blob: 92bb785de60bc69d93a478fd3de813f2197b9c45 [file] [log] [blame]
Owen Anderson1ed5b712009-03-11 22:31:21 +00001//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "spiller"
11#include "Spiller.h"
Owen Anderson0ff4e212009-03-12 06:58:19 +000012#include "llvm/Support/Compiler.h"
13#include "llvm/ADT/DepthFirstIterator.h"
14#include "llvm/ADT/Statistic.h"
15#include "llvm/ADT/STLExtras.h"
Owen Anderson1ed5b712009-03-11 22:31:21 +000016#include <algorithm>
17using namespace llvm;
18
19STATISTIC(NumDSE , "Number of dead stores elided");
20STATISTIC(NumDSS , "Number of dead spill slots removed");
21STATISTIC(NumCommutes, "Number of instructions commuted");
22STATISTIC(NumDRM , "Number of re-materializable defs elided");
23STATISTIC(NumStores , "Number of stores added");
24STATISTIC(NumPSpills , "Number of physical register spills");
25STATISTIC(NumOmitted , "Number of reloads omited");
26STATISTIC(NumCopified, "Number of available reloads turned into copies");
27STATISTIC(NumReMats , "Number of re-materialization");
28STATISTIC(NumLoads , "Number of loads added");
29STATISTIC(NumReused , "Number of values reused");
30STATISTIC(NumDCE , "Number of copies elided");
Evan Chenge47b0082009-03-17 01:23:09 +000031STATISTIC(NumSUnfold , "Number of stores unfolded");
Evan Cheng276b77e2009-04-17 01:29:40 +000032STATISTIC(NumModRefUnfold, "Number of modref unfolded");
Owen Anderson1ed5b712009-03-11 22:31:21 +000033
34namespace {
35 enum SpillerName { simple, local };
36}
37
38static cl::opt<SpillerName>
39SpillerOpt("spiller",
40 cl::desc("Spiller to use: (default: local)"),
41 cl::Prefix,
42 cl::values(clEnumVal(simple, "simple spiller"),
43 clEnumVal(local, "local spiller"),
44 clEnumValEnd),
45 cl::init(local));
46
47// ****************************** //
48// Simple Spiller Implementation //
49// ****************************** //
50
51Spiller::~Spiller() {}
52
53bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
54 DOUT << "********** REWRITE MACHINE CODE **********\n";
55 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
56 const TargetMachine &TM = MF.getTarget();
57 const TargetInstrInfo &TII = *TM.getInstrInfo();
58 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
59
60
61 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
62 // each vreg once (in the case where a spilled vreg is used by multiple
63 // operands). This is always smaller than the number of operands to the
64 // current machine instr, so it should be small.
65 std::vector<unsigned> LoadedRegs;
66
67 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
68 MBBI != E; ++MBBI) {
69 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
70 MachineBasicBlock &MBB = *MBBI;
71 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
72 MII != E; ++MII) {
73 MachineInstr &MI = *MII;
74 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
75 MachineOperand &MO = MI.getOperand(i);
76 if (MO.isReg() && MO.getReg()) {
77 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
78 unsigned VirtReg = MO.getReg();
79 unsigned SubIdx = MO.getSubReg();
80 unsigned PhysReg = VRM.getPhys(VirtReg);
81 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
82 if (!VRM.isAssignedReg(VirtReg)) {
83 int StackSlot = VRM.getStackSlot(VirtReg);
84 const TargetRegisterClass* RC =
85 MF.getRegInfo().getRegClass(VirtReg);
86
87 if (MO.isUse() &&
88 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
89 == LoadedRegs.end()) {
90 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
91 MachineInstr *LoadMI = prior(MII);
92 VRM.addSpillSlotUse(StackSlot, LoadMI);
93 LoadedRegs.push_back(VirtReg);
94 ++NumLoads;
95 DOUT << '\t' << *LoadMI;
96 }
97
98 if (MO.isDef()) {
99 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
100 StackSlot, RC);
101 MachineInstr *StoreMI = next(MII);
102 VRM.addSpillSlotUse(StackSlot, StoreMI);
103 ++NumStores;
104 }
105 }
106 MF.getRegInfo().setPhysRegUsed(RReg);
107 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +0000108 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +0000109 } else {
110 MF.getRegInfo().setPhysRegUsed(MO.getReg());
111 }
112 }
113 }
114
115 DOUT << '\t' << MI;
116 LoadedRegs.clear();
117 }
118 }
119 return true;
120}
121
122// ****************** //
123// Utility Functions //
124// ****************** //
125
126/// InvalidateKill - A MI that defines the specified register is being deleted,
127/// invalidate the register kill information.
128static void InvalidateKill(unsigned Reg, BitVector &RegKills,
129 std::vector<MachineOperand*> &KillOps) {
130 if (RegKills[Reg]) {
131 KillOps[Reg]->setIsKill(false);
132 KillOps[Reg] = NULL;
133 RegKills.reset(Reg);
134 }
135}
136
137/// findSinglePredSuccessor - Return via reference a vector of machine basic
138/// blocks each of which is a successor of the specified BB and has no other
139/// predecessor.
140static void findSinglePredSuccessor(MachineBasicBlock *MBB,
141 SmallVectorImpl<MachineBasicBlock *> &Succs) {
142 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
143 SE = MBB->succ_end(); SI != SE; ++SI) {
144 MachineBasicBlock *SuccMBB = *SI;
145 if (SuccMBB->pred_size() == 1)
146 Succs.push_back(SuccMBB);
147 }
148}
149
150/// InvalidateKills - MI is going to be deleted. If any of its operands are
151/// marked kill, then invalidate the information.
152static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
153 std::vector<MachineOperand*> &KillOps,
154 SmallVector<unsigned, 2> *KillRegs = NULL) {
155 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
156 MachineOperand &MO = MI.getOperand(i);
157 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
158 continue;
159 unsigned Reg = MO.getReg();
160 if (TargetRegisterInfo::isVirtualRegister(Reg))
161 continue;
162 if (KillRegs)
163 KillRegs->push_back(Reg);
164 assert(Reg < KillOps.size());
165 if (KillOps[Reg] == &MO) {
166 RegKills.reset(Reg);
167 KillOps[Reg] = NULL;
168 }
169 }
170}
171
172/// InvalidateRegDef - If the def operand of the specified def MI is now dead
173/// (since it's spill instruction is removed), mark it isDead. Also checks if
174/// the def MI has other definition operands that are not dead. Returns it by
175/// reference.
176static bool InvalidateRegDef(MachineBasicBlock::iterator I,
177 MachineInstr &NewDef, unsigned Reg,
178 bool &HasLiveDef) {
179 // Due to remat, it's possible this reg isn't being reused. That is,
180 // the def of this reg (by prev MI) is now dead.
181 MachineInstr *DefMI = I;
182 MachineOperand *DefOp = NULL;
183 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
184 MachineOperand &MO = DefMI->getOperand(i);
185 if (MO.isReg() && MO.isDef()) {
186 if (MO.getReg() == Reg)
187 DefOp = &MO;
188 else if (!MO.isDead())
189 HasLiveDef = true;
190 }
191 }
192 if (!DefOp)
193 return false;
194
195 bool FoundUse = false, Done = false;
196 MachineBasicBlock::iterator E = &NewDef;
197 ++I; ++E;
198 for (; !Done && I != E; ++I) {
199 MachineInstr *NMI = I;
200 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
201 MachineOperand &MO = NMI->getOperand(j);
202 if (!MO.isReg() || MO.getReg() != Reg)
203 continue;
204 if (MO.isUse())
205 FoundUse = true;
206 Done = true; // Stop after scanning all the operands of this MI.
207 }
208 }
209 if (!FoundUse) {
210 // Def is dead!
211 DefOp->setIsDead();
212 return true;
213 }
214 return false;
215}
216
217/// UpdateKills - Track and update kill info. If a MI reads a register that is
218/// marked kill, then it must be due to register reuse. Transfer the kill info
219/// over.
220static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
221 std::vector<MachineOperand*> &KillOps,
222 const TargetRegisterInfo* TRI) {
Owen Anderson1ed5b712009-03-11 22:31:21 +0000223 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
224 MachineOperand &MO = MI.getOperand(i);
225 if (!MO.isReg() || !MO.isUse())
226 continue;
227 unsigned Reg = MO.getReg();
228 if (Reg == 0)
229 continue;
230
231 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
232 // That can't be right. Register is killed but not re-defined and it's
233 // being reused. Let's fix that.
