blob: 0d0b9316a378310055f01b1dfe094285ad4afdbf [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Evan Cheng1d451df2010-06-09 18:59:43 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Evan Cheng1d451df2010-06-09 18:59:43 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Evan Cheng1d451df2010-06-09 18:59:43 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Evan Cheng1d451df2010-06-09 18:59:43 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Evan Cheng1d451df2010-06-09 18:59:43 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Evan Cheng1d451df2010-06-09 18:59:43 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Evan Cheng1d451df2010-06-09 18:59:43 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Evan Cheng1d451df2010-06-09 18:59:43 +0000508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
Dan Gohman72861302009-05-07 14:39:04 +0000510
Evan Cheng1d451df2010-06-09 18:59:43 +0000511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523 return false;
524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525 return true;
526
527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
609 llvm_unreachable("Unknown SCEV kind!");
610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Evan Cheng1d451df2010-06-09 18:59:43 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
Evan Cheng1d451df2010-06-09 18:59:43 +0000636 // Do the rough sort by complexity.
637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644 const SCEV *S = Ops[i];
645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
654 if (i == e-2) return; // Done!
655 }
656 }
657 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000826
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000828 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000829 return getTruncateExpr(ST->getOperand(), Ty);
830
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000833 return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
Dan Gohman6864db62009-06-18 16:24:47 +0000839 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000842 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000843 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000845 }
846
Dan Gohmanc050fd92009-07-13 20:50:19 +0000847 // The cast wasn't folded; create an explicit cast node.
848 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000849 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000850 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000852 UniqueSCEVs.InsertNode(S, IP);
853 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000854}
855
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000857 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000858 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000859 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000860 assert(isSCEVable(Ty) &&
861 "This is not a conversion to a SCEVable type!");
862 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000863
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000864 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000865 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000866 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000867 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000869 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000870 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000871
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000873 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000874 return getZeroExtendExpr(SZ->getOperand(), Ty);
875
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000876 // Before doing any expensive analysis, check to see if we've already
877 // computed a SCEV for this Op and Ty.
878 FoldingSetNodeID ID;
879 ID.AddInteger(scZeroExtend);
880 ID.AddPointer(Op);
881 ID.AddPointer(Ty);
882 void *IP = 0;
883 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000888 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000890 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000891 const SCEV *Start = AR->getStart();
892 const SCEV *Step = AR->getStepRecurrence(*this);
893 unsigned BitWidth = getTypeSizeInBits(AR->getType());
894 const Loop *L = AR->getLoop();
895
Dan Gohmaneb490a72009-07-25 01:22:26 +0000896 // If we have special knowledge that this addrec won't overflow,
897 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000898 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000899 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900 getZeroExtendExpr(Step, Ty),
901 L);
902
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // Check whether the backedge-taken count is SCEVCouldNotCompute.
904 // Note that this serves two purposes: It filters out loops that are
905 // simply not analyzable, and it covers the case where this code is
906 // being called from within backedge-taken count analysis, such that
907 // attempting to ask for the backedge-taken count would likely result
908 // in infinite recursion. In the later case, the analysis code will
909 // cope with a conservative value, and it will take care to purge
910 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000911 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000913 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000914 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000915
916 // Check whether the backedge-taken count can be losslessly casted to
917 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000919 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000920 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000921 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000923 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000924 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000925 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000926 const SCEV *Add = getAddExpr(Start, ZMul);
927 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000928 getAddExpr(getZeroExtendExpr(Start, WideTy),
929 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930 getZeroExtendExpr(Step, WideTy)));
931 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000932 // Return the expression with the addrec on the outside.
933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000936
937 // Similar to above, only this time treat the step value as signed.
938 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000939 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000940 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000941 OperandExtendedAdd =
942 getAddExpr(getZeroExtendExpr(Start, WideTy),
943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944 getSignExtendExpr(Step, WideTy)));
945 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 L);
950 }
951
952 // If the backedge is guarded by a comparison with the pre-inc value
953 // the addrec is safe. Also, if the entry is guarded by a comparison
954 // with the start value and the backedge is guarded by a comparison
955 // with the post-inc value, the addrec is safe.
956 if (isKnownPositive(Step)) {
957 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958 getUnsignedRange(Step).getUnsignedMax());
959 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000960 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000961 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962 AR->getPostIncExpr(*this), N)))
963 // Return the expression with the addrec on the outside.
964 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965 getZeroExtendExpr(Step, Ty),
966 L);
967 } else if (isKnownNegative(Step)) {
968 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000970 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
971 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973 AR->getPostIncExpr(*this), N)))
974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976 getSignExtendExpr(Step, Ty),
977 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000978 }
979 }
980 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000981
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000982 // The cast wasn't folded; create an explicit cast node.
983 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000985 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000987 UniqueSCEVs.InsertNode(S, IP);
988 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000989}
990
Dan Gohman0bba49c2009-07-07 17:06:11 +0000991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000992 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000993 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000994 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000995 assert(isSCEVable(Ty) &&
996 "This is not a conversion to a SCEVable type!");
997 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000998
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000999 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001000 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001001 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001002 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001004 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001005 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001006
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001008 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001009 return getSignExtendExpr(SS->getOperand(), Ty);
1010
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001011 // Before doing any expensive analysis, check to see if we've already
1012 // computed a SCEV for this Op and Ty.
1013 FoldingSetNodeID ID;
1014 ID.AddInteger(scSignExtend);
1015 ID.AddPointer(Op);
1016 ID.AddPointer(Ty);
1017 void *IP = 0;
1018 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001023 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001024 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 const SCEV *Start = AR->getStart();
1027 const SCEV *Step = AR->getStepRecurrence(*this);
1028 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029 const Loop *L = AR->getLoop();
1030
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 // If we have special knowledge that this addrec won't overflow,
1032 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001033 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001034 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
1036 L);
1037
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039 // Note that this serves two purposes: It filters out loops that are
1040 // simply not analyzable, and it covers the case where this code is
1041 // being called from within backedge-taken count analysis, such that
1042 // attempting to ask for the backedge-taken count would likely result
1043 // in infinite recursion. In the later case, the analysis code will
1044 // cope with a conservative value, and it will take care to purge
1045 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001046 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001047 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001048 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001050
1051 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001052 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001054 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001055 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001056 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001058 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001059 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001061 const SCEV *Add = getAddExpr(Start, SMul);
1062 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
1064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getSignExtendExpr(Step, WideTy)));
1066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001070 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001071
1072 // Similar to above, only this time treat the step value as unsigned.
1073 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001074 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001075 Add = getAddExpr(Start, UMul);
1076 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001077 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001078 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001080 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001081 // Return the expression with the addrec on the outside.
1082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getZeroExtendExpr(Step, Ty),
1084 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001085 }
1086
1087 // If the backedge is guarded by a comparison with the pre-inc value
1088 // the addrec is safe. Also, if the entry is guarded by a comparison
1089 // with the start value and the backedge is guarded by a comparison
1090 // with the post-inc value, the addrec is safe.
1091 if (isKnownPositive(Step)) {
1092 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093 getSignedRange(Step).getSignedMax());
1094 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001095 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001096 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097 AR->getPostIncExpr(*this), N)))
1098 // Return the expression with the addrec on the outside.
1099 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100 getSignExtendExpr(Step, Ty),
1101 L);
1102 } else if (isKnownNegative(Step)) {
1103 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104 getSignedRange(Step).getSignedMin());
1105 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001106 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108 AR->getPostIncExpr(*this), N)))
1109 // Return the expression with the addrec on the outside.
1110 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111 getSignExtendExpr(Step, Ty),
1112 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001113 }
1114 }
1115 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001116
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001117 // The cast wasn't folded; create an explicit cast node.
1118 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001120 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001122 UniqueSCEVs.InsertNode(S, IP);
1123 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001124}
1125
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001130 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132 "This is not an extending conversion!");
1133 assert(isSCEVable(Ty) &&
1134 "This is not a conversion to a SCEVable type!");
1135 Ty = getEffectiveSCEVType(Ty);
1136
1137 // Sign-extend negative constants.
1138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139 if (SC->getValue()->getValue().isNegative())
1140 return getSignExtendExpr(Op, Ty);
1141
1142 // Peel off a truncate cast.
1143 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001144 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001145 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146 return getAnyExtendExpr(NewOp, Ty);
1147 return getTruncateOrNoop(NewOp, Ty);
1148 }
1149
1150 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001152 if (!isa<SCEVZeroExtendExpr>(ZExt))
1153 return ZExt;
1154
1155 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001157 if (!isa<SCEVSignExtendExpr>(SExt))
1158 return SExt;
1159
Dan Gohmana10756e2010-01-21 02:09:26 +00001160 // Force the cast to be folded into the operands of an addrec.
1161 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162 SmallVector<const SCEV *, 4> Ops;
1163 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164 I != E; ++I)
1165 Ops.push_back(getAnyExtendExpr(*I, Ty));
1166 return getAddRecExpr(Ops, AR->getLoop());
1167 }
1168
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001169 // If the expression is obviously signed, use the sext cast value.
1170 if (isa<SCEVSMaxExpr>(Op))
1171 return SExt;
1172
1173 // Absent any other information, use the zext cast value.
1174 return ZExt;
1175}
1176
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001206 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001207 const APInt &Scale,
1208 ScalarEvolution &SE) {
1209 bool Interesting = false;
1210
Evan Cheng1d451df2010-06-09 18:59:43 +00001211 // Iterate over the add operands.
1212 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001213 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215 APInt NewScale =
1216 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001219 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001220 Interesting |=
1221 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001222 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001223 NewScale, SE);
1224 } else {
1225 // A multiplication of a constant with some other value. Update
1226 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001227 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228 const SCEV *Key = SE.getMulExpr(MulOps);
1229 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001230 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232 NewOps.push_back(Pair.first->first);
1233 } else {
1234 Pair.first->second += NewScale;
1235 // The map already had an entry for this value, which may indicate
1236 // a folding opportunity.
1237 Interesting = true;
1238 }
1239 }
Evan Cheng1d451df2010-06-09 18:59:43 +00001240 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1241 // Pull a buried constant out to the outside.
1242 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1243 Interesting = true;
1244 AccumulatedConstant += Scale * C->getValue()->getValue();
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001245 } else {
1246 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001248 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001250 NewOps.push_back(Pair.first->first);
1251 } else {
1252 Pair.first->second += Scale;
1253 // The map already had an entry for this value, which may indicate
1254 // a folding opportunity.
1255 Interesting = true;
1256 }
1257 }
1258 }
1259
1260 return Interesting;
1261}
1262
1263namespace {
1264 struct APIntCompare {
1265 bool operator()(const APInt &LHS, const APInt &RHS) const {
1266 return LHS.ult(RHS);
1267 }
1268 };
1269}
1270
Dan Gohman6c0866c2009-05-24 23:45:28 +00001271/// getAddExpr - Get a canonical add expression, or something simpler if
1272/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001273const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1274 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001275 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001276 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001277#ifndef NDEBUG
1278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Evan Cheng1d451df2010-06-09 18:59:43 +00001279 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1280 getEffectiveSCEVType(Ops[0]->getType()) &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001281 "SCEVAddExpr operand types don't match!");
1282#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001283
Dan Gohmana10756e2010-01-21 02:09:26 +00001284 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1285 if (!HasNUW && HasNSW) {
1286 bool All = true;
1287 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1288 if (!isKnownNonNegative(Ops[i])) {
1289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Chris Lattner53e677a2004-04-02 20:23:17 +00001321 // Okay, check to see if the same value occurs in the operand list twice. If
1322 // so, merge them together into an multiply expression. Since we sorted the
1323 // list, these values are required to be adjacent.
1324 const Type *Ty = Ops[0]->getType();
1325 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1326 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1327 // Found a match, merge the two values into a multiply, and add any
1328 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001329 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 if (Ops.size() == 2)
1332 return Mul;
1333 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1334 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001335 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 }
1337
Dan Gohman728c7f32009-05-08 21:03:19 +00001338 // Check for truncates. If all the operands are truncated from the same
1339 // type, see if factoring out the truncate would permit the result to be
1340 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1341 // if the contents of the resulting outer trunc fold to something simple.
1342 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1343 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1344 const Type *DstType = Trunc->getType();
1345 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001346 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001347 bool Ok = true;
1348 // Check all the operands to see if they can be represented in the
1349 // source type of the truncate.
1350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1351 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1352 if (T->getOperand()->getType() != SrcType) {
1353 Ok = false;
1354 break;
1355 }
1356 LargeOps.push_back(T->getOperand());
1357 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001358 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001371 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001372 } else {
1373 Ok = false;
1374 break;
1375 }
1376 }
1377 if (Ok)
1378 LargeOps.push_back(getMulExpr(LargeMulOps));
1379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok) {
1385 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001386 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001387 // If it folds to something simple, use it. Otherwise, don't.
1388 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1389 return getTruncateExpr(Fold, DstType);
1390 }
1391 }
1392
1393 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001394 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1395 ++Idx;
1396
1397 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 if (Idx < Ops.size()) {
1399 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001400 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 // If we have an add, expand the add operands onto the end of the operands
1402 // list.
1403 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1404 Ops.erase(Ops.begin()+Idx);
1405 DeletedAdd = true;
1406 }
1407
1408 // If we deleted at least one add, we added operands to the end of the list,
1409 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001410 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001412 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 }
1414
1415 // Skip over the add expression until we get to a multiply.
