blob: c773c675e7a98d7a03442524714ad059780dbb03 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000191 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000192 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf9e64722010-03-18 01:17:13 +0000250 assert(NumOperands > 1 && "This plus expr shouldn't exist!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251 const char *OpStr = getOperationStr();
252 OS << "(" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000253 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000254 OS << OpStr << *Operands[i];
255 OS << ")";
256}
257
Dan Gohmanecb403a2009-05-07 14:00:19 +0000258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260 if (!getOperand(i)->dominates(BB, DT))
261 return false;
262 }
263 return true;
264}
265
Dan Gohman6e70e312009-09-27 15:26:03 +0000266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268 if (!getOperand(i)->properlyDominates(BB, DT))
269 return false;
270 }
271 return true;
272}
273
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
Dan Gohman6e70e312009-09-27 15:26:03 +0000278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000282void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000283 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000284}
285
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000286const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000287 // In most cases the types of LHS and RHS will be the same, but in some
288 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289 // depend on the type for correctness, but handling types carefully can
290 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291 // a pointer type than the RHS, so use the RHS' type here.
292 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000296 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000297 if (!QueryLoop)
298 return false;
299
300 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000301 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000302 return false;
303
304 // This recurrence is variant w.r.t. QueryLoop if any of its operands
305 // are variant.
306 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307 if (!getOperand(i)->isLoopInvariant(QueryLoop))
308 return false;
309
310 // Otherwise it's loop-invariant.
311 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000312}
313
Dan Gohman39125d82010-02-13 00:19:39 +0000314bool
315SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
316 return DT->dominates(L->getHeader(), BB) &&
317 SCEVNAryExpr::dominates(BB, DT);
318}
319
320bool
321SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
322 // This uses a "dominates" query instead of "properly dominates" query because
323 // the instruction which produces the addrec's value is a PHI, and a PHI
324 // effectively properly dominates its entire containing block.
325 return DT->dominates(L->getHeader(), BB) &&
326 SCEVNAryExpr::properlyDominates(BB, DT);
327}
328
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000329void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000331 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000333 OS << "}<";
334 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
335 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336}
Chris Lattner53e677a2004-04-02 20:23:17 +0000337
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
339 // All non-instruction values are loop invariant. All instructions are loop
340 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000341 // Instructions are never considered invariant in the function body
342 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000343 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000344 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 return true;
346}
Chris Lattner53e677a2004-04-02 20:23:17 +0000347
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000348bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
349 if (Instruction *I = dyn_cast<Instruction>(getValue()))
350 return DT->dominates(I->getParent(), BB);
351 return true;
352}
353
Dan Gohman6e70e312009-09-27 15:26:03 +0000354bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
355 if (Instruction *I = dyn_cast<Instruction>(getValue()))
356 return DT->properlyDominates(I->getParent(), BB);
357 return true;
358}
359
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000360const Type *SCEVUnknown::getType() const {
361 return V->getType();
362}
Chris Lattner53e677a2004-04-02 20:23:17 +0000363
Dan Gohman0f5efe52010-01-28 02:15:55 +0000364bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
365 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
366 if (VCE->getOpcode() == Instruction::PtrToInt)
367 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000368 if (CE->getOpcode() == Instruction::GetElementPtr &&
369 CE->getOperand(0)->isNullValue() &&
370 CE->getNumOperands() == 2)
371 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
372 if (CI->isOne()) {
373 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
374 ->getElementType();
375 return true;
376 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000377
378 return false;
379}
380
381bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue()) {
387 const Type *Ty =
388 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
389 if (const StructType *STy = dyn_cast<StructType>(Ty))
390 if (!STy->isPacked() &&
391 CE->getNumOperands() == 3 &&
392 CE->getOperand(1)->isNullValue()) {
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
394 if (CI->isOne() &&
395 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000396 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000397 AllocTy = STy->getElementType(1);
398 return true;
399 }
400 }
401 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000402
403 return false;
404}
405
Dan Gohman4f8eea82010-02-01 18:27:38 +0000406bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(0)->isNullValue() &&
413 CE->getOperand(1)->isNullValue()) {
414 const Type *Ty =
415 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
416 // Ignore vector types here so that ScalarEvolutionExpander doesn't
417 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000418 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000419 CTy = Ty;
420 FieldNo = CE->getOperand(2);
421 return true;
422 }
423 }
424
425 return false;
426}
427
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000428void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000429 const Type *AllocTy;
430 if (isSizeOf(AllocTy)) {
431 OS << "sizeof(" << *AllocTy << ")";
432 return;
433 }
434 if (isAlignOf(AllocTy)) {
435 OS << "alignof(" << *AllocTy << ")";
436 return;
437 }
438
Dan Gohman4f8eea82010-02-01 18:27:38 +0000439 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000440 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 if (isOffsetOf(CTy, FieldNo)) {
442 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000443 WriteAsOperand(OS, FieldNo, false);
444 OS << ")";
445 return;
446 }
447
448 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000449 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000450}
451
Chris Lattner8d741b82004-06-20 06:23:15 +0000452//===----------------------------------------------------------------------===//
453// SCEV Utilities
454//===----------------------------------------------------------------------===//
455
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000456static bool CompareTypes(const Type *A, const Type *B) {
457 if (A->getTypeID() != B->getTypeID())
458 return A->getTypeID() < B->getTypeID();
459 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
460 const IntegerType *BI = cast<IntegerType>(B);
461 return AI->getBitWidth() < BI->getBitWidth();
462 }
463 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
464 const PointerType *BI = cast<PointerType>(B);
465 return CompareTypes(AI->getElementType(), BI->getElementType());
466 }
467 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
468 const ArrayType *BI = cast<ArrayType>(B);
469 if (AI->getNumElements() != BI->getNumElements())
470 return AI->getNumElements() < BI->getNumElements();
471 return CompareTypes(AI->getElementType(), BI->getElementType());
472 }
473 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
474 const VectorType *BI = cast<VectorType>(B);
475 if (AI->getNumElements() != BI->getNumElements())
476 return AI->getNumElements() < BI->getNumElements();
477 return CompareTypes(AI->getElementType(), BI->getElementType());
478 }
479 if (const StructType *AI = dyn_cast<StructType>(A)) {
480 const StructType *BI = cast<StructType>(B);
481 if (AI->getNumElements() != BI->getNumElements())
482 return AI->getNumElements() < BI->getNumElements();
483 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
484 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
485 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
486 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
487 }
488 return false;
489}
490
Chris Lattner8d741b82004-06-20 06:23:15 +0000491namespace {
492 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
493 /// than the complexity of the RHS. This comparator is used to canonicalize
494 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000495 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000496 LoopInfo *LI;
497 public:
498 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
499
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000500 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000501 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
502 if (LHS == RHS)
503 return false;
504
Dan Gohman72861302009-05-07 14:39:04 +0000505 // Primarily, sort the SCEVs by their getSCEVType().
506 if (LHS->getSCEVType() != RHS->getSCEVType())
507 return LHS->getSCEVType() < RHS->getSCEVType();
508
509 // Aside from the getSCEVType() ordering, the particular ordering
510 // isn't very important except that it's beneficial to be consistent,
511 // so that (a + b) and (b + a) don't end up as different expressions.
512
513 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
514 // not as complete as it could be.
515 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
516 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
517
Dan Gohman5be18e82009-05-19 02:15:55 +0000518 // Order pointer values after integer values. This helps SCEVExpander
519 // form GEPs.
Duncan Sands1df98592010-02-16 11:11:14 +0000520 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000521 return false;
Duncan Sands1df98592010-02-16 11:11:14 +0000522 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000523 return true;
524
Dan Gohman72861302009-05-07 14:39:04 +0000525 // Compare getValueID values.
526 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
527 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
528
529 // Sort arguments by their position.
530 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
531 const Argument *RA = cast<Argument>(RU->getValue());
532 return LA->getArgNo() < RA->getArgNo();
533 }
534
535 // For instructions, compare their loop depth, and their opcode.
536 // This is pretty loose.
537 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
538 Instruction *RV = cast<Instruction>(RU->getValue());
539
540 // Compare loop depths.
541 if (LI->getLoopDepth(LV->getParent()) !=
542 LI->getLoopDepth(RV->getParent()))
543 return LI->getLoopDepth(LV->getParent()) <
544 LI->getLoopDepth(RV->getParent());
545
546 // Compare opcodes.
547 if (LV->getOpcode() != RV->getOpcode())
548 return LV->getOpcode() < RV->getOpcode();
549
550 // Compare the number of operands.
551 if (LV->getNumOperands() != RV->getNumOperands())
552 return LV->getNumOperands() < RV->getNumOperands();
553 }
554
555 return false;
556 }
557
Dan Gohman4dfad292009-06-14 22:51:25 +0000558 // Compare constant values.
559 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
560 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000561 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
562 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000563 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
564 }
565
566 // Compare addrec loop depths.
567 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
568 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
569 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
570 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
571 }
Dan Gohman72861302009-05-07 14:39:04 +0000572
573 // Lexicographically compare n-ary expressions.
574 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
575 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
576 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
577 if (i >= RC->getNumOperands())
578 return false;
579 if (operator()(LC->getOperand(i), RC->getOperand(i)))
580 return true;
581 if (operator()(RC->getOperand(i), LC->getOperand(i)))
582 return false;
583 }
584 return LC->getNumOperands() < RC->getNumOperands();
585 }
586
Dan Gohmana6b35e22009-05-07 19:23:21 +0000587 // Lexicographically compare udiv expressions.
588 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
589 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
590 if (operator()(LC->getLHS(), RC->getLHS()))
591 return true;
592 if (operator()(RC->getLHS(), LC->getLHS()))
593 return false;
594 if (operator()(LC->getRHS(), RC->getRHS()))
595 return true;
596 if (operator()(RC->getRHS(), LC->getRHS()))
597 return false;
598 return false;
599 }
600
Dan Gohman72861302009-05-07 14:39:04 +0000601 // Compare cast expressions by operand.
602 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
603 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
604 return operator()(LC->getOperand(), RC->getOperand());
605 }
606
Torok Edwinc23197a2009-07-14 16:55:14 +0000607 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000608 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000609 }
610 };
611}
612
613/// GroupByComplexity - Given a list of SCEV objects, order them by their
614/// complexity, and group objects of the same complexity together by value.
615/// When this routine is finished, we know that any duplicates in the vector are
616/// consecutive and that complexity is monotonically increasing.
617///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000618/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000619/// results from this routine. In other words, we don't want the results of
620/// this to depend on where the addresses of various SCEV objects happened to
621/// land in memory.
622///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000623static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000624 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 if (Ops.size() < 2) return; // Noop
626 if (Ops.size() == 2) {
627 // This is the common case, which also happens to be trivially simple.
628 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000629 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 std::swap(Ops[0], Ops[1]);
631 return;
632 }
633
634 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000635 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000636
637 // Now that we are sorted by complexity, group elements of the same
638 // complexity. Note that this is, at worst, N^2, but the vector is likely to
639 // be extremely short in practice. Note that we take this approach because we
640 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000641 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000642 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000643 unsigned Complexity = S->getSCEVType();
644
645 // If there are any objects of the same complexity and same value as this
646 // one, group them.
647 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
648 if (Ops[j] == S) { // Found a duplicate.
649 // Move it to immediately after i'th element.
650 std::swap(Ops[i+1], Ops[j]);
651 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000652 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000653 }
654 }
655 }
656}
657
Chris Lattner53e677a2004-04-02 20:23:17 +0000658
Chris Lattner53e677a2004-04-02 20:23:17 +0000659
660//===----------------------------------------------------------------------===//
661// Simple SCEV method implementations
662//===----------------------------------------------------------------------===//
663
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000665/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000666static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000667 ScalarEvolution &SE,
668 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // Handle the simplest case efficiently.
670 if (K == 1)
671 return SE.getTruncateOrZeroExtend(It, ResultTy);
672
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 // We are using the following formula for BC(It, K):
674 //
675 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
676 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // Suppose, W is the bitwidth of the return value. We must be prepared for
678 // overflow. Hence, we must assure that the result of our computation is
679 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
680 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000682 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000683 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
685 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000686 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // This formula is trivially equivalent to the previous formula. However,
690 // this formula can be implemented much more efficiently. The trick is that
691 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
692 // arithmetic. To do exact division in modular arithmetic, all we have
693 // to do is multiply by the inverse. Therefore, this step can be done at
694 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000695 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // The next issue is how to safely do the division by 2^T. The way this
697 // is done is by doing the multiplication step at a width of at least W + T
698 // bits. This way, the bottom W+T bits of the product are accurate. Then,
699 // when we perform the division by 2^T (which is equivalent to a right shift
700 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
701 // truncated out after the division by 2^T.
702 //
703 // In comparison to just directly using the first formula, this technique
704 // is much more efficient; using the first formula requires W * K bits,
705 // but this formula less than W + K bits. Also, the first formula requires
706 // a division step, whereas this formula only requires multiplies and shifts.
707 //
708 // It doesn't matter whether the subtraction step is done in the calculation
709 // width or the input iteration count's width; if the subtraction overflows,
710 // the result must be zero anyway. We prefer here to do it in the width of
711 // the induction variable because it helps a lot for certain cases; CodeGen
712 // isn't smart enough to ignore the overflow, which leads to much less
713 // efficient code if the width of the subtraction is wider than the native
714 // register width.
715 //
716 // (It's possible to not widen at all by pulling out factors of 2 before
717 // the multiplication; for example, K=2 can be calculated as
718 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
719 // extra arithmetic, so it's not an obvious win, and it gets
720 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000721
Eli Friedmanb42a6262008-08-04 23:49:06 +0000722 // Protection from insane SCEVs; this bound is conservative,
723 // but it probably doesn't matter.
724 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000725 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000726
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000727 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729 // Calculate K! / 2^T and T; we divide out the factors of two before
730 // multiplying for calculating K! / 2^T to avoid overflow.
731 // Other overflow doesn't matter because we only care about the bottom
732 // W bits of the result.
733 APInt OddFactorial(W, 1);
734 unsigned T = 1;
735 for (unsigned i = 3; i <= K; ++i) {
736 APInt Mult(W, i);
737 unsigned TwoFactors = Mult.countTrailingZeros();
738 T += TwoFactors;
739 Mult = Mult.lshr(TwoFactors);
740 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000741 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000744 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000746 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
748
749 // Calculate the multiplicative inverse of K! / 2^T;
750 // this multiplication factor will perform the exact division by
751 // K! / 2^T.
752 APInt Mod = APInt::getSignedMinValue(W+1);
753 APInt MultiplyFactor = OddFactorial.zext(W+1);
754 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
755 MultiplyFactor = MultiplyFactor.trunc(W);
756
757 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000758 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
759 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000760 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 Dividend = SE.getMulExpr(Dividend,
764 SE.getTruncateOrZeroExtend(S, CalculationTy));
765 }
766
767 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000768 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769
770 // Truncate the result, and divide by K! / 2^T.
771
772 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
773 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000774}
775
Chris Lattner53e677a2004-04-02 20:23:17 +0000776/// evaluateAtIteration - Return the value of this chain of recurrences at
777/// the specified iteration number. We can evaluate this recurrence by
778/// multiplying each element in the chain by the binomial coefficient
779/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
780///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000781/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000786 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000788 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789 // The computation is correct in the face of overflow provided that the
790 // multiplication is performed _after_ the evaluation of the binomial
791 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000793 if (isa<SCEVCouldNotCompute>(Coeff))
794 return Coeff;
795
796 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000797 }
798 return Result;
799}
800
Chris Lattner53e677a2004-04-02 20:23:17 +0000801//===----------------------------------------------------------------------===//
802// SCEV Expression folder implementations
803//===----------------------------------------------------------------------===//
804
Dan Gohman0bba49c2009-07-07 17:06:11 +0000805const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000806 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000807 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000808 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000809 assert(isSCEVable(Ty) &&
810 "This is not a conversion to a SCEVable type!");
811 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000812
Dan Gohmanc050fd92009-07-13 20:50:19 +0000813 FoldingSetNodeID ID;
814 ID.AddInteger(scTruncate);
815 ID.AddPointer(Op);
816 ID.AddPointer(Ty);
817 void *IP = 0;
818 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
819
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000820 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000821 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000822 return getConstant(
823 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000824
Dan Gohman20900ca2009-04-22 16:20:48 +0000825 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000826 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 return getTruncateExpr(ST->getOperand(), Ty);
828
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000829 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000830 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 return getTruncateOrSignExtend(SS->getOperand(), Ty);
832
833 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
836
Dan Gohman6864db62009-06-18 16:24:47 +0000837 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000840 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000841 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
842 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 }
844
Dan Gohmanc050fd92009-07-13 20:50:19 +0000845 // The cast wasn't folded; create an explicit cast node.
846 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000847 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000848 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
849 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000850 UniqueSCEVs.InsertNode(S, IP);
851 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000852}
853
Dan Gohman0bba49c2009-07-07 17:06:11 +0000854const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000855 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000856 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000857 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000858 assert(isSCEVable(Ty) &&
859 "This is not a conversion to a SCEVable type!");
860 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000861
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000862 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000863 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000864 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000865 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
866 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000867 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000868 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000869
Dan Gohman20900ca2009-04-22 16:20:48 +0000870 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000871 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 return getZeroExtendExpr(SZ->getOperand(), Ty);
873
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000874 // Before doing any expensive analysis, check to see if we've already
875 // computed a SCEV for this Op and Ty.