234 KillOps[Reg]->setIsKill(false);
235 KillOps[Reg] = NULL;
236 RegKills.reset(Reg);
Evan Chenga24752f2009-03-19 20:30:06 +0000237 if (!MI.isRegTiedToDefOperand(i))
Owen Anderson1ed5b712009-03-11 22:31:21 +0000238 // Unless it's a two-address operand, this is the new kill.
239 MO.setIsKill();
240 }
241 if (MO.isKill()) {
242 RegKills.set(Reg);
243 KillOps[Reg] = &MO;
244 }
245 }
246
247 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
248 const MachineOperand &MO = MI.getOperand(i);
249 if (!MO.isReg() || !MO.isDef())
250 continue;
251 unsigned Reg = MO.getReg();
252 RegKills.reset(Reg);
253 KillOps[Reg] = NULL;
254 // It also defines (or partially define) aliases.
255 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
256 RegKills.reset(*AS);
257 KillOps[*AS] = NULL;
258 }
259 }
260}
261
262/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
263///
264static void ReMaterialize(MachineBasicBlock &MBB,
265 MachineBasicBlock::iterator &MII,
266 unsigned DestReg, unsigned Reg,
267 const TargetInstrInfo *TII,
268 const TargetRegisterInfo *TRI,
269 VirtRegMap &VRM) {
270 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
271 MachineInstr *NewMI = prior(MII);
272 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
273 MachineOperand &MO = NewMI->getOperand(i);
274 if (!MO.isReg() || MO.getReg() == 0)
275 continue;
276 unsigned VirtReg = MO.getReg();
277 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
278 continue;
279 assert(MO.isUse());
280 unsigned SubIdx = MO.getSubReg();
281 unsigned Phys = VRM.getPhys(VirtReg);
282 assert(Phys);
283 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
284 MO.setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +0000285 MO.setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +0000286 }
287 ++NumReMats;
288}
289
290/// findSuperReg - Find the SubReg's super-register of given register class
291/// where its SubIdx sub-register is SubReg.
292static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
293 unsigned SubIdx, const TargetRegisterInfo *TRI) {
294 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
295 I != E; ++I) {
296 unsigned Reg = *I;
297 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
298 return Reg;
299 }
300 return 0;
301}
302
303// ******************************** //
304// Available Spills Implementation //
305// ******************************** //
306
307/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
308/// stackslot register. The register is still available but is no longer
309/// allowed to be modifed.
310void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
311 std::multimap<unsigned, int>::iterator I =
312 PhysRegsAvailable.lower_bound(PhysReg);
313 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
314 int SlotOrReMat = I->second;
315 I++;
316 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
317 "Bidirectional map mismatch!");
318 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
319 DOUT << "PhysReg " << TRI->getName(PhysReg)
320 << " copied, it is available for use but can no longer be modified\n";
321 }
322}
323
324/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
325/// stackslot register and its aliases. The register and its aliases may
326/// still available but is no longer allowed to be modifed.
327void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
328 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
329 disallowClobberPhysRegOnly(*AS);
330 disallowClobberPhysRegOnly(PhysReg);
331}
332
333/// ClobberPhysRegOnly - This is called when the specified physreg changes
334/// value. We use this to invalidate any info about stuff we thing lives in it.
335void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
336 std::multimap<unsigned, int>::iterator I =
337 PhysRegsAvailable.lower_bound(PhysReg);
338 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
339 int SlotOrReMat = I->second;
340 PhysRegsAvailable.erase(I++);
341 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
342 "Bidirectional map mismatch!");
343 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
344 DOUT << "PhysReg " << TRI->getName(PhysReg)
345 << " clobbered, invalidating ";
346 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
347 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
348 else
349 DOUT << "SS#" << SlotOrReMat << "\n";
350 }
351}
352
353/// ClobberPhysReg - This is called when the specified physreg changes
354/// value. We use this to invalidate any info about stuff we thing lives in
355/// it and any of its aliases.
356void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
357 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
358 ClobberPhysRegOnly(*AS);
359 ClobberPhysRegOnly(PhysReg);
360}
361
362/// AddAvailableRegsToLiveIn - Availability information is being kept coming
363/// into the specified MBB. Add available physical registers as potential
364/// live-in's. If they are reused in the MBB, they will be added to the
365/// live-in set to make register scavenger and post-allocation scheduler.
366void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
367 BitVector &RegKills,
368 std::vector<MachineOperand*> &KillOps) {
369 std::set<unsigned> NotAvailable;
370 for (std::multimap<unsigned, int>::iterator
371 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
372 I != E; ++I) {
373 unsigned Reg = I->first;
374 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
375 // FIXME: A temporary workaround. We can't reuse available value if it's
376 // not safe to move the def of the virtual register's class. e.g.
377 // X86::RFP* register classes. Do not add it as a live-in.
378 if (!TII->isSafeToMoveRegClassDefs(RC))
379 // This is no longer available.
380 NotAvailable.insert(Reg);
381 else {
382 MBB.addLiveIn(Reg);
383 InvalidateKill(Reg, RegKills, KillOps);
384 }
385
386 // Skip over the same register.
387 std::multimap<unsigned, int>::iterator NI = next(I);
388 while (NI != E && NI->first == Reg) {
389 ++I;
390 ++NI;
391 }
392 }
393
394 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
395 E = NotAvailable.end(); I != E; ++I) {
396 ClobberPhysReg(*I);
397 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
398 *SubRegs; ++SubRegs)
399 ClobberPhysReg(*SubRegs);
400 }
401}
402
403/// ModifyStackSlotOrReMat - This method is called when the value in a stack
404/// slot changes. This removes information about which register the previous
405/// value for this slot lives in (as the previous value is dead now).
406void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
407 std::map<int, unsigned>::iterator It =
408 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
409 if (It == SpillSlotsOrReMatsAvailable.end()) return;
410 unsigned Reg = It->second >> 1;
411 SpillSlotsOrReMatsAvailable.erase(It);
412
413 // This register may hold the value of multiple stack slots, only remove this
414 // stack slot from the set of values the register contains.
415 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
416 for (; ; ++I) {
417 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
418 "Map inverse broken!");
419 if (I->second == SlotOrReMat) break;
420 }
421 PhysRegsAvailable.erase(I);
422}
423
424// ************************** //
425// Reuse Info Implementation //
426// ************************** //
427
428/// GetRegForReload - We are about to emit a reload into PhysReg. If there
429/// is some other operand that is using the specified register, either pick
430/// a new register to use, or evict the previous reload and use this reg.
431unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
432 AvailableSpills &Spills,
433 std::vector<MachineInstr*> &MaybeDeadStores,
434 SmallSet<unsigned, 8> &Rejected,
435 BitVector &RegKills,
436 std::vector<MachineOperand*> &KillOps,
437 VirtRegMap &VRM) {
438 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
439 .getInstrInfo();
440
441 if (Reuses.empty()) return PhysReg; // This is most often empty.
442
443 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
444 ReusedOp &Op = Reuses[ro];
445 // If we find some other reuse that was supposed to use this register
446 // exactly for its reload, we can change this reload to use ITS reload
447 // register. That is, unless its reload register has already been
448 // considered and subsequently rejected because it has also been reused
449 // by another operand.
450 if (Op.PhysRegReused == PhysReg &&
451 Rejected.count(Op.AssignedPhysReg) == 0) {
452 // Yup, use the reload register that we didn't use before.
453 unsigned NewReg = Op.AssignedPhysReg;
454 Rejected.insert(PhysReg);
455 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
456 RegKills, KillOps, VRM);
457 } else {
458 // Otherwise, we might also have a problem if a previously reused
459 // value aliases the new register. If so, codegen the previous reload
460 // and use this one.
461 unsigned PRRU = Op.PhysRegReused;
462 const TargetRegisterInfo *TRI = Spills.getRegInfo();
463 if (TRI->areAliases(PRRU, PhysReg)) {
464 // Okay, we found out that an alias of a reused register
465 // was used. This isn't good because it means we have
466 // to undo a previous reuse.
467 MachineBasicBlock *MBB = MI->getParent();
468 const TargetRegisterClass *AliasRC =
469 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
470
471 // Copy Op out of the vector and remove it, we're going to insert an
472 // explicit load for it.
473 ReusedOp NewOp = Op;
474 Reuses.erase(Reuses.begin()+ro);
475
476 // Ok, we're going to try to reload the assigned physreg into the
477 // slot that we were supposed to in the first place. However, that
478 // register could hold a reuse. Check to see if it conflicts or
479 // would prefer us to use a different register.