1416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1417 ++Idx;
1418
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 // Check to see if there are any folding opportunities present with
1420 // operands multiplied by constant values.
1421 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1422 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 DenseMap<const SCEV *, APInt> M;
1424 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 APInt AccumulatedConstant(BitWidth, 0);
1426 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001427 Ops.data(), Ops.size(),
1428 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 // Some interesting folding opportunity is present, so its worthwhile to
1430 // re-generate the operands list. Group the operands by constant scale,
1431 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1433 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 E = NewOps.end(); I != E; ++I)
1435 MulOpLists[M.find(*I)->second].push_back(*I);
1436 // Re-generate the operands list.
1437 Ops.clear();
1438 if (AccumulatedConstant != 0)
1439 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001440 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1441 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 Ops.push_back(getMulExpr(getConstant(I->first),
1444 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001446 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 if (Ops.size() == 1)
1448 return Ops[0];
1449 return getAddExpr(Ops);
1450 }
1451 }
1452
Chris Lattner53e677a2004-04-02 20:23:17 +00001453 // If we are adding something to a multiply expression, make sure the
1454 // something is not already an operand of the multiply. If so, merge it into
1455 // the multiply.
1456 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001457 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001461 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001463 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 if (Mul->getNumOperands() != 2) {
1465 // If the multiply has more than two operands, we must get the
1466 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001467 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001469 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001471 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001472 const SCEV *AddOne = getAddExpr(InnerMul, One);
1473 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 if (Ops.size() == 2) return OuterMul;
1475 if (AddOp < Idx) {
1476 Ops.erase(Ops.begin()+AddOp);
1477 Ops.erase(Ops.begin()+Idx-1);
1478 } else {
1479 Ops.erase(Ops.begin()+Idx);
1480 Ops.erase(Ops.begin()+AddOp-1);
1481 }
1482 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001483 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001485
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 // Check this multiply against other multiplies being added together.
1487 for (unsigned OtherMulIdx = Idx+1;
1488 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1489 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001490 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 // If MulOp occurs in OtherMul, we can fold the two multiplies
1492 // together.
1493 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1494 OMulOp != e; ++OMulOp)
1495 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1496 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001497 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001499 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1500 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001504 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001506 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1507 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001509 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001511 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1512 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 if (Ops.size() == 2) return OuterMul;
1514 Ops.erase(Ops.begin()+Idx);
1515 Ops.erase(Ops.begin()+OtherMulIdx-1);
1516 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001517 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 }
1519 }
1520 }
1521 }
1522
1523 // If there are any add recurrences in the operands list, see if any other
1524 // added values are loop invariant. If so, we can fold them into the
1525 // recurrence.
1526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1527 ++Idx;
1528
1529 // Scan over all recurrences, trying to fold loop invariants into them.
1530 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1531 // Scan all of the other operands to this add and add them to the vector if
1532 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001534 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001535 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001537 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 LIOps.push_back(Ops[i]);
1539 Ops.erase(Ops.begin()+i);
1540 --i; --e;
1541 }
1542
1543 // If we found some loop invariants, fold them into the recurrence.
1544 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001545 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 LIOps.push_back(AddRec->getStart());
1547
Dan Gohman0bba49c2009-07-07 17:06:11 +00001548 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001549 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001550 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001551
Dan Gohman355b4f32009-12-19 01:46:34 +00001552 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001553 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001554 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001555
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 // If all of the other operands were loop invariant, we are done.
1557 if (Ops.size() == 1) return NewRec;
1558
1559 // Otherwise, add the folded AddRec by the non-liv parts.
1560 for (unsigned i = 0;; ++i)
1561 if (Ops[i] == AddRec) {
1562 Ops[i] = NewRec;
1563 break;
1564 }
Dan Gohman246b2562007-10-22 18:31:58 +00001565 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 }
1567
1568 // Okay, if there weren't any loop invariants to be folded, check to see if
1569 // there are multiple AddRec's with the same loop induction variable being
1570 // added together. If so, we can fold them.
1571 for (unsigned OtherIdx = Idx+1;
1572 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001574 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001575 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001577 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1578 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1580 if (i >= NewOps.size()) {
1581 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1582 OtherAddRec->op_end());
1583 break;
1584 }
Dan Gohman246b2562007-10-22 18:31:58 +00001585 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001587 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588
1589 if (Ops.size() == 2) return NewAddRec;
1590
1591 Ops.erase(Ops.begin()+Idx);
1592 Ops.erase(Ops.begin()+OtherIdx-1);
1593 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001594 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 }
1596 }
1597
1598 // Otherwise couldn't fold anything into this recurrence. Move onto the
1599 // next one.
1600 }
1601
1602 // Okay, it looks like we really DO need an add expr. Check to see if we
1603 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001604 FoldingSetNodeID ID;
1605 ID.AddInteger(scAddExpr);
1606 ID.AddInteger(Ops.size());
1607 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1608 ID.AddPointer(Ops[i]);
1609 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001610 SCEVAddExpr *S =
1611 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1612 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001613 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1614 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001615 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1616 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001617 UniqueSCEVs.InsertNode(S, IP);
1618 }
Dan Gohman3645b012009-10-09 00:10:36 +00001619 if (HasNUW) S->setHasNoUnsignedWrap(true);
1620 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001621 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001622}
1623
Dan Gohman6c0866c2009-05-24 23:45:28 +00001624/// getMulExpr - Get a canonical multiply expression, or something simpler if
1625/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001626const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1627 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001628 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001630#ifndef NDEBUG
1631 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1632 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1633 getEffectiveSCEVType(Ops[0]->getType()) &&
1634 "SCEVMulExpr operand types don't match!");
1635#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001636
Dan Gohmana10756e2010-01-21 02:09:26 +00001637 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1638 if (!HasNUW && HasNSW) {
1639 bool All = true;
1640 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641 if (!isKnownNonNegative(Ops[i])) {
1642 All = false;
1643 break;
1644 }
1645 if (All) HasNUW = true;
1646 }
1647
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001649 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001650
1651 // If there are any constants, fold them together.
1652 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001653 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001654
1655 // C1*(C2+V) -> C1*C2 + C1*V
1656 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001657 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 if (Add->getNumOperands() == 2 &&
1659 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1661 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001664 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001666 ConstantInt *Fold = ConstantInt::get(getContext(),
1667 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001668 RHSC->getValue()->getValue());
1669 Ops[0] = getConstant(Fold);
1670 Ops.erase(Ops.begin()+1); // Erase the folded element
1671 if (Ops.size() == 1) return Ops[0];
1672 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
1674
1675 // If we are left with a constant one being multiplied, strip it off.
1676 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1677 Ops.erase(Ops.begin());
1678 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001679 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 // If we have a multiply of zero, it will always be zero.
1681 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001682 } else if (Ops[0]->isAllOnesValue()) {
1683 // If we have a mul by -1 of an add, try distributing the -1 among the
1684 // add operands.
1685 if (Ops.size() == 2)
1686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1687 SmallVector<const SCEV *, 4> NewOps;
1688 bool AnyFolded = false;
1689 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1690 I != E; ++I) {
1691 const SCEV *Mul = getMulExpr(Ops[0], *I);
1692 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1693 NewOps.push_back(Mul);
1694 }
1695 if (AnyFolded)
1696 return getAddExpr(NewOps);
1697 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001699
1700 if (Ops.size() == 1)
1701 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 }
1703
1704 // Skip over the add expression until we get to a multiply.
1705 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1706 ++Idx;
1707
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 // If there are mul operands inline them all into this expression.
1709 if (Idx < Ops.size()) {
1710 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001711 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 // If we have an mul, expand the mul operands onto the end of the operands
1713 // list.
1714 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1715 Ops.erase(Ops.begin()+Idx);
1716 DeletedMul = true;
1717 }
1718
1719 // If we deleted at least one mul, we added operands to the end of the list,
1720 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001721 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001723 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001724 }
1725
1726 // If there are any add recurrences in the operands list, see if any other
1727 // added values are loop invariant. If so, we can fold them into the
1728 // recurrence.
1729 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1730 ++Idx;
1731
1732 // Scan over all recurrences, trying to fold loop invariants into them.
1733 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1734 // Scan all of the other operands to this mul and add them to the vector if
1735 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001736 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001737 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1739 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1740 LIOps.push_back(Ops[i]);
1741 Ops.erase(Ops.begin()+i);
1742 --i; --e;
1743 }
1744
1745 // If we found some loop invariants, fold them into the recurrence.
1746 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001747 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001748 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001749 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001750 const SCEV *Scale = getMulExpr(LIOps);
1751 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1752 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001753
Dan Gohman355b4f32009-12-19 01:46:34 +00001754 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001755 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001756 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1757 HasNUW && AddRec->hasNoUnsignedWrap(),
1758 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001759
1760 // If all of the other operands were loop invariant, we are done.
1761 if (Ops.size() == 1) return NewRec;
1762
1763 // Otherwise, multiply the folded AddRec by the non-liv parts.
1764 for (unsigned i = 0;; ++i)
1765 if (Ops[i] == AddRec) {
1766 Ops[i] = NewRec;
1767 break;
1768 }
Dan Gohman246b2562007-10-22 18:31:58 +00001769 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001770 }
1771
1772 // Okay, if there weren't any loop invariants to be folded, check to see if
1773 // there are multiple AddRec's with the same loop induction variable being
1774 // multiplied together. If so, we can fold them.
1775 for (unsigned OtherIdx = Idx+1;
1776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1777 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001778 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1780 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001781 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001782 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001783 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001784 const SCEV *B = F->getStepRecurrence(*this);
1785 const SCEV *D = G->getStepRecurrence(*this);
1786 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001787 getMulExpr(G, B),
1788 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001789 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001790 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 if (Ops.size() == 2) return NewAddRec;
1792
1793 Ops.erase(Ops.begin()+Idx);
1794 Ops.erase(Ops.begin()+OtherIdx-1);
1795 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001796 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 }
1798 }
1799
1800 // Otherwise couldn't fold anything into this recurrence. Move onto the
1801 // next one.
1802 }
1803
1804 // Okay, it looks like we really DO need an mul expr. Check to see if we
1805 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001806 FoldingSetNodeID ID;
1807 ID.AddInteger(scMulExpr);
1808 ID.AddInteger(Ops.size());
1809 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1810 ID.AddPointer(Ops[i]);
1811 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001812 SCEVMulExpr *S =
1813 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1814 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001815 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1816 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001817 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1818 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001819 UniqueSCEVs.InsertNode(S, IP);
1820 }
Dan Gohman3645b012009-10-09 00:10:36 +00001821 if (HasNUW) S->setHasNoUnsignedWrap(true);
1822 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001823 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001824}
1825
Andreas Bolka8a11c982009-08-07 22:55:26 +00001826/// getUDivExpr - Get a canonical unsigned division expression, or something
1827/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001828const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1829 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001830 assert(getEffectiveSCEVType(LHS->getType()) ==
1831 getEffectiveSCEVType(RHS->getType()) &&
1832 "SCEVUDivExpr operand types don't match!");
1833
Dan Gohman622ed672009-05-04 22:02:23 +00001834 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001835 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001836 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001837 // If the denominator is zero, the result of the udiv is undefined. Don't
1838 // try to analyze it, because the resolution chosen here may differ from
1839 // the resolution chosen in other parts of the compiler.
1840 if (!RHSC->getValue()->isZero()) {
1841 // Determine if the division can be folded into the operands of
1842 // its operands.
1843 // TODO: Generalize this to non-constants by using known-bits information.
1844 const Type *Ty = LHS->getType();
1845 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1846 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1847 // For non-power-of-two values, effectively round the value up to the
1848 // nearest power of two.
1849 if (!RHSC->getValue()->getValue().isPowerOf2())
1850 ++MaxShiftAmt;
1851 const IntegerType *ExtTy =
1852 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1853 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1854 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1855 if (const SCEVConstant *Step =
1856 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1857 if (!Step->getValue()->getValue()
1858 .urem(RHSC->getValue()->getValue()) &&
1859 getZeroExtendExpr(AR, ExtTy) ==
1860 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1861 getZeroExtendExpr(Step, ExtTy),
1862 AR->getLoop())) {
1863 SmallVector<const SCEV *, 4> Operands;
1864 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1865 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1866 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001867 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001868 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1869 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1870 SmallVector<const SCEV *, 4> Operands;
1871 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1872 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1873 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1874 // Find an operand that's safely divisible.
1875 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1876 const SCEV *Op = M->getOperand(i);
1877 const SCEV *Div = getUDivExpr(Op, RHSC);
1878 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1879 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1880 M->op_end());
1881 Operands[i] = Div;
1882 return getMulExpr(Operands);
1883 }
1884 }
Dan Gohman185cf032009-05-08 20:18:49 +00001885 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001886 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1887 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1888 SmallVector<const SCEV *, 4> Operands;
1889 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1890 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1891 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1892 Operands.clear();
1893 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1894 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1895 if (isa<SCEVUDivExpr>(Op) ||
1896 getMulExpr(Op, RHS) != A->getOperand(i))
1897 break;
1898 Operands.push_back(Op);
1899 }
1900 if (Operands.size() == A->getNumOperands())
1901 return getAddExpr(Operands);
1902 }
1903 }
Dan Gohman185cf032009-05-08 20:18:49 +00001904
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001905 // Fold if both operands are constant.