876 FoldingSetNodeID ID;
877 ID.AddInteger(scZeroExtend);
878 ID.AddPointer(Op);
879 ID.AddPointer(Ty);
880 void *IP = 0;
881 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
882
Dan Gohman01ecca22009-04-27 20:16:15 +0000883 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000888 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000889 const SCEV *Start = AR->getStart();
890 const SCEV *Step = AR->getStepRecurrence(*this);
891 unsigned BitWidth = getTypeSizeInBits(AR->getType());
892 const Loop *L = AR->getLoop();
893
Dan Gohmaneb490a72009-07-25 01:22:26 +0000894 // If we have special knowledge that this addrec won't overflow,
895 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000896 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000897 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
898 getZeroExtendExpr(Step, Ty),
899 L);
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // Check whether the backedge-taken count is SCEVCouldNotCompute.
902 // Note that this serves two purposes: It filters out loops that are
903 // simply not analyzable, and it covers the case where this code is
904 // being called from within backedge-taken count analysis, such that
905 // attempting to ask for the backedge-taken count would likely result
906 // in infinite recursion. In the later case, the analysis code will
907 // cope with a conservative value, and it will take care to purge
908 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000909 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000910 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000911 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000912 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000913
914 // Check whether the backedge-taken count can be losslessly casted to
915 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000916 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000917 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000919 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
920 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000921 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000922 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000923 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000924 const SCEV *Add = getAddExpr(Start, ZMul);
925 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000926 getAddExpr(getZeroExtendExpr(Start, WideTy),
927 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
928 getZeroExtendExpr(Step, WideTy)));
929 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // Return the expression with the addrec on the outside.
931 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
932 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000933 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000934
935 // Similar to above, only this time treat the step value as signed.
936 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000937 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000938 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000939 OperandExtendedAdd =
940 getAddExpr(getZeroExtendExpr(Start, WideTy),
941 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
942 getSignExtendExpr(Step, WideTy)));
943 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000944 // Return the expression with the addrec on the outside.
945 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000947 L);
948 }
949
950 // If the backedge is guarded by a comparison with the pre-inc value
951 // the addrec is safe. Also, if the entry is guarded by a comparison
952 // with the start value and the backedge is guarded by a comparison
953 // with the post-inc value, the addrec is safe.
954 if (isKnownPositive(Step)) {
955 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
956 getUnsignedRange(Step).getUnsignedMax());
957 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000958 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000959 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
960 AR->getPostIncExpr(*this), N)))
961 // Return the expression with the addrec on the outside.
962 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
963 getZeroExtendExpr(Step, Ty),
964 L);
965 } else if (isKnownNegative(Step)) {
966 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
967 getSignedRange(Step).getSignedMin());
968 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
Dan Gohman3948d0b2010-04-11 19:27:13 +0000969 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
Dan Gohman85b05a22009-07-13 21:35:55 +0000970 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
971 AR->getPostIncExpr(*this), N)))
972 // Return the expression with the addrec on the outside.
973 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
974 getSignExtendExpr(Step, Ty),
975 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000976 }
977 }
978 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000979
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000980 // The cast wasn't folded; create an explicit cast node.
981 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000982 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000983 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
984 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000985 UniqueSCEVs.InsertNode(S, IP);
986 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000987}
988
Dan Gohman0bba49c2009-07-07 17:06:11 +0000989const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000990 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000991 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000992 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000993 assert(isSCEVable(Ty) &&
994 "This is not a conversion to a SCEVable type!");
995 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000996
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000997 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000998 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000999 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001000 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1001 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001002 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001003 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001004
Dan Gohman20900ca2009-04-22 16:20:48 +00001005 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001006 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 return getSignExtendExpr(SS->getOperand(), Ty);
1008
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001009 // Before doing any expensive analysis, check to see if we've already
1010 // computed a SCEV for this Op and Ty.
1011 FoldingSetNodeID ID;
1012 ID.AddInteger(scSignExtend);
1013 ID.AddPointer(Op);
1014 ID.AddPointer(Ty);
1015 void *IP = 0;
1016 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1017
Dan Gohman01ecca22009-04-27 20:16:15 +00001018 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001019 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001023 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 const SCEV *Start = AR->getStart();
1025 const SCEV *Step = AR->getStepRecurrence(*this);
1026 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1027 const Loop *L = AR->getLoop();
1028
Dan Gohmaneb490a72009-07-25 01:22:26 +00001029 // If we have special knowledge that this addrec won't overflow,
1030 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001031 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001032 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1033 getSignExtendExpr(Step, Ty),
1034 L);
1035
Dan Gohman01ecca22009-04-27 20:16:15 +00001036 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1037 // Note that this serves two purposes: It filters out loops that are
1038 // simply not analyzable, and it covers the case where this code is
1039 // being called from within backedge-taken count analysis, such that
1040 // attempting to ask for the backedge-taken count would likely result
1041 // in infinite recursion. In the later case, the analysis code will
1042 // cope with a conservative value, and it will take care to purge
1043 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001046 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001047 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001048
1049 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001050 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001051 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001052 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001054 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1055 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001056 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001057 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001058 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059 const SCEV *Add = getAddExpr(Start, SMul);
1060 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001061 getAddExpr(getSignExtendExpr(Start, WideTy),
1062 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1063 getSignExtendExpr(Step, WideTy)));
1064 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001065 // Return the expression with the addrec on the outside.
1066 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1067 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001068 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001069
1070 // Similar to above, only this time treat the step value as unsigned.
1071 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001072 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001073 Add = getAddExpr(Start, UMul);
1074 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001075 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001076 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1077 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001078 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001079 // Return the expression with the addrec on the outside.
1080 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1081 getZeroExtendExpr(Step, Ty),
1082 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001083 }
1084
1085 // If the backedge is guarded by a comparison with the pre-inc value
1086 // the addrec is safe. Also, if the entry is guarded by a comparison
1087 // with the start value and the backedge is guarded by a comparison
1088 // with the post-inc value, the addrec is safe.
1089 if (isKnownPositive(Step)) {
1090 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1091 getSignedRange(Step).getSignedMax());
1092 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001093 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001094 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1095 AR->getPostIncExpr(*this), N)))
1096 // Return the expression with the addrec on the outside.
1097 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1098 getSignExtendExpr(Step, Ty),
1099 L);
1100 } else if (isKnownNegative(Step)) {
1101 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1102 getSignedRange(Step).getSignedMin());
1103 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001104 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001105 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1106 AR->getPostIncExpr(*this), N)))
1107 // Return the expression with the addrec on the outside.
1108 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1109 getSignExtendExpr(Step, Ty),
1110 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001111 }
1112 }
1113 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001114
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001115 // The cast wasn't folded; create an explicit cast node.
1116 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001117 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001118 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1119 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001120 UniqueSCEVs.InsertNode(S, IP);
1121 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001122}
1123
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001124/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1125/// unspecified bits out to the given type.
1126///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001127const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001128 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001129 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1130 "This is not an extending conversion!");
1131 assert(isSCEVable(Ty) &&
1132 "This is not a conversion to a SCEVable type!");
1133 Ty = getEffectiveSCEVType(Ty);
1134
1135 // Sign-extend negative constants.
1136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1137 if (SC->getValue()->getValue().isNegative())
1138 return getSignExtendExpr(Op, Ty);
1139
1140 // Peel off a truncate cast.
1141 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1144 return getAnyExtendExpr(NewOp, Ty);
1145 return getTruncateOrNoop(NewOp, Ty);
1146 }
1147
1148 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001149 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001150 if (!isa<SCEVZeroExtendExpr>(ZExt))
1151 return ZExt;
1152
1153 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001154 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001155 if (!isa<SCEVSignExtendExpr>(SExt))
1156 return SExt;
1157
Dan Gohmana10756e2010-01-21 02:09:26 +00001158 // Force the cast to be folded into the operands of an addrec.
1159 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1160 SmallVector<const SCEV *, 4> Ops;
1161 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1162 I != E; ++I)
1163 Ops.push_back(getAnyExtendExpr(*I, Ty));
1164 return getAddRecExpr(Ops, AR->getLoop());
1165 }
1166
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001167 // If the expression is obviously signed, use the sext cast value.
1168 if (isa<SCEVSMaxExpr>(Op))
1169 return SExt;
1170
1171 // Absent any other information, use the zext cast value.
1172 return ZExt;
1173}
1174
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001175/// CollectAddOperandsWithScales - Process the given Ops list, which is
1176/// a list of operands to be added under the given scale, update the given
1177/// map. This is a helper function for getAddRecExpr. As an example of
1178/// what it does, given a sequence of operands that would form an add
1179/// expression like this:
1180///
1181/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1182///
1183/// where A and B are constants, update the map with these values:
1184///
1185/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1186///
1187/// and add 13 + A*B*29 to AccumulatedConstant.
1188/// This will allow getAddRecExpr to produce this:
1189///
1190/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1191///
1192/// This form often exposes folding opportunities that are hidden in
1193/// the original operand list.
1194///
1195/// Return true iff it appears that any interesting folding opportunities
1196/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1197/// the common case where no interesting opportunities are present, and
1198/// is also used as a check to avoid infinite recursion.
1199///
1200static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001201CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1202 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001203 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001204 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 const APInt &Scale,
1206 ScalarEvolution &SE) {
1207 bool Interesting = false;
1208
1209 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001210 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001211 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1212 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1213 APInt NewScale =
1214 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1215 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1216 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001217 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001218 Interesting |=
1219 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001220 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001221 NewScale, SE);
1222 } else {
1223 // A multiplication of a constant with some other value. Update
1224 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1226 const SCEV *Key = SE.getMulExpr(MulOps);
1227 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001228 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001229 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001230 NewOps.push_back(Pair.first->first);
1231 } else {
1232 Pair.first->second += NewScale;
1233 // The map already had an entry for this value, which may indicate
1234 // a folding opportunity.
1235 Interesting = true;
1236 }
1237 }
1238 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239 // Pull a buried constant out to the outside.
1240 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1241 Interesting = true;
1242 AccumulatedConstant += Scale * C->getValue()->getValue();
1243 } else {
1244 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001246 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001247 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 NewOps.push_back(Pair.first->first);
1249 } else {
1250 Pair.first->second += Scale;
1251 // The map already had an entry for this value, which may indicate
1252 // a folding opportunity.
1253 Interesting = true;
1254 }
1255 }
1256 }
1257
1258 return Interesting;
1259}
1260
1261namespace {
1262 struct APIntCompare {
1263 bool operator()(const APInt &LHS, const APInt &RHS) const {
1264 return LHS.ult(RHS);
1265 }
1266 };
1267}
1268
Dan Gohman6c0866c2009-05-24 23:45:28 +00001269/// getAddExpr - Get a canonical add expression, or something simpler if
1270/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001271const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1272 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001273 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001274 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001275#ifndef NDEBUG
1276 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1277 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1278 getEffectiveSCEVType(Ops[0]->getType()) &&
1279 "SCEVAddExpr operand types don't match!");
1280#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001281
Dan Gohmana10756e2010-01-21 02:09:26 +00001282 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1283 if (!HasNUW && HasNSW) {
1284 bool All = true;
1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1286 if (!isKnownNonNegative(Ops[i])) {
1287 All = false;
1288 break;
1289 }
1290 if (All) HasNUW = true;
1291 }
1292
Chris Lattner53e677a2004-04-02 20:23:17 +00001293 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001294 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001295
1296 // If there are any constants, fold them together.
1297 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001298 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001299 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001300 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001301 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001303 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1304 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001305 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001306 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001307 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001308 }
1309
1310 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001311 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 Ops.erase(Ops.begin());
1313 --Idx;
1314 }
1315 }
1316
Chris Lattner627018b2004-04-07 16:16:11 +00001317 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001318
Chris Lattner53e677a2004-04-02 20:23:17 +00001319 // Okay, check to see if the same value occurs in the operand list twice. If
1320 // so, merge them together into an multiply expression. Since we sorted the
1321 // list, these values are required to be adjacent.
1322 const Type *Ty = Ops[0]->getType();
1323 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1324 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1325 // Found a match, merge the two values into a multiply, and add any
1326 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001327 const SCEV *Two = getIntegerSCEV(2, Ty);
1328 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001329 if (Ops.size() == 2)
1330 return Mul;
1331 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1332 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001333 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 }
1335
Dan Gohman728c7f32009-05-08 21:03:19 +00001336 // Check for truncates. If all the operands are truncated from the same
1337 // type, see if factoring out the truncate would permit the result to be
1338 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1339 // if the contents of the resulting outer trunc fold to something simple.
1340 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1341 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1342 const Type *DstType = Trunc->getType();
1343 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001344 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 bool Ok = true;
1346 // Check all the operands to see if they can be represented in the
1347 // source type of the truncate.
1348 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1349 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1350 if (T->getOperand()->getType() != SrcType) {
1351 Ok = false;
1352 break;
1353 }
1354 LargeOps.push_back(T->getOperand());
1355 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1356 // This could be either sign or zero extension, but sign extension
1357 // is much more likely to be foldable here.
1358 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1371 // This could be either sign or zero extension, but sign extension
1372 // is much more likely to be foldable here.
1373 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1374 } else {
1375 Ok = false;
1376 break;
1377 }
1378 }
1379 if (Ok)
1380 LargeOps.push_back(getMulExpr(LargeMulOps));
1381 } else {
1382 Ok = false;
1383 break;
1384 }
1385 }
1386 if (Ok) {
1387 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001388 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001389 // If it folds to something simple, use it. Otherwise, don't.
1390 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1391 return getTruncateExpr(Fold, DstType);
1392 }
1393 }
1394
1395 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001396 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1397 ++Idx;
1398
1399 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 if (Idx < Ops.size()) {
1401 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001402 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // If we have an add, expand the add operands onto the end of the operands
1404 // list.
1405 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1406 Ops.erase(Ops.begin()+Idx);
1407 DeletedAdd = true;
1408 }
1409
1410 // If we deleted at least one add, we added operands to the end of the list,
1411 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001412 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001414 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 }
1416
1417 // Skip over the add expression until we get to a multiply.
1418 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1419 ++Idx;
1420
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 // Check to see if there are any folding opportunities present with
1422 // operands multiplied by constant values.
1423 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1424 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001425 DenseMap<const SCEV *, APInt> M;
1426 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 APInt AccumulatedConstant(BitWidth, 0);
1428 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001429 Ops.data(), Ops.size(),
1430 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001431 // Some interesting folding opportunity is present, so its worthwhile to
1432 // re-generate the operands list. Group the operands by constant scale,
1433 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001434 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1435 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 E = NewOps.end(); I != E; ++I)
1437 MulOpLists[M.find(*I)->second].push_back(*I);
1438 // Re-generate the operands list.
1439 Ops.clear();
1440 if (AccumulatedConstant != 0)
1441 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001442 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1443 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001444 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001445 Ops.push_back(getMulExpr(getConstant(I->first),
1446 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 if (Ops.empty())
1448 return getIntegerSCEV(0, Ty);
1449 if (Ops.size() == 1)
1450 return Ops[0];
1451 return getAddExpr(Ops);
1452 }
1453 }
1454
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 // If we are adding something to a multiply expression, make sure the
1456 // something is not already an operand of the multiply. If so, merge it into
1457 // the multiply.
1458 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001461 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001463 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001465 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 if (Mul->getNumOperands() != 2) {
1467 // If the multiply has more than two operands, we must get the
1468 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001469 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001471 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001473 const SCEV *One = getIntegerSCEV(1, Ty);
1474 const SCEV *AddOne = getAddExpr(InnerMul, One);
1475 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 if (Ops.size() == 2) return OuterMul;
1477 if (AddOp < Idx) {
1478 Ops.erase(Ops.begin()+AddOp);
1479 Ops.erase(Ops.begin()+Idx-1);
1480 } else {
1481 Ops.erase(Ops.begin()+Idx);
1482 Ops.erase(Ops.begin()+AddOp-1);
1483 }
1484 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001485 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 // Check this multiply against other multiplies being added together.
1489 for (unsigned OtherMulIdx = Idx+1;
1490 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1491 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001492 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 // If MulOp occurs in OtherMul, we can fold the two multiplies
1494 // together.
1495 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1496 OMulOp != e; ++OMulOp)
1497 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1498 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001499 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001501 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1502 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001504 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001506 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001508 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1509 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001511 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001513 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1514 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (Ops.size() == 2) return OuterMul;
1516 Ops.erase(Ops.begin()+Idx);
1517 Ops.erase(Ops.begin()+OtherMulIdx-1);
1518 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001519 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
1521 }
1522 }
1523 }
1524
1525 // If there are any add recurrences in the operands list, see if any other
1526 // added values are loop invariant. If so, we can fold them into the
1527 // recurrence.
1528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1529 ++Idx;
1530
1531 // Scan over all recurrences, trying to fold loop invariants into them.
1532 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1533 // Scan all of the other operands to this add and add them to the vector if
1534 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001535 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001536 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1538 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1539 LIOps.push_back(Ops[i]);
1540 Ops.erase(Ops.begin()+i);
1541 --i; --e;
1542 }
1543
1544 // If we found some loop invariants, fold them into the recurrence.
1545 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001546 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 LIOps.push_back(AddRec->getStart());
1548
Dan Gohman0bba49c2009-07-07 17:06:11 +00001549 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001550 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001551 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552
Dan Gohman355b4f32009-12-19 01:46:34 +00001553 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001554 // is not associative so this isn't necessarily safe.
Dan Gohman3a5d4092009-12-18 03:57:04 +00001555 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohman59de33e2009-12-18 18:45:31 +00001556
Chris Lattner53e677a2004-04-02 20:23:17 +00001557 // If all of the other operands were loop invariant, we are done.
1558 if (Ops.size() == 1) return NewRec;
1559
1560 // Otherwise, add the folded AddRec by the non-liv parts.