480 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
481 MI, Spills, MaybeDeadStores,
482 Rejected, RegKills, KillOps, VRM);
483
484 MachineBasicBlock::iterator MII = MI;
485 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
486 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
487 } else {
488 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
489 NewOp.StackSlotOrReMat, AliasRC);
490 MachineInstr *LoadMI = prior(MII);
491 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
492 // Any stores to this stack slot are not dead anymore.
493 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
494 ++NumLoads;
495 }
496 Spills.ClobberPhysReg(NewPhysReg);
497 Spills.ClobberPhysReg(NewOp.PhysRegReused);
498
499 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
500 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
501 MI->getOperand(NewOp.Operand).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +0000502 MI->getOperand(NewOp.Operand).setSubReg(0);
503
Owen Anderson1ed5b712009-03-11 22:31:21 +0000504 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
505 --MII;
506 UpdateKills(*MII, RegKills, KillOps, TRI);
507 DOUT << '\t' << *MII;
508
509 DOUT << "Reuse undone!\n";
510 --NumReused;
511
512 // Finally, PhysReg is now available, go ahead and use it.
513 return PhysReg;
514 }
515 }
516 }
517 return PhysReg;
518}
519
520// ***************************** //
521// Local Spiller Implementation //
522// ***************************** //
523
524bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
525 RegInfo = &MF.getRegInfo();
526 TRI = MF.getTarget().getRegisterInfo();
527 TII = MF.getTarget().getInstrInfo();
Evan Cheng276b77e2009-04-17 01:29:40 +0000528 AllocatableRegs = TRI->getAllocatableSet(MF);
Owen Anderson1ed5b712009-03-11 22:31:21 +0000529 DOUT << "\n**** Local spiller rewriting function '"
530 << MF.getFunction()->getName() << "':\n";
531 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
532 " ****\n";
533 DEBUG(MF.dump());
534
535 // Spills - Keep track of which spilled values are available in physregs
536 // so that we can choose to reuse the physregs instead of emitting
537 // reloads. This is usually refreshed per basic block.
538 AvailableSpills Spills(TRI, TII);
539
540 // Keep track of kill information.
541 BitVector RegKills(TRI->getNumRegs());
542 std::vector<MachineOperand*> KillOps;
543 KillOps.resize(TRI->getNumRegs(), NULL);
544
545 // SingleEntrySuccs - Successor blocks which have a single predecessor.
546 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
547 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
548
549 // Traverse the basic blocks depth first.
550 MachineBasicBlock *Entry = MF.begin();
551 SmallPtrSet<MachineBasicBlock*,16> Visited;
552 for (df_ext_iterator<MachineBasicBlock*,
553 SmallPtrSet<MachineBasicBlock*,16> >
554 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
555 DFI != E; ++DFI) {
556 MachineBasicBlock *MBB = *DFI;
557 if (!EarlyVisited.count(MBB))
558 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
559
560 // If this MBB is the only predecessor of a successor. Keep the
561 // availability information and visit it next.
562 do {
563 // Keep visiting single predecessor successor as long as possible.
564 SinglePredSuccs.clear();
565 findSinglePredSuccessor(MBB, SinglePredSuccs);
566 if (SinglePredSuccs.empty())
567 MBB = 0;
568 else {
569 // FIXME: More than one successors, each of which has MBB has
570 // the only predecessor.
571 MBB = SinglePredSuccs[0];
572 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
573 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
574 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
575 }
576 }
577 } while (MBB);
578
579 // Clear the availability info.
580 Spills.clear();
581 }
582
583 DOUT << "**** Post Machine Instrs ****\n";
584 DEBUG(MF.dump());
585
586 // Mark unused spill slots.
587 MachineFrameInfo *MFI = MF.getFrameInfo();
588 int SS = VRM.getLowSpillSlot();
589 if (SS != VirtRegMap::NO_STACK_SLOT)
590 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
591 if (!VRM.isSpillSlotUsed(SS)) {
592 MFI->RemoveStackObject(SS);
593 ++NumDSS;
594 }
595
596 return true;
597}
598
599
Evan Cheng276b77e2009-04-17 01:29:40 +0000600/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
601/// stack slot mod/ref. It also checks if it's possible to unfold the
602/// instruction by having it define a specified physical register instead.
603static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
604 const TargetInstrInfo *TII,
605 const TargetRegisterInfo *TRI,
606 VirtRegMap &VRM) {
607 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
608 return false;
609
610 bool Found = false;
611 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
612 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
613 unsigned VirtReg = I->second.first;
614 VirtRegMap::ModRef MR = I->second.second;
615 if (MR & VirtRegMap::isModRef)
616 if (VRM.getStackSlot(VirtReg) == SS) {
617 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
618 break;
619 }
620 }
621 if (!Found)
622 return false;
623
624 // Does the instruction uses a register that overlaps the scratch register?
625 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
626 MachineOperand &MO = MI.getOperand(i);
627 if (!MO.isReg() || MO.getReg() == 0)
628 continue;
629 unsigned Reg = MO.getReg();
630 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
631 if (!VRM.hasPhys(Reg))
632 continue;
633 Reg = VRM.getPhys(Reg);
634 }
635 if (TRI->regsOverlap(PhysReg, Reg))
636 return false;
637 }
638 return true;
639}
640
641/// FindFreeRegister - Find a free register of a given register class by looking
642/// at (at most) the last two machine instructions.
643static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
644 MachineBasicBlock &MBB,
645 const TargetRegisterClass *RC,
646 const TargetRegisterInfo *TRI,
647 BitVector &AllocatableRegs) {
648 BitVector Defs(TRI->getNumRegs());
649 BitVector Uses(TRI->getNumRegs());
650 SmallVector<unsigned, 4> LocalUses;
651 SmallVector<unsigned, 4> Kills;
652
653 // Take a look at 2 instructions at most.
654 for (unsigned Count = 0; Count < 2; ++Count) {
655 if (MII == MBB.begin())
656 break;
657 MachineInstr *PrevMI = prior(MII);
658 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
659 MachineOperand &MO = PrevMI->getOperand(i);
660 if (!MO.isReg() || MO.getReg() == 0)
661 continue;
662 unsigned Reg = MO.getReg();
663 if (MO.isDef()) {
664 Defs.set(Reg);
665 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
666 Defs.set(*AS);
667 } else {
668 LocalUses.push_back(Reg);
669 if (MO.isKill() && AllocatableRegs[Reg])
670 Kills.push_back(Reg);
671 }
672 }
673
674 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
675 unsigned Kill = Kills[i];
676 if (!Defs[Kill] && !Uses[Kill] &&
677 TRI->getPhysicalRegisterRegClass(Kill) == RC)
678 return Kill;
679 }
680 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
681 unsigned Reg = LocalUses[i];
682 Uses.set(Reg);
683 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
684 Uses.set(*AS);
685 }
686
687 MII = PrevMI;
688 }
689
690 return 0;
691}
692
693static
694void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
695 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
696 MachineOperand &MO = MI->getOperand(i);
697 if (MO.isReg() && MO.getReg() == VirtReg)
698 MO.setReg(PhysReg);
699 }
700}
701
702/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
703/// a scratch register is available.
704/// xorq %r12<kill>, %r13
705/// addq %rax, -184(%rbp)
706/// addq %r13, -184(%rbp)
707/// ==>
708/// xorq %r12<kill>, %r13
709/// movq -184(%rbp), %r12
710/// addq %rax, %r12
711/// addq %r13, %r12
712/// movq %r12, -184(%rbp)
713bool LocalSpiller::OptimizeByUnfold2(unsigned VirtReg, int SS,
714 MachineBasicBlock &MBB,
715 MachineBasicBlock::iterator &MII,
716 std::vector<MachineInstr*> &MaybeDeadStores,
717 AvailableSpills &Spills,
718 BitVector &RegKills,
719 std::vector<MachineOperand*> &KillOps,
720 VirtRegMap &VRM) {
721 MachineBasicBlock::iterator NextMII = next(MII);
722 if (NextMII == MBB.end())
723 return false;
724
725 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
726 return false;
727
728 // Now let's see if the last couple of instructions happens to have freed up
729 // a register.
730 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
731 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
732 if (!PhysReg)
733 return false;
734
735 MachineFunction &MF = *MBB.getParent();
736 TRI = MF.getTarget().getRegisterInfo();
737 MachineInstr &MI = *MII;
738 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
739 return false;
740
741 // If the next instruction also folds the same SS modref and can be unfoled,
742 // then it's worthwhile to issue a load from SS into the free register and
743 // then unfold these instructions.
744 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
745 return false;
746
747 // Load from SS to the spare physical register.
748 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
749 // This invalidates Phys.
750 Spills.ClobberPhysReg(PhysReg);
751 // Remember it's available.