1906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1907 Constant *LHSCV = LHSC->getValue();
1908 Constant *RHSCV = RHSC->getValue();
1909 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1910 RHSCV)));
1911 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001912 }
1913 }
1914
Dan Gohman1c343752009-06-27 21:21:31 +00001915 FoldingSetNodeID ID;
1916 ID.AddInteger(scUDivExpr);
1917 ID.AddPointer(LHS);
1918 ID.AddPointer(RHS);
1919 void *IP = 0;
1920 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001921 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1922 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001923 UniqueSCEVs.InsertNode(S, IP);
1924 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001925}
1926
1927
Dan Gohman6c0866c2009-05-24 23:45:28 +00001928/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1929/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001930const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001931 const SCEV *Step, const Loop *L,
1932 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001934 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001935 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001936 if (StepChrec->getLoop() == L) {
1937 Operands.insert(Operands.end(), StepChrec->op_begin(),
1938 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001939 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001940 }
1941
1942 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001943 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001944}
1945
Dan Gohman6c0866c2009-05-24 23:45:28 +00001946/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1947/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001948const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001949ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001950 const Loop *L,
1951 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001952 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001953#ifndef NDEBUG
1954 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1955 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1956 getEffectiveSCEVType(Operands[0]->getType()) &&
1957 "SCEVAddRecExpr operand types don't match!");
1958#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001959
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001960 if (Operands.back()->isZero()) {
1961 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001962 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001963 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001964
Dan Gohmanbc028532010-02-19 18:49:22 +00001965 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1966 // use that information to infer NUW and NSW flags. However, computing a
1967 // BE count requires calling getAddRecExpr, so we may not yet have a
1968 // meaningful BE count at this point (and if we don't, we'd be stuck
1969 // with a SCEVCouldNotCompute as the cached BE count).
1970
Dan Gohmana10756e2010-01-21 02:09:26 +00001971 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1972 if (!HasNUW && HasNSW) {
1973 bool All = true;
1974 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1975 if (!isKnownNonNegative(Operands[i])) {
1976 All = false;
1977 break;
1978 }
1979 if (All) HasNUW = true;
1980 }
1981
Dan Gohmand9cc7492008-08-08 18:33:12 +00001982 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001983 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001984 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001985 if (L->contains(NestedLoop->getHeader()) ?
1986 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1987 (!NestedLoop->contains(L->getHeader()) &&
1988 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001989 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001990 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001991 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001992 // AddRecs require their operands be loop-invariant with respect to their
1993 // loops. Don't perform this transformation if it would break this
1994 // requirement.
1995 bool AllInvariant = true;
1996 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1997 if (!Operands[i]->isLoopInvariant(L)) {
1998 AllInvariant = false;
1999 break;
2000 }
2001 if (AllInvariant) {
2002 NestedOperands[0] = getAddRecExpr(Operands, L);
2003 AllInvariant = true;
2004 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2005 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2006 AllInvariant = false;
2007 break;
2008 }
2009 if (AllInvariant)
2010 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002011 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002012 }
2013 // Reset Operands to its original state.
2014 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002015 }
2016 }
2017
Dan Gohman67847532010-01-19 22:27:22 +00002018 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2019 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002020 FoldingSetNodeID ID;
2021 ID.AddInteger(scAddRecExpr);
2022 ID.AddInteger(Operands.size());
2023 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2024 ID.AddPointer(Operands[i]);
2025 ID.AddPointer(L);
2026 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002027 SCEVAddRecExpr *S =
2028 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2029 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002030 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2031 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002032 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2033 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002034 UniqueSCEVs.InsertNode(S, IP);
2035 }
Dan Gohman3645b012009-10-09 00:10:36 +00002036 if (HasNUW) S->setHasNoUnsignedWrap(true);
2037 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002038 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002039}
2040
Dan Gohman9311ef62009-06-24 14:49:00 +00002041const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2042 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002043 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002044 Ops.push_back(LHS);
2045 Ops.push_back(RHS);
2046 return getSMaxExpr(Ops);
2047}
2048
Dan Gohman0bba49c2009-07-07 17:06:11 +00002049const SCEV *
2050ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002051 assert(!Ops.empty() && "Cannot get empty smax!");
2052 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002053#ifndef NDEBUG
2054 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2055 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2056 getEffectiveSCEVType(Ops[0]->getType()) &&
2057 "SCEVSMaxExpr operand types don't match!");
2058#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002059
2060 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002061 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002062
2063 // If there are any constants, fold them together.
2064 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002065 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002066 ++Idx;
2067 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002068 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002069 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002070 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002071 APIntOps::smax(LHSC->getValue()->getValue(),
2072 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002073 Ops[0] = getConstant(Fold);
2074 Ops.erase(Ops.begin()+1); // Erase the folded element
2075 if (Ops.size() == 1) return Ops[0];
2076 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002077 }
2078
Dan Gohmane5aceed2009-06-24 14:46:22 +00002079 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002080 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2081 Ops.erase(Ops.begin());
2082 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002083 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2084 // If we have an smax with a constant maximum-int, it will always be
2085 // maximum-int.
2086 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002087 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002088
Dan Gohman3ab13122010-04-13 16:49:23 +00002089 if (Ops.size() == 1) return Ops[0];
2090 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002091
2092 // Find the first SMax
2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2094 ++Idx;
2095
2096 // Check to see if one of the operands is an SMax. If so, expand its operands
2097 // onto our operand list, and recurse to simplify.
2098 if (Idx < Ops.size()) {
2099 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002100 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002101 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2102 Ops.erase(Ops.begin()+Idx);
2103 DeletedSMax = true;
2104 }
2105
2106 if (DeletedSMax)
2107 return getSMaxExpr(Ops);
2108 }
2109
2110 // Okay, check to see if the same value occurs in the operand list twice. If
2111 // so, delete one. Since we sorted the list, these values are required to
2112 // be adjacent.
2113 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002114 // X smax Y smax Y --> X smax Y
2115 // X smax Y --> X, if X is always greater than Y
2116 if (Ops[i] == Ops[i+1] ||
2117 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2118 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2119 --i; --e;
2120 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002121 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2122 --i; --e;
2123 }
2124
2125 if (Ops.size() == 1) return Ops[0];
2126
2127 assert(!Ops.empty() && "Reduced smax down to nothing!");
2128
Nick Lewycky3e630762008-02-20 06:48:22 +00002129 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002130 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002131 FoldingSetNodeID ID;
2132 ID.AddInteger(scSMaxExpr);
2133 ID.AddInteger(Ops.size());
2134 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2135 ID.AddPointer(Ops[i]);
2136 void *IP = 0;
2137 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002138 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2139 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002140 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2141 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002142 UniqueSCEVs.InsertNode(S, IP);
2143 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002144}
2145
Dan Gohman9311ef62009-06-24 14:49:00 +00002146const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2147 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002148 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002149 Ops.push_back(LHS);
2150 Ops.push_back(RHS);
2151 return getUMaxExpr(Ops);
2152}
2153
Dan Gohman0bba49c2009-07-07 17:06:11 +00002154const SCEV *
2155ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002156 assert(!Ops.empty() && "Cannot get empty umax!");
2157 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002158#ifndef NDEBUG
2159 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2160 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2161 getEffectiveSCEVType(Ops[0]->getType()) &&
2162 "SCEVUMaxExpr operand types don't match!");
2163#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002164
2165 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002166 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002167
2168 // If there are any constants, fold them together.
2169 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002170 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002171 ++Idx;
2172 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002173 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002174 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002175 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002176 APIntOps::umax(LHSC->getValue()->getValue(),
2177 RHSC->getValue()->getValue()));
2178 Ops[0] = getConstant(Fold);
2179 Ops.erase(Ops.begin()+1); // Erase the folded element
2180 if (Ops.size() == 1) return Ops[0];
2181 LHSC = cast<SCEVConstant>(Ops[0]);
2182 }
2183
Dan Gohmane5aceed2009-06-24 14:46:22 +00002184 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002185 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2186 Ops.erase(Ops.begin());
2187 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002188 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2189 // If we have an umax with a constant maximum-int, it will always be
2190 // maximum-int.
2191 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002192 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002193
Dan Gohman3ab13122010-04-13 16:49:23 +00002194 if (Ops.size() == 1) return Ops[0];
2195 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002196
2197 // Find the first UMax
2198 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2199 ++Idx;
2200
2201 // Check to see if one of the operands is a UMax. If so, expand its operands
2202 // onto our operand list, and recurse to simplify.
2203 if (Idx < Ops.size()) {
2204 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002205 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002206 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2207 Ops.erase(Ops.begin()+Idx);
2208 DeletedUMax = true;
2209 }
2210
2211 if (DeletedUMax)
2212 return getUMaxExpr(Ops);
2213 }
2214
2215 // Okay, check to see if the same value occurs in the operand list twice. If
2216 // so, delete one. Since we sorted the list, these values are required to
2217 // be adjacent.
2218 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002219 // X umax Y umax Y --> X umax Y
2220 // X umax Y --> X, if X is always greater than Y
2221 if (Ops[i] == Ops[i+1] ||
2222 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2223 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2224 --i; --e;
2225 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002226 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2227 --i; --e;
2228 }
2229
2230 if (Ops.size() == 1) return Ops[0];
2231
2232 assert(!Ops.empty() && "Reduced umax down to nothing!");
2233
2234 // Okay, it looks like we really DO need a umax expr. Check to see if we
2235 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002236 FoldingSetNodeID ID;
2237 ID.AddInteger(scUMaxExpr);
2238 ID.AddInteger(Ops.size());
2239 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2240 ID.AddPointer(Ops[i]);
2241 void *IP = 0;
2242 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002243 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2244 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002245 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2246 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002247 UniqueSCEVs.InsertNode(S, IP);
2248 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002249}
2250
Dan Gohman9311ef62009-06-24 14:49:00 +00002251const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2252 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002253 // ~smax(~x, ~y) == smin(x, y).
2254 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2255}
2256
Dan Gohman9311ef62009-06-24 14:49:00 +00002257const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2258 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002259 // ~umax(~x, ~y) == umin(x, y)
2260 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2261}
2262
Dan Gohman4f8eea82010-02-01 18:27:38 +00002263const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002264 // If we have TargetData, we can bypass creating a target-independent
2265 // constant expression and then folding it back into a ConstantInt.
2266 // This is just a compile-time optimization.
2267 if (TD)
2268 return getConstant(TD->getIntPtrType(getContext()),
2269 TD->getTypeAllocSize(AllocTy));
2270
Dan Gohman4f8eea82010-02-01 18:27:38 +00002271 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2272 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002273 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2274 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002275 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2276 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2277}
2278
2279const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2280 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2281 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002282 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2283 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002284 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2285 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2286}
2287
2288const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2289 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002290 // If we have TargetData, we can bypass creating a target-independent
2291 // constant expression and then folding it back into a ConstantInt.
2292 // This is just a compile-time optimization.
2293 if (TD)
2294 return getConstant(TD->getIntPtrType(getContext()),
2295 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2296
Dan Gohman0f5efe52010-01-28 02:15:55 +00002297 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002299 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2300 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002301 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002302 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002303}
2304
Dan Gohman4f8eea82010-02-01 18:27:38 +00002305const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2306 Constant *FieldNo) {
2307 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002308 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002309 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2310 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002311 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002312 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002313}
2314
Dan Gohman0bba49c2009-07-07 17:06:11 +00002315const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002316 // Don't attempt to do anything other than create a SCEVUnknown object
2317 // here. createSCEV only calls getUnknown after checking for all other
2318 // interesting possibilities, and any other code that calls getUnknown
2319 // is doing so in order to hide a value from SCEV canonicalization.
2320
Dan Gohman1c343752009-06-27 21:21:31 +00002321 FoldingSetNodeID ID;
2322 ID.AddInteger(scUnknown);
2323 ID.AddPointer(V);
2324 void *IP = 0;
2325 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Evan Cheng1d451df2010-06-09 18:59:43 +00002326 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002327 UniqueSCEVs.InsertNode(S, IP);
2328 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002329}
2330
Chris Lattner53e677a2004-04-02 20:23:17 +00002331//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002332// Basic SCEV Analysis and PHI Idiom Recognition Code
2333//
2334
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002335/// isSCEVable - Test if values of the given type are analyzable within
2336/// the SCEV framework. This primarily includes integer types, and it
2337/// can optionally include pointer types if the ScalarEvolution class
2338/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002339bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002340 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002341 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002342}
2343
2344/// getTypeSizeInBits - Return the size in bits of the specified type,
2345/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002346uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002347 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2348
2349 // If we have a TargetData, use it!
2350 if (TD)
2351 return TD->getTypeSizeInBits(Ty);
2352
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002353 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002354 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002355 return Ty->getPrimitiveSizeInBits();
2356
2357 // The only other support type is pointer. Without TargetData, conservatively
2358 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002359 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002360 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002361}
2362
2363/// getEffectiveSCEVType - Return a type with the same bitwidth as
2364/// the given type and which represents how SCEV will treat the given
2365/// type, for which isSCEVable must return true. For pointer types,
2366/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002367const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002368 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2369
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002370 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002371 return Ty;
2372
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002373 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002374 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002375 if (TD) return TD->getIntPtrType(getContext());
2376
2377 // Without TargetData, conservatively assume pointers are 64-bit.