1561 for (unsigned i = 0;; ++i)
1562 if (Ops[i] == AddRec) {
1563 Ops[i] = NewRec;
1564 break;
1565 }
Dan Gohman246b2562007-10-22 18:31:58 +00001566 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 }
1568
1569 // Okay, if there weren't any loop invariants to be folded, check to see if
1570 // there are multiple AddRec's with the same loop induction variable being
1571 // added together. If so, we can fold them.
1572 for (unsigned OtherIdx = Idx+1;
1573 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1574 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001575 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1577 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001578 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1579 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1581 if (i >= NewOps.size()) {
1582 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1583 OtherAddRec->op_end());
1584 break;
1585 }
Dan Gohman246b2562007-10-22 18:31:58 +00001586 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001588 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001589
1590 if (Ops.size() == 2) return NewAddRec;
1591
1592 Ops.erase(Ops.begin()+Idx);
1593 Ops.erase(Ops.begin()+OtherIdx-1);
1594 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001595 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 }
1597 }
1598
1599 // Otherwise couldn't fold anything into this recurrence. Move onto the
1600 // next one.
1601 }
1602
1603 // Okay, it looks like we really DO need an add expr. Check to see if we
1604 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001605 FoldingSetNodeID ID;
1606 ID.AddInteger(scAddExpr);
1607 ID.AddInteger(Ops.size());
1608 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1609 ID.AddPointer(Ops[i]);
1610 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001611 SCEVAddExpr *S =
1612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1613 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001614 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1615 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001616 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1617 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001618 UniqueSCEVs.InsertNode(S, IP);
1619 }
Dan Gohman3645b012009-10-09 00:10:36 +00001620 if (HasNUW) S->setHasNoUnsignedWrap(true);
1621 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001622 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623}
1624
Dan Gohman6c0866c2009-05-24 23:45:28 +00001625/// getMulExpr - Get a canonical multiply expression, or something simpler if
1626/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001627const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1628 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001629 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001630 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001631#ifndef NDEBUG
1632 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1633 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1634 getEffectiveSCEVType(Ops[0]->getType()) &&
1635 "SCEVMulExpr operand types don't match!");
1636#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001637
Dan Gohmana10756e2010-01-21 02:09:26 +00001638 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1639 if (!HasNUW && HasNSW) {
1640 bool All = true;
1641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1642 if (!isKnownNonNegative(Ops[i])) {
1643 All = false;
1644 break;
1645 }
1646 if (All) HasNUW = true;
1647 }
1648
Chris Lattner53e677a2004-04-02 20:23:17 +00001649 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001650 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651
1652 // If there are any constants, fold them together.
1653 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001654 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001655
1656 // C1*(C2+V) -> C1*C2 + C1*V
1657 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001658 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 if (Add->getNumOperands() == 2 &&
1660 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001661 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1662 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001665 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001667 ConstantInt *Fold = ConstantInt::get(getContext(),
1668 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001669 RHSC->getValue()->getValue());
1670 Ops[0] = getConstant(Fold);
1671 Ops.erase(Ops.begin()+1); // Erase the folded element
1672 if (Ops.size() == 1) return Ops[0];
1673 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
1675
1676 // If we are left with a constant one being multiplied, strip it off.
1677 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1678 Ops.erase(Ops.begin());
1679 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001680 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 // If we have a multiply of zero, it will always be zero.
1682 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001683 } else if (Ops[0]->isAllOnesValue()) {
1684 // If we have a mul by -1 of an add, try distributing the -1 among the
1685 // add operands.
1686 if (Ops.size() == 2)
1687 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1688 SmallVector<const SCEV *, 4> NewOps;
1689 bool AnyFolded = false;
1690 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1691 I != E; ++I) {
1692 const SCEV *Mul = getMulExpr(Ops[0], *I);
1693 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1694 NewOps.push_back(Mul);
1695 }
1696 if (AnyFolded)
1697 return getAddExpr(NewOps);
1698 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 }
1700 }
1701
1702 // Skip over the add expression until we get to a multiply.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1704 ++Idx;
1705
1706 if (Ops.size() == 1)
1707 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001708
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 // If there are mul operands inline them all into this expression.
1710 if (Idx < Ops.size()) {
1711 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001712 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 // If we have an mul, expand the mul operands onto the end of the operands
1714 // list.
1715 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1716 Ops.erase(Ops.begin()+Idx);
1717 DeletedMul = true;
1718 }
1719
1720 // If we deleted at least one mul, we added operands to the end of the list,
1721 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001722 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001724 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this mul and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1740 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1741 LIOps.push_back(Ops[i]);
1742 Ops.erase(Ops.begin()+i);
1743 --i; --e;
1744 }
1745
1746 // If we found some loop invariants, fold them into the recurrence.
1747 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001748 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 NewOps.reserve(AddRec->getNumOperands());
1751 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001752 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001754 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 } else {
1756 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001757 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001759 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001760 }
1761 }
1762
Dan Gohman355b4f32009-12-19 01:46:34 +00001763 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001764 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001765 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1766 HasNUW && AddRec->hasNoUnsignedWrap(),
1767 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001768
1769 // If all of the other operands were loop invariant, we are done.
1770 if (Ops.size() == 1) return NewRec;
1771
1772 // Otherwise, multiply the folded AddRec by the non-liv parts.
1773 for (unsigned i = 0;; ++i)
1774 if (Ops[i] == AddRec) {
1775 Ops[i] = NewRec;
1776 break;
1777 }
Dan Gohman246b2562007-10-22 18:31:58 +00001778 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 }
1780
1781 // Okay, if there weren't any loop invariants to be folded, check to see if
1782 // there are multiple AddRec's with the same loop induction variable being
1783 // multiplied together. If so, we can fold them.
1784 for (unsigned OtherIdx = Idx+1;
1785 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1786 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001787 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1789 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001790 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001791 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001793 const SCEV *B = F->getStepRecurrence(*this);
1794 const SCEV *D = G->getStepRecurrence(*this);
1795 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001796 getMulExpr(G, B),
1797 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001798 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001799 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 if (Ops.size() == 2) return NewAddRec;
1801
1802 Ops.erase(Ops.begin()+Idx);
1803 Ops.erase(Ops.begin()+OtherIdx-1);
1804 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001805 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001806 }
1807 }
1808
1809 // Otherwise couldn't fold anything into this recurrence. Move onto the
1810 // next one.
1811 }
1812
1813 // Okay, it looks like we really DO need an mul expr. Check to see if we
1814 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001815 FoldingSetNodeID ID;
1816 ID.AddInteger(scMulExpr);
1817 ID.AddInteger(Ops.size());
1818 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1819 ID.AddPointer(Ops[i]);
1820 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 SCEVMulExpr *S =
1822 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1823 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001824 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1825 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001826 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1827 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001828 UniqueSCEVs.InsertNode(S, IP);
1829 }
Dan Gohman3645b012009-10-09 00:10:36 +00001830 if (HasNUW) S->setHasNoUnsignedWrap(true);
1831 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001832 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001833}
1834
Andreas Bolka8a11c982009-08-07 22:55:26 +00001835/// getUDivExpr - Get a canonical unsigned division expression, or something
1836/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001837const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1838 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001839 assert(getEffectiveSCEVType(LHS->getType()) ==
1840 getEffectiveSCEVType(RHS->getType()) &&
1841 "SCEVUDivExpr operand types don't match!");
1842
Dan Gohman622ed672009-05-04 22:02:23 +00001843 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001844 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001845 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001846 if (RHSC->isZero())
1847 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001848
Dan Gohman185cf032009-05-08 20:18:49 +00001849 // Determine if the division can be folded into the operands of
1850 // its operands.
1851 // TODO: Generalize this to non-constants by using known-bits information.
1852 const Type *Ty = LHS->getType();
1853 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855 // For non-power-of-two values, effectively round the value up to the
1856 // nearest power of two.
1857 if (!RHSC->getValue()->getValue().isPowerOf2())
1858 ++MaxShiftAmt;
1859 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001860 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001861 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863 if (const SCEVConstant *Step =
1864 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865 if (!Step->getValue()->getValue()
1866 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001867 getZeroExtendExpr(AR, ExtTy) ==
1868 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869 getZeroExtendExpr(Step, ExtTy),
1870 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001871 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001872 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874 return getAddRecExpr(Operands, AR->getLoop());
1875 }
1876 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001877 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001878 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001882 // Find an operand that's safely divisible.
1883 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001884 const SCEV *Op = M->getOperand(i);
1885 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001886 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001887 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), M->op_end());
Dan Gohman185cf032009-05-08 20:18:49 +00001888 Operands[i] = Div;
1889 return getMulExpr(Operands);
1890 }
1891 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001892 }
Dan Gohman185cf032009-05-08 20:18:49 +00001893 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001894 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001895 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001896 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1897 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1898 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1899 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001901 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001902 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1903 break;
1904 Operands.push_back(Op);
1905 }
1906 if (Operands.size() == A->getNumOperands())
1907 return getAddExpr(Operands);
1908 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001909 }
Dan Gohman185cf032009-05-08 20:18:49 +00001910
1911 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001912 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 Constant *LHSCV = LHSC->getValue();
1914 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001915 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001916 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918 }
1919
Dan Gohman1c343752009-06-27 21:21:31 +00001920 FoldingSetNodeID ID;
1921 ID.AddInteger(scUDivExpr);
1922 ID.AddPointer(LHS);
1923 ID.AddPointer(RHS);
1924 void *IP = 0;
1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001926 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1927 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 UniqueSCEVs.InsertNode(S, IP);
1929 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001930}
1931
1932
Dan Gohman6c0866c2009-05-24 23:45:28 +00001933/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1934/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001935const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001936 const SCEV *Step, const Loop *L,
1937 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001939 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001940 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001941 if (StepChrec->getLoop() == L) {
1942 Operands.insert(Operands.end(), StepChrec->op_begin(),
1943 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001944 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
1946
1947 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001948 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001949}
1950
Dan Gohman6c0866c2009-05-24 23:45:28 +00001951/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1952/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001953const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001954ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001955 const Loop *L,
1956 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001958#ifndef NDEBUG
1959 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1960 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1961 getEffectiveSCEVType(Operands[0]->getType()) &&
1962 "SCEVAddRecExpr operand types don't match!");
1963#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001964
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001965 if (Operands.back()->isZero()) {
1966 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001967 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001968 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001969
Dan Gohmanbc028532010-02-19 18:49:22 +00001970 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1971 // use that information to infer NUW and NSW flags. However, computing a
1972 // BE count requires calling getAddRecExpr, so we may not yet have a
1973 // meaningful BE count at this point (and if we don't, we'd be stuck
1974 // with a SCEVCouldNotCompute as the cached BE count).
1975
Dan Gohmana10756e2010-01-21 02:09:26 +00001976 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1977 if (!HasNUW && HasNSW) {
1978 bool All = true;
1979 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1980 if (!isKnownNonNegative(Operands[i])) {
1981 All = false;
1982 break;
1983 }
1984 if (All) HasNUW = true;
1985 }
1986
Dan Gohmand9cc7492008-08-08 18:33:12 +00001987 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001988 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001989 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001990 if (L->contains(NestedLoop->getHeader()) ?
1991 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1992 (!NestedLoop->contains(L->getHeader()) &&
1993 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001994 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001995 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001996 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001997 // AddRecs require their operands be loop-invariant with respect to their
1998 // loops. Don't perform this transformation if it would break this
1999 // requirement.
2000 bool AllInvariant = true;
2001 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2002 if (!Operands[i]->isLoopInvariant(L)) {
2003 AllInvariant = false;
2004 break;
2005 }
2006 if (AllInvariant) {
2007 NestedOperands[0] = getAddRecExpr(Operands, L);
2008 AllInvariant = true;
2009 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2010 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2011 AllInvariant = false;
2012 break;
2013 }
2014 if (AllInvariant)
2015 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002016 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002017 }
2018 // Reset Operands to its original state.
2019 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002020 }
2021 }
2022
Dan Gohman67847532010-01-19 22:27:22 +00002023 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2024 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002025 FoldingSetNodeID ID;
2026 ID.AddInteger(scAddRecExpr);
2027 ID.AddInteger(Operands.size());
2028 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2029 ID.AddPointer(Operands[i]);
2030 ID.AddPointer(L);
2031 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002032 SCEVAddRecExpr *S =
2033 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2034 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002035 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2036 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002037 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2038 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002039 UniqueSCEVs.InsertNode(S, IP);
2040 }
Dan Gohman3645b012009-10-09 00:10:36 +00002041 if (HasNUW) S->setHasNoUnsignedWrap(true);
2042 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044}
2045
Dan Gohman9311ef62009-06-24 14:49:00 +00002046const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2047 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002048 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002049 Ops.push_back(LHS);
2050 Ops.push_back(RHS);
2051 return getSMaxExpr(Ops);
2052}
2053
Dan Gohman0bba49c2009-07-07 17:06:11 +00002054const SCEV *
2055ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002056 assert(!Ops.empty() && "Cannot get empty smax!");
2057 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002058#ifndef NDEBUG
2059 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2060 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2061 getEffectiveSCEVType(Ops[0]->getType()) &&
2062 "SCEVSMaxExpr operand types don't match!");
2063#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002064
2065 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002066 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002067
2068 // If there are any constants, fold them together.
2069 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002071 ++Idx;
2072 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002074 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002075 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002076 APIntOps::smax(LHSC->getValue()->getValue(),
2077 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002078 Ops[0] = getConstant(Fold);
2079 Ops.erase(Ops.begin()+1); // Erase the folded element
2080 if (Ops.size() == 1) return Ops[0];
2081 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002082 }
2083
Dan Gohmane5aceed2009-06-24 14:46:22 +00002084 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002085 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2086 Ops.erase(Ops.begin());
2087 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002088 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2089 // If we have an smax with a constant maximum-int, it will always be
2090 // maximum-int.
2091 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002092 }
2093 }
2094
2095 if (Ops.size() == 1) return Ops[0];
2096
2097 // Find the first SMax
2098 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2099 ++Idx;
2100
2101 // Check to see if one of the operands is an SMax. If so, expand its operands
2102 // onto our operand list, and recurse to simplify.
2103 if (Idx < Ops.size()) {
2104 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002105 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002106 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2107 Ops.erase(Ops.begin()+Idx);
2108 DeletedSMax = true;
2109 }
2110
2111 if (DeletedSMax)
2112 return getSMaxExpr(Ops);
2113 }
2114
2115 // Okay, check to see if the same value occurs in the operand list twice. If
2116 // so, delete one. Since we sorted the list, these values are required to
2117 // be adjacent.
2118 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2119 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
2120 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2121 --i; --e;
2122 }
2123
2124 if (Ops.size() == 1) return Ops[0];
2125
2126 assert(!Ops.empty() && "Reduced smax down to nothing!");
2127
Nick Lewycky3e630762008-02-20 06:48:22 +00002128 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002130 FoldingSetNodeID ID;
2131 ID.AddInteger(scSMaxExpr);
2132 ID.AddInteger(Ops.size());
2133 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2134 ID.AddPointer(Ops[i]);
2135 void *IP = 0;
2136 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002137 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2138 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002139 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2140 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002141 UniqueSCEVs.InsertNode(S, IP);
2142 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143}
2144
Dan Gohman9311ef62009-06-24 14:49:00 +00002145const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2146 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002147 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002148 Ops.push_back(LHS);
2149 Ops.push_back(RHS);
2150 return getUMaxExpr(Ops);
2151}
2152
Dan Gohman0bba49c2009-07-07 17:06:11 +00002153const SCEV *
2154ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002155 assert(!Ops.empty() && "Cannot get empty umax!");
2156 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002157#ifndef NDEBUG
2158 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2159 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2160 getEffectiveSCEVType(Ops[0]->getType()) &&
2161 "SCEVUMaxExpr operand types don't match!");
2162#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002163
2164 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002165 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002166
2167 // If there are any constants, fold them together.
2168 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002169 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002170 ++Idx;
2171 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002172 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002173 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002174 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002175 APIntOps::umax(LHSC->getValue()->getValue(),
2176 RHSC->getValue()->getValue()));
2177 Ops[0] = getConstant(Fold);
2178 Ops.erase(Ops.begin()+1); // Erase the folded element
2179 if (Ops.size() == 1) return Ops[0];
2180 LHSC = cast<SCEVConstant>(Ops[0]);
2181 }
2182
Dan Gohmane5aceed2009-06-24 14:46:22 +00002183 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2185 Ops.erase(Ops.begin());
2186 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002187 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2188 // If we have an umax with a constant maximum-int, it will always be
2189 // maximum-int.
2190 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 }
2192 }
2193
2194 if (Ops.size() == 1) return Ops[0];
2195
2196 // Find the first UMax
2197 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2198 ++Idx;
2199
2200 // Check to see if one of the operands is a UMax. If so, expand its operands
2201 // onto our operand list, and recurse to simplify.
2202 if (Idx < Ops.size()) {
2203 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002204 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2206 Ops.erase(Ops.begin()+Idx);
2207 DeletedUMax = true;
2208 }
2209
2210 if (DeletedUMax)
2211 return getUMaxExpr(Ops);
2212 }
2213
2214 // Okay, check to see if the same value occurs in the operand list twice. If
2215 // so, delete one. Since we sorted the list, these values are required to
2216 // be adjacent.
2217 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2218 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2219 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2220 --i; --e;
2221 }
2222
2223 if (Ops.size() == 1) return Ops[0];
2224
2225 assert(!Ops.empty() && "Reduced umax down to nothing!");
2226
2227 // Okay, it looks like we really DO need a umax expr. Check to see if we
2228 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002229 FoldingSetNodeID ID;
2230 ID.AddInteger(scUMaxExpr);
2231 ID.AddInteger(Ops.size());
2232 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2233 ID.AddPointer(Ops[i]);
2234 void *IP = 0;
2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002236 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2237 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002238 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2239 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002240 UniqueSCEVs.InsertNode(S, IP);
2241 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002242}
2243
Dan Gohman9311ef62009-06-24 14:49:00 +00002244const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2245 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002246 // ~smax(~x, ~y) == smin(x, y).