752 Spills.addAvailable(SS, PhysReg);
753 MaybeDeadStores[SS] = NULL;
754
755 // Unfold current MI.
756 SmallVector<MachineInstr*, 4> NewMIs;
757 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
758 assert(0 && "Unable unfold the load / store folding instruction!");
759 assert(NewMIs.size() == 1);
760 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
761 VRM.transferRestorePts(&MI, NewMIs[0]);
762 MII = MBB.insert(MII, NewMIs[0]);
763 InvalidateKills(MI, RegKills, KillOps);
764 VRM.RemoveMachineInstrFromMaps(&MI);
765 MBB.erase(&MI);
766 ++NumModRefUnfold;
767
768 // Unfold next instructions that fold the same SS.
769 do {
770 MachineInstr &NextMI = *NextMII;
771 NextMII = next(NextMII);
772 NewMIs.clear();
773 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
774 assert(0 && "Unable unfold the load / store folding instruction!");
775 assert(NewMIs.size() == 1);
776 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
777 VRM.transferRestorePts(&NextMI, NewMIs[0]);
778 MBB.insert(NextMII, NewMIs[0]);
779 InvalidateKills(NextMI, RegKills, KillOps);
780 VRM.RemoveMachineInstrFromMaps(&NextMI);
781 MBB.erase(&NextMI);
782 ++NumModRefUnfold;
783 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
784
785 // Store the value back into SS.
786 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
787 MachineInstr *StoreMI = prior(NextMII);
788 VRM.addSpillSlotUse(SS, StoreMI);
789 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
790
791 return true;
792}
793
794/// OptimizeByUnfold - Turn a store folding instruction into a load folding
Owen Anderson1ed5b712009-03-11 22:31:21 +0000795/// instruction. e.g.
796/// xorl %edi, %eax
797/// movl %eax, -32(%ebp)
798/// movl -36(%ebp), %eax
799/// orl %eax, -32(%ebp)
800/// ==>
801/// xorl %edi, %eax
802/// orl -36(%ebp), %eax
803/// mov %eax, -32(%ebp)
804/// This enables unfolding optimization for a subsequent instruction which will
805/// also eliminate the newly introduced store instruction.
Evan Cheng276b77e2009-04-17 01:29:40 +0000806bool LocalSpiller::OptimizeByUnfold(MachineBasicBlock &MBB,
Owen Anderson1ed5b712009-03-11 22:31:21 +0000807 MachineBasicBlock::iterator &MII,
808 std::vector<MachineInstr*> &MaybeDeadStores,
809 AvailableSpills &Spills,
810 BitVector &RegKills,
811 std::vector<MachineOperand*> &KillOps,
812 VirtRegMap &VRM) {
813 MachineFunction &MF = *MBB.getParent();
814 MachineInstr &MI = *MII;
815 unsigned UnfoldedOpc = 0;
816 unsigned UnfoldPR = 0;
817 unsigned UnfoldVR = 0;
818 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
819 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
820 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
821 // Only transform a MI that folds a single register.
822 if (UnfoldedOpc)
823 return false;
824 UnfoldVR = I->second.first;
825 VirtRegMap::ModRef MR = I->second.second;
826 // MI2VirtMap be can updated which invalidate the iterator.
827 // Increment the iterator first.
828 ++I;
829 if (VRM.isAssignedReg(UnfoldVR))
830 continue;
831 // If this reference is not a use, any previous store is now dead.
832 // Otherwise, the store to this stack slot is not dead anymore.
833 FoldedSS = VRM.getStackSlot(UnfoldVR);
834 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
835 if (DeadStore && (MR & VirtRegMap::isModRef)) {
836 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
837 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
838 continue;
839 UnfoldPR = PhysReg;
840 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
841 false, true);
842 }
843 }
844
Evan Cheng276b77e2009-04-17 01:29:40 +0000845 if (!UnfoldedOpc) {
846 if (!UnfoldVR)
847 return false;
848
849 // Look for other unfolding opportunities.
850 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
851 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
852 }
Owen Anderson1ed5b712009-03-11 22:31:21 +0000853
854 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
855 MachineOperand &MO = MI.getOperand(i);
856 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
857 continue;
858 unsigned VirtReg = MO.getReg();
859 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
860 continue;
861 if (VRM.isAssignedReg(VirtReg)) {
862 unsigned PhysReg = VRM.getPhys(VirtReg);
863 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
864 return false;
865 } else if (VRM.isReMaterialized(VirtReg))
866 continue;
867 int SS = VRM.getStackSlot(VirtReg);
868 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
869 if (PhysReg) {
870 if (TRI->regsOverlap(PhysReg, UnfoldPR))
871 return false;
872 continue;
873 }
874 if (VRM.hasPhys(VirtReg)) {
875 PhysReg = VRM.getPhys(VirtReg);
876 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
877 continue;
878 }
879
880 // Ok, we'll need to reload the value into a register which makes
881 // it impossible to perform the store unfolding optimization later.
882 // Let's see if it is possible to fold the load if the store is
883 // unfolded. This allows us to perform the store unfolding
884 // optimization.
885 SmallVector<MachineInstr*, 4> NewMIs;
886 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
887 assert(NewMIs.size() == 1);
888 MachineInstr *NewMI = NewMIs.back();
889 NewMIs.clear();
890 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
891 assert(Idx != -1);
892 SmallVector<unsigned, 1> Ops;
893 Ops.push_back(Idx);
894 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
895 if (FoldedMI) {
896 VRM.addSpillSlotUse(SS, FoldedMI);
897 if (!VRM.hasPhys(UnfoldVR))
898 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
899 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
900 MII = MBB.insert(MII, FoldedMI);
901 InvalidateKills(MI, RegKills, KillOps);
902 VRM.RemoveMachineInstrFromMaps(&MI);
903 MBB.erase(&MI);
904 MF.DeleteMachineInstr(NewMI);
905 return true;
906 }
907 MF.DeleteMachineInstr(NewMI);
908 }
909 }
Evan Cheng276b77e2009-04-17 01:29:40 +0000910
Owen Anderson1ed5b712009-03-11 22:31:21 +0000911 return false;
912}
913
914/// CommuteToFoldReload -
915/// Look for
916/// r1 = load fi#1
917/// r1 = op r1, r2<kill>
918/// store r1, fi#1
919///
920/// If op is commutable and r2 is killed, then we can xform these to
921/// r2 = op r2, fi#1
922/// store r2, fi#1
923bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
924 MachineBasicBlock::iterator &MII,
925 unsigned VirtReg, unsigned SrcReg, int SS,
926 AvailableSpills &Spills,
927 BitVector &RegKills,
928 std::vector<MachineOperand*> &KillOps,
929 const TargetRegisterInfo *TRI,
930 VirtRegMap &VRM) {
931 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
932 return false;
933
934 MachineFunction &MF = *MBB.getParent();
935 MachineInstr &MI = *MII;
936 MachineBasicBlock::iterator DefMII = prior(MII);
937 MachineInstr *DefMI = DefMII;
938 const TargetInstrDesc &TID = DefMI->getDesc();
939 unsigned NewDstIdx;
940 if (DefMII != MBB.begin() &&
941 TID.isCommutable() &&
942 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
943 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
944 unsigned NewReg = NewDstMO.getReg();
945 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
946 return false;
947 MachineInstr *ReloadMI = prior(DefMII);
948 int FrameIdx;
949 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
950 if (DestReg != SrcReg || FrameIdx != SS)
951 return false;
952 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
953 if (UseIdx == -1)
954 return false;
Evan Chenga24752f2009-03-19 20:30:06 +0000955 unsigned DefIdx;
956 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
Owen Anderson1ed5b712009-03-11 22:31:21 +0000957 return false;
958 assert(DefMI->getOperand(DefIdx).isReg() &&
959 DefMI->getOperand(DefIdx).getReg() == SrcReg);
960
961 // Now commute def instruction.
962 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
963 if (!CommutedMI)
964 return false;
965 SmallVector<unsigned, 1> Ops;
966 Ops.push_back(NewDstIdx);
967 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
968 // Not needed since foldMemoryOperand returns new MI.
969 MF.DeleteMachineInstr(CommutedMI);
970 if (!FoldedMI)
971 return false;
972
973 VRM.addSpillSlotUse(SS, FoldedMI);
974 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
975 // Insert new def MI and spill MI.
Evan Cheng276b77e2009-04-17 01:29:40 +0000976 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +0000977 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
978 MII = prior(MII);
979 MachineInstr *StoreMI = MII;
980 VRM.addSpillSlotUse(SS, StoreMI);
981 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
982 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
983
984 // Delete all 3 old instructions.