2378 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002379}
Chris Lattner53e677a2004-04-02 20:23:17 +00002380
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002382 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002383}
2384
Chris Lattner53e677a2004-04-02 20:23:17 +00002385/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2386/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002387const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002388 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002389
Dan Gohman0bba49c2009-07-07 17:06:11 +00002390 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002391 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002392 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002393 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002394 return S;
2395}
2396
Dan Gohman6bbcba12009-06-24 00:54:57 +00002397/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002398/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002399const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002400 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002401 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002402}
2403
2404/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2405///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002406const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002407 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002408 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002409 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002410
2411 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002412 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002413 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002414 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002415}
2416
2417/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002418const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002419 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002420 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002421 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002422
2423 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002424 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002425 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002426 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002427 return getMinusSCEV(AllOnes, V);
2428}
2429
2430/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2431///
Dan Gohman9311ef62009-06-24 14:49:00 +00002432const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2433 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002434 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002435 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002436}
2437
2438/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2439/// input value to the specified type. If the type must be extended, it is zero
2440/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002441const SCEV *
2442ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002443 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002444 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002445 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2446 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002447 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002448 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002449 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002450 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002451 return getTruncateExpr(V, Ty);
2452 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002453}
2454
2455/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2456/// input value to the specified type. If the type must be extended, it is sign
2457/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002458const SCEV *
2459ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002460 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002461 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002462 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2463 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002464 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002465 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002466 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002467 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002468 return getTruncateExpr(V, Ty);
2469 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002470}
2471
Dan Gohman467c4302009-05-13 03:46:30 +00002472/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2473/// input value to the specified type. If the type must be extended, it is zero
2474/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002475const SCEV *
2476ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002477 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002478 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2479 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002480 "Cannot noop or zero extend with non-integer arguments!");
2481 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2482 "getNoopOrZeroExtend cannot truncate!");
2483 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2484 return V; // No conversion
2485 return getZeroExtendExpr(V, Ty);
2486}
2487
2488/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2489/// input value to the specified type. If the type must be extended, it is sign
2490/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002491const SCEV *
2492ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002493 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002494 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2495 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002496 "Cannot noop or sign extend with non-integer arguments!");
2497 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2498 "getNoopOrSignExtend cannot truncate!");
2499 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2500 return V; // No conversion
2501 return getSignExtendExpr(V, Ty);
2502}
2503
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002504/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2505/// the input value to the specified type. If the type must be extended,
2506/// it is extended with unspecified bits. The conversion must not be
2507/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002508const SCEV *
2509ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002510 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002511 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2512 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002513 "Cannot noop or any extend with non-integer arguments!");
2514 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2515 "getNoopOrAnyExtend cannot truncate!");
2516 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2517 return V; // No conversion
2518 return getAnyExtendExpr(V, Ty);
2519}
2520
Dan Gohman467c4302009-05-13 03:46:30 +00002521/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2522/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002523const SCEV *
2524ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002525 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002526 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2527 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002528 "Cannot truncate or noop with non-integer arguments!");
2529 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2530 "getTruncateOrNoop cannot extend!");
2531 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2532 return V; // No conversion
2533 return getTruncateExpr(V, Ty);
2534}
2535
Dan Gohmana334aa72009-06-22 00:31:57 +00002536/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2537/// the types using zero-extension, and then perform a umax operation
2538/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002539const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2540 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002541 const SCEV *PromotedLHS = LHS;
2542 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002543
2544 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2545 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2546 else
2547 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2548
2549 return getUMaxExpr(PromotedLHS, PromotedRHS);
2550}
2551
Dan Gohmanc9759e82009-06-22 15:03:27 +00002552/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2553/// the types using zero-extension, and then perform a umin operation
2554/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002555const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2556 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002557 const SCEV *PromotedLHS = LHS;
2558 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002559
2560 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2561 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2562 else
2563 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2564
2565 return getUMinExpr(PromotedLHS, PromotedRHS);
2566}
2567
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002568/// PushDefUseChildren - Push users of the given Instruction
2569/// onto the given Worklist.
2570static void
2571PushDefUseChildren(Instruction *I,
2572 SmallVectorImpl<Instruction *> &Worklist) {
2573 // Push the def-use children onto the Worklist stack.
2574 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2575 UI != UE; ++UI)
2576 Worklist.push_back(cast<Instruction>(UI));
2577}
2578
2579/// ForgetSymbolicValue - This looks up computed SCEV values for all
2580/// instructions that depend on the given instruction and removes them from
2581/// the Scalars map if they reference SymName. This is used during PHI
2582/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002583void
Dan Gohman85669632010-02-25 06:57:05 +00002584ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002585 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002586 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002587
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002588 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002589 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002590 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002591 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002592 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002593
Dan Gohman5d984912009-12-18 01:14:11 +00002594 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002595 Scalars.find(static_cast<Value *>(I));
2596 if (It != Scalars.end()) {
2597 // Short-circuit the def-use traversal if the symbolic name
2598 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002599 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002600 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002601
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002602 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002603 // structure, it's a PHI that's in the progress of being computed
2604 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2605 // additional loop trip count information isn't going to change anything.
2606 // In the second case, createNodeForPHI will perform the necessary
2607 // updates on its own when it gets to that point. In the third, we do
2608 // want to forget the SCEVUnknown.
2609 if (!isa<PHINode>(I) ||
2610 !isa<SCEVUnknown>(It->second) ||
2611 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002612 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002613 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002614 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002615 }
2616
2617 PushDefUseChildren(I, Worklist);
2618 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002619}
Chris Lattner53e677a2004-04-02 20:23:17 +00002620
2621/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2622/// a loop header, making it a potential recurrence, or it doesn't.
2623///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002624const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002625 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2626 if (L->getHeader() == PN->getParent()) {
2627 // The loop may have multiple entrances or multiple exits; we can analyze
2628 // this phi as an addrec if it has a unique entry value and a unique
2629 // backedge value.
2630 Value *BEValueV = 0, *StartValueV = 0;
2631 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2632 Value *V = PN->getIncomingValue(i);
2633 if (L->contains(PN->getIncomingBlock(i))) {
2634 if (!BEValueV) {
2635 BEValueV = V;
2636 } else if (BEValueV != V) {
2637 BEValueV = 0;
2638 break;
2639 }
2640 } else if (!StartValueV) {
2641 StartValueV = V;
2642 } else if (StartValueV != V) {
2643 StartValueV = 0;
2644 break;
2645 }
2646 }
2647 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002648 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002649 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002650 assert(Scalars.find(PN) == Scalars.end() &&
2651 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002652 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002653
2654 // Using this symbolic name for the PHI, analyze the value coming around
2655 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002656 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002657
2658 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2659 // has a special value for the first iteration of the loop.
2660
2661 // If the value coming around the backedge is an add with the symbolic
2662 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002663 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002664 // If there is a single occurrence of the symbolic value, replace it
2665 // with a recurrence.
2666 unsigned FoundIndex = Add->getNumOperands();
2667 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2668 if (Add->getOperand(i) == SymbolicName)
2669 if (FoundIndex == e) {
2670 FoundIndex = i;
2671 break;
2672 }
2673
2674 if (FoundIndex != Add->getNumOperands()) {
2675 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002676 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002677 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2678 if (i != FoundIndex)
2679 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002680 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002681
2682 // This is not a valid addrec if the step amount is varying each
2683 // loop iteration, but is not itself an addrec in this loop.
2684 if (Accum->isLoopInvariant(L) ||
2685 (isa<SCEVAddRecExpr>(Accum) &&
2686 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002687 bool HasNUW = false;
2688 bool HasNSW = false;
2689
2690 // If the increment doesn't overflow, then neither the addrec nor
2691 // the post-increment will overflow.
2692 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2693 if (OBO->hasNoUnsignedWrap())
2694 HasNUW = true;
2695 if (OBO->hasNoSignedWrap())
2696 HasNSW = true;
2697 }
2698
Dan Gohman27dead42010-04-12 07:49:36 +00002699 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002700 const SCEV *PHISCEV =
2701 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002702
Dan Gohmana10756e2010-01-21 02:09:26 +00002703 // Since the no-wrap flags are on the increment, they apply to the
2704 // post-incremented value as well.
2705 if (Accum->isLoopInvariant(L))
2706 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2707 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002708
2709 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002710 // to be symbolic. We now need to go back and purge all of the
2711 // entries for the scalars that use the symbolic expression.
2712 ForgetSymbolicName(PN, SymbolicName);
2713 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002714 return PHISCEV;
2715 }
2716 }
Dan Gohman622ed672009-05-04 22:02:23 +00002717 } else if (const SCEVAddRecExpr *AddRec =
2718 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002719 // Otherwise, this could be a loop like this:
2720 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2721 // In this case, j = {1,+,1} and BEValue is j.
2722 // Because the other in-value of i (0) fits the evolution of BEValue
2723 // i really is an addrec evolution.
2724 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002725 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002726
2727 // If StartVal = j.start - j.stride, we can use StartVal as the
2728 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002729 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002730 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002731 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002732 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002733
2734 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002735 // to be symbolic. We now need to go back and purge all of the
2736 // entries for the scalars that use the symbolic expression.
2737 ForgetSymbolicName(PN, SymbolicName);
2738 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002739 return PHISCEV;
2740 }
2741 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002742 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002743 }
Dan Gohman27dead42010-04-12 07:49:36 +00002744 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002745
Dan Gohman85669632010-02-25 06:57:05 +00002746 // If the PHI has a single incoming value, follow that value, unless the
2747 // PHI's incoming blocks are in a different loop, in which case doing so
2748 // risks breaking LCSSA form. Instcombine would normally zap these, but
2749 // it doesn't have DominatorTree information, so it may miss cases.
2750 if (Value *V = PN->hasConstantValue(DT)) {
2751 bool AllSameLoop = true;
2752 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2753 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2754 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2755 AllSameLoop = false;
2756 break;
2757 }
2758 if (AllSameLoop)
2759 return getSCEV(V);
2760 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002761
Chris Lattner53e677a2004-04-02 20:23:17 +00002762 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002763 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002764}
2765
Dan Gohman26466c02009-05-08 20:26:55 +00002766/// createNodeForGEP - Expand GEP instructions into add and multiply
2767/// operations. This allows them to be analyzed by regular SCEV code.
2768///
Dan Gohmand281ed22009-12-18 02:09:29 +00002769const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002770
Dan Gohmand281ed22009-12-18 02:09:29 +00002771 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002772 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002773 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002774 // Don't attempt to analyze GEPs over unsized objects.
2775 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2776 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002777 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002778 gep_type_iterator GTI = gep_type_begin(GEP);
2779 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2780 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002781 I != E; ++I) {
2782 Value *Index = *I;
2783 // Compute the (potentially symbolic) offset in bytes for this index.
2784 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2785 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002786 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002787 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002788 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002789 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002790 } else {
2791 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002792 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002793 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002794 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002795 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002796 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002797 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2798 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2799 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002800 }
2801 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002802 return getAddExpr(getSCEV(Base), TotalOffset,
2803 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002804}
2805
Nick Lewycky83bb0052007-11-22 07:59:40 +00002806/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2807/// guaranteed to end in (at every loop iteration). It is, at the same time,
2808/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2809/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002810uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002811ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002812 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002813 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002814
Dan Gohman622ed672009-05-04 22:02:23 +00002815 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002816 return std::min(GetMinTrailingZeros(T->getOperand()),
2817 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002818
Dan Gohman622ed672009-05-04 22:02:23 +00002819 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002820 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2821 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2822 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002823 }
2824
Dan Gohman622ed672009-05-04 22:02:23 +00002825 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002826 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2827 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2828 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002829 }
2830
Dan Gohman622ed672009-05-04 22:02:23 +00002831 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002832 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002833 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002834 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002835 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002836 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002837 }
2838
Dan Gohman622ed672009-05-04 22:02:23 +00002839 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002841 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2842 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002843 for (unsigned i = 1, e = M->getNumOperands();
2844 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002845 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002846 BitWidth);
2847 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002848 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002849
Dan Gohman622ed672009-05-04 22:02:23 +00002850 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002851 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002852 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002853 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002854 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002855 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002856 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002857
Dan Gohman622ed672009-05-04 22:02:23 +00002858 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002859 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002860 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002861 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002862 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002863 return MinOpRes;
2864 }
2865
Dan Gohman622ed672009-05-04 22:02:23 +00002866 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002867 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002868 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002869 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002870 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002871 return MinOpRes;
2872 }
2873
Dan Gohman2c364ad2009-06-19 23:29:04 +00002874 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2875 // For a SCEVUnknown, ask ValueTracking.
2876 unsigned BitWidth = getTypeSizeInBits(U->getType());
2877 APInt Mask = APInt::getAllOnesValue(BitWidth);
2878 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2879 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2880 return Zeros.countTrailingOnes();
2881 }
2882
2883 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002884 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002885}
Chris Lattner53e677a2004-04-02 20:23:17 +00002886
Dan Gohman85b05a22009-07-13 21:35:55 +00002887/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2888///
2889ConstantRange
2890ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002891
2892 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002893 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002894
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002895 unsigned BitWidth = getTypeSizeInBits(S->getType());
2896 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2897
2898 // If the value has known zeros, the maximum unsigned value will have those
2899 // known zeros as well.