2247 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2248}
2249
Dan Gohman9311ef62009-06-24 14:49:00 +00002250const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2251 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002252 // ~umax(~x, ~y) == umin(x, y)
2253 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2254}
2255
Dan Gohman4f8eea82010-02-01 18:27:38 +00002256const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2257 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2258 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2259 C = ConstantFoldConstantExpression(CE, TD);
2260 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2261 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2262}
2263
2264const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2265 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2266 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2267 C = ConstantFoldConstantExpression(CE, TD);
2268 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2269 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2270}
2271
2272const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2273 unsigned FieldNo) {
Dan Gohman0f5efe52010-01-28 02:15:55 +00002274 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2275 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2276 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002277 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002278 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002279}
2280
Dan Gohman4f8eea82010-02-01 18:27:38 +00002281const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2282 Constant *FieldNo) {
2283 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002284 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2285 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002287 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002288}
2289
Dan Gohman0bba49c2009-07-07 17:06:11 +00002290const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002291 // Don't attempt to do anything other than create a SCEVUnknown object
2292 // here. createSCEV only calls getUnknown after checking for all other
2293 // interesting possibilities, and any other code that calls getUnknown
2294 // is doing so in order to hide a value from SCEV canonicalization.
2295
Dan Gohman1c343752009-06-27 21:21:31 +00002296 FoldingSetNodeID ID;
2297 ID.AddInteger(scUnknown);
2298 ID.AddPointer(V);
2299 void *IP = 0;
2300 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002301 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002302 UniqueSCEVs.InsertNode(S, IP);
2303 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002304}
2305
Chris Lattner53e677a2004-04-02 20:23:17 +00002306//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002307// Basic SCEV Analysis and PHI Idiom Recognition Code
2308//
2309
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002310/// isSCEVable - Test if values of the given type are analyzable within
2311/// the SCEV framework. This primarily includes integer types, and it
2312/// can optionally include pointer types if the ScalarEvolution class
2313/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002314bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002315 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002316 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002317}
2318
2319/// getTypeSizeInBits - Return the size in bits of the specified type,
2320/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002321uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002322 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2323
2324 // If we have a TargetData, use it!
2325 if (TD)
2326 return TD->getTypeSizeInBits(Ty);
2327
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002328 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002329 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002330 return Ty->getPrimitiveSizeInBits();
2331
2332 // The only other support type is pointer. Without TargetData, conservatively
2333 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002334 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002335 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002336}
2337
2338/// getEffectiveSCEVType - Return a type with the same bitwidth as
2339/// the given type and which represents how SCEV will treat the given
2340/// type, for which isSCEVable must return true. For pointer types,
2341/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002342const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002343 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2344
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002345 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002346 return Ty;
2347
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002348 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002349 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002350 if (TD) return TD->getIntPtrType(getContext());
2351
2352 // Without TargetData, conservatively assume pointers are 64-bit.
2353 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002354}
Chris Lattner53e677a2004-04-02 20:23:17 +00002355
Dan Gohman0bba49c2009-07-07 17:06:11 +00002356const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002357 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002358}
2359
Chris Lattner53e677a2004-04-02 20:23:17 +00002360/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2361/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002362const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002364
Dan Gohman0bba49c2009-07-07 17:06:11 +00002365 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002366 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002367 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002368 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002369 return S;
2370}
2371
Dan Gohman6bbcba12009-06-24 00:54:57 +00002372/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002373/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002374const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002375 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002376 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002377}
2378
2379/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2380///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002382 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002383 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002384 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002385
2386 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002387 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002388 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002389 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002390}
2391
2392/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002393const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002394 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002395 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002396 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002397
2398 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002399 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002400 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002401 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002402 return getMinusSCEV(AllOnes, V);
2403}
2404
2405/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2406///
Dan Gohman9311ef62009-06-24 14:49:00 +00002407const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2408 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002409 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002410 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002411}
2412
2413/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2414/// input value to the specified type. If the type must be extended, it is zero
2415/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002416const SCEV *
2417ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002418 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002419 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002420 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2421 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002422 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002423 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002424 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002425 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002426 return getTruncateExpr(V, Ty);
2427 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002428}
2429
2430/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2431/// input value to the specified type. If the type must be extended, it is sign
2432/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002433const SCEV *
2434ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002435 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002436 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002437 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2438 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002439 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002440 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002441 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002442 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002443 return getTruncateExpr(V, Ty);
2444 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002445}
2446
Dan Gohman467c4302009-05-13 03:46:30 +00002447/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2448/// input value to the specified type. If the type must be extended, it is zero
2449/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002450const SCEV *
2451ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002452 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002453 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2454 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002455 "Cannot noop or zero extend with non-integer arguments!");
2456 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2457 "getNoopOrZeroExtend cannot truncate!");
2458 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2459 return V; // No conversion
2460 return getZeroExtendExpr(V, Ty);
2461}
2462
2463/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2464/// input value to the specified type. If the type must be extended, it is sign
2465/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002466const SCEV *
2467ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002468 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002469 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2470 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002471 "Cannot noop or sign extend with non-integer arguments!");
2472 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2473 "getNoopOrSignExtend cannot truncate!");
2474 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2475 return V; // No conversion
2476 return getSignExtendExpr(V, Ty);
2477}
2478
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002479/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2480/// the input value to the specified type. If the type must be extended,
2481/// it is extended with unspecified bits. The conversion must not be
2482/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483const SCEV *
2484ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002485 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002486 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2487 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002488 "Cannot noop or any extend with non-integer arguments!");
2489 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2490 "getNoopOrAnyExtend cannot truncate!");
2491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2492 return V; // No conversion
2493 return getAnyExtendExpr(V, Ty);
2494}
2495
Dan Gohman467c4302009-05-13 03:46:30 +00002496/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2497/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002498const SCEV *
2499ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002500 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002501 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2502 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002503 "Cannot truncate or noop with non-integer arguments!");
2504 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2505 "getTruncateOrNoop cannot extend!");
2506 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2507 return V; // No conversion
2508 return getTruncateExpr(V, Ty);
2509}
2510
Dan Gohmana334aa72009-06-22 00:31:57 +00002511/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2512/// the types using zero-extension, and then perform a umax operation
2513/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002514const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2515 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002516 const SCEV *PromotedLHS = LHS;
2517 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002518
2519 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2520 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2521 else
2522 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2523
2524 return getUMaxExpr(PromotedLHS, PromotedRHS);
2525}
2526
Dan Gohmanc9759e82009-06-22 15:03:27 +00002527/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2528/// the types using zero-extension, and then perform a umin operation
2529/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002530const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2531 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002532 const SCEV *PromotedLHS = LHS;
2533 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002534
2535 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2536 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2537 else
2538 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2539
2540 return getUMinExpr(PromotedLHS, PromotedRHS);
2541}
2542
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002543/// PushDefUseChildren - Push users of the given Instruction
2544/// onto the given Worklist.
2545static void
2546PushDefUseChildren(Instruction *I,
2547 SmallVectorImpl<Instruction *> &Worklist) {
2548 // Push the def-use children onto the Worklist stack.
2549 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2550 UI != UE; ++UI)
2551 Worklist.push_back(cast<Instruction>(UI));
2552}
2553
2554/// ForgetSymbolicValue - This looks up computed SCEV values for all
2555/// instructions that depend on the given instruction and removes them from
2556/// the Scalars map if they reference SymName. This is used during PHI
2557/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002558void
Dan Gohman85669632010-02-25 06:57:05 +00002559ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002560 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002561 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002562
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002563 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002564 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002565 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002566 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002567 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002568
Dan Gohman5d984912009-12-18 01:14:11 +00002569 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002570 Scalars.find(static_cast<Value *>(I));
2571 if (It != Scalars.end()) {
2572 // Short-circuit the def-use traversal if the symbolic name
2573 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002574 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002575 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002576
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002577 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002578 // structure, it's a PHI that's in the progress of being computed
2579 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2580 // additional loop trip count information isn't going to change anything.
2581 // In the second case, createNodeForPHI will perform the necessary
2582 // updates on its own when it gets to that point. In the third, we do
2583 // want to forget the SCEVUnknown.
2584 if (!isa<PHINode>(I) ||
2585 !isa<SCEVUnknown>(It->second) ||
2586 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002587 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002588 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002589 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002590 }
2591
2592 PushDefUseChildren(I, Worklist);
2593 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002594}
Chris Lattner53e677a2004-04-02 20:23:17 +00002595
2596/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2597/// a loop header, making it a potential recurrence, or it doesn't.
2598///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002599const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002600 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2601 if (L->getHeader() == PN->getParent()) {
2602 // The loop may have multiple entrances or multiple exits; we can analyze
2603 // this phi as an addrec if it has a unique entry value and a unique
2604 // backedge value.
2605 Value *BEValueV = 0, *StartValueV = 0;
2606 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2607 Value *V = PN->getIncomingValue(i);
2608 if (L->contains(PN->getIncomingBlock(i))) {
2609 if (!BEValueV) {
2610 BEValueV = V;
2611 } else if (BEValueV != V) {
2612 BEValueV = 0;
2613 break;
2614 }
2615 } else if (!StartValueV) {
2616 StartValueV = V;
2617 } else if (StartValueV != V) {
2618 StartValueV = 0;
2619 break;
2620 }
2621 }
2622 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002623 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002624 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002625 assert(Scalars.find(PN) == Scalars.end() &&
2626 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002627 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002628
2629 // Using this symbolic name for the PHI, analyze the value coming around
2630 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002631 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002632
2633 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2634 // has a special value for the first iteration of the loop.
2635
2636 // If the value coming around the backedge is an add with the symbolic
2637 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002638 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002639 // If there is a single occurrence of the symbolic value, replace it
2640 // with a recurrence.
2641 unsigned FoundIndex = Add->getNumOperands();
2642 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2643 if (Add->getOperand(i) == SymbolicName)
2644 if (FoundIndex == e) {
2645 FoundIndex = i;
2646 break;
2647 }
2648
2649 if (FoundIndex != Add->getNumOperands()) {
2650 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002651 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002652 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2653 if (i != FoundIndex)
2654 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002655 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002656
2657 // This is not a valid addrec if the step amount is varying each
2658 // loop iteration, but is not itself an addrec in this loop.
2659 if (Accum->isLoopInvariant(L) ||
2660 (isa<SCEVAddRecExpr>(Accum) &&
2661 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002662 bool HasNUW = false;
2663 bool HasNSW = false;
2664
2665 // If the increment doesn't overflow, then neither the addrec nor
2666 // the post-increment will overflow.
2667 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2668 if (OBO->hasNoUnsignedWrap())
2669 HasNUW = true;
2670 if (OBO->hasNoSignedWrap())
2671 HasNSW = true;
2672 }
2673
Dan Gohman27dead42010-04-12 07:49:36 +00002674 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002675 const SCEV *PHISCEV =
2676 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002677
Dan Gohmana10756e2010-01-21 02:09:26 +00002678 // Since the no-wrap flags are on the increment, they apply to the
2679 // post-incremented value as well.
2680 if (Accum->isLoopInvariant(L))
2681 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2682 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002683
2684 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002685 // to be symbolic. We now need to go back and purge all of the
2686 // entries for the scalars that use the symbolic expression.
2687 ForgetSymbolicName(PN, SymbolicName);
2688 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002689 return PHISCEV;
2690 }
2691 }
Dan Gohman622ed672009-05-04 22:02:23 +00002692 } else if (const SCEVAddRecExpr *AddRec =
2693 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002694 // Otherwise, this could be a loop like this:
2695 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2696 // In this case, j = {1,+,1} and BEValue is j.
2697 // Because the other in-value of i (0) fits the evolution of BEValue
2698 // i really is an addrec evolution.
2699 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002700 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002701
2702 // If StartVal = j.start - j.stride, we can use StartVal as the
2703 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002704 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002705 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002706 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002707 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002708
2709 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002710 // to be symbolic. We now need to go back and purge all of the
2711 // entries for the scalars that use the symbolic expression.
2712 ForgetSymbolicName(PN, SymbolicName);
2713 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002714 return PHISCEV;
2715 }
2716 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002717 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002718 }
Dan Gohman27dead42010-04-12 07:49:36 +00002719 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002720
Dan Gohman85669632010-02-25 06:57:05 +00002721 // If the PHI has a single incoming value, follow that value, unless the
2722 // PHI's incoming blocks are in a different loop, in which case doing so
2723 // risks breaking LCSSA form. Instcombine would normally zap these, but
2724 // it doesn't have DominatorTree information, so it may miss cases.
2725 if (Value *V = PN->hasConstantValue(DT)) {
2726 bool AllSameLoop = true;
2727 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2728 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2729 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2730 AllSameLoop = false;
2731 break;
2732 }
2733 if (AllSameLoop)
2734 return getSCEV(V);
2735 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002736
Chris Lattner53e677a2004-04-02 20:23:17 +00002737 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002738 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002739}
2740
Dan Gohman26466c02009-05-08 20:26:55 +00002741/// createNodeForGEP - Expand GEP instructions into add and multiply
2742/// operations. This allows them to be analyzed by regular SCEV code.
2743///
Dan Gohmand281ed22009-12-18 02:09:29 +00002744const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002745
Dan Gohmand281ed22009-12-18 02:09:29 +00002746 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002747 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002748 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002749 // Don't attempt to analyze GEPs over unsized objects.
2750 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2751 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002752 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002753 gep_type_iterator GTI = gep_type_begin(GEP);
2754 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2755 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002756 I != E; ++I) {
2757 Value *Index = *I;
2758 // Compute the (potentially symbolic) offset in bytes for this index.
2759 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2760 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002761 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002762 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002763 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002764 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002765 } else {
2766 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002767 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002768 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002769 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002770 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002771 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002772 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2773 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2774 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002775 }
2776 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002777 return getAddExpr(getSCEV(Base), TotalOffset,
2778 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002779}
2780
Nick Lewycky83bb0052007-11-22 07:59:40 +00002781/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2782/// guaranteed to end in (at every loop iteration). It is, at the same time,
2783/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2784/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002785uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002786ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002787 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002788 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002789
Dan Gohman622ed672009-05-04 22:02:23 +00002790 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002791 return std::min(GetMinTrailingZeros(T->getOperand()),
2792 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002793
Dan Gohman622ed672009-05-04 22:02:23 +00002794 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2797 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002798 }
2799
Dan Gohman622ed672009-05-04 22:02:23 +00002800 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002801 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2802 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2803 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002804 }
2805
Dan Gohman622ed672009-05-04 22:02:23 +00002806 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002807 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002808 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002809 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002810 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002811 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002812 }
2813
Dan Gohman622ed672009-05-04 22:02:23 +00002814 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002815 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002816 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2817 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002818 for (unsigned i = 1, e = M->getNumOperands();
2819 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002820 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002821 BitWidth);
2822 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002823 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002824
Dan Gohman622ed672009-05-04 22:02:23 +00002825 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002826 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002827 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002828 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002829 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002830 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002831 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002832
Dan Gohman622ed672009-05-04 22:02:23 +00002833 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002834 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002835 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002836 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002837 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002838 return MinOpRes;
2839 }
2840
Dan Gohman622ed672009-05-04 22:02:23 +00002841 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002842 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002843 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002844 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002845 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002846 return MinOpRes;
2847 }
2848
Dan Gohman2c364ad2009-06-19 23:29:04 +00002849 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2850 // For a SCEVUnknown, ask ValueTracking.
2851 unsigned BitWidth = getTypeSizeInBits(U->getType());
2852 APInt Mask = APInt::getAllOnesValue(BitWidth);
2853 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2854 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2855 return Zeros.countTrailingOnes();
2856 }
2857
2858 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002859 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002860}
Chris Lattner53e677a2004-04-02 20:23:17 +00002861
Dan Gohman85b05a22009-07-13 21:35:55 +00002862/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2863///
2864ConstantRange
2865ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002866
2867 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002868 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002870 unsigned BitWidth = getTypeSizeInBits(S->getType());
2871 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2872
2873 // If the value has known zeros, the maximum unsigned value will have those
2874 // known zeros as well.
2875 uint32_t TZ = GetMinTrailingZeros(S);
2876 if (TZ != 0)
2877 ConservativeResult =
2878 ConstantRange(APInt::getMinValue(BitWidth),
2879 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2880
Dan Gohman85b05a22009-07-13 21:35:55 +00002881 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2882 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2883 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2884 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002885 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002886 }
2887
2888 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2889 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2890 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2891 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002892 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002893 }
2894
2895 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2896 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2897 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2898 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002899 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002900 }
2901
2902 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2903 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2904 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2905 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002906 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002907 }
2908
2909 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2910 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2911 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002912 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002913 }
2914
2915 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2916 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002917 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002918 }
2919
2920 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2921 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002922 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002923 }
2924
2925 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2926 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002927 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002928 }
2929
Dan Gohman85b05a22009-07-13 21:35:55 +00002930 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002931 // If there's no unsigned wrap, the value will never be less than its
2932 // initial value.
2933 if (AddRec->hasNoUnsignedWrap())
2934 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002935 if (!C->isZero())
2936 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002937 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002938
2939 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002940 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002941 const Type *Ty = AddRec->getType();
2942 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002943 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2944 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002945 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2946
2947 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002948 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002949
2950 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002951 ConstantRange StepRange = getSignedRange(Step);
2952 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2953 ConstantRange EndRange =
2954 StartRange.add(MaxBECountRange.multiply(StepRange));
2955
2956 // Check for overflow. This must be done with ConstantRange arithmetic
2957 // because we could be called from within the ScalarEvolution overflow
2958 // checking code.