985 InvalidateKills(*ReloadMI, RegKills, KillOps);
986 VRM.RemoveMachineInstrFromMaps(ReloadMI);
987 MBB.erase(ReloadMI);
988 InvalidateKills(*DefMI, RegKills, KillOps);
989 VRM.RemoveMachineInstrFromMaps(DefMI);
990 MBB.erase(DefMI);
991 InvalidateKills(MI, RegKills, KillOps);
992 VRM.RemoveMachineInstrFromMaps(&MI);
993 MBB.erase(&MI);
994
995 // If NewReg was previously holding value of some SS, it's now clobbered.
996 // This has to be done now because it's a physical register. When this
997 // instruction is re-visited, it's ignored.
998 Spills.ClobberPhysReg(NewReg);
999
1000 ++NumCommutes;
1001 return true;
1002 }
1003
1004 return false;
1005}
1006
1007/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1008/// the last store to the same slot is now dead. If so, remove the last store.
Bill Wendlinge67f5e42009-03-31 08:41:31 +00001009void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
Owen Anderson1ed5b712009-03-11 22:31:21 +00001010 MachineBasicBlock::iterator &MII,
1011 int Idx, unsigned PhysReg, int StackSlot,
1012 const TargetRegisterClass *RC,
1013 bool isAvailable, MachineInstr *&LastStore,
1014 AvailableSpills &Spills,
1015 SmallSet<MachineInstr*, 4> &ReMatDefs,
1016 BitVector &RegKills,
1017 std::vector<MachineOperand*> &KillOps,
1018 VirtRegMap &VRM) {
1019 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1020 MachineInstr *StoreMI = next(MII);
1021 VRM.addSpillSlotUse(StackSlot, StoreMI);
1022 DOUT << "Store:\t" << *StoreMI;
1023
1024 // If there is a dead store to this stack slot, nuke it now.
Bill Wendlinge67f5e42009-03-31 08:41:31 +00001025 if (LastStore) {
1026 DOUT << "Removed dead store:\t" << *LastStore;
1027 ++NumDSE;
1028 SmallVector<unsigned, 2> KillRegs;
1029 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1030 MachineBasicBlock::iterator PrevMII = LastStore;
1031 bool CheckDef = PrevMII != MBB.begin();
1032 if (CheckDef)
1033 --PrevMII;
1034 VRM.RemoveMachineInstrFromMaps(LastStore);
1035 MBB.erase(LastStore);
1036 if (CheckDef) {
1037 // Look at defs of killed registers on the store. Mark the defs
1038 // as dead since the store has been deleted and they aren't
1039 // being reused.
1040 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1041 bool HasOtherDef = false;
1042 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1043 MachineInstr *DeadDef = PrevMII;
1044 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1045 // FIXME: This assumes a remat def does not have side
1046 // effects.
1047 VRM.RemoveMachineInstrFromMaps(DeadDef);
1048 MBB.erase(DeadDef);
1049 ++NumDRM;
1050 }
1051 }
1052 }
1053 }
1054 }
Owen Anderson1ed5b712009-03-11 22:31:21 +00001055
1056 LastStore = next(MII);
1057
1058 // If the stack slot value was previously available in some other
1059 // register, change it now. Otherwise, make the register available,
1060 // in PhysReg.
1061 Spills.ModifyStackSlotOrReMat(StackSlot);
1062 Spills.ClobberPhysReg(PhysReg);
1063 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1064 ++NumStores;
1065}
1066
1067/// TransferDeadness - A identity copy definition is dead and it's being
1068/// removed. Find the last def or use and mark it as dead / kill.
1069void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1070 unsigned Reg, BitVector &RegKills,
1071 std::vector<MachineOperand*> &KillOps) {
1072 int LastUDDist = -1;
1073 MachineInstr *LastUDMI = NULL;
1074 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1075 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1076 MachineInstr *UDMI = &*RI;
1077 if (UDMI->getParent() != MBB)
1078 continue;
1079 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1080 if (DI == DistanceMap.end() || DI->second > CurDist)
1081 continue;
1082 if ((int)DI->second < LastUDDist)
1083 continue;
1084 LastUDDist = DI->second;
1085 LastUDMI = UDMI;
1086 }
1087
1088 if (LastUDMI) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001089 MachineOperand *LastUD = NULL;
1090 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1091 MachineOperand &MO = LastUDMI->getOperand(i);
1092 if (!MO.isReg() || MO.getReg() != Reg)
1093 continue;
1094 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1095 LastUD = &MO;
Evan Chenga24752f2009-03-19 20:30:06 +00001096 if (LastUDMI->isRegTiedToDefOperand(i))
Owen Anderson1ed5b712009-03-11 22:31:21 +00001097 return;
1098 }
1099 if (LastUD->isDef())
1100 LastUD->setIsDead();
1101 else {
1102 LastUD->setIsKill();
1103 RegKills.set(Reg);
1104 KillOps[Reg] = LastUD;
1105 }
1106 }
1107}
1108
1109/// rewriteMBB - Keep track of which spills are available even after the
1110/// register allocator is done with them. If possible, avid reloading vregs.
1111void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1112 AvailableSpills &Spills, BitVector &RegKills,
1113 std::vector<MachineOperand*> &KillOps) {
1114 DOUT << "\n**** Local spiller rewriting MBB '"
Bill Wendlingfd302b72009-03-30 20:32:22 +00001115 << MBB.getBasicBlock()->getName() << "':\n";
Owen Anderson1ed5b712009-03-11 22:31:21 +00001116
1117 MachineFunction &MF = *MBB.getParent();
1118
1119 // MaybeDeadStores - When we need to write a value back into a stack slot,
1120 // keep track of the inserted store. If the stack slot value is never read
1121 // (because the value was used from some available register, for example), and
1122 // subsequently stored to, the original store is dead. This map keeps track
1123 // of inserted stores that are not used. If we see a subsequent store to the
1124 // same stack slot, the original store is deleted.
1125 std::vector<MachineInstr*> MaybeDeadStores;
1126 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1127
1128 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1129 SmallSet<MachineInstr*, 4> ReMatDefs;
1130
1131 // Clear kill info.
1132 SmallSet<unsigned, 2> KilledMIRegs;
1133 RegKills.reset();
1134 KillOps.clear();
1135 KillOps.resize(TRI->getNumRegs(), NULL);
1136
1137 unsigned Dist = 0;
1138 DistanceMap.clear();
1139 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1140 MII != E; ) {
Evan Cheng276b77e2009-04-17 01:29:40 +00001141 MachineBasicBlock::iterator NextMII = next(MII);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001142
1143 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1144 bool Erased = false;
1145 bool BackTracked = false;
Evan Cheng276b77e2009-04-17 01:29:40 +00001146 if (OptimizeByUnfold(MBB, MII,
1147 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
Owen Anderson1ed5b712009-03-11 22:31:21 +00001148 NextMII = next(MII);
1149
1150 MachineInstr &MI = *MII;
Owen Anderson1ed5b712009-03-11 22:31:21 +00001151
1152 if (VRM.hasEmergencySpills(&MI)) {
1153 // Spill physical register(s) in the rare case the allocator has run out
1154 // of registers to allocate.
1155 SmallSet<int, 4> UsedSS;
1156 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1157 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1158 unsigned PhysReg = EmSpills[i];
1159 const TargetRegisterClass *RC =
1160 TRI->getPhysicalRegisterRegClass(PhysReg);
1161 assert(RC && "Unable to determine register class!");
1162 int SS = VRM.getEmergencySpillSlot(RC);
1163 if (UsedSS.count(SS))
1164 assert(0 && "Need to spill more than one physical registers!");
1165 UsedSS.insert(SS);
1166 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1167 MachineInstr *StoreMI = prior(MII);
1168 VRM.addSpillSlotUse(SS, StoreMI);
1169 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1170 MachineInstr *LoadMI = next(MII);
1171 VRM.addSpillSlotUse(SS, LoadMI);
1172 ++NumPSpills;
1173 }
1174 NextMII = next(MII);
1175 }
1176
1177 // Insert restores here if asked to.
1178 if (VRM.isRestorePt(&MI)) {
1179 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1180 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1181 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1182 if (!VRM.getPreSplitReg(VirtReg))
1183 continue; // Split interval spilled again.
1184 unsigned Phys = VRM.getPhys(VirtReg);
1185 RegInfo->setPhysRegUsed(Phys);
1186
1187 // Check if the value being restored if available. If so, it must be
1188 // from a predecessor BB that fallthrough into this BB. We do not
1189 // expect:
1190 // BB1:
1191 // r1 = load fi#1
1192 // ...