2900 uint32_t TZ = GetMinTrailingZeros(S);
2901 if (TZ != 0)
2902 ConservativeResult =
2903 ConstantRange(APInt::getMinValue(BitWidth),
2904 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2905
Dan Gohman85b05a22009-07-13 21:35:55 +00002906 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2907 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2908 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2909 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002910 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002911 }
2912
2913 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2914 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2915 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2916 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002917 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002918 }
2919
2920 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2921 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2922 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2923 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002924 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002925 }
2926
2927 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2928 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2929 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2930 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002931 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002932 }
2933
2934 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2935 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2936 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002937 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002938 }
2939
2940 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2941 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002942 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002943 }
2944
2945 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2946 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002947 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002948 }
2949
2950 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2951 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002952 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002953 }
2954
Dan Gohman85b05a22009-07-13 21:35:55 +00002955 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002956 // If there's no unsigned wrap, the value will never be less than its
2957 // initial value.
2958 if (AddRec->hasNoUnsignedWrap())
2959 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002960 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002961 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002962 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002963
2964 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002965 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002966 const Type *Ty = AddRec->getType();
2967 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002968 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2969 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002970 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2971
2972 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002973 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002974
2975 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002976 ConstantRange StepRange = getSignedRange(Step);
2977 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2978 ConstantRange EndRange =
2979 StartRange.add(MaxBECountRange.multiply(StepRange));
2980
2981 // Check for overflow. This must be done with ConstantRange arithmetic
2982 // because we could be called from within the ScalarEvolution overflow
2983 // checking code.
2984 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2985 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2986 ConstantRange ExtMaxBECountRange =
2987 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2988 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2989 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2990 ExtEndRange)
2991 return ConservativeResult;
2992
Dan Gohman85b05a22009-07-13 21:35:55 +00002993 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2994 EndRange.getUnsignedMin());
2995 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2996 EndRange.getUnsignedMax());
2997 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002998 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002999 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003000 }
3001 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003002
3003 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003004 }
3005
3006 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3007 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003008 APInt Mask = APInt::getAllOnesValue(BitWidth);
3009 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3010 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003011 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003012 return ConservativeResult;
3013 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003014 }
3015
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003016 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003017}
3018
Dan Gohman85b05a22009-07-13 21:35:55 +00003019/// getSignedRange - Determine the signed range for a particular SCEV.
3020///
3021ConstantRange
3022ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003023
Dan Gohman85b05a22009-07-13 21:35:55 +00003024 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3025 return ConstantRange(C->getValue()->getValue());
3026
Dan Gohman52fddd32010-01-26 04:40:18 +00003027 unsigned BitWidth = getTypeSizeInBits(S->getType());
3028 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3029
3030 // If the value has known zeros, the maximum signed value will have those
3031 // known zeros as well.
3032 uint32_t TZ = GetMinTrailingZeros(S);
3033 if (TZ != 0)
3034 ConservativeResult =
3035 ConstantRange(APInt::getSignedMinValue(BitWidth),
3036 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3037
Dan Gohman85b05a22009-07-13 21:35:55 +00003038 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3039 ConstantRange X = getSignedRange(Add->getOperand(0));
3040 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3041 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003042 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003043 }
3044
Dan Gohman85b05a22009-07-13 21:35:55 +00003045 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3046 ConstantRange X = getSignedRange(Mul->getOperand(0));
3047 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3048 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003049 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003050 }
3051
Dan Gohman85b05a22009-07-13 21:35:55 +00003052 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3053 ConstantRange X = getSignedRange(SMax->getOperand(0));
3054 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3055 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003056 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003057 }
Dan Gohman62849c02009-06-24 01:05:09 +00003058
Dan Gohman85b05a22009-07-13 21:35:55 +00003059 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3060 ConstantRange X = getSignedRange(UMax->getOperand(0));
3061 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3062 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003063 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 }
Dan Gohman62849c02009-06-24 01:05:09 +00003065
Dan Gohman85b05a22009-07-13 21:35:55 +00003066 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3067 ConstantRange X = getSignedRange(UDiv->getLHS());
3068 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003069 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003070 }
Dan Gohman62849c02009-06-24 01:05:09 +00003071
Dan Gohman85b05a22009-07-13 21:35:55 +00003072 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3073 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003074 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 }
3076
3077 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3078 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003079 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 }
3081
3082 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3083 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003084 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003085 }
3086
Dan Gohman85b05a22009-07-13 21:35:55 +00003087 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003088 // If there's no signed wrap, and all the operands have the same sign or
3089 // zero, the value won't ever change sign.
3090 if (AddRec->hasNoSignedWrap()) {
3091 bool AllNonNeg = true;
3092 bool AllNonPos = true;
3093 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3094 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3095 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3096 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003097 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003098 ConservativeResult = ConservativeResult.intersectWith(
3099 ConstantRange(APInt(BitWidth, 0),
3100 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003101 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003102 ConservativeResult = ConservativeResult.intersectWith(
3103 ConstantRange(APInt::getSignedMinValue(BitWidth),
3104 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003105 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003106
3107 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003108 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003109 const Type *Ty = AddRec->getType();
3110 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003111 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3112 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3114
3115 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003116 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003117
3118 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003119 ConstantRange StepRange = getSignedRange(Step);
3120 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3121 ConstantRange EndRange =
3122 StartRange.add(MaxBECountRange.multiply(StepRange));
3123
3124 // Check for overflow. This must be done with ConstantRange arithmetic
3125 // because we could be called from within the ScalarEvolution overflow
3126 // checking code.
3127 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3128 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3129 ConstantRange ExtMaxBECountRange =
3130 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3131 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3132 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3133 ExtEndRange)
3134 return ConservativeResult;
3135
Dan Gohman85b05a22009-07-13 21:35:55 +00003136 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3137 EndRange.getSignedMin());
3138 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3139 EndRange.getSignedMax());
3140 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003141 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003142 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003143 }
Dan Gohman62849c02009-06-24 01:05:09 +00003144 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003145
3146 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003147 }
3148
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3150 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003151 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003152 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003153 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3154 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003155 return ConservativeResult;
3156 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003157 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003158 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003159 }
3160
Dan Gohman52fddd32010-01-26 04:40:18 +00003161 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003162}
3163
Chris Lattner53e677a2004-04-02 20:23:17 +00003164/// createSCEV - We know that there is no SCEV for the specified value.
3165/// Analyze the expression.
3166///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003167const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003168 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003169 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003170
Dan Gohman6c459a22008-06-22 19:56:46 +00003171 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003172 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003173 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003174
3175 // Don't attempt to analyze instructions in blocks that aren't
3176 // reachable. Such instructions don't matter, and they aren't required
3177 // to obey basic rules for definitions dominating uses which this
3178 // analysis depends on.
3179 if (!DT->isReachableFromEntry(I->getParent()))
3180 return getUnknown(V);
3181 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003182 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003183 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3184 return getConstant(CI);
3185 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003186 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003187 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3188 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003189 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003190 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003191
Dan Gohmanca178902009-07-17 20:47:02 +00003192 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003193 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003194 case Instruction::Add:
3195 // Don't transfer the NSW and NUW bits from the Add instruction to the
3196 // Add expression, because the Instruction may be guarded by control
3197 // flow and the no-overflow bits may not be valid for the expression in
3198 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003199 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003200 getSCEV(U->getOperand(1)));
3201 case Instruction::Mul:
3202 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3203 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003204 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003205 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003206 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003207 return getUDivExpr(getSCEV(U->getOperand(0)),
3208 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003209 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003210 return getMinusSCEV(getSCEV(U->getOperand(0)),
3211 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003212 case Instruction::And:
3213 // For an expression like x&255 that merely masks off the high bits,
3214 // use zext(trunc(x)) as the SCEV expression.
3215 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003216 if (CI->isNullValue())
3217 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003218 if (CI->isAllOnesValue())
3219 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003220 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003221
3222 // Instcombine's ShrinkDemandedConstant may strip bits out of
3223 // constants, obscuring what would otherwise be a low-bits mask.
3224 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3225 // knew about to reconstruct a low-bits mask value.
3226 unsigned LZ = A.countLeadingZeros();
3227 unsigned BitWidth = A.getBitWidth();
3228 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3229 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3230 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3231
3232 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3233
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003234 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003235 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003236 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003237 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003238 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003239 }
3240 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003241
Dan Gohman6c459a22008-06-22 19:56:46 +00003242 case Instruction::Or:
3243 // If the RHS of the Or is a constant, we may have something like:
3244 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3245 // optimizations will transparently handle this case.
3246 //
3247 // In order for this transformation to be safe, the LHS must be of the
3248 // form X*(2^n) and the Or constant must be less than 2^n.
3249 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003250 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003251 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003253 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3254 // Build a plain add SCEV.
3255 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3256 // If the LHS of the add was an addrec and it has no-wrap flags,
3257 // transfer the no-wrap flags, since an or won't introduce a wrap.
3258 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3259 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3260 if (OldAR->hasNoUnsignedWrap())
3261 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3262 if (OldAR->hasNoSignedWrap())
3263 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3264 }
3265 return S;
3266 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003267 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003268 break;
3269 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003270 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003271 // If the RHS of the xor is a signbit, then this is just an add.
3272 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003273 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003274 return getAddExpr(getSCEV(U->getOperand(0)),
3275 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003276
3277 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003278 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003279 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003280
3281 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3282 // This is a variant of the check for xor with -1, and it handles
3283 // the case where instcombine has trimmed non-demanded bits out
3284 // of an xor with -1.
3285 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3286 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3287 if (BO->getOpcode() == Instruction::And &&
3288 LCI->getValue() == CI->getValue())
3289 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003290 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003291 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003292 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003293 const Type *Z0Ty = Z0->getType();
3294 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3295
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003296 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003297 // mask off the high bits. Complement the operand and
3298 // re-apply the zext.
3299 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3300 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3301
3302 // If C is a single bit, it may be in the sign-bit position
3303 // before the zero-extend. In this case, represent the xor
3304 // using an add, which is equivalent, and re-apply the zext.
3305 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3306 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3307 Trunc.isSignBit())
3308 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3309 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003310 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003311 }
3312 break;
3313
3314 case Instruction::Shl:
3315 // Turn shift left of a constant amount into a multiply.
3316 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003317 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003318
3319 // If the shift count is not less than the bitwidth, the result of
3320 // the shift is undefined. Don't try to analyze it, because the
3321 // resolution chosen here may differ from the resolution chosen in
3322 // other parts of the compiler.
3323 if (SA->getValue().uge(BitWidth))
3324 break;
3325
Owen Andersoneed707b2009-07-24 23:12:02 +00003326 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003327 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003328 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003329 }
3330 break;
3331
Nick Lewycky01eaf802008-07-07 06:15:49 +00003332 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003333 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003334 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003335 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003336
3337 // If the shift count is not less than the bitwidth, the result of
3338 // the shift is undefined. Don't try to analyze it, because the
3339 // resolution chosen here may differ from the resolution chosen in
3340 // other parts of the compiler.
3341 if (SA->getValue().uge(BitWidth))
3342 break;
3343
Owen Andersoneed707b2009-07-24 23:12:02 +00003344 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003345 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003346 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003347 }
3348 break;
3349
Dan Gohman4ee29af2009-04-21 02:26:00 +00003350 case Instruction::AShr:
3351 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3352 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003353 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003354 if (L->getOpcode() == Instruction::Shl &&
3355 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003356 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3357
3358 // If the shift count is not less than the bitwidth, the result of
3359 // the shift is undefined. Don't try to analyze it, because the
3360 // resolution chosen here may differ from the resolution chosen in
3361 // other parts of the compiler.
3362 if (CI->getValue().uge(BitWidth))
3363 break;
3364
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003365 uint64_t Amt = BitWidth - CI->getZExtValue();
3366 if (Amt == BitWidth)
3367 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003368 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003369 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003370 IntegerType::get(getContext(),
3371 Amt)),
3372 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003373 }
3374 break;
3375
Dan Gohman6c459a22008-06-22 19:56:46 +00003376 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003377 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003378
3379 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003380 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003381
3382 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003383 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003384
3385 case Instruction::BitCast:
3386 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003387 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003388 return getSCEV(U->getOperand(0));
3389 break;
3390
Dan Gohman4f8eea82010-02-01 18:27:38 +00003391 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3392 // lead to pointer expressions which cannot safely be expanded to GEPs,
3393 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3394 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003395
Dan Gohman26466c02009-05-08 20:26:55 +00003396 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003397 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003398
Dan Gohman6c459a22008-06-22 19:56:46 +00003399 case Instruction::PHI:
3400 return createNodeForPHI(cast<PHINode>(U));
3401
3402 case Instruction::Select:
3403 // This could be a smax or umax that was lowered earlier.
3404 // Try to recover it.