2959 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2960 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2961 ConstantRange ExtMaxBECountRange =
2962 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2963 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2964 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2965 ExtEndRange)
2966 return ConservativeResult;
2967
Dan Gohman85b05a22009-07-13 21:35:55 +00002968 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2969 EndRange.getUnsignedMin());
2970 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2971 EndRange.getUnsignedMax());
2972 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002973 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002974 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002975 }
2976 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002977
2978 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002979 }
2980
2981 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2982 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002983 APInt Mask = APInt::getAllOnesValue(BitWidth);
2984 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2985 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002986 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002987 return ConservativeResult;
2988 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002989 }
2990
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002991 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002992}
2993
Dan Gohman85b05a22009-07-13 21:35:55 +00002994/// getSignedRange - Determine the signed range for a particular SCEV.
2995///
2996ConstantRange
2997ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002998
Dan Gohman85b05a22009-07-13 21:35:55 +00002999 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3000 return ConstantRange(C->getValue()->getValue());
3001
Dan Gohman52fddd32010-01-26 04:40:18 +00003002 unsigned BitWidth = getTypeSizeInBits(S->getType());
3003 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3004
3005 // If the value has known zeros, the maximum signed value will have those
3006 // known zeros as well.
3007 uint32_t TZ = GetMinTrailingZeros(S);
3008 if (TZ != 0)
3009 ConservativeResult =
3010 ConstantRange(APInt::getSignedMinValue(BitWidth),
3011 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3012
Dan Gohman85b05a22009-07-13 21:35:55 +00003013 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3014 ConstantRange X = getSignedRange(Add->getOperand(0));
3015 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3016 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003017 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003018 }
3019
Dan Gohman85b05a22009-07-13 21:35:55 +00003020 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3021 ConstantRange X = getSignedRange(Mul->getOperand(0));
3022 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3023 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003024 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003025 }
3026
Dan Gohman85b05a22009-07-13 21:35:55 +00003027 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3028 ConstantRange X = getSignedRange(SMax->getOperand(0));
3029 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3030 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003031 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 }
Dan Gohman62849c02009-06-24 01:05:09 +00003033
Dan Gohman85b05a22009-07-13 21:35:55 +00003034 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3035 ConstantRange X = getSignedRange(UMax->getOperand(0));
3036 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3037 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003038 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003039 }
Dan Gohman62849c02009-06-24 01:05:09 +00003040
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3042 ConstantRange X = getSignedRange(UDiv->getLHS());
3043 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003044 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003045 }
Dan Gohman62849c02009-06-24 01:05:09 +00003046
Dan Gohman85b05a22009-07-13 21:35:55 +00003047 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3048 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003049 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003050 }
3051
3052 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3053 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003054 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 }
3056
3057 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3058 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003059 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 }
3061
Dan Gohman85b05a22009-07-13 21:35:55 +00003062 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003063 // If there's no signed wrap, and all the operands have the same sign or
3064 // zero, the value won't ever change sign.
3065 if (AddRec->hasNoSignedWrap()) {
3066 bool AllNonNeg = true;
3067 bool AllNonPos = true;
3068 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3069 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3070 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3071 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003072 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003073 ConservativeResult = ConservativeResult.intersectWith(
3074 ConstantRange(APInt(BitWidth, 0),
3075 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003076 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003077 ConservativeResult = ConservativeResult.intersectWith(
3078 ConstantRange(APInt::getSignedMinValue(BitWidth),
3079 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003081
3082 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003083 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 const Type *Ty = AddRec->getType();
3085 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003086 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3087 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003088 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3089
3090 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003091 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003092
3093 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003094 ConstantRange StepRange = getSignedRange(Step);
3095 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3096 ConstantRange EndRange =
3097 StartRange.add(MaxBECountRange.multiply(StepRange));
3098
3099 // Check for overflow. This must be done with ConstantRange arithmetic
3100 // because we could be called from within the ScalarEvolution overflow
3101 // checking code.
3102 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3103 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3104 ConstantRange ExtMaxBECountRange =
3105 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3106 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3107 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3108 ExtEndRange)
3109 return ConservativeResult;
3110
Dan Gohman85b05a22009-07-13 21:35:55 +00003111 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3112 EndRange.getSignedMin());
3113 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3114 EndRange.getSignedMax());
3115 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003116 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003117 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003118 }
Dan Gohman62849c02009-06-24 01:05:09 +00003119 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003120
3121 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003122 }
3123
Dan Gohman2c364ad2009-06-19 23:29:04 +00003124 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3125 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003126 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003127 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003128 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3129 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003130 return ConservativeResult;
3131 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003132 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003133 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003134 }
3135
Dan Gohman52fddd32010-01-26 04:40:18 +00003136 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003137}
3138
Chris Lattner53e677a2004-04-02 20:23:17 +00003139/// createSCEV - We know that there is no SCEV for the specified value.
3140/// Analyze the expression.
3141///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003142const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003143 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003144 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003145
Dan Gohman6c459a22008-06-22 19:56:46 +00003146 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003147 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003148 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003149
3150 // Don't attempt to analyze instructions in blocks that aren't
3151 // reachable. Such instructions don't matter, and they aren't required
3152 // to obey basic rules for definitions dominating uses which this
3153 // analysis depends on.
3154 if (!DT->isReachableFromEntry(I->getParent()))
3155 return getUnknown(V);
3156 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003157 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003158 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3159 return getConstant(CI);
3160 else if (isa<ConstantPointerNull>(V))
3161 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00003162 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3163 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003164 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003165 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003166
Dan Gohmanca178902009-07-17 20:47:02 +00003167 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003168 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003169 case Instruction::Add:
3170 // Don't transfer the NSW and NUW bits from the Add instruction to the
3171 // Add expression, because the Instruction may be guarded by control
3172 // flow and the no-overflow bits may not be valid for the expression in
3173 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003174 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003175 getSCEV(U->getOperand(1)));
3176 case Instruction::Mul:
3177 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3178 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003179 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003180 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003181 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003182 return getUDivExpr(getSCEV(U->getOperand(0)),
3183 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003184 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003185 return getMinusSCEV(getSCEV(U->getOperand(0)),
3186 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003187 case Instruction::And:
3188 // For an expression like x&255 that merely masks off the high bits,
3189 // use zext(trunc(x)) as the SCEV expression.
3190 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003191 if (CI->isNullValue())
3192 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003193 if (CI->isAllOnesValue())
3194 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003195 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003196
3197 // Instcombine's ShrinkDemandedConstant may strip bits out of
3198 // constants, obscuring what would otherwise be a low-bits mask.
3199 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3200 // knew about to reconstruct a low-bits mask value.
3201 unsigned LZ = A.countLeadingZeros();
3202 unsigned BitWidth = A.getBitWidth();
3203 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3204 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3205 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3206
3207 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3208
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003209 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003210 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003211 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003212 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003213 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003214 }
3215 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003216
Dan Gohman6c459a22008-06-22 19:56:46 +00003217 case Instruction::Or:
3218 // If the RHS of the Or is a constant, we may have something like:
3219 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3220 // optimizations will transparently handle this case.
3221 //
3222 // In order for this transformation to be safe, the LHS must be of the
3223 // form X*(2^n) and the Or constant must be less than 2^n.
3224 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003225 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003226 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003227 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003228 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3229 // Build a plain add SCEV.
3230 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3231 // If the LHS of the add was an addrec and it has no-wrap flags,
3232 // transfer the no-wrap flags, since an or won't introduce a wrap.
3233 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3234 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3235 if (OldAR->hasNoUnsignedWrap())
3236 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3237 if (OldAR->hasNoSignedWrap())
3238 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3239 }
3240 return S;
3241 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003242 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003243 break;
3244 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003245 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003246 // If the RHS of the xor is a signbit, then this is just an add.
3247 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003248 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003249 return getAddExpr(getSCEV(U->getOperand(0)),
3250 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003251
3252 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003253 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003254 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003255
3256 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3257 // This is a variant of the check for xor with -1, and it handles
3258 // the case where instcombine has trimmed non-demanded bits out
3259 // of an xor with -1.
3260 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3261 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3262 if (BO->getOpcode() == Instruction::And &&
3263 LCI->getValue() == CI->getValue())
3264 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003265 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003266 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003267 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003268 const Type *Z0Ty = Z0->getType();
3269 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3270
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003271 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003272 // mask off the high bits. Complement the operand and
3273 // re-apply the zext.
3274 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3275 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3276
3277 // If C is a single bit, it may be in the sign-bit position
3278 // before the zero-extend. In this case, represent the xor
3279 // using an add, which is equivalent, and re-apply the zext.
3280 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3281 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3282 Trunc.isSignBit())
3283 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3284 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003285 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003286 }
3287 break;
3288
3289 case Instruction::Shl:
3290 // Turn shift left of a constant amount into a multiply.
3291 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003292 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003293 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003294 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003295 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003296 }
3297 break;
3298
Nick Lewycky01eaf802008-07-07 06:15:49 +00003299 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003300 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003301 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003302 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003303 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003304 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003305 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003306 }
3307 break;
3308
Dan Gohman4ee29af2009-04-21 02:26:00 +00003309 case Instruction::AShr:
3310 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3311 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3312 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3313 if (L->getOpcode() == Instruction::Shl &&
3314 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003315 unsigned BitWidth = getTypeSizeInBits(U->getType());
3316 uint64_t Amt = BitWidth - CI->getZExtValue();
3317 if (Amt == BitWidth)
3318 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3319 if (Amt > BitWidth)
3320 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003321 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003322 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003323 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003324 U->getType());
3325 }
3326 break;
3327
Dan Gohman6c459a22008-06-22 19:56:46 +00003328 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003329 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003330
3331 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003332 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003333
3334 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003335 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003336
3337 case Instruction::BitCast:
3338 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003339 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003340 return getSCEV(U->getOperand(0));
3341 break;
3342
Dan Gohman4f8eea82010-02-01 18:27:38 +00003343 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3344 // lead to pointer expressions which cannot safely be expanded to GEPs,
3345 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3346 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003347
Dan Gohman26466c02009-05-08 20:26:55 +00003348 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003349 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003350
Dan Gohman6c459a22008-06-22 19:56:46 +00003351 case Instruction::PHI:
3352 return createNodeForPHI(cast<PHINode>(U));
3353
3354 case Instruction::Select:
3355 // This could be a smax or umax that was lowered earlier.
3356 // Try to recover it.
3357 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3358 Value *LHS = ICI->getOperand(0);
3359 Value *RHS = ICI->getOperand(1);
3360 switch (ICI->getPredicate()) {
3361 case ICmpInst::ICMP_SLT:
3362 case ICmpInst::ICMP_SLE:
3363 std::swap(LHS, RHS);
3364 // fall through
3365 case ICmpInst::ICMP_SGT:
3366 case ICmpInst::ICMP_SGE:
3367 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003368 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003369 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003370 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003371 break;
3372 case ICmpInst::ICMP_ULT:
3373 case ICmpInst::ICMP_ULE:
3374 std::swap(LHS, RHS);
3375 // fall through
3376 case ICmpInst::ICMP_UGT:
3377 case ICmpInst::ICMP_UGE:
3378 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003379 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003380 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003381 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003382 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003383 case ICmpInst::ICMP_NE:
3384 // n != 0 ? n : 1 -> umax(n, 1)
3385 if (LHS == U->getOperand(1) &&
3386 isa<ConstantInt>(U->getOperand(2)) &&
3387 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3388 isa<ConstantInt>(RHS) &&
3389 cast<ConstantInt>(RHS)->isZero())
3390 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3391 break;
3392 case ICmpInst::ICMP_EQ:
3393 // n == 0 ? 1 : n -> umax(n, 1)
3394 if (LHS == U->getOperand(2) &&
3395 isa<ConstantInt>(U->getOperand(1)) &&
3396 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3397 isa<ConstantInt>(RHS) &&
3398 cast<ConstantInt>(RHS)->isZero())
3399 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3400 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003401 default:
3402 break;
3403 }
3404 }
3405
3406 default: // We cannot analyze this expression.
3407 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003408 }
3409
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003410 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003411}
3412
3413
3414
3415//===----------------------------------------------------------------------===//
3416// Iteration Count Computation Code
3417//
3418
Dan Gohman46bdfb02009-02-24 18:55:53 +00003419/// getBackedgeTakenCount - If the specified loop has a predictable
3420/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3421/// object. The backedge-taken count is the number of times the loop header
3422/// will be branched to from within the loop. This is one less than the
3423/// trip count of the loop, since it doesn't count the first iteration,
3424/// when the header is branched to from outside the loop.
3425///
3426/// Note that it is not valid to call this method on a loop without a
3427/// loop-invariant backedge-taken count (see
3428/// hasLoopInvariantBackedgeTakenCount).
3429///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003430const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003431 return getBackedgeTakenInfo(L).Exact;
3432}
3433
3434/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3435/// return the least SCEV value that is known never to be less than the
3436/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003437const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003438 return getBackedgeTakenInfo(L).Max;
3439}
3440
Dan Gohman59ae6b92009-07-08 19:23:34 +00003441/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3442/// onto the given Worklist.
3443static void
3444PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3445 BasicBlock *Header = L->getHeader();
3446
3447 // Push all Loop-header PHIs onto the Worklist stack.
3448 for (BasicBlock::iterator I = Header->begin();
3449 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3450 Worklist.push_back(PN);
3451}
3452
Dan Gohmana1af7572009-04-30 20:47:05 +00003453const ScalarEvolution::BackedgeTakenInfo &
3454ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003455 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003456 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003457 // update the value. The temporary CouldNotCompute value tells SCEV
3458 // code elsewhere that it shouldn't attempt to request a new
3459 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003460 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003461 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3462 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003463 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3464 if (BECount.Exact != getCouldNotCompute()) {
3465 assert(BECount.Exact->isLoopInvariant(L) &&
3466 BECount.Max->isLoopInvariant(L) &&
3467 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003468 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003469
Dan Gohman01ecca22009-04-27 20:16:15 +00003470 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003471 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003472 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003473 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003474 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003475 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003476 if (isa<PHINode>(L->getHeader()->begin()))
3477 // Only count loops that have phi nodes as not being computable.
3478 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003479 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003480
3481 // Now that we know more about the trip count for this loop, forget any
3482 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003483 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003484 // information. This is similar to the code in forgetLoop, except that
3485 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003486 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003487 SmallVector<Instruction *, 16> Worklist;
3488 PushLoopPHIs(L, Worklist);
3489
3490 SmallPtrSet<Instruction *, 8> Visited;
3491 while (!Worklist.empty()) {
3492 Instruction *I = Worklist.pop_back_val();
3493 if (!Visited.insert(I)) continue;
3494
Dan Gohman5d984912009-12-18 01:14:11 +00003495 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003496 Scalars.find(static_cast<Value *>(I));
3497 if (It != Scalars.end()) {
3498 // SCEVUnknown for a PHI either means that it has an unrecognized
3499 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003500 // by createNodeForPHI. In the former case, additional loop trip
3501 // count information isn't going to change anything. In the later
3502 // case, createNodeForPHI will perform the necessary updates on its
3503 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003504 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3505 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003506 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003507 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003508 if (PHINode *PN = dyn_cast<PHINode>(I))
3509 ConstantEvolutionLoopExitValue.erase(PN);
3510 }
3511
3512 PushDefUseChildren(I, Worklist);
3513 }
3514 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003515 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003516 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003517}
3518
Dan Gohman4c7279a2009-10-31 15:04:55 +00003519/// forgetLoop - This method should be called by the client when it has
3520/// changed a loop in a way that may effect ScalarEvolution's ability to
3521/// compute a trip count, or if the loop is deleted.
3522void ScalarEvolution::forgetLoop(const Loop *L) {
3523 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003524 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003525
Dan Gohman4c7279a2009-10-31 15:04:55 +00003526 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003527 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003528 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003529
Dan Gohman59ae6b92009-07-08 19:23:34 +00003530 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003531 while (!Worklist.empty()) {
3532 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003533 if (!Visited.insert(I)) continue;
3534
Dan Gohman5d984912009-12-18 01:14:11 +00003535 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003536 Scalars.find(static_cast<Value *>(I));
3537 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003538 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003539 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003540 if (PHINode *PN = dyn_cast<PHINode>(I))
3541 ConstantEvolutionLoopExitValue.erase(PN);
3542 }
3543
3544 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003545 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003546}
3547
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003548/// forgetValue - This method should be called by the client when it has
3549/// changed a value in a way that may effect its value, or which may
3550/// disconnect it from a def-use chain linking it to a loop.
3551void ScalarEvolution::forgetValue(Value *V) {
3552 Instruction *I = dyn_cast<Instruction>(V);
3553 if (!I) return;
3554
3555 // Drop information about expressions based on loop-header PHIs.
3556 SmallVector<Instruction *, 16> Worklist;
3557 Worklist.push_back(I);
3558
3559 SmallPtrSet<Instruction *, 8> Visited;
3560 while (!Worklist.empty()) {
3561 I = Worklist.pop_back_val();
3562 if (!Visited.insert(I)) continue;
3563
3564 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3565 Scalars.find(static_cast<Value *>(I));
3566 if (It != Scalars.end()) {
3567 ValuesAtScopes.erase(It->second);
3568 Scalars.erase(It);
3569 if (PHINode *PN = dyn_cast<PHINode>(I))
3570 ConstantEvolutionLoopExitValue.erase(PN);
3571 }
3572
3573 PushDefUseChildren(I, Worklist);
3574 }
3575}
3576
Dan Gohman46bdfb02009-02-24 18:55:53 +00003577/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3578/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003579ScalarEvolution::BackedgeTakenInfo
3580ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003581 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003582 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003583
Dan Gohmana334aa72009-06-22 00:31:57 +00003584 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003585 const SCEV *BECount = getCouldNotCompute();
3586 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003587 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003588 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3589 BackedgeTakenInfo NewBTI =
3590 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003591
Dan Gohman1c343752009-06-27 21:21:31 +00003592 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003593 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003594 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003595 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003596 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003597 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003598 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003599 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003600 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003601 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003602 }
Dan Gohman1c343752009-06-27 21:21:31 +00003603 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003604 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003605 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003606 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003607 }
3608
3609 return BackedgeTakenInfo(BECount, MaxBECount);
3610}
3611
3612/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3613/// of the specified loop will execute if it exits via the specified block.