1193 // = r1<kill>
1194 // ... # r1 not clobbered
1195 // ...
1196 // = load fi#1
1197 bool DoReMat = VRM.isReMaterialized(VirtReg);
1198 int SSorRMId = DoReMat
1199 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1200 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1201 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1202 if (InReg == Phys) {
1203 // If the value is already available in the expected register, save
1204 // a reload / remat.
1205 if (SSorRMId)
1206 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1207 else
1208 DOUT << "Reusing SS#" << SSorRMId;
1209 DOUT << " from physreg "
1210 << TRI->getName(InReg) << " for vreg"
1211 << VirtReg <<" instead of reloading into physreg "
1212 << TRI->getName(Phys) << "\n";
1213 ++NumOmitted;
1214 continue;
1215 } else if (InReg && InReg != Phys) {
1216 if (SSorRMId)
1217 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1218 else
1219 DOUT << "Reusing SS#" << SSorRMId;
1220 DOUT << " from physreg "
1221 << TRI->getName(InReg) << " for vreg"
1222 << VirtReg <<" by copying it into physreg "
1223 << TRI->getName(Phys) << "\n";
1224
1225 // If the reloaded / remat value is available in another register,
1226 // copy it to the desired register.
1227 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1228
1229 // This invalidates Phys.
1230 Spills.ClobberPhysReg(Phys);
1231 // Remember it's available.
1232 Spills.addAvailable(SSorRMId, Phys);
1233
1234 // Mark is killed.
1235 MachineInstr *CopyMI = prior(MII);
1236 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1237 KillOpnd->setIsKill();
1238 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1239
1240 DOUT << '\t' << *CopyMI;
1241 ++NumCopified;
1242 continue;
1243 }
1244
1245 if (VRM.isReMaterialized(VirtReg)) {
1246 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1247 } else {
1248 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1249 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1250 MachineInstr *LoadMI = prior(MII);
1251 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1252 ++NumLoads;
1253 }
1254
1255 // This invalidates Phys.
1256 Spills.ClobberPhysReg(Phys);
1257 // Remember it's available.
1258 Spills.addAvailable(SSorRMId, Phys);
1259
1260 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1261 DOUT << '\t' << *prior(MII);
1262 }
1263 }
1264
1265 // Insert spills here if asked to.
1266 if (VRM.isSpillPt(&MI)) {
1267 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1268 VRM.getSpillPtSpills(&MI);
1269 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1270 unsigned VirtReg = SpillRegs[i].first;
1271 bool isKill = SpillRegs[i].second;
1272 if (!VRM.getPreSplitReg(VirtReg))
1273 continue; // Split interval spilled again.
1274 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1275 unsigned Phys = VRM.getPhys(VirtReg);
1276 int StackSlot = VRM.getStackSlot(VirtReg);
1277 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1278 MachineInstr *StoreMI = next(MII);
1279 VRM.addSpillSlotUse(StackSlot, StoreMI);
1280 DOUT << "Store:\t" << *StoreMI;
1281 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1282 }
1283 NextMII = next(MII);
1284 }
1285
1286 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1287 /// reuse.
1288 ReuseInfo ReusedOperands(MI, TRI);
1289 SmallVector<unsigned, 4> VirtUseOps;
1290 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1291 MachineOperand &MO = MI.getOperand(i);
1292 if (!MO.isReg() || MO.getReg() == 0)
1293 continue; // Ignore non-register operands.
1294
1295 unsigned VirtReg = MO.getReg();
1296 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1297 // Ignore physregs for spilling, but remember that it is used by this
1298 // function.
1299 RegInfo->setPhysRegUsed(VirtReg);
1300 continue;
1301 }
1302
1303 // We want to process implicit virtual register uses first.
1304 if (MO.isImplicit())
1305 // If the virtual register is implicitly defined, emit a implicit_def
1306 // before so scavenger knows it's "defined".
1307 VirtUseOps.insert(VirtUseOps.begin(), i);
1308 else
1309 VirtUseOps.push_back(i);
1310 }
1311
1312 // Process all of the spilled uses and all non spilled reg references.
1313 SmallVector<int, 2> PotentialDeadStoreSlots;
1314 KilledMIRegs.clear();
1315 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1316 unsigned i = VirtUseOps[j];
1317 MachineOperand &MO = MI.getOperand(i);
1318 unsigned VirtReg = MO.getReg();
1319 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1320 "Not a virtual register?");
1321
1322 unsigned SubIdx = MO.getSubReg();
1323 if (VRM.isAssignedReg(VirtReg)) {
1324 // This virtual register was assigned a physreg!
1325 unsigned Phys = VRM.getPhys(VirtReg);
1326 RegInfo->setPhysRegUsed(Phys);
1327 if (MO.isDef())
1328 ReusedOperands.markClobbered(Phys);
1329 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1330 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001331 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001332 if (VRM.isImplicitlyDefined(VirtReg))
1333 BuildMI(MBB, &MI, MI.getDebugLoc(),
1334 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1335 continue;
1336 }
1337
1338 // This virtual register is now known to be a spilled value.
1339 if (!MO.isUse())
1340 continue; // Handle defs in the loop below (handle use&def here though)
1341
1342 bool DoReMat = VRM.isReMaterialized(VirtReg);
1343 int SSorRMId = DoReMat
1344 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1345 int ReuseSlot = SSorRMId;
1346
1347 // Check to see if this stack slot is available.
1348 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1349
1350 // If this is a sub-register use, make sure the reuse register is in the
1351 // right register class. For example, for x86 not all of the 32-bit
1352 // registers have accessible sub-registers.
1353 // Similarly so for EXTRACT_SUBREG. Consider this:
1354 // EDI = op
1355 // MOV32_mr fi#1, EDI
1356 // ...
1357 // = EXTRACT_SUBREG fi#1
1358 // fi#1 is available in EDI, but it cannot be reused because it's not in
1359 // the right register file.
1360 if (PhysReg &&
1361 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1362 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1363 if (!RC->contains(PhysReg))
1364 PhysReg = 0;
1365 }
1366
1367 if (PhysReg) {
1368 // This spilled operand might be part of a two-address operand. If this
1369 // is the case, then changing it will necessarily require changing the
1370 // def part of the instruction as well. However, in some cases, we
1371 // aren't allowed to modify the reused register. If none of these cases
1372 // apply, reuse it.
1373 bool CanReuse = true;
Evan Chenga24752f2009-03-19 20:30:06 +00001374 bool isTied = MI.isRegTiedToDefOperand(i);
1375 if (isTied) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001376 // Okay, we have a two address operand. We can reuse this physreg as
1377 // long as we are allowed to clobber the value and there isn't an
1378 // earlier def that has already clobbered the physreg.
Evan Chenge47b0082009-03-17 01:23:09 +00001379 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1380 Spills.canClobberPhysReg(PhysReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001381 }
1382
1383 if (CanReuse) {
1384 // If this stack slot value is already available, reuse it!
1385 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1386 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1387 else
1388 DOUT << "Reusing SS#" << ReuseSlot;
1389 DOUT << " from physreg "
1390 << TRI->getName(PhysReg) << " for vreg"
1391 << VirtReg <<" instead of reloading into physreg "
1392 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1393 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1394 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001395 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001396
1397 // The only technical detail we have is that we don't know that
1398 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1399 // later in the instruction. In particular, consider 'op V1, V2'.
1400 // If V1 is available in physreg R0, we would choose to reuse it
1401 // here, instead of reloading it into the register the allocator
1402 // indicated (say R1). However, V2 might have to be reloaded
1403 // later, and it might indicate that it needs to live in R0. When
1404 // this occurs, we need to have information available that
1405 // indicates it is safe to use R1 for the reload instead of R0.
1406 //
1407 // To further complicate matters, we might conflict with an alias,
1408 // or R0 and R1 might not be compatible with each other. In this
1409 // case, we actually insert a reload for V1 in R1, ensuring that
1410 // we can get at R0 or its alias.
1411 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1412 VRM.getPhys(VirtReg), VirtReg);
Evan Chenga24752f2009-03-19 20:30:06 +00001413 if (isTied)
Owen Anderson1ed5b712009-03-11 22:31:21 +00001414 // Only mark it clobbered if this is a use&def operand.
1415 ReusedOperands.markClobbered(PhysReg);
1416 ++NumReused;
1417
1418 if (MI.getOperand(i).isKill() &&
1419 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1420
1421 // The store of this spilled value is potentially dead, but we
1422 // won't know for certain until we've confirmed that the re-use
1423 // above is valid, which means waiting until the other operands
1424 // are processed. For now we just track the spill slot, we'll
1425 // remove it after the other operands are processed if valid.
