single and double precision scalar
124 // floating point operations performed in the SSE registers.
125 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000126
Chris Lattner0c514f42003-01-13 00:49:24 +0000127 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000128 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
129 // They are used to specify GPRs and SSE registers, 64-bit operand size,
130 // etc. We only cares about REX.W and REX.R bits and only the former is
131 // statically determined.
132 //
133 REXShift = 12,
134 REX_W = 1 << REXShift,
135
136 //===------------------------------------------------------------------===//
137 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000138 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000139 ImmShift = 13,
140 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000141 Imm8 = 1 << ImmShift,
142 Imm16 = 2 << ImmShift,
143 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000144 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000145
Chris Lattner0c514f42003-01-13 00:49:24 +0000146 //===------------------------------------------------------------------===//
147 // FP Instruction Classification... Zero is non-fp instruction.
148
Chris Lattner2959b6e2003-08-06 15:32:20 +0000149 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000150 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000151 FPTypeMask = 7 << FPTypeShift,
152
Chris Lattner79b13732004-01-30 22:24:18 +0000153 // NotFP - The default, set for instructions that do not use FP registers.
154 NotFP = 0 << FPTypeShift,
155
Chris Lattner0c514f42003-01-13 00:49:24 +0000156 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000157 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000158
159 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000160 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000161
162 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
163 // result back to ST(0). For example, fcos, fsqrt, etc.
164 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000165 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000166
167 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
168 // explicit argument, storing the result to either ST(0) or the implicit
169 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000170 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000171
Chris Lattnerab8decc2004-06-11 04:41:24 +0000172 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
173 // explicit argument, but have no destination. Example: fucom, fucomi, ...
174 CompareFP = 5 << FPTypeShift,
175
Chris Lattner1c54a852004-03-31 22:02:13 +0000176 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000177 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000178
Chris Lattner0c514f42003-01-13 00:49:24 +0000179 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000180 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000181
Evan Cheng25ab6902006-09-08 06:48:29 +0000182 // Bits 19 -> 23 are unused
183 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000184 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000185 };
186}
187
Chris Lattner3501fea2003-01-14 22:00:31 +0000188class X86InstrInfo : public TargetInstrInfo {
Evan Chengaa3c1412006-05-30 21:45:53 +0000189 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000190 const X86RegisterInfo RI;
191public:
Evan Chengaa3c1412006-05-30 21:45:53 +0000192 X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000193
Chris Lattner3501fea2003-01-14 22:00:31 +0000194 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000195 /// such, whenever a client has an instance of instruction info, it should
196 /// always be able to get register info as well (through this method).
197 ///
198 virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
199
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000200 // Return true if the instruction is a register to register move and
201 // leave the source and dest operands in the passed parameters.
202 //
Chris Lattner40839602006-02-02 20:12:32 +0000203 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
204 unsigned& destReg) const;
205 unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
206 unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
207
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000208 /// convertToThreeAddress - This method must be implemented by targets that
209 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
210 /// may be able to convert a two-address instruction into a true
211 /// three-address instruction on demand. This allows the X86 target (for
212 /// example) to convert ADD and SHL instructions into LEA instructions if they
213 /// would require register copies due to two-addressness.
214 ///
215 /// This method returns a null pointer if the transformation cannot be
216 /// performed, otherwise it returns the new instruction.
217 ///
218 virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
219
Chris Lattner41e431b2005-01-19 07:11:01 +0000220 /// commuteInstruction - We have a few instructions that must be hacked on to
221 /// commute them.
222 ///
223 virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
224
225
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000226 /// Insert a goto (unconditional branch) sequence to TMBB, at the
227 /// end of MBB
228 virtual void insertGoto(MachineBasicBlock& MBB,
229 MachineBasicBlock& TMBB) const;
230
231 /// Reverses the branch condition of the MachineInstr pointed by
232 /// MI. The instruction is replaced and the new MI is returned.
233 virtual MachineBasicBlock::iterator
234 reverseBranchCondition(MachineBasicBlock::iterator MI) const;
235
Evan Cheng25ab6902006-09-08 06:48:29 +0000236 const TargetRegisterClass *getPointerRegClass() const;
237
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000238 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
239 // specified opcode number.
240 //
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000241 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
242 return get(Opcode).TSFlags >> X86II::OpcodeShift;
243 }
Chris Lattner72614082002-10-25 22:55:53 +0000244};
245
Brian Gaeked0fde302003-11-11 22:41:34 +0000246} // End llvm namespace
247
Chris Lattner72614082002-10-25 22:55:53 +0000248#endif