3614ScalarEvolution::BackedgeTakenInfo
3615ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3616 BasicBlock *ExitingBlock) {
3617
3618 // Okay, we've chosen an exiting block. See what condition causes us to
3619 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003620 //
3621 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003622 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003623 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003624 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003625
Chris Lattner8b0e3602007-01-07 02:24:26 +00003626 // At this point, we know we have a conditional branch that determines whether
3627 // the loop is exited. However, we don't know if the branch is executed each
3628 // time through the loop. If not, then the execution count of the branch will
3629 // not be equal to the trip count of the loop.
3630 //
3631 // Currently we check for this by checking to see if the Exit branch goes to
3632 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003633 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003634 // loop header. This is common for un-rotated loops.
3635 //
3636 // If both of those tests fail, walk up the unique predecessor chain to the
3637 // header, stopping if there is an edge that doesn't exit the loop. If the
3638 // header is reached, the execution count of the branch will be equal to the
3639 // trip count of the loop.
3640 //
3641 // More extensive analysis could be done to handle more cases here.
3642 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003643 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003644 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003645 ExitBr->getParent() != L->getHeader()) {
3646 // The simple checks failed, try climbing the unique predecessor chain
3647 // up to the header.
3648 bool Ok = false;
3649 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3650 BasicBlock *Pred = BB->getUniquePredecessor();
3651 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003652 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003653 TerminatorInst *PredTerm = Pred->getTerminator();
3654 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3655 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3656 if (PredSucc == BB)
3657 continue;
3658 // If the predecessor has a successor that isn't BB and isn't
3659 // outside the loop, assume the worst.
3660 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003661 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003662 }
3663 if (Pred == L->getHeader()) {
3664 Ok = true;
3665 break;
3666 }
3667 BB = Pred;
3668 }
3669 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003670 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003671 }
3672
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003673 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003674 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3675 ExitBr->getSuccessor(0),
3676 ExitBr->getSuccessor(1));
3677}
3678
3679/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3680/// backedge of the specified loop will execute if its exit condition
3681/// were a conditional branch of ExitCond, TBB, and FBB.
3682ScalarEvolution::BackedgeTakenInfo
3683ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3684 Value *ExitCond,
3685 BasicBlock *TBB,
3686 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003687 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003688 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3689 if (BO->getOpcode() == Instruction::And) {
3690 // Recurse on the operands of the and.
3691 BackedgeTakenInfo BTI0 =
3692 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3693 BackedgeTakenInfo BTI1 =
3694 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003695 const SCEV *BECount = getCouldNotCompute();
3696 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003697 if (L->contains(TBB)) {
3698 // Both conditions must be true for the loop to continue executing.
3699 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003700 if (BTI0.Exact == getCouldNotCompute() ||
3701 BTI1.Exact == getCouldNotCompute())
3702 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003703 else
3704 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003705 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003706 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003707 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003708 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003709 else
3710 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003711 } else {
3712 // Both conditions must be true for the loop to exit.
3713 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003714 if (BTI0.Exact != getCouldNotCompute() &&
3715 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003716 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003717 if (BTI0.Max != getCouldNotCompute() &&
3718 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003719 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3720 }
3721
3722 return BackedgeTakenInfo(BECount, MaxBECount);
3723 }
3724 if (BO->getOpcode() == Instruction::Or) {
3725 // Recurse on the operands of the or.
3726 BackedgeTakenInfo BTI0 =
3727 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3728 BackedgeTakenInfo BTI1 =
3729 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003730 const SCEV *BECount = getCouldNotCompute();
3731 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003732 if (L->contains(FBB)) {
3733 // Both conditions must be false for the loop to continue executing.
3734 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003735 if (BTI0.Exact == getCouldNotCompute() ||
3736 BTI1.Exact == getCouldNotCompute())
3737 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003738 else
3739 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003740 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003741 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003742 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003743 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003744 else
3745 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 } else {
3747 // Both conditions must be false for the loop to exit.
3748 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003749 if (BTI0.Exact != getCouldNotCompute() &&
3750 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003752 if (BTI0.Max != getCouldNotCompute() &&
3753 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3755 }
3756
3757 return BackedgeTakenInfo(BECount, MaxBECount);
3758 }
3759 }
3760
3761 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003762 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003763 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3764 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003765
Dan Gohman00cb5b72010-02-19 18:12:07 +00003766 // Check for a constant condition. These are normally stripped out by
3767 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3768 // preserve the CFG and is temporarily leaving constant conditions
3769 // in place.
3770 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3771 if (L->contains(FBB) == !CI->getZExtValue())
3772 // The backedge is always taken.
3773 return getCouldNotCompute();
3774 else
3775 // The backedge is never taken.
3776 return getIntegerSCEV(0, CI->getType());
3777 }
3778
Eli Friedman361e54d2009-05-09 12:32:42 +00003779 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003780 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3781}
3782
3783/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3784/// backedge of the specified loop will execute if its exit condition
3785/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3786ScalarEvolution::BackedgeTakenInfo
3787ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3788 ICmpInst *ExitCond,
3789 BasicBlock *TBB,
3790 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003791
Reid Spencere4d87aa2006-12-23 06:05:41 +00003792 // If the condition was exit on true, convert the condition to exit on false
3793 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003795 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003796 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003797 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003798
3799 // Handle common loops like: for (X = "string"; *X; ++X)
3800 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3801 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003802 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003803 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003804 if (ItCnt.hasAnyInfo())
3805 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003806 }
3807
Dan Gohman0bba49c2009-07-07 17:06:11 +00003808 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3809 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003810
3811 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003812 LHS = getSCEVAtScope(LHS, L);
3813 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003814
Dan Gohman64a845e2009-06-24 04:48:43 +00003815 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003816 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003817 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3818 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003819 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003820 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003821 }
3822
Chris Lattner53e677a2004-04-02 20:23:17 +00003823 // If we have a comparison of a chrec against a constant, try to use value
3824 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003825 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3826 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003827 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003828 // Form the constant range.
3829 ConstantRange CompRange(
3830 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003831
Dan Gohman0bba49c2009-07-07 17:06:11 +00003832 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003833 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003834 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003835
Chris Lattner53e677a2004-04-02 20:23:17 +00003836 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003837 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003838 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003839 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3840 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003841 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003842 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003843 case ICmpInst::ICMP_EQ: { // while (X == Y)
3844 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003845 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3846 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003847 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003848 }
3849 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003850 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3851 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003852 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003853 }
3854 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003855 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3856 getNotSCEV(RHS), L, true);
3857 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003858 break;
3859 }
3860 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003861 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3862 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003863 break;
3864 }
3865 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003866 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3867 getNotSCEV(RHS), L, false);
3868 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003869 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003870 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003871 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003872#if 0
David Greene25e0e872009-12-23 22:18:14 +00003873 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003874 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003875 dbgs() << "[unsigned] ";
3876 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003877 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003878 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003879#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003880 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003881 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003882 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003883 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003884}
3885
Chris Lattner673e02b2004-10-12 01:49:27 +00003886static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003887EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3888 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003889 const SCEV *InVal = SE.getConstant(C);
3890 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003891 assert(isa<SCEVConstant>(Val) &&
3892 "Evaluation of SCEV at constant didn't fold correctly?");
3893 return cast<SCEVConstant>(Val)->getValue();
3894}
3895
3896/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3897/// and a GEP expression (missing the pointer index) indexing into it, return
3898/// the addressed element of the initializer or null if the index expression is
3899/// invalid.
3900static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003901GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003902 const std::vector<ConstantInt*> &Indices) {
3903 Constant *Init = GV->getInitializer();
3904 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003905 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003906 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3907 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3908 Init = cast<Constant>(CS->getOperand(Idx));
3909 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3910 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3911 Init = cast<Constant>(CA->getOperand(Idx));
3912 } else if (isa<ConstantAggregateZero>(Init)) {
3913 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3914 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003915 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003916 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3917 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003918 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003919 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003920 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003921 }
3922 return 0;
3923 } else {
3924 return 0; // Unknown initializer type
3925 }
3926 }
3927 return Init;
3928}
3929
Dan Gohman46bdfb02009-02-24 18:55:53 +00003930/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3931/// 'icmp op load X, cst', try to see if we can compute the backedge
3932/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003933ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00003934ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3935 LoadInst *LI,
3936 Constant *RHS,
3937 const Loop *L,
3938 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003939 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003940
3941 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003942 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00003943 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003944 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003945
3946 // Make sure that it is really a constant global we are gepping, with an
3947 // initializer, and make sure the first IDX is really 0.
3948 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003949 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003950 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3951 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003952 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003953
3954 // Okay, we allow one non-constant index into the GEP instruction.
3955 Value *VarIdx = 0;
3956 std::vector<ConstantInt*> Indexes;
3957 unsigned VarIdxNum = 0;
3958 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3959 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3960 Indexes.push_back(CI);
3961 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003962 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003963 VarIdx = GEP->getOperand(i);
3964 VarIdxNum = i-2;
3965 Indexes.push_back(0);
3966 }
3967
3968 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3969 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003970 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003971 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003972
3973 // We can only recognize very limited forms of loop index expressions, in
3974 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003975 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003976 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3977 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3978 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003979 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003980
3981 unsigned MaxSteps = MaxBruteForceIterations;
3982 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003983 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003984 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003985 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003986
3987 // Form the GEP offset.
3988 Indexes[VarIdxNum] = Val;
3989
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003990 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003991 if (Result == 0) break; // Cannot compute!
3992
3993 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003994 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003995 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003996 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003997#if 0
David Greene25e0e872009-12-23 22:18:14 +00003998 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003999 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4000 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004001#endif
4002 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004003 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004004 }
4005 }
Dan Gohman1c343752009-06-27 21:21:31 +00004006 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004007}
4008
4009
Chris Lattner3221ad02004-04-17 22:58:41 +00004010/// CanConstantFold - Return true if we can constant fold an instruction of the
4011/// specified type, assuming that all operands were constants.
4012static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004013 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004014 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4015 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004016
Chris Lattner3221ad02004-04-17 22:58:41 +00004017 if (const CallInst *CI = dyn_cast<CallInst>(I))
4018 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004019 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004020 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004021}
4022
Chris Lattner3221ad02004-04-17 22:58:41 +00004023/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4024/// in the loop that V is derived from. We allow arbitrary operations along the
4025/// way, but the operands of an operation must either be constants or a value
4026/// derived from a constant PHI. If this expression does not fit with these
4027/// constraints, return null.
4028static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4029 // If this is not an instruction, or if this is an instruction outside of the
4030 // loop, it can't be derived from a loop PHI.
4031 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004032 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004033
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004034 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004035 if (L->getHeader() == I->getParent())
4036 return PN;
4037 else
4038 // We don't currently keep track of the control flow needed to evaluate
4039 // PHIs, so we cannot handle PHIs inside of loops.
4040 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004041 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004042
4043 // If we won't be able to constant fold this expression even if the operands
4044 // are constants, return early.
4045 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004046
Chris Lattner3221ad02004-04-17 22:58:41 +00004047 // Otherwise, we can evaluate this instruction if all of its operands are
4048 // constant or derived from a PHI node themselves.
4049 PHINode *PHI = 0;
4050 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4051 if (!(isa<Constant>(I->getOperand(Op)) ||
4052 isa<GlobalValue>(I->getOperand(Op)))) {
4053 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4054 if (P == 0) return 0; // Not evolving from PHI
4055 if (PHI == 0)
4056 PHI = P;
4057 else if (PHI != P)
4058 return 0; // Evolving from multiple different PHIs.
4059 }
4060
4061 // This is a expression evolving from a constant PHI!
4062 return PHI;
4063}
4064
4065/// EvaluateExpression - Given an expression that passes the
4066/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4067/// in the loop has the value PHIVal. If we can't fold this expression for some
4068/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004069static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4070 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004071 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004072 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004073 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004074 Instruction *I = cast<Instruction>(V);
4075
4076 std::vector<Constant*> Operands;
4077 Operands.resize(I->getNumOperands());
4078
4079 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004080 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004081 if (Operands[i] == 0) return 0;
4082 }
4083
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004084 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004085 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004086 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004087 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004088 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004089}
4090
4091/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4092/// in the header of its containing loop, we know the loop executes a
4093/// constant number of times, and the PHI node is just a recurrence
4094/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004095Constant *
4096ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004097 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004098 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004099 std::map<PHINode*, Constant*>::iterator I =
4100 ConstantEvolutionLoopExitValue.find(PN);
4101 if (I != ConstantEvolutionLoopExitValue.end())
4102 return I->second;
4103
Dan Gohmane0567812010-04-08 23:03:40 +00004104 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004105 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4106
4107 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4108
4109 // Since the loop is canonicalized, the PHI node must have two entries. One
4110 // entry must be a constant (coming in from outside of the loop), and the
4111 // second must be derived from the same PHI.
4112 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4113 Constant *StartCST =
4114 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4115 if (StartCST == 0)
4116 return RetVal = 0; // Must be a constant.
4117
4118 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4119 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4120 if (PN2 != PN)
4121 return RetVal = 0; // Not derived from same PHI.
4122
4123 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004124 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004125 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004126
Dan Gohman46bdfb02009-02-24 18:55:53 +00004127 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004128 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004129 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4130 if (IterationNum == NumIterations)
4131 return RetVal = PHIVal; // Got exit value!
4132
4133 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004134 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004135 if (NextPHI == PHIVal)
4136 return RetVal = NextPHI; // Stopped evolving!
4137 if (NextPHI == 0)
4138 return 0; // Couldn't evaluate!
4139 PHIVal = NextPHI;
4140 }
4141}
4142
Dan Gohman07ad19b2009-07-27 16:09:48 +00004143/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004144/// constant number of times (the condition evolves only from constants),
4145/// try to evaluate a few iterations of the loop until we get the exit
4146/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004147/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004148const SCEV *
4149ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4150 Value *Cond,
4151 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004152 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004153 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004154
4155 // Since the loop is canonicalized, the PHI node must have two entries. One
4156 // entry must be a constant (coming in from outside of the loop), and the
4157 // second must be derived from the same PHI.
4158 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4159 Constant *StartCST =
4160 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004161 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004162
4163 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4164 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004165 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004166
4167 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4168 // the loop symbolically to determine when the condition gets a value of
4169 // "ExitWhen".
4170 unsigned IterationNum = 0;
4171 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4172 for (Constant *PHIVal = StartCST;
4173 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004174 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004175 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004176
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004177 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004178 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004179
Reid Spencere8019bb2007-03-01 07:25:48 +00004180 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004181 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004182 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004183 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004184
Chris Lattner3221ad02004-04-17 22:58:41 +00004185 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004186 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004187 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004188 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004189 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004190 }
4191
4192 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004193 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004194}
4195
Dan Gohmane7125f42009-09-03 15:00:26 +00004196/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004197/// at the specified scope in the program. The L value specifies a loop
4198/// nest to evaluate the expression at, where null is the top-level or a
4199/// specified loop is immediately inside of the loop.
4200///
4201/// This method can be used to compute the exit value for a variable defined
4202/// in a loop by querying what the value will hold in the parent loop.
4203///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004204/// In the case that a relevant loop exit value cannot be computed, the
4205/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004206const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004207 // Check to see if we've folded this expression at this loop before.
4208 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4209 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4210 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4211 if (!Pair.second)
4212 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004213
Dan Gohman42214892009-08-31 21:15:23 +00004214 // Otherwise compute it.
4215 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004216 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004217 return C;
4218}
4219
4220const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004221 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004222
Nick Lewycky3e630762008-02-20 06:48:22 +00004223 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004224 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004225 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004226 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004227 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004228 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4229 if (PHINode *PN = dyn_cast<PHINode>(I))
4230 if (PN->getParent() == LI->getHeader()) {
4231 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004232 // to see if the loop that contains it has a known backedge-taken
4233 // count. If so, we may be able to force computation of the exit
4234 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004235 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004236 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004237 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004238 // Okay, we know how many times the containing loop executes. If
4239 // this is a constant evolving PHI node, get the final value at
4240 // the specified iteration number.
4241 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004242 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004243 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004244 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004245 }
4246 }
4247
Reid Spencer09906f32006-12-04 21:33:23 +00004248 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004249 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004250 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004251 // result. This is particularly useful for computing loop exit values.
4252 if (CanConstantFold(I)) {
4253 std::vector<Constant*> Operands;
4254 Operands.reserve(I->getNumOperands());
4255 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4256 Value *Op = I->getOperand(i);
4257 if (Constant *C = dyn_cast<Constant>(Op)) {
4258 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004259 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004260 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004261 // non-integer and non-pointer, don't even try to analyze them
4262 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004263 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004264 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004265
Dan Gohman5d984912009-12-18 01:14:11 +00004266 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004267 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004268 Constant *C = SC->getValue();
4269 if (C->getType() != Op->getType())
4270 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4271 Op->getType(),
4272 false),
4273 C, Op->getType());
4274 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004275 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004276 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4277 if (C->getType() != Op->getType())
4278 C =
4279 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4280 Op->getType(),
4281 false),
4282 C, Op->getType());
4283 Operands.push_back(C);
4284 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004285 return V;
4286 } else {
4287 return V;
4288 }
4289 }
4290 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004291
Dan Gohmane177c9a2010-02-24 19:31:47 +00004292 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004293 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4294 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004295 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004296 else
4297 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004298 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004299 if (C)
4300 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004301 }
4302 }
4303
4304 // This is some other type of SCEVUnknown, just return it.