1426
1427 PotentialDeadStoreSlots.push_back(ReuseSlot);
1428 }
1429
1430 // Mark is isKill if it's there no other uses of the same virtual
1431 // register and it's not a two-address operand. IsKill will be
1432 // unset if reg is reused.
Evan Chenga24752f2009-03-19 20:30:06 +00001433 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001434 MI.getOperand(i).setIsKill();
1435 KilledMIRegs.insert(VirtReg);
1436 }
1437
1438 continue;
1439 } // CanReuse
1440
1441 // Otherwise we have a situation where we have a two-address instruction
1442 // whose mod/ref operand needs to be reloaded. This reload is already
1443 // available in some register "PhysReg", but if we used PhysReg as the
1444 // operand to our 2-addr instruction, the instruction would modify
1445 // PhysReg. This isn't cool if something later uses PhysReg and expects
1446 // to get its initial value.
1447 //
1448 // To avoid this problem, and to avoid doing a load right after a store,
1449 // we emit a copy from PhysReg into the designated register for this
1450 // operand.
1451 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1452 assert(DesignatedReg && "Must map virtreg to physreg!");
1453
1454 // Note that, if we reused a register for a previous operand, the
1455 // register we want to reload into might not actually be
1456 // available. If this occurs, use the register indicated by the
1457 // reuser.
1458 if (ReusedOperands.hasReuses())
1459 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1460 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1461
1462 // If the mapped designated register is actually the physreg we have
1463 // incoming, we don't need to inserted a dead copy.
1464 if (DesignatedReg == PhysReg) {
1465 // If this stack slot value is already available, reuse it!
1466 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1467 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1468 else
1469 DOUT << "Reusing SS#" << ReuseSlot;
1470 DOUT << " from physreg " << TRI->getName(PhysReg)
1471 << " for vreg" << VirtReg
1472 << " instead of reloading into same physreg.\n";
1473 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1474 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001475 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001476 ReusedOperands.markClobbered(RReg);
1477 ++NumReused;
1478 continue;
1479 }
1480
1481 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1482 RegInfo->setPhysRegUsed(DesignatedReg);
1483 ReusedOperands.markClobbered(DesignatedReg);
1484 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1485
1486 MachineInstr *CopyMI = prior(MII);
1487 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1488
1489 // This invalidates DesignatedReg.
1490 Spills.ClobberPhysReg(DesignatedReg);
1491
1492 Spills.addAvailable(ReuseSlot, DesignatedReg);
1493 unsigned RReg =
1494 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1495 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001496 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001497 DOUT << '\t' << *prior(MII);
1498 ++NumReused;
1499 continue;
1500 } // if (PhysReg)
1501
1502 // Otherwise, reload it and remember that we have it.
1503 PhysReg = VRM.getPhys(VirtReg);
1504 assert(PhysReg && "Must map virtreg to physreg!");
1505
1506 // Note that, if we reused a register for a previous operand, the
1507 // register we want to reload into might not actually be
1508 // available. If this occurs, use the register indicated by the
1509 // reuser.
1510 if (ReusedOperands.hasReuses())
1511 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1512 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1513
1514 RegInfo->setPhysRegUsed(PhysReg);
1515 ReusedOperands.markClobbered(PhysReg);
1516 if (DoReMat) {
1517 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1518 } else {
1519 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1520 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1521 MachineInstr *LoadMI = prior(MII);
1522 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1523 ++NumLoads;
1524 }
1525 // This invalidates PhysReg.
1526 Spills.ClobberPhysReg(PhysReg);
1527
1528 // Any stores to this stack slot are not dead anymore.
1529 if (!DoReMat)
1530 MaybeDeadStores[SSorRMId] = NULL;
1531 Spills.addAvailable(SSorRMId, PhysReg);
1532 // Assumes this is the last use. IsKill will be unset if reg is reused
1533 // unless it's a two-address operand.
Evan Chenga24752f2009-03-19 20:30:06 +00001534 if (!MI.isRegTiedToDefOperand(i) &&
Owen Anderson1ed5b712009-03-11 22:31:21 +00001535 KilledMIRegs.count(VirtReg) == 0) {
1536 MI.getOperand(i).setIsKill();
1537 KilledMIRegs.insert(VirtReg);
1538 }
1539 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1540 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001541 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001542 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1543 DOUT << '\t' << *prior(MII);
1544 }
1545
1546 // Ok - now we can remove stores that have been confirmed dead.
1547 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1548 // This was the last use and the spilled value is still available
1549 // for reuse. That means the spill was unnecessary!
1550 int PDSSlot = PotentialDeadStoreSlots[j];
1551 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1552 if (DeadStore) {
1553 DOUT << "Removed dead store:\t" << *DeadStore;
1554 InvalidateKills(*DeadStore, RegKills, KillOps);
1555 VRM.RemoveMachineInstrFromMaps(DeadStore);
1556 MBB.erase(DeadStore);
1557 MaybeDeadStores[PDSSlot] = NULL;
1558 ++NumDSE;
1559 }
1560 }
1561
1562
1563 DOUT << '\t' << MI;
1564
1565
1566 // If we have folded references to memory operands, make sure we clear all
1567 // physical registers that may contain the value of the spilled virtual
1568 // register
1569 SmallSet<int, 2> FoldedSS;
1570 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1571 unsigned VirtReg = I->second.first;
1572 VirtRegMap::ModRef MR = I->second.second;
1573 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1574
1575 // MI2VirtMap be can updated which invalidate the iterator.
1576 // Increment the iterator first.
1577 ++I;
1578 int SS = VRM.getStackSlot(VirtReg);
1579 if (SS == VirtRegMap::NO_STACK_SLOT)
1580 continue;
1581 FoldedSS.insert(SS);
1582 DOUT << " - StackSlot: " << SS << "\n";
1583
1584 // If this folded instruction is just a use, check to see if it's a
1585 // straight load from the virt reg slot.
1586 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1587 int FrameIdx;
1588 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1589 if (DestReg && FrameIdx == SS) {
1590 // If this spill slot is available, turn it into a copy (or nothing)
1591 // instead of leaving it as a load!
1592 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1593 DOUT << "Promoted Load To Copy: " << MI;
1594 if (DestReg != InReg) {
1595 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1596 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1597 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1598 unsigned SubIdx = DefMO->getSubReg();
1599 // Revisit the copy so we make sure to notice the effects of the
1600 // operation on the destreg (either needing to RA it if it's
1601 // virtual or needing to clobber any values if it's physical).
1602 NextMII = &MI;
1603 --NextMII; // backtrack to the copy.
1604 // Propagate the sub-register index over.
1605 if (SubIdx) {
1606 DefMO = NextMII->findRegisterDefOperand(DestReg);
1607 DefMO->setSubReg(SubIdx);
1608 }
1609
1610 // Mark is killed.
1611 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1612 KillOpnd->setIsKill();
1613
1614 BackTracked = true;
1615 } else {
1616 DOUT << "Removing now-noop copy: " << MI;
1617 // Unset last kill since it's being reused.
1618 InvalidateKill(InReg, RegKills, KillOps);
Evan Chenge47b0082009-03-17 01:23:09 +00001619 Spills.disallowClobberPhysReg(InReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001620 }
1621
1622 InvalidateKills(MI, RegKills, KillOps);
1623 VRM.RemoveMachineInstrFromMaps(&MI);
1624 MBB.erase(&MI);
1625 Erased = true;
1626 goto ProcessNextInst;
1627 }
1628 } else {
1629 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1630 SmallVector<MachineInstr*, 4> NewMIs;
1631 if (PhysReg &&
1632 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1633 MBB.insert(MII, NewMIs[0]);
1634 InvalidateKills(MI, RegKills, KillOps);
1635 VRM.RemoveMachineInstrFromMaps(&MI);
1636 MBB.erase(&MI);
1637 Erased = true;
1638 --NextMII; // backtrack to the unfolded instruction.
1639 BackTracked = true;
1640 goto ProcessNextInst;
1641 }
1642 }
1643 }
1644
1645 // If this reference is not a use, any previous store is now dead.
1646 // Otherwise, the store to this stack slot is not dead anymore.
1647 MachineInstr* DeadStore = MaybeDeadStores[SS];
1648 if (DeadStore) {
1649 bool isDead = !(MR & VirtRegMap::isRef);
1650 MachineInstr *NewStore = NULL;
1651 if (MR & VirtRegMap::isModRef) {
1652 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1653 SmallVector<MachineInstr*, 4> NewMIs;
1654 // We can reuse this physreg as long as we are allowed to clobber
1655 // the value and there isn't an earlier def that has already clobbered
1656 // the physreg.