3405 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3406 Value *LHS = ICI->getOperand(0);
3407 Value *RHS = ICI->getOperand(1);
3408 switch (ICI->getPredicate()) {
3409 case ICmpInst::ICMP_SLT:
3410 case ICmpInst::ICMP_SLE:
3411 std::swap(LHS, RHS);
3412 // fall through
3413 case ICmpInst::ICMP_SGT:
3414 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003415 // a >s b ? a+x : b+x -> smax(a, b)+x
3416 // a >s b ? b+x : a+x -> smin(a, b)+x
3417 if (LHS->getType() == U->getType()) {
3418 const SCEV *LS = getSCEV(LHS);
3419 const SCEV *RS = getSCEV(RHS);
3420 const SCEV *LA = getSCEV(U->getOperand(1));
3421 const SCEV *RA = getSCEV(U->getOperand(2));
3422 const SCEV *LDiff = getMinusSCEV(LA, LS);
3423 const SCEV *RDiff = getMinusSCEV(RA, RS);
3424 if (LDiff == RDiff)
3425 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3426 LDiff = getMinusSCEV(LA, RS);
3427 RDiff = getMinusSCEV(RA, LS);
3428 if (LDiff == RDiff)
3429 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3430 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003431 break;
3432 case ICmpInst::ICMP_ULT:
3433 case ICmpInst::ICMP_ULE:
3434 std::swap(LHS, RHS);
3435 // fall through
3436 case ICmpInst::ICMP_UGT:
3437 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003438 // a >u b ? a+x : b+x -> umax(a, b)+x
3439 // a >u b ? b+x : a+x -> umin(a, b)+x
3440 if (LHS->getType() == U->getType()) {
3441 const SCEV *LS = getSCEV(LHS);
3442 const SCEV *RS = getSCEV(RHS);
3443 const SCEV *LA = getSCEV(U->getOperand(1));
3444 const SCEV *RA = getSCEV(U->getOperand(2));
3445 const SCEV *LDiff = getMinusSCEV(LA, LS);
3446 const SCEV *RDiff = getMinusSCEV(RA, RS);
3447 if (LDiff == RDiff)
3448 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3449 LDiff = getMinusSCEV(LA, RS);
3450 RDiff = getMinusSCEV(RA, LS);
3451 if (LDiff == RDiff)
3452 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3453 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003454 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003455 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003456 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3457 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003458 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003459 cast<ConstantInt>(RHS)->isZero()) {
3460 const SCEV *One = getConstant(LHS->getType(), 1);
3461 const SCEV *LS = getSCEV(LHS);
3462 const SCEV *LA = getSCEV(U->getOperand(1));
3463 const SCEV *RA = getSCEV(U->getOperand(2));
3464 const SCEV *LDiff = getMinusSCEV(LA, LS);
3465 const SCEV *RDiff = getMinusSCEV(RA, One);
3466 if (LDiff == RDiff)
3467 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3468 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003469 break;
3470 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003471 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3472 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003473 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003474 cast<ConstantInt>(RHS)->isZero()) {
3475 const SCEV *One = getConstant(LHS->getType(), 1);
3476 const SCEV *LS = getSCEV(LHS);
3477 const SCEV *LA = getSCEV(U->getOperand(1));
3478 const SCEV *RA = getSCEV(U->getOperand(2));
3479 const SCEV *LDiff = getMinusSCEV(LA, One);
3480 const SCEV *RDiff = getMinusSCEV(RA, LS);
3481 if (LDiff == RDiff)
3482 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3483 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003484 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003485 default:
3486 break;
3487 }
3488 }
3489
3490 default: // We cannot analyze this expression.
3491 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003492 }
3493
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003494 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003495}
3496
3497
3498
3499//===----------------------------------------------------------------------===//
3500// Iteration Count Computation Code
3501//
3502
Dan Gohman46bdfb02009-02-24 18:55:53 +00003503/// getBackedgeTakenCount - If the specified loop has a predictable
3504/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3505/// object. The backedge-taken count is the number of times the loop header
3506/// will be branched to from within the loop. This is one less than the
3507/// trip count of the loop, since it doesn't count the first iteration,
3508/// when the header is branched to from outside the loop.
3509///
3510/// Note that it is not valid to call this method on a loop without a
3511/// loop-invariant backedge-taken count (see
3512/// hasLoopInvariantBackedgeTakenCount).
3513///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003514const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003515 return getBackedgeTakenInfo(L).Exact;
3516}
3517
3518/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3519/// return the least SCEV value that is known never to be less than the
3520/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003521const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003522 return getBackedgeTakenInfo(L).Max;
3523}
3524
Dan Gohman59ae6b92009-07-08 19:23:34 +00003525/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3526/// onto the given Worklist.
3527static void
3528PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3529 BasicBlock *Header = L->getHeader();
3530
3531 // Push all Loop-header PHIs onto the Worklist stack.
3532 for (BasicBlock::iterator I = Header->begin();
3533 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3534 Worklist.push_back(PN);
3535}
3536
Dan Gohmana1af7572009-04-30 20:47:05 +00003537const ScalarEvolution::BackedgeTakenInfo &
3538ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003539 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003540 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003541 // update the value. The temporary CouldNotCompute value tells SCEV
3542 // code elsewhere that it shouldn't attempt to request a new
3543 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003544 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003545 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3546 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003547 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3548 if (BECount.Exact != getCouldNotCompute()) {
3549 assert(BECount.Exact->isLoopInvariant(L) &&
3550 BECount.Max->isLoopInvariant(L) &&
3551 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003552 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003553
Dan Gohman01ecca22009-04-27 20:16:15 +00003554 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003555 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003556 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003557 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003558 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003559 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003560 if (isa<PHINode>(L->getHeader()->begin()))
3561 // Only count loops that have phi nodes as not being computable.
3562 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003563 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003564
3565 // Now that we know more about the trip count for this loop, forget any
3566 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003567 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003568 // information. This is similar to the code in forgetLoop, except that
3569 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003570 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003571 SmallVector<Instruction *, 16> Worklist;
3572 PushLoopPHIs(L, Worklist);
3573
3574 SmallPtrSet<Instruction *, 8> Visited;
3575 while (!Worklist.empty()) {
3576 Instruction *I = Worklist.pop_back_val();
3577 if (!Visited.insert(I)) continue;
3578
Dan Gohman5d984912009-12-18 01:14:11 +00003579 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003580 Scalars.find(static_cast<Value *>(I));
3581 if (It != Scalars.end()) {
3582 // SCEVUnknown for a PHI either means that it has an unrecognized
3583 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003584 // by createNodeForPHI. In the former case, additional loop trip
3585 // count information isn't going to change anything. In the later
3586 // case, createNodeForPHI will perform the necessary updates on its
3587 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003588 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3589 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003590 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003591 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003592 if (PHINode *PN = dyn_cast<PHINode>(I))
3593 ConstantEvolutionLoopExitValue.erase(PN);
3594 }
3595
3596 PushDefUseChildren(I, Worklist);
3597 }
3598 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003599 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003600 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003601}
3602
Dan Gohman4c7279a2009-10-31 15:04:55 +00003603/// forgetLoop - This method should be called by the client when it has
3604/// changed a loop in a way that may effect ScalarEvolution's ability to
3605/// compute a trip count, or if the loop is deleted.
3606void ScalarEvolution::forgetLoop(const Loop *L) {
3607 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003608 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003609
Dan Gohman4c7279a2009-10-31 15:04:55 +00003610 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003611 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003612 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003613
Dan Gohman59ae6b92009-07-08 19:23:34 +00003614 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003615 while (!Worklist.empty()) {
3616 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003617 if (!Visited.insert(I)) continue;
3618
Dan Gohman5d984912009-12-18 01:14:11 +00003619 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003620 Scalars.find(static_cast<Value *>(I));
3621 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003622 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003623 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003624 if (PHINode *PN = dyn_cast<PHINode>(I))
3625 ConstantEvolutionLoopExitValue.erase(PN);
3626 }
3627
3628 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003629 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003630}
3631
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003632/// forgetValue - This method should be called by the client when it has
3633/// changed a value in a way that may effect its value, or which may
3634/// disconnect it from a def-use chain linking it to a loop.
3635void ScalarEvolution::forgetValue(Value *V) {
3636 Instruction *I = dyn_cast<Instruction>(V);
3637 if (!I) return;
3638
3639 // Drop information about expressions based on loop-header PHIs.
3640 SmallVector<Instruction *, 16> Worklist;
3641 Worklist.push_back(I);
3642
3643 SmallPtrSet<Instruction *, 8> Visited;
3644 while (!Worklist.empty()) {
3645 I = Worklist.pop_back_val();
3646 if (!Visited.insert(I)) continue;
3647
3648 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3649 Scalars.find(static_cast<Value *>(I));
3650 if (It != Scalars.end()) {
3651 ValuesAtScopes.erase(It->second);
3652 Scalars.erase(It);
3653 if (PHINode *PN = dyn_cast<PHINode>(I))
3654 ConstantEvolutionLoopExitValue.erase(PN);
3655 }
3656
3657 PushDefUseChildren(I, Worklist);
3658 }
3659}
3660
Dan Gohman46bdfb02009-02-24 18:55:53 +00003661/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3662/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003663ScalarEvolution::BackedgeTakenInfo
3664ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003665 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003666 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003667
Dan Gohmana334aa72009-06-22 00:31:57 +00003668 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003669 const SCEV *BECount = getCouldNotCompute();
3670 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003671 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003672 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3673 BackedgeTakenInfo NewBTI =
3674 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003675
Dan Gohman1c343752009-06-27 21:21:31 +00003676 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003677 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003678 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003679 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003680 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003681 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003682 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003683 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003684 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003685 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003686 }
Dan Gohman1c343752009-06-27 21:21:31 +00003687 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003688 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003689 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003690 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003691 }
3692
3693 return BackedgeTakenInfo(BECount, MaxBECount);
3694}
3695
3696/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3697/// of the specified loop will execute if it exits via the specified block.
3698ScalarEvolution::BackedgeTakenInfo
3699ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3700 BasicBlock *ExitingBlock) {
3701
3702 // Okay, we've chosen an exiting block. See what condition causes us to
3703 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003704 //
3705 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003706 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003707 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003708 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003709
Chris Lattner8b0e3602007-01-07 02:24:26 +00003710 // At this point, we know we have a conditional branch that determines whether
3711 // the loop is exited. However, we don't know if the branch is executed each
3712 // time through the loop. If not, then the execution count of the branch will
3713 // not be equal to the trip count of the loop.
3714 //
3715 // Currently we check for this by checking to see if the Exit branch goes to
3716 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003717 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003718 // loop header. This is common for un-rotated loops.
3719 //
3720 // If both of those tests fail, walk up the unique predecessor chain to the
3721 // header, stopping if there is an edge that doesn't exit the loop. If the
3722 // header is reached, the execution count of the branch will be equal to the
3723 // trip count of the loop.
3724 //
3725 // More extensive analysis could be done to handle more cases here.
3726 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003727 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003728 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003729 ExitBr->getParent() != L->getHeader()) {
3730 // The simple checks failed, try climbing the unique predecessor chain
3731 // up to the header.
3732 bool Ok = false;
3733 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3734 BasicBlock *Pred = BB->getUniquePredecessor();
3735 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003736 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003737 TerminatorInst *PredTerm = Pred->getTerminator();
3738 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3739 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3740 if (PredSucc == BB)
3741 continue;
3742 // If the predecessor has a successor that isn't BB and isn't
3743 // outside the loop, assume the worst.
3744 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003745 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 }
3747 if (Pred == L->getHeader()) {
3748 Ok = true;
3749 break;
3750 }
3751 BB = Pred;
3752 }
3753 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003754 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 }
3756
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003757 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003758 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3759 ExitBr->getSuccessor(0),
3760 ExitBr->getSuccessor(1));
3761}
3762
3763/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3764/// backedge of the specified loop will execute if its exit condition
3765/// were a conditional branch of ExitCond, TBB, and FBB.
3766ScalarEvolution::BackedgeTakenInfo
3767ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3768 Value *ExitCond,
3769 BasicBlock *TBB,
3770 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003771 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003772 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3773 if (BO->getOpcode() == Instruction::And) {
3774 // Recurse on the operands of the and.
3775 BackedgeTakenInfo BTI0 =
3776 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3777 BackedgeTakenInfo BTI1 =
3778 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003779 const SCEV *BECount = getCouldNotCompute();
3780 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003781 if (L->contains(TBB)) {
3782 // Both conditions must be true for the loop to continue executing.
3783 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003784 if (BTI0.Exact == getCouldNotCompute() ||
3785 BTI1.Exact == getCouldNotCompute())
3786 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003787 else
3788 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003789 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003790 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003791 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003792 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003793 else
3794 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003795 } else {
3796 // Both conditions must be true for the loop to exit.
3797 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003798 if (BTI0.Exact != getCouldNotCompute() &&
3799 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003800 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003801 if (BTI0.Max != getCouldNotCompute() &&
3802 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003803 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3804 }
3805
3806 return BackedgeTakenInfo(BECount, MaxBECount);
3807 }
3808 if (BO->getOpcode() == Instruction::Or) {
3809 // Recurse on the operands of the or.
3810 BackedgeTakenInfo BTI0 =
3811 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3812 BackedgeTakenInfo BTI1 =
3813 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003814 const SCEV *BECount = getCouldNotCompute();
3815 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003816 if (L->contains(FBB)) {
3817 // Both conditions must be false for the loop to continue executing.
3818 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003819 if (BTI0.Exact == getCouldNotCompute() ||
3820 BTI1.Exact == getCouldNotCompute())
3821 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003822 else
3823 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003824 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003826 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003828 else
3829 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 } else {
3831 // Both conditions must be false for the loop to exit.
3832 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003833 if (BTI0.Exact != getCouldNotCompute() &&
3834 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003836 if (BTI0.Max != getCouldNotCompute() &&
3837 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003838 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3839 }
3840
3841 return BackedgeTakenInfo(BECount, MaxBECount);
3842 }
3843 }
3844
3845 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003846 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003847 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3848 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003849
Dan Gohman00cb5b72010-02-19 18:12:07 +00003850 // Check for a constant condition. These are normally stripped out by
3851 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3852 // preserve the CFG and is temporarily leaving constant conditions
3853 // in place.
3854 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3855 if (L->contains(FBB) == !CI->getZExtValue())
3856 // The backedge is always taken.