4305 return V;
4306 }
4307
Dan Gohman622ed672009-05-04 22:02:23 +00004308 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 // Avoid performing the look-up in the common case where the specified
4310 // expression has no loop-variant portions.
4311 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004312 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004313 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004314 // Okay, at least one of these operands is loop variant but might be
4315 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004316 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4317 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004318 NewOps.push_back(OpAtScope);
4319
4320 for (++i; i != e; ++i) {
4321 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004322 NewOps.push_back(OpAtScope);
4323 }
4324 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004325 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004326 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004327 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004328 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004329 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004330 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004331 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004332 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004333 }
4334 }
4335 // If we got here, all operands are loop invariant.
4336 return Comm;
4337 }
4338
Dan Gohman622ed672009-05-04 22:02:23 +00004339 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004340 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4341 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004342 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4343 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004344 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004345 }
4346
4347 // If this is a loop recurrence for a loop that does not contain L, then we
4348 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004349 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004350 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004351 // To evaluate this recurrence, we need to know how many times the AddRec
4352 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004353 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004354 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004355
Eli Friedmanb42a6262008-08-04 23:49:06 +00004356 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004357 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004358 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004359 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004360 }
4361
Dan Gohman622ed672009-05-04 22:02:23 +00004362 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004363 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004364 if (Op == Cast->getOperand())
4365 return Cast; // must be loop invariant
4366 return getZeroExtendExpr(Op, Cast->getType());
4367 }
4368
Dan Gohman622ed672009-05-04 22:02:23 +00004369 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004370 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004371 if (Op == Cast->getOperand())
4372 return Cast; // must be loop invariant
4373 return getSignExtendExpr(Op, Cast->getType());
4374 }
4375
Dan Gohman622ed672009-05-04 22:02:23 +00004376 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004377 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004378 if (Op == Cast->getOperand())
4379 return Cast; // must be loop invariant
4380 return getTruncateExpr(Op, Cast->getType());
4381 }
4382
Torok Edwinc23197a2009-07-14 16:55:14 +00004383 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004384 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004385}
4386
Dan Gohman66a7e852009-05-08 20:38:54 +00004387/// getSCEVAtScope - This is a convenience function which does
4388/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004389const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004390 return getSCEVAtScope(getSCEV(V), L);
4391}
4392
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004393/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4394/// following equation:
4395///
4396/// A * X = B (mod N)
4397///
4398/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4399/// A and B isn't important.
4400///
4401/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004402static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004403 ScalarEvolution &SE) {
4404 uint32_t BW = A.getBitWidth();
4405 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4406 assert(A != 0 && "A must be non-zero.");
4407
4408 // 1. D = gcd(A, N)
4409 //
4410 // The gcd of A and N may have only one prime factor: 2. The number of
4411 // trailing zeros in A is its multiplicity
4412 uint32_t Mult2 = A.countTrailingZeros();
4413 // D = 2^Mult2
4414
4415 // 2. Check if B is divisible by D.
4416 //
4417 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4418 // is not less than multiplicity of this prime factor for D.
4419 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004420 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004421
4422 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4423 // modulo (N / D).
4424 //
4425 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4426 // bit width during computations.
4427 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4428 APInt Mod(BW + 1, 0);
4429 Mod.set(BW - Mult2); // Mod = N / D
4430 APInt I = AD.multiplicativeInverse(Mod);
4431
4432 // 4. Compute the minimum unsigned root of the equation:
4433 // I * (B / D) mod (N / D)
4434 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4435
4436 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4437 // bits.
4438 return SE.getConstant(Result.trunc(BW));
4439}
Chris Lattner53e677a2004-04-02 20:23:17 +00004440
4441/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4442/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4443/// might be the same) or two SCEVCouldNotCompute objects.
4444///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004445static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004446SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004447 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004448 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4449 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4450 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004451
Chris Lattner53e677a2004-04-02 20:23:17 +00004452 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004453 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004454 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004455 return std::make_pair(CNC, CNC);
4456 }
4457
Reid Spencere8019bb2007-03-01 07:25:48 +00004458 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004459 const APInt &L = LC->getValue()->getValue();
4460 const APInt &M = MC->getValue()->getValue();
4461 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004462 APInt Two(BitWidth, 2);
4463 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004464
Dan Gohman64a845e2009-06-24 04:48:43 +00004465 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004466 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004467 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004468 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4469 // The B coefficient is M-N/2
4470 APInt B(M);
4471 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004472
Reid Spencere8019bb2007-03-01 07:25:48 +00004473 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004474 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004475
Reid Spencere8019bb2007-03-01 07:25:48 +00004476 // Compute the B^2-4ac term.
4477 APInt SqrtTerm(B);
4478 SqrtTerm *= B;
4479 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004480
Reid Spencere8019bb2007-03-01 07:25:48 +00004481 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4482 // integer value or else APInt::sqrt() will assert.
4483 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004484
Dan Gohman64a845e2009-06-24 04:48:43 +00004485 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004486 // The divisions must be performed as signed divisions.
4487 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004488 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004489 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004490 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004491 return std::make_pair(CNC, CNC);
4492 }
4493
Owen Andersone922c022009-07-22 00:24:57 +00004494 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004495
4496 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004497 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004498 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004499 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004500
Dan Gohman64a845e2009-06-24 04:48:43 +00004501 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004502 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004503 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004504}
4505
4506/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004507/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004508ScalarEvolution::BackedgeTakenInfo
4509ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004510 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004511 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004512 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004513 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004514 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004515 }
4516
Dan Gohman35738ac2009-05-04 22:30:44 +00004517 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004519 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004520
4521 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004522 // If this is an affine expression, the execution count of this branch is
4523 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004525 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004526 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004527 // equivalent to:
4528 //
4529 // Step*N = -Start (mod 2^BW)
4530 //
4531 // where BW is the common bit width of Start and Step.
4532
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004534 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4535 L->getParentLoop());
4536 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4537 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004538
Dan Gohman622ed672009-05-04 22:02:23 +00004539 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004540 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004541
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004542 // First, handle unitary steps.
4543 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004544 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004545 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4546 return Start; // N = Start (as unsigned)
4547
4548 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004549 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004550 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004551 -StartC->getValue()->getValue(),
4552 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004553 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004554 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004555 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4556 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004557 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004558 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004559 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4560 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004561 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004562#if 0
David Greene25e0e872009-12-23 22:18:14 +00004563 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004564 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004565#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004566 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004567 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004568 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004569 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004570 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004571 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004572
Chris Lattner53e677a2004-04-02 20:23:17 +00004573 // We can only use this value if the chrec ends up with an exact zero
4574 // value at this index. When solving for "X*X != 5", for example, we
4575 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004576 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004577 if (Val->isZero())
4578 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004579 }
4580 }
4581 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004582
Dan Gohman1c343752009-06-27 21:21:31 +00004583 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004584}
4585
4586/// HowFarToNonZero - Return the number of times a backedge checking the
4587/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004588/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004589ScalarEvolution::BackedgeTakenInfo
4590ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004591 // Loops that look like: while (X == 0) are very strange indeed. We don't
4592 // handle them yet except for the trivial case. This could be expanded in the
4593 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004594
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 // If the value is a constant, check to see if it is known to be non-zero
4596 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004597 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004598 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004599 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004600 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004602
Chris Lattner53e677a2004-04-02 20:23:17 +00004603 // We could implement others, but I really doubt anyone writes loops like
4604 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004605 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004606}
4607
Dan Gohman859b4822009-05-18 15:36:09 +00004608/// getLoopPredecessor - If the given loop's header has exactly one unique
4609/// predecessor outside the loop, return it. Otherwise return null.
4610///
4611BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4612 BasicBlock *Header = L->getHeader();
4613 BasicBlock *Pred = 0;
4614 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4615 PI != E; ++PI)
4616 if (!L->contains(*PI)) {
4617 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4618 Pred = *PI;
4619 }
4620 return Pred;
4621}
4622
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004623/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4624/// (which may not be an immediate predecessor) which has exactly one
4625/// successor from which BB is reachable, or null if no such block is
4626/// found.
4627///
4628BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004629ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004630 // If the block has a unique predecessor, then there is no path from the
4631 // predecessor to the block that does not go through the direct edge
4632 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004633 if (BasicBlock *Pred = BB->getSinglePredecessor())
4634 return Pred;
4635
4636 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004637 // If the header has a unique predecessor outside the loop, it must be
4638 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004639 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004640 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004641
4642 return 0;
4643}
4644
Dan Gohman763bad12009-06-20 00:35:32 +00004645/// HasSameValue - SCEV structural equivalence is usually sufficient for
4646/// testing whether two expressions are equal, however for the purposes of
4647/// looking for a condition guarding a loop, it can be useful to be a little
4648/// more general, since a front-end may have replicated the controlling
4649/// expression.
4650///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004651static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004652 // Quick check to see if they are the same SCEV.
4653 if (A == B) return true;
4654
4655 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4656 // two different instructions with the same value. Check for this case.
4657 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4658 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4659 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4660 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004661 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004662 return true;
4663
4664 // Otherwise assume they may have a different value.
4665 return false;
4666}
4667
Dan Gohman85b05a22009-07-13 21:35:55 +00004668bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4669 return getSignedRange(S).getSignedMax().isNegative();
4670}
4671
4672bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4673 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4674}
4675
4676bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4677 return !getSignedRange(S).getSignedMin().isNegative();
4678}
4679
4680bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4681 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4682}
4683
4684bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4685 return isKnownNegative(S) || isKnownPositive(S);
4686}
4687
4688bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4689 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman53c66ea2010-04-11 22:16:48 +00004690 // If LHS or RHS is an addrec, check to see if the condition is true in
4691 // every iteration of the loop.
4692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
4693 if (isLoopEntryGuardedByCond(
4694 AR->getLoop(), Pred, AR->getStart(), RHS) &&
4695 isLoopBackedgeGuardedByCond(
4696 AR->getLoop(), Pred,
4697 getAddExpr(AR, AR->getStepRecurrence(*this)), RHS))
4698 return true;
4699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
4700 if (isLoopEntryGuardedByCond(
4701 AR->getLoop(), Pred, LHS, AR->getStart()) &&
4702 isLoopBackedgeGuardedByCond(
4703 AR->getLoop(), Pred,
4704 LHS, getAddExpr(AR, AR->getStepRecurrence(*this))))
4705 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00004706
Dan Gohman53c66ea2010-04-11 22:16:48 +00004707 // Otherwise see what can be done with known constant ranges.
4708 return isKnownPredicateWithRanges(Pred, LHS, RHS);
4709}
4710
4711bool
4712ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
4713 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004714 if (HasSameValue(LHS, RHS))
4715 return ICmpInst::isTrueWhenEqual(Pred);
4716
Dan Gohman53c66ea2010-04-11 22:16:48 +00004717 // This code is split out from isKnownPredicate because it is called from
4718 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00004719 switch (Pred) {
4720 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004721 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004722 break;
4723 case ICmpInst::ICMP_SGT:
4724 Pred = ICmpInst::ICMP_SLT;
4725 std::swap(LHS, RHS);
4726 case ICmpInst::ICMP_SLT: {
4727 ConstantRange LHSRange = getSignedRange(LHS);
4728 ConstantRange RHSRange = getSignedRange(RHS);
4729 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4730 return true;
4731 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4732 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004733 break;
4734 }
4735 case ICmpInst::ICMP_SGE:
4736 Pred = ICmpInst::ICMP_SLE;
4737 std::swap(LHS, RHS);
4738 case ICmpInst::ICMP_SLE: {
4739 ConstantRange LHSRange = getSignedRange(LHS);
4740 ConstantRange RHSRange = getSignedRange(RHS);
4741 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4742 return true;
4743 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4744 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004745 break;
4746 }
4747 case ICmpInst::ICMP_UGT:
4748 Pred = ICmpInst::ICMP_ULT;
4749 std::swap(LHS, RHS);
4750 case ICmpInst::ICMP_ULT: {
4751 ConstantRange LHSRange = getUnsignedRange(LHS);
4752 ConstantRange RHSRange = getUnsignedRange(RHS);
4753 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4754 return true;
4755 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4756 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004757 break;
4758 }
4759 case ICmpInst::ICMP_UGE:
4760 Pred = ICmpInst::ICMP_ULE;
4761 std::swap(LHS, RHS);
4762 case ICmpInst::ICMP_ULE: {
4763 ConstantRange LHSRange = getUnsignedRange(LHS);
4764 ConstantRange RHSRange = getUnsignedRange(RHS);
4765 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4766 return true;
4767 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4768 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004769 break;
4770 }
4771 case ICmpInst::ICMP_NE: {
4772 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4773 return true;
4774 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4775 return true;
4776
4777 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4778 if (isKnownNonZero(Diff))
4779 return true;
4780 break;
4781 }
4782 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004783 // The check at the top of the function catches the case where
4784 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004785 break;
4786 }
4787 return false;
4788}
4789
4790/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4791/// protected by a conditional between LHS and RHS. This is used to
4792/// to eliminate casts.
4793bool
4794ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4795 ICmpInst::Predicate Pred,
4796 const SCEV *LHS, const SCEV *RHS) {
4797 // Interpret a null as meaning no loop, where there is obviously no guard
4798 // (interprocedural conditions notwithstanding).
4799 if (!L) return true;
4800
4801 BasicBlock *Latch = L->getLoopLatch();
4802 if (!Latch)
4803 return false;
4804
4805 BranchInst *LoopContinuePredicate =
4806 dyn_cast<BranchInst>(Latch->getTerminator());
4807 if (!LoopContinuePredicate ||
4808 LoopContinuePredicate->isUnconditional())
4809 return false;
4810
Dan Gohman0f4b2852009-07-21 23:03:19 +00004811 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4812 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004813}
4814
Dan Gohman3948d0b2010-04-11 19:27:13 +00004815/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00004816/// by a conditional between LHS and RHS. This is used to help avoid max
4817/// expressions in loop trip counts, and to eliminate casts.
4818bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00004819ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
4820 ICmpInst::Predicate Pred,
4821 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004822 // Interpret a null as meaning no loop, where there is obviously no guard
4823 // (interprocedural conditions notwithstanding).
4824 if (!L) return false;
4825
Dan Gohman859b4822009-05-18 15:36:09 +00004826 BasicBlock *Predecessor = getLoopPredecessor(L);
4827 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004828
Dan Gohman859b4822009-05-18 15:36:09 +00004829 // Starting at the loop predecessor, climb up the predecessor chain, as long
4830 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004831 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004832 for (; Predecessor;
4833 PredecessorDest = Predecessor,
4834 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004835
4836 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004837 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004838 if (!LoopEntryPredicate ||
4839 LoopEntryPredicate->isUnconditional())
4840 continue;
4841
Dan Gohman0f4b2852009-07-21 23:03:19 +00004842 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4843 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004844 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004845 }
4846
Dan Gohman38372182008-08-12 20:17:31 +00004847 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004848}
4849
Dan Gohman0f4b2852009-07-21 23:03:19 +00004850/// isImpliedCond - Test whether the condition described by Pred, LHS,
4851/// and RHS is true whenever the given Cond value evaluates to true.
4852bool ScalarEvolution::isImpliedCond(Value *CondValue,
4853 ICmpInst::Predicate Pred,
4854 const SCEV *LHS, const SCEV *RHS,
4855 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004856 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004857 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4858 if (BO->getOpcode() == Instruction::And) {
4859 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004860 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4861 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004862 } else if (BO->getOpcode() == Instruction::Or) {
4863 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004864 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4865 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004866 }
4867 }
4868
4869 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4870 if (!ICI) return false;
4871
Dan Gohman85b05a22009-07-13 21:35:55 +00004872 // Bail if the ICmp's operands' types are wider than the needed type
4873 // before attempting to call getSCEV on them. This avoids infinite
4874 // recursion, since the analysis of widening casts can require loop
4875 // exit condition information for overflow checking, which would
4876 // lead back here.
4877 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004878 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004879 return false;
4880
Dan Gohman0f4b2852009-07-21 23:03:19 +00004881 // Now that we found a conditional branch that dominates the loop, check to
4882 // see if it is the comparison we are looking for.
4883 ICmpInst::Predicate FoundPred;
4884 if (Inverse)
4885 FoundPred = ICI->getInversePredicate();
4886 else
4887 FoundPred = ICI->getPredicate();
4888
4889 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4890 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004891
4892 // Balance the types. The case where FoundLHS' type is wider than
4893 // LHS' type is checked for above.
4894 if (getTypeSizeInBits(LHS->getType()) >
4895 getTypeSizeInBits(FoundLHS->getType())) {
4896 if (CmpInst::isSigned(Pred)) {
4897 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4898 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4899 } else {
4900 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4901 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4902 }
4903 }
4904
Dan Gohman0f4b2852009-07-21 23:03:19 +00004905 // Canonicalize the query to match the way instcombine will have
4906 // canonicalized the comparison.
4907 // First, put a constant operand on the right.
4908 if (isa<SCEVConstant>(LHS)) {
4909 std::swap(LHS, RHS);
4910 Pred = ICmpInst::getSwappedPredicate(Pred);
4911 }
4912 // Then, canonicalize comparisons with boundary cases.