1657 if (PhysReg &&
Evan Chenge47b0082009-03-17 01:23:09 +00001658 !ReusedOperands.isClobbered(PhysReg) &&
1659 Spills.canClobberPhysReg(PhysReg) &&
Owen Anderson1ed5b712009-03-11 22:31:21 +00001660 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1661 MachineOperand *KillOpnd =
1662 DeadStore->findRegisterUseOperand(PhysReg, true);
1663 // Note, if the store is storing a sub-register, it's possible the
1664 // super-register is needed below.
1665 if (KillOpnd && !KillOpnd->getSubReg() &&
1666 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
Evan Chenge47b0082009-03-17 01:23:09 +00001667 MBB.insert(MII, NewMIs[0]);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001668 NewStore = NewMIs[1];
1669 MBB.insert(MII, NewStore);
1670 VRM.addSpillSlotUse(SS, NewStore);
1671 InvalidateKills(MI, RegKills, KillOps);
1672 VRM.RemoveMachineInstrFromMaps(&MI);
1673 MBB.erase(&MI);
1674 Erased = true;
1675 --NextMII;
1676 --NextMII; // backtrack to the unfolded instruction.
1677 BackTracked = true;
1678 isDead = true;
Evan Chenge47b0082009-03-17 01:23:09 +00001679 ++NumSUnfold;
Owen Anderson1ed5b712009-03-11 22:31:21 +00001680 }
1681 }
1682 }
1683
1684 if (isDead) { // Previous store is dead.
1685 // If we get here, the store is dead, nuke it now.
1686 DOUT << "Removed dead store:\t" << *DeadStore;
1687 InvalidateKills(*DeadStore, RegKills, KillOps);
1688 VRM.RemoveMachineInstrFromMaps(DeadStore);
1689 MBB.erase(DeadStore);
1690 if (!NewStore)
1691 ++NumDSE;
1692 }
1693
1694 MaybeDeadStores[SS] = NULL;
1695 if (NewStore) {
1696 // Treat this store as a spill merged into a copy. That makes the
1697 // stack slot value available.
1698 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1699 goto ProcessNextInst;
1700 }
1701 }
1702
1703 // If the spill slot value is available, and this is a new definition of
1704 // the value, the value is not available anymore.
1705 if (MR & VirtRegMap::isMod) {
1706 // Notice that the value in this stack slot has been modified.
1707 Spills.ModifyStackSlotOrReMat(SS);
1708
1709 // If this is *just* a mod of the value, check to see if this is just a
1710 // store to the spill slot (i.e. the spill got merged into the copy). If
1711 // so, realize that the vreg is available now, and add the store to the
1712 // MaybeDeadStore info.
1713 int StackSlot;
1714 if (!(MR & VirtRegMap::isRef)) {
1715 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1716 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1717 "Src hasn't been allocated yet?");
1718
1719 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1720 Spills, RegKills, KillOps, TRI, VRM)) {
1721 NextMII = next(MII);
1722 BackTracked = true;
1723 goto ProcessNextInst;
1724 }
1725
1726 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1727 // this as a potentially dead store in case there is a subsequent
1728 // store into the stack slot without a read from it.
1729 MaybeDeadStores[StackSlot] = &MI;
1730
1731 // If the stack slot value was previously available in some other
1732 // register, change it now. Otherwise, make the register
1733 // available in PhysReg.
Evan Chenge47b0082009-03-17 01:23:09 +00001734 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
Owen Anderson1ed5b712009-03-11 22:31:21 +00001735 }
1736 }
1737 }
1738 }
1739
1740 // Process all of the spilled defs.
1741 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1742 MachineOperand &MO = MI.getOperand(i);
1743 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1744 continue;
1745
1746 unsigned VirtReg = MO.getReg();
1747 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1748 // Check to see if this is a noop copy. If so, eliminate the
1749 // instruction before considering the dest reg to be changed.
1750 unsigned Src, Dst, SrcSR, DstSR;
1751 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1752 ++NumDCE;
1753 DOUT << "Removing now-noop copy: " << MI;
1754 SmallVector<unsigned, 2> KillRegs;
1755 InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1756 if (MO.isDead() && !KillRegs.empty()) {
1757 // Source register or an implicit super/sub-register use is killed.
1758 assert(KillRegs[0] == Dst ||
1759 TRI->isSubRegister(KillRegs[0], Dst) ||
1760 TRI->isSuperRegister(KillRegs[0], Dst));
1761 // Last def is now dead.
1762 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1763 }
1764 VRM.RemoveMachineInstrFromMaps(&MI);
1765 MBB.erase(&MI);
1766 Erased = true;
1767 Spills.disallowClobberPhysReg(VirtReg);
1768 goto ProcessNextInst;
1769 }
1770
1771 // If it's not a no-op copy, it clobbers the value in the destreg.
1772 Spills.ClobberPhysReg(VirtReg);
1773 ReusedOperands.markClobbered(VirtReg);
1774
1775 // Check to see if this instruction is a load from a stack slot into
1776 // a register. If so, this provides the stack slot value in the reg.
1777 int FrameIdx;
1778 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1779 assert(DestReg == VirtReg && "Unknown load situation!");
1780
1781 // If it is a folded reference, then it's not safe to clobber.
1782 bool Folded = FoldedSS.count(FrameIdx);
1783 // Otherwise, if it wasn't available, remember that it is now!
1784 Spills.addAvailable(FrameIdx, DestReg, !Folded);
1785 goto ProcessNextInst;
1786 }
1787
1788 continue;
1789 }
1790
1791 unsigned SubIdx = MO.getSubReg();
1792 bool DoReMat = VRM.isReMaterialized(VirtReg);
1793 if (DoReMat)
1794 ReMatDefs.insert(&MI);
1795
1796 // The only vregs left are stack slot definitions.
1797 int StackSlot = VRM.getStackSlot(VirtReg);
1798 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1799
1800 // If this def is part of a two-address operand, make sure to execute
1801 // the store from the correct physical register.
1802 unsigned PhysReg;
Bob Wilsond9df5012009-04-09 17:16:43 +00001803 unsigned TiedOp;
1804 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001805 PhysReg = MI.getOperand(TiedOp).getReg();
1806 if (SubIdx) {
1807 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1808 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1809 "Can't find corresponding super-register!");
1810 PhysReg = SuperReg;
1811 }
1812 } else {
1813 PhysReg = VRM.getPhys(VirtReg);
1814 if (ReusedOperands.isClobbered(PhysReg)) {
1815 // Another def has taken the assigned physreg. It must have been a
1816 // use&def which got it due to reuse. Undo the reuse!
1817 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1818 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1819 }
1820 }
1821
1822 assert(PhysReg && "VR not assigned a physical register?");
1823 RegInfo->setPhysRegUsed(PhysReg);
1824 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1825 ReusedOperands.markClobbered(RReg);
1826 MI.getOperand(i).setReg(RReg);
Dan Gohman9a77a922009-04-13 15:21:32 +00001827 MI.getOperand(i).setSubReg(0);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001828
1829 if (!MO.isDead()) {
1830 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1831 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1832 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1833 NextMII = next(MII);
1834
1835 // Check to see if this is a noop copy. If so, eliminate the
1836 // instruction before considering the dest reg to be changed.
1837 {
1838 unsigned Src, Dst, SrcSR, DstSR;
1839 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1840 ++NumDCE;
1841 DOUT << "Removing now-noop copy: " << MI;
1842 InvalidateKills(MI, RegKills, KillOps);
1843 VRM.RemoveMachineInstrFromMaps(&MI);
1844 MBB.erase(&MI);
1845 Erased = true;
1846 UpdateKills(*LastStore, RegKills, KillOps, TRI);
1847 goto ProcessNextInst;
1848 }
1849 }
1850 }
1851 }
1852 ProcessNextInst:
1853 DistanceMap.insert(std::make_pair(&MI, Dist++));
1854 if (!Erased && !BackTracked) {
1855 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1856 UpdateKills(*II, RegKills, KillOps, TRI);
1857 }
1858 MII = NextMII;
1859 }
1860
1861}
1862
1863llvm::Spiller* llvm::createSpiller() {
1864 switch (SpillerOpt) {
1865 default: assert(0 && "Unreachable!");
1866 case local:
1867 return new LocalSpiller();
1868 case simple:
1869 return new SimpleSpiller();
1870 }
Daniel Dunbarcfbf05e2009-03-14 01:53:05 +00001871}