3857 return getCouldNotCompute();
3858 else
3859 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003860 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003861 }
3862
Eli Friedman361e54d2009-05-09 12:32:42 +00003863 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3865}
3866
3867/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3868/// backedge of the specified loop will execute if its exit condition
3869/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3870ScalarEvolution::BackedgeTakenInfo
3871ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3872 ICmpInst *ExitCond,
3873 BasicBlock *TBB,
3874 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003875
Reid Spencere4d87aa2006-12-23 06:05:41 +00003876 // If the condition was exit on true, convert the condition to exit on false
3877 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003879 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003880 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003881 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003882
3883 // Handle common loops like: for (X = "string"; *X; ++X)
3884 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3885 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003886 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003887 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003888 if (ItCnt.hasAnyInfo())
3889 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003890 }
3891
Dan Gohman0bba49c2009-07-07 17:06:11 +00003892 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3893 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003894
3895 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003896 LHS = getSCEVAtScope(LHS, L);
3897 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003898
Dan Gohman64a845e2009-06-24 04:48:43 +00003899 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003900 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003901 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3902 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003903 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003904 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003905 }
3906
Dan Gohman03557dc2010-05-03 16:35:17 +00003907 // Simplify the operands before analyzing them.
3908 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3909
Chris Lattner53e677a2004-04-02 20:23:17 +00003910 // If we have a comparison of a chrec against a constant, try to use value
3911 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003912 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3913 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003914 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003915 // Form the constant range.
3916 ConstantRange CompRange(
3917 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003918
Dan Gohman0bba49c2009-07-07 17:06:11 +00003919 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003920 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003921 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003922
Chris Lattner53e677a2004-04-02 20:23:17 +00003923 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003924 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003925 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003926 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3927 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003928 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003929 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003930 case ICmpInst::ICMP_EQ: { // while (X == Y)
3931 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003932 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3933 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003934 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003935 }
3936 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003937 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3938 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003939 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003940 }
3941 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003942 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3943 getNotSCEV(RHS), L, true);
3944 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003945 break;
3946 }
3947 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003948 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3949 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003950 break;
3951 }
3952 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003953 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3954 getNotSCEV(RHS), L, false);
3955 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003956 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003957 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003958 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003959#if 0
David Greene25e0e872009-12-23 22:18:14 +00003960 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003961 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003962 dbgs() << "[unsigned] ";
3963 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003964 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003965 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003966#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003967 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003968 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003969 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003970 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003971}
3972
Chris Lattner673e02b2004-10-12 01:49:27 +00003973static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003974EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3975 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003976 const SCEV *InVal = SE.getConstant(C);
3977 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003978 assert(isa<SCEVConstant>(Val) &&
3979 "Evaluation of SCEV at constant didn't fold correctly?");
3980 return cast<SCEVConstant>(Val)->getValue();
3981}
3982
3983/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3984/// and a GEP expression (missing the pointer index) indexing into it, return
3985/// the addressed element of the initializer or null if the index expression is
3986/// invalid.
3987static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003988GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003989 const std::vector<ConstantInt*> &Indices) {
3990 Constant *Init = GV->getInitializer();
3991 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003992 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003993 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3994 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3995 Init = cast<Constant>(CS->getOperand(Idx));
3996 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3997 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3998 Init = cast<Constant>(CA->getOperand(Idx));
3999 } else if (isa<ConstantAggregateZero>(Init)) {
4000 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4001 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004002 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004003 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4004 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004005 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004006 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004007 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004008 }
4009 return 0;
4010 } else {
4011 return 0; // Unknown initializer type
4012 }
4013 }
4014 return Init;
4015}
4016
Dan Gohman46bdfb02009-02-24 18:55:53 +00004017/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4018/// 'icmp op load X, cst', try to see if we can compute the backedge
4019/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004020ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004021ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4022 LoadInst *LI,
4023 Constant *RHS,
4024 const Loop *L,
4025 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004026 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004027
4028 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004029 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004030 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004031 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004032
4033 // Make sure that it is really a constant global we are gepping, with an
4034 // initializer, and make sure the first IDX is really 0.
4035 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004036 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004037 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4038 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004039 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004040
4041 // Okay, we allow one non-constant index into the GEP instruction.
4042 Value *VarIdx = 0;
4043 std::vector<ConstantInt*> Indexes;
4044 unsigned VarIdxNum = 0;
4045 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4046 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4047 Indexes.push_back(CI);
4048 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004049 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004050 VarIdx = GEP->getOperand(i);
4051 VarIdxNum = i-2;
4052 Indexes.push_back(0);
4053 }
4054
4055 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4056 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004057 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004058 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004059
4060 // We can only recognize very limited forms of loop index expressions, in
4061 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004062 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004063 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4064 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4065 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004066 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004067
4068 unsigned MaxSteps = MaxBruteForceIterations;
4069 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004070 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004071 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004072 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004073
4074 // Form the GEP offset.
4075 Indexes[VarIdxNum] = Val;
4076
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004077 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004078 if (Result == 0) break; // Cannot compute!
4079
4080 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004081 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004082 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004083 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004084#if 0
David Greene25e0e872009-12-23 22:18:14 +00004085 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004086 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4087 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004088#endif
4089 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004090 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004091 }
4092 }
Dan Gohman1c343752009-06-27 21:21:31 +00004093 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004094}
4095
4096
Chris Lattner3221ad02004-04-17 22:58:41 +00004097/// CanConstantFold - Return true if we can constant fold an instruction of the
4098/// specified type, assuming that all operands were constants.
4099static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004100 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004101 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4102 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004103
Chris Lattner3221ad02004-04-17 22:58:41 +00004104 if (const CallInst *CI = dyn_cast<CallInst>(I))
4105 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004106 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004107 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004108}
4109
Chris Lattner3221ad02004-04-17 22:58:41 +00004110/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4111/// in the loop that V is derived from. We allow arbitrary operations along the
4112/// way, but the operands of an operation must either be constants or a value
4113/// derived from a constant PHI. If this expression does not fit with these
4114/// constraints, return null.
4115static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4116 // If this is not an instruction, or if this is an instruction outside of the
4117 // loop, it can't be derived from a loop PHI.
4118 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004119 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004120
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004121 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004122 if (L->getHeader() == I->getParent())
4123 return PN;
4124 else
4125 // We don't currently keep track of the control flow needed to evaluate
4126 // PHIs, so we cannot handle PHIs inside of loops.
4127 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004128 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004129
4130 // If we won't be able to constant fold this expression even if the operands
4131 // are constants, return early.
4132 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004133
Chris Lattner3221ad02004-04-17 22:58:41 +00004134 // Otherwise, we can evaluate this instruction if all of its operands are
4135 // constant or derived from a PHI node themselves.
4136 PHINode *PHI = 0;
4137 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4138 if (!(isa<Constant>(I->getOperand(Op)) ||
4139 isa<GlobalValue>(I->getOperand(Op)))) {
4140 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4141 if (P == 0) return 0; // Not evolving from PHI
4142 if (PHI == 0)
4143 PHI = P;
4144 else if (PHI != P)
4145 return 0; // Evolving from multiple different PHIs.
4146 }
4147
4148 // This is a expression evolving from a constant PHI!
4149 return PHI;
4150}
4151
4152/// EvaluateExpression - Given an expression that passes the
4153/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4154/// in the loop has the value PHIVal. If we can't fold this expression for some
4155/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004156static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4157 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004158 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004159 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004160 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004161 Instruction *I = cast<Instruction>(V);
4162
4163 std::vector<Constant*> Operands;
4164 Operands.resize(I->getNumOperands());
4165
4166 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004167 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004168 if (Operands[i] == 0) return 0;
4169 }
4170
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004171 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004172 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004173 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004174 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004175 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004176}
4177
4178/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4179/// in the header of its containing loop, we know the loop executes a
4180/// constant number of times, and the PHI node is just a recurrence
4181/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004182Constant *
4183ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004184 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004185 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004186 std::map<PHINode*, Constant*>::iterator I =
4187 ConstantEvolutionLoopExitValue.find(PN);
4188 if (I != ConstantEvolutionLoopExitValue.end())
4189 return I->second;
4190
Dan Gohmane0567812010-04-08 23:03:40 +00004191 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004192 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4193
4194 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4195
4196 // Since the loop is canonicalized, the PHI node must have two entries. One
4197 // entry must be a constant (coming in from outside of the loop), and the
4198 // second must be derived from the same PHI.
4199 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4200 Constant *StartCST =
4201 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4202 if (StartCST == 0)
4203 return RetVal = 0; // Must be a constant.
4204
4205 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4206 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4207 if (PN2 != PN)
4208 return RetVal = 0; // Not derived from same PHI.
4209
4210 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004211 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004212 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004213
Dan Gohman46bdfb02009-02-24 18:55:53 +00004214 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004215 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004216 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4217 if (IterationNum == NumIterations)
4218 return RetVal = PHIVal; // Got exit value!
4219
4220 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004221 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004222 if (NextPHI == PHIVal)
4223 return RetVal = NextPHI; // Stopped evolving!
4224 if (NextPHI == 0)
4225 return 0; // Couldn't evaluate!
4226 PHIVal = NextPHI;
4227 }
4228}
4229
Dan Gohman07ad19b2009-07-27 16:09:48 +00004230/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004231/// constant number of times (the condition evolves only from constants),
4232/// try to evaluate a few iterations of the loop until we get the exit
4233/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004234/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004235const SCEV *
4236ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4237 Value *Cond,
4238 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004239 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004240 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004241
4242 // Since the loop is canonicalized, the PHI node must have two entries. One
4243 // entry must be a constant (coming in from outside of the loop), and the
4244 // second must be derived from the same PHI.
4245 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4246 Constant *StartCST =
4247 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004248 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004249
4250 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4251 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004252 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004253
4254 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4255 // the loop symbolically to determine when the condition gets a value of
4256 // "ExitWhen".
4257 unsigned IterationNum = 0;
4258 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4259 for (Constant *PHIVal = StartCST;
4260 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004261 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004262 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004263
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004264 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004265 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004266
Reid Spencere8019bb2007-03-01 07:25:48 +00004267 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004268 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004269 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004270 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004271
Chris Lattner3221ad02004-04-17 22:58:41 +00004272 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004273 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004274 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004275 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004276 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004277 }
4278
4279 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004280 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004281}
4282
Dan Gohmane7125f42009-09-03 15:00:26 +00004283/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004284/// at the specified scope in the program. The L value specifies a loop
4285/// nest to evaluate the expression at, where null is the top-level or a
4286/// specified loop is immediately inside of the loop.
4287///
4288/// This method can be used to compute the exit value for a variable defined
4289/// in a loop by querying what the value will hold in the parent loop.
4290///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004291/// In the case that a relevant loop exit value cannot be computed, the
4292/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004293const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004294 // Check to see if we've folded this expression at this loop before.
4295 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4296 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4297 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4298 if (!Pair.second)
4299 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004300
Dan Gohman42214892009-08-31 21:15:23 +00004301 // Otherwise compute it.
4302 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004303 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004304 return C;
4305}
4306
4307const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004308 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004309
Nick Lewycky3e630762008-02-20 06:48:22 +00004310 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004311 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004312 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004313 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004314 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4316 if (PHINode *PN = dyn_cast<PHINode>(I))
4317 if (PN->getParent() == LI->getHeader()) {
4318 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004319 // to see if the loop that contains it has a known backedge-taken
4320 // count. If so, we may be able to force computation of the exit
4321 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004322 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004323 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004324 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004325 // Okay, we know how many times the containing loop executes. If
4326 // this is a constant evolving PHI node, get the final value at
4327 // the specified iteration number.
4328 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004329 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004330 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004331 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004332 }
4333 }
4334
Reid Spencer09906f32006-12-04 21:33:23 +00004335 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004337 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004338 // result. This is particularly useful for computing loop exit values.
4339 if (CanConstantFold(I)) {
4340 std::vector<Constant*> Operands;
4341 Operands.reserve(I->getNumOperands());
4342 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4343 Value *Op = I->getOperand(i);
4344 if (Constant *C = dyn_cast<Constant>(Op)) {
4345 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004346 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004347 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004348 // non-integer and non-pointer, don't even try to analyze them
4349 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004350 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004351 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004352
Dan Gohman5d984912009-12-18 01:14:11 +00004353 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004354 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004355 Constant *C = SC->getValue();
4356 if (C->getType() != Op->getType())
4357 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4358 Op->getType(),
4359 false),
4360 C, Op->getType());
4361 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004362 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004363 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4364 if (C->getType() != Op->getType())
4365 C =
4366 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4367 Op->getType(),
4368 false),
4369 C, Op->getType());
4370 Operands.push_back(C);
4371 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004372 return V;
4373 } else {
4374 return V;
4375 }
4376 }
4377 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004378
Dan Gohmane177c9a2010-02-24 19:31:47 +00004379 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004380 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4381 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004382 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004383 else
4384 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004385 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004386 if (C)
4387 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004388 }
4389 }
4390
4391 // This is some other type of SCEVUnknown, just return it.
4392 return V;
4393 }
4394
Dan Gohman622ed672009-05-04 22:02:23 +00004395 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004396 // Avoid performing the look-up in the common case where the specified
4397 // expression has no loop-variant portions.