4913 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4914 const APInt &RA = RC->getValue()->getValue();
4915 switch (Pred) {
4916 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4917 case ICmpInst::ICMP_EQ:
4918 case ICmpInst::ICMP_NE:
4919 break;
4920 case ICmpInst::ICMP_UGE:
4921 if ((RA - 1).isMinValue()) {
4922 Pred = ICmpInst::ICMP_NE;
4923 RHS = getConstant(RA - 1);
4924 break;
4925 }
4926 if (RA.isMaxValue()) {
4927 Pred = ICmpInst::ICMP_EQ;
4928 break;
4929 }
4930 if (RA.isMinValue()) return true;
4931 break;
4932 case ICmpInst::ICMP_ULE:
4933 if ((RA + 1).isMaxValue()) {
4934 Pred = ICmpInst::ICMP_NE;
4935 RHS = getConstant(RA + 1);
4936 break;
4937 }
4938 if (RA.isMinValue()) {
4939 Pred = ICmpInst::ICMP_EQ;
4940 break;
4941 }
4942 if (RA.isMaxValue()) return true;
4943 break;
4944 case ICmpInst::ICMP_SGE:
4945 if ((RA - 1).isMinSignedValue()) {
4946 Pred = ICmpInst::ICMP_NE;
4947 RHS = getConstant(RA - 1);
4948 break;
4949 }
4950 if (RA.isMaxSignedValue()) {
4951 Pred = ICmpInst::ICMP_EQ;
4952 break;
4953 }
4954 if (RA.isMinSignedValue()) return true;
4955 break;
4956 case ICmpInst::ICMP_SLE:
4957 if ((RA + 1).isMaxSignedValue()) {
4958 Pred = ICmpInst::ICMP_NE;
4959 RHS = getConstant(RA + 1);
4960 break;
4961 }
4962 if (RA.isMinSignedValue()) {
4963 Pred = ICmpInst::ICMP_EQ;
4964 break;
4965 }
4966 if (RA.isMaxSignedValue()) return true;
4967 break;
4968 case ICmpInst::ICMP_UGT:
4969 if (RA.isMinValue()) {
4970 Pred = ICmpInst::ICMP_NE;
4971 break;
4972 }
4973 if ((RA + 1).isMaxValue()) {
4974 Pred = ICmpInst::ICMP_EQ;
4975 RHS = getConstant(RA + 1);
4976 break;
4977 }
4978 if (RA.isMaxValue()) return false;
4979 break;
4980 case ICmpInst::ICMP_ULT:
4981 if (RA.isMaxValue()) {
4982 Pred = ICmpInst::ICMP_NE;
4983 break;
4984 }
4985 if ((RA - 1).isMinValue()) {
4986 Pred = ICmpInst::ICMP_EQ;
4987 RHS = getConstant(RA - 1);
4988 break;
4989 }
4990 if (RA.isMinValue()) return false;
4991 break;
4992 case ICmpInst::ICMP_SGT:
4993 if (RA.isMinSignedValue()) {
4994 Pred = ICmpInst::ICMP_NE;
4995 break;
4996 }
4997 if ((RA + 1).isMaxSignedValue()) {
4998 Pred = ICmpInst::ICMP_EQ;
4999 RHS = getConstant(RA + 1);
5000 break;
5001 }
5002 if (RA.isMaxSignedValue()) return false;
5003 break;
5004 case ICmpInst::ICMP_SLT:
5005 if (RA.isMaxSignedValue()) {
5006 Pred = ICmpInst::ICMP_NE;
5007 break;
5008 }
5009 if ((RA - 1).isMinSignedValue()) {
5010 Pred = ICmpInst::ICMP_EQ;
5011 RHS = getConstant(RA - 1);
5012 break;
5013 }
5014 if (RA.isMinSignedValue()) return false;
5015 break;
5016 }
5017 }
5018
5019 // Check to see if we can make the LHS or RHS match.
5020 if (LHS == FoundRHS || RHS == FoundLHS) {
5021 if (isa<SCEVConstant>(RHS)) {
5022 std::swap(FoundLHS, FoundRHS);
5023 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5024 } else {
5025 std::swap(LHS, RHS);
5026 Pred = ICmpInst::getSwappedPredicate(Pred);
5027 }
5028 }
5029
5030 // Check whether the found predicate is the same as the desired predicate.
5031 if (FoundPred == Pred)
5032 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5033
5034 // Check whether swapping the found predicate makes it the same as the
5035 // desired predicate.
5036 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5037 if (isa<SCEVConstant>(RHS))
5038 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5039 else
5040 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5041 RHS, LHS, FoundLHS, FoundRHS);
5042 }
5043
5044 // Check whether the actual condition is beyond sufficient.
5045 if (FoundPred == ICmpInst::ICMP_EQ)
5046 if (ICmpInst::isTrueWhenEqual(Pred))
5047 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5048 return true;
5049 if (Pred == ICmpInst::ICMP_NE)
5050 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5051 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5052 return true;
5053
5054 // Otherwise assume the worst.
5055 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005056}
5057
Dan Gohman0f4b2852009-07-21 23:03:19 +00005058/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005059/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005060/// and FoundRHS is true.
5061bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5062 const SCEV *LHS, const SCEV *RHS,
5063 const SCEV *FoundLHS,
5064 const SCEV *FoundRHS) {
5065 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5066 FoundLHS, FoundRHS) ||
5067 // ~x < ~y --> x > y
5068 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5069 getNotSCEV(FoundRHS),
5070 getNotSCEV(FoundLHS));
5071}
5072
5073/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005074/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005075/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005076bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005077ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5078 const SCEV *LHS, const SCEV *RHS,
5079 const SCEV *FoundLHS,
5080 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005081 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005082 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5083 case ICmpInst::ICMP_EQ:
5084 case ICmpInst::ICMP_NE:
5085 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5086 return true;
5087 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005088 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005089 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005090 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5091 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005092 return true;
5093 break;
5094 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005095 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005096 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5097 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005098 return true;
5099 break;
5100 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005101 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005102 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5103 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005104 return true;
5105 break;
5106 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005107 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005108 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5109 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005110 return true;
5111 break;
5112 }
5113
5114 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005115}
5116
Dan Gohman51f53b72009-06-21 23:46:38 +00005117/// getBECount - Subtract the end and start values and divide by the step,
5118/// rounding up, to get the number of times the backedge is executed. Return
5119/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005120const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005121 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005122 const SCEV *Step,
5123 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005124 assert(!isKnownNegative(Step) &&
5125 "This code doesn't handle negative strides yet!");
5126
Dan Gohman51f53b72009-06-21 23:46:38 +00005127 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00005128 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
5129 const SCEV *Diff = getMinusSCEV(End, Start);
5130 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005131
5132 // Add an adjustment to the difference between End and Start so that
5133 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005134 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005135
Dan Gohman1f96e672009-09-17 18:05:20 +00005136 if (!NoWrap) {
5137 // Check Add for unsigned overflow.
5138 // TODO: More sophisticated things could be done here.
5139 const Type *WideTy = IntegerType::get(getContext(),
5140 getTypeSizeInBits(Ty) + 1);
5141 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5142 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5143 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5144 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5145 return getCouldNotCompute();
5146 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005147
5148 return getUDivExpr(Add, Step);
5149}
5150
Chris Lattnerdb25de42005-08-15 23:33:51 +00005151/// HowManyLessThans - Return the number of times a backedge containing the
5152/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005153/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005154ScalarEvolution::BackedgeTakenInfo
5155ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5156 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005157 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005158 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005159
Dan Gohman35738ac2009-05-04 22:30:44 +00005160 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005161 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005162 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005163
Dan Gohman1f96e672009-09-17 18:05:20 +00005164 // Check to see if we have a flag which makes analysis easy.
5165 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5166 AddRec->hasNoUnsignedWrap();
5167
Chris Lattnerdb25de42005-08-15 23:33:51 +00005168 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005169 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005170 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005171
Dan Gohman52fddd32010-01-26 04:40:18 +00005172 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005173 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005174 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005175 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005176 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005177 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005178 // value and past the maximum value for its type in a single step.
5179 // Note that it's not sufficient to check NoWrap here, because even
5180 // though the value after a wrap is undefined, it's not undefined
5181 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005182 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005183 // iterate at least until the iteration where the wrapping occurs.
5184 const SCEV *One = getIntegerSCEV(1, Step->getType());
5185 if (isSigned) {
5186 APInt Max = APInt::getSignedMaxValue(BitWidth);
5187 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5188 .slt(getSignedRange(RHS).getSignedMax()))
5189 return getCouldNotCompute();
5190 } else {
5191 APInt Max = APInt::getMaxValue(BitWidth);
5192 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5193 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5194 return getCouldNotCompute();
5195 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005196 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005197 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005198 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005199
Dan Gohmana1af7572009-04-30 20:47:05 +00005200 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5201 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5202 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005203 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005204
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005205 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005206 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005207
Dan Gohmana1af7572009-04-30 20:47:05 +00005208 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005209 const SCEV *MinStart = getConstant(isSigned ?
5210 getSignedRange(Start).getSignedMin() :
5211 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005212
Dan Gohmana1af7572009-04-30 20:47:05 +00005213 // If we know that the condition is true in order to enter the loop,
5214 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005215 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5216 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005217 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005218 if (!isLoopEntryGuardedByCond(L,
5219 isSigned ? ICmpInst::ICMP_SLT :
5220 ICmpInst::ICMP_ULT,
5221 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005222 End = isSigned ? getSMaxExpr(RHS, Start)
5223 : getUMaxExpr(RHS, Start);
5224
5225 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005226 const SCEV *MaxEnd = getConstant(isSigned ?
5227 getSignedRange(End).getSignedMax() :
5228 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005229
Dan Gohman52fddd32010-01-26 04:40:18 +00005230 // If MaxEnd is within a step of the maximum integer value in its type,
5231 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005232 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005233 // compute the correct value.
5234 const SCEV *StepMinusOne = getMinusSCEV(Step,
5235 getIntegerSCEV(1, Step->getType()));
5236 MaxEnd = isSigned ?
5237 getSMinExpr(MaxEnd,
5238 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5239 StepMinusOne)) :
5240 getUMinExpr(MaxEnd,
5241 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5242 StepMinusOne));
5243
Dan Gohmana1af7572009-04-30 20:47:05 +00005244 // Finally, we subtract these two values and divide, rounding up, to get
5245 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005246 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005247
5248 // The maximum backedge count is similar, except using the minimum start
5249 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005250 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005251
5252 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005253 }
5254
Dan Gohman1c343752009-06-27 21:21:31 +00005255 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005256}
5257
Chris Lattner53e677a2004-04-02 20:23:17 +00005258/// getNumIterationsInRange - Return the number of iterations of this loop that
5259/// produce values in the specified constant range. Another way of looking at
5260/// this is that it returns the first iteration number where the value is not in
5261/// the condition, thus computing the exit count. If the iteration count can't
5262/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005263const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005264 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005265 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005266 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005267
5268 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005270 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005271 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005272 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005273 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005274 if (const SCEVAddRecExpr *ShiftedAddRec =
5275 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005276 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005277 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005278 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005279 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005280 }
5281
5282 // The only time we can solve this is when we have all constant indices.
5283 // Otherwise, we cannot determine the overflow conditions.
5284 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5285 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005286 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005287
5288
5289 // Okay at this point we know that all elements of the chrec are constants and
5290 // that the start element is zero.
5291
5292 // First check to see if the range contains zero. If not, the first
5293 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005294 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005295 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005296 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005297
Chris Lattner53e677a2004-04-02 20:23:17 +00005298 if (isAffine()) {
5299 // If this is an affine expression then we have this situation:
5300 // Solve {0,+,A} in Range === Ax in Range
5301
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005302 // We know that zero is in the range. If A is positive then we know that
5303 // the upper value of the range must be the first possible exit value.
5304 // If A is negative then the lower of the range is the last possible loop
5305 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005306 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005307 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5308 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005309
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005310 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005311 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005312 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005313
5314 // Evaluate at the exit value. If we really did fall out of the valid
5315 // range, then we computed our trip count, otherwise wrap around or other
5316 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005317 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005318 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005319 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005320
5321 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005322 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005323 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005324 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005325 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005326 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005327 } else if (isQuadratic()) {
5328 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5329 // quadratic equation to solve it. To do this, we must frame our problem in
5330 // terms of figuring out when zero is crossed, instead of when
5331 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005332 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005333 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005334 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005335
5336 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005337 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005338 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005339 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5340 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005341 if (R1) {
5342 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005343 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005344 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005345 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005346 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005347 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005348
Chris Lattner53e677a2004-04-02 20:23:17 +00005349 // Make sure the root is not off by one. The returned iteration should
5350 // not be in the range, but the previous one should be. When solving
5351 // for "X*X < 5", for example, we should not return a root of 2.
5352 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005353 R1->getValue(),
5354 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005355 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005356 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005357 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005358 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005359
Dan Gohman246b2562007-10-22 18:31:58 +00005360 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005361 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005362 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005363 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005364 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005365
Chris Lattner53e677a2004-04-02 20:23:17 +00005366 // If R1 was not in the range, then it is a good return value. Make
5367 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005368 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005369 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005370 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005371 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005372 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005373 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005374 }
5375 }
5376 }
5377
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005378 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005379}
5380
5381
5382
5383//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005384// SCEVCallbackVH Class Implementation
5385//===----------------------------------------------------------------------===//
5386
Dan Gohman1959b752009-05-19 19:22:47 +00005387void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005388 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005389 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5390 SE->ConstantEvolutionLoopExitValue.erase(PN);
5391 SE->Scalars.erase(getValPtr());
5392 // this now dangles!
5393}
5394
Dan Gohman1959b752009-05-19 19:22:47 +00005395void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005396 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005397
5398 // Forget all the expressions associated with users of the old value,
5399 // so that future queries will recompute the expressions using the new
5400 // value.
5401 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005402 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005403 Value *Old = getValPtr();
5404 bool DeleteOld = false;
5405 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5406 UI != UE; ++UI)
5407 Worklist.push_back(*UI);
5408 while (!Worklist.empty()) {
5409 User *U = Worklist.pop_back_val();
5410 // Deleting the Old value will cause this to dangle. Postpone
5411 // that until everything else is done.
5412 if (U == Old) {
5413 DeleteOld = true;
5414 continue;
5415 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005416 if (!Visited.insert(U))
5417 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005418 if (PHINode *PN = dyn_cast<PHINode>(U))
5419 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005420 SE->Scalars.erase(U);
5421 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5422 UI != UE; ++UI)
5423 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005424 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005425 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005426 if (DeleteOld) {
5427 if (PHINode *PN = dyn_cast<PHINode>(Old))
5428 SE->ConstantEvolutionLoopExitValue.erase(PN);
5429 SE->Scalars.erase(Old);
5430 // this now dangles!
5431 }
5432 // this may dangle!
5433}
5434
Dan Gohman1959b752009-05-19 19:22:47 +00005435ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005436 : CallbackVH(V), SE(se) {}
5437
5438//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005439// ScalarEvolution Class Implementation
5440//===----------------------------------------------------------------------===//
5441
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005442ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005443 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005444}
5445
Chris Lattner53e677a2004-04-02 20:23:17 +00005446bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005447 this->F = &F;
5448 LI = &getAnalysis<LoopInfo>();
5449 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005450 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005451 return false;
5452}
5453
5454void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005455 Scalars.clear();
5456 BackedgeTakenCounts.clear();
5457 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005458 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005459 UniqueSCEVs.clear();
5460 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005461}
5462
5463void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5464 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005465 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005466 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005467}
5468
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005469bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005470 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005471}
5472
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005473static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005474 const Loop *L) {
5475 // Print all inner loops first
5476 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5477 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005478
Dan Gohman30733292010-01-09 18:17:45 +00005479 OS << "Loop ";
5480 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5481 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005482
Dan Gohman5d984912009-12-18 01:14:11 +00005483 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005484 L->getExitBlocks(ExitBlocks);
5485 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005486 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005487
Dan Gohman46bdfb02009-02-24 18:55:53 +00005488 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5489 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005490 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005491 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005492 }
5493
Dan Gohman30733292010-01-09 18:17:45 +00005494 OS << "\n"
5495 "Loop ";
5496 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5497 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005498
5499 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5500 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5501 } else {
5502 OS << "Unpredictable max backedge-taken count. ";
5503 }
5504
5505 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005506}
5507
Dan Gohman5d984912009-12-18 01:14:11 +00005508void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005509 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005510 // out SCEV values of all instructions that are interesting. Doing
5511 // this potentially causes it to create new SCEV objects though,
5512 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005513 // observable from outside the class though, so casting away the
5514 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005515 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005516
Dan Gohman30733292010-01-09 18:17:45 +00005517 OS << "Classifying expressions for: ";
5518 WriteAsOperand(OS, F, /*PrintType=*/false);
5519 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005520 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005521 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005522 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005523 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005524 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005525 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005526
Dan Gohman0c689c52009-06-19 17:49:54 +00005527 const Loop *L = LI->getLoopFor((*I).getParent());
5528
Dan Gohman0bba49c2009-07-07 17:06:11 +00005529 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005530 if (AtUse != SV) {
5531 OS << " --> ";
5532 AtUse->print(OS);
5533 }
5534
5535 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005536 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005537 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005538 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005539 OS << "<<Unknown>>";
5540 } else {
5541 OS << *ExitValue;
5542 }
5543 }
5544
Chris Lattner53e677a2004-04-02 20:23:17 +00005545 OS << "\n";
5546 }
5547
Dan Gohman30733292010-01-09 18:17:45 +00005548 OS << "Determining loop execution counts for: ";
5549 WriteAsOperand(OS, F, /*PrintType=*/false);
5550 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005551 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5552 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005553}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005554