4398 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004399 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004400 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004401 // Okay, at least one of these operands is loop variant but might be
4402 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004403 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4404 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004405 NewOps.push_back(OpAtScope);
4406
4407 for (++i; i != e; ++i) {
4408 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004409 NewOps.push_back(OpAtScope);
4410 }
4411 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004412 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004413 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004414 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004415 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004416 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004417 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004418 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004419 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004420 }
4421 }
4422 // If we got here, all operands are loop invariant.
4423 return Comm;
4424 }
4425
Dan Gohman622ed672009-05-04 22:02:23 +00004426 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004427 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4428 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004429 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4430 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004431 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004432 }
4433
4434 // If this is a loop recurrence for a loop that does not contain L, then we
4435 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004436 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004437 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004438 // To evaluate this recurrence, we need to know how many times the AddRec
4439 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004440 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004441 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004442
Eli Friedmanb42a6262008-08-04 23:49:06 +00004443 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004444 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004445 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004446 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004447 }
4448
Dan Gohman622ed672009-05-04 22:02:23 +00004449 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004450 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004451 if (Op == Cast->getOperand())
4452 return Cast; // must be loop invariant
4453 return getZeroExtendExpr(Op, Cast->getType());
4454 }
4455
Dan Gohman622ed672009-05-04 22:02:23 +00004456 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004457 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004458 if (Op == Cast->getOperand())
4459 return Cast; // must be loop invariant
4460 return getSignExtendExpr(Op, Cast->getType());
4461 }
4462
Dan Gohman622ed672009-05-04 22:02:23 +00004463 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004464 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004465 if (Op == Cast->getOperand())
4466 return Cast; // must be loop invariant
4467 return getTruncateExpr(Op, Cast->getType());
4468 }
4469
Torok Edwinc23197a2009-07-14 16:55:14 +00004470 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004471 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004472}
4473
Dan Gohman66a7e852009-05-08 20:38:54 +00004474/// getSCEVAtScope - This is a convenience function which does
4475/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004476const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004477 return getSCEVAtScope(getSCEV(V), L);
4478}
4479
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004480/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4481/// following equation:
4482///
4483/// A * X = B (mod N)
4484///
4485/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4486/// A and B isn't important.
4487///
4488/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004489static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004490 ScalarEvolution &SE) {
4491 uint32_t BW = A.getBitWidth();
4492 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4493 assert(A != 0 && "A must be non-zero.");
4494
4495 // 1. D = gcd(A, N)
4496 //
4497 // The gcd of A and N may have only one prime factor: 2. The number of
4498 // trailing zeros in A is its multiplicity
4499 uint32_t Mult2 = A.countTrailingZeros();
4500 // D = 2^Mult2
4501
4502 // 2. Check if B is divisible by D.
4503 //
4504 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4505 // is not less than multiplicity of this prime factor for D.
4506 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004507 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004508
4509 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4510 // modulo (N / D).
4511 //
4512 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4513 // bit width during computations.
4514 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4515 APInt Mod(BW + 1, 0);
4516 Mod.set(BW - Mult2); // Mod = N / D
4517 APInt I = AD.multiplicativeInverse(Mod);
4518
4519 // 4. Compute the minimum unsigned root of the equation:
4520 // I * (B / D) mod (N / D)
4521 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4522
4523 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4524 // bits.
4525 return SE.getConstant(Result.trunc(BW));
4526}
Chris Lattner53e677a2004-04-02 20:23:17 +00004527
4528/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4529/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4530/// might be the same) or two SCEVCouldNotCompute objects.
4531///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004532static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004533SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004534 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004535 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4536 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4537 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004538
Chris Lattner53e677a2004-04-02 20:23:17 +00004539 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004540 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004541 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004542 return std::make_pair(CNC, CNC);
4543 }
4544
Reid Spencere8019bb2007-03-01 07:25:48 +00004545 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004546 const APInt &L = LC->getValue()->getValue();
4547 const APInt &M = MC->getValue()->getValue();
4548 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004549 APInt Two(BitWidth, 2);
4550 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004551
Dan Gohman64a845e2009-06-24 04:48:43 +00004552 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004553 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004554 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004555 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4556 // The B coefficient is M-N/2
4557 APInt B(M);
4558 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004559
Reid Spencere8019bb2007-03-01 07:25:48 +00004560 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004561 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004562
Reid Spencere8019bb2007-03-01 07:25:48 +00004563 // Compute the B^2-4ac term.
4564 APInt SqrtTerm(B);
4565 SqrtTerm *= B;
4566 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004567
Reid Spencere8019bb2007-03-01 07:25:48 +00004568 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4569 // integer value or else APInt::sqrt() will assert.
4570 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004571
Dan Gohman64a845e2009-06-24 04:48:43 +00004572 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004573 // The divisions must be performed as signed divisions.
4574 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004575 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004576 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004577 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004578 return std::make_pair(CNC, CNC);
4579 }
4580
Owen Andersone922c022009-07-22 00:24:57 +00004581 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004582
4583 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004584 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004585 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004586 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004587
Dan Gohman64a845e2009-06-24 04:48:43 +00004588 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004589 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004590 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004591}
4592
4593/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004594/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004595ScalarEvolution::BackedgeTakenInfo
4596ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004598 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004599 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004600 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004601 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004602 }
4603
Dan Gohman35738ac2009-05-04 22:30:44 +00004604 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004606 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004607
4608 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004609 // If this is an affine expression, the execution count of this branch is
4610 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004612 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004613 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004614 // equivalent to:
4615 //
4616 // Step*N = -Start (mod 2^BW)
4617 //
4618 // where BW is the common bit width of Start and Step.
4619
Chris Lattner53e677a2004-04-02 20:23:17 +00004620 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004621 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4622 L->getParentLoop());
4623 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4624 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004625
Dan Gohman622ed672009-05-04 22:02:23 +00004626 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004627 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004628
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004629 // First, handle unitary steps.
4630 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004631 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004632 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4633 return Start; // N = Start (as unsigned)
4634
4635 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004636 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004637 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004638 -StartC->getValue()->getValue(),
4639 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004640 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004641 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004642 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4643 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004644 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004645 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004646 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4647 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004648 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004649#if 0
David Greene25e0e872009-12-23 22:18:14 +00004650 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004651 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004652#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004653 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004654 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004655 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004656 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004657 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004658 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004659
Chris Lattner53e677a2004-04-02 20:23:17 +00004660 // We can only use this value if the chrec ends up with an exact zero
4661 // value at this index. When solving for "X*X != 5", for example, we
4662 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004663 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004664 if (Val->isZero())
4665 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004666 }
4667 }
4668 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004669
Dan Gohman1c343752009-06-27 21:21:31 +00004670 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004671}
4672
4673/// HowFarToNonZero - Return the number of times a backedge checking the
4674/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004675/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004676ScalarEvolution::BackedgeTakenInfo
4677ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004678 // Loops that look like: while (X == 0) are very strange indeed. We don't
4679 // handle them yet except for the trivial case. This could be expanded in the
4680 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004681
Chris Lattner53e677a2004-04-02 20:23:17 +00004682 // If the value is a constant, check to see if it is known to be non-zero
4683 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004684 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004685 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004686 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004687 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004688 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004689
Chris Lattner53e677a2004-04-02 20:23:17 +00004690 // We could implement others, but I really doubt anyone writes loops like
4691 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004692 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004693}
4694
Dan Gohman859b4822009-05-18 15:36:09 +00004695/// getLoopPredecessor - If the given loop's header has exactly one unique
4696/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004697/// This is less strict that the loop "preheader" concept, which requires
4698/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004699///
4700BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4701 BasicBlock *Header = L->getHeader();
4702 BasicBlock *Pred = 0;
4703 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4704 PI != E; ++PI)
4705 if (!L->contains(*PI)) {
4706 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4707 Pred = *PI;
4708 }
4709 return Pred;
4710}
4711
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004712/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4713/// (which may not be an immediate predecessor) which has exactly one
4714/// successor from which BB is reachable, or null if no such block is
4715/// found.
4716///
Dan Gohman005752b2010-04-15 16:19:08 +00004717std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004718ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004719 // If the block has a unique predecessor, then there is no path from the
4720 // predecessor to the block that does not go through the direct edge
4721 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004722 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004723 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004724
4725 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004726 // If the header has a unique predecessor outside the loop, it must be
4727 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004728 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004729 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004730
Dan Gohman005752b2010-04-15 16:19:08 +00004731 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004732}
4733
Dan Gohman763bad12009-06-20 00:35:32 +00004734/// HasSameValue - SCEV structural equivalence is usually sufficient for
4735/// testing whether two expressions are equal, however for the purposes of
4736/// looking for a condition guarding a loop, it can be useful to be a little
4737/// more general, since a front-end may have replicated the controlling
4738/// expression.
4739///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004740static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004741 // Quick check to see if they are the same SCEV.
4742 if (A == B) return true;
4743
4744 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4745 // two different instructions with the same value. Check for this case.
4746 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4747 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4748 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4749 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004750 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004751 return true;
4752
4753 // Otherwise assume they may have a different value.
4754 return false;
4755}
4756
Dan Gohmane9796502010-04-24 01:28:42 +00004757/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4758/// predicate Pred. Return true iff any changes were made.
4759///
4760bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4761 const SCEV *&LHS, const SCEV *&RHS) {
4762 bool Changed = false;
4763
4764 // Canonicalize a constant to the right side.
4765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4766 // Check for both operands constant.
4767 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4768 if (ConstantExpr::getICmp(Pred,
4769 LHSC->getValue(),
4770 RHSC->getValue())->isNullValue())
4771 goto trivially_false;
4772 else
4773 goto trivially_true;
4774 }
4775 // Otherwise swap the operands to put the constant on the right.
4776 std::swap(LHS, RHS);
4777 Pred = ICmpInst::getSwappedPredicate(Pred);
4778 Changed = true;
4779 }
4780
4781 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004782 // addrec's loop, put the addrec on the left. Also make a dominance check,
4783 // as both operands could be addrecs loop-invariant in each other's loop.
4784 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4785 const Loop *L = AR->getLoop();
4786 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004787 std::swap(LHS, RHS);
4788 Pred = ICmpInst::getSwappedPredicate(Pred);
4789 Changed = true;
4790 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004791 }
Dan Gohmane9796502010-04-24 01:28:42 +00004792
4793 // If there's a constant operand, canonicalize comparisons with boundary
4794 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4795 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4796 const APInt &RA = RC->getValue()->getValue();
4797 switch (Pred) {
4798 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4799 case ICmpInst::ICMP_EQ:
4800 case ICmpInst::ICMP_NE:
4801 break;
4802 case ICmpInst::ICMP_UGE:
4803 if ((RA - 1).isMinValue()) {
4804 Pred = ICmpInst::ICMP_NE;
4805 RHS = getConstant(RA - 1);
4806 Changed = true;
4807 break;
4808 }
4809 if (RA.isMaxValue()) {
4810 Pred = ICmpInst::ICMP_EQ;
4811 Changed = true;
4812 break;
4813 }
4814 if (RA.isMinValue()) goto trivially_true;
4815
4816 Pred = ICmpInst::ICMP_UGT;
4817 RHS = getConstant(RA - 1);
4818 Changed = true;
4819 break;
4820 case ICmpInst::ICMP_ULE:
4821 if ((RA + 1).isMaxValue()) {
4822 Pred = ICmpInst::ICMP_NE;
4823 RHS = getConstant(RA + 1);
4824 Changed = true;
4825 break;
4826 }
4827 if (RA.isMinValue()) {
4828 Pred = ICmpInst::ICMP_EQ;
4829 Changed = true;
4830 break;
4831 }
4832 if (RA.isMaxValue()) goto trivially_true;
4833
4834 Pred = ICmpInst::ICMP_ULT;
4835 RHS = getConstant(RA + 1);
4836 Changed = true;
4837 break;
4838 case ICmpInst::ICMP_SGE:
4839 if ((RA - 1).isMinSignedValue()) {
4840 Pred = ICmpInst::ICMP_NE;
4841 RHS = getConstant(RA - 1);
4842 Changed = true;
4843 break;
4844 }
4845 if (RA.isMaxSignedValue()) {
4846 Pred = ICmpInst::ICMP_EQ;
4847 Changed = true;
4848 break;
4849 }
4850 if (RA.isMinSignedValue()) goto trivially_true;
4851
4852 Pred = ICmpInst::ICMP_SGT;
4853 RHS = getConstant(RA - 1);
4854 Changed = true;
4855 break;
4856 case ICmpInst::ICMP_SLE:
4857 if ((RA + 1).isMaxSignedValue()) {
4858 Pred = ICmpInst::ICMP_NE;
4859 RHS = getConstant(RA + 1);
4860 Changed = true;
4861 break;
4862 }
4863 if (RA.isMinSignedValue()) {
4864 Pred = ICmpInst::ICMP_EQ;
4865 Changed = true;
4866 break;
4867 }
4868 if (RA.isMaxSignedValue()) goto trivially_true;
4869
4870 Pred = ICmpInst::ICMP_SLT;
4871 RHS = getConstant(RA + 1);
4872 Changed = true;
4873 break;
4874 case ICmpInst::ICMP_UGT:
4875 if (RA.isMinValue()) {
4876 Pred = ICmpInst::ICMP_NE;
4877 Changed = true;
4878 break;
4879 }
4880 if ((RA + 1).isMaxValue()) {
4881 Pred = ICmpInst::ICMP_EQ;
4882 RHS = getConstant(RA + 1);
4883 Changed = true;
4884 break;
4885 }
4886 if (RA.isMaxValue()) goto trivially_false;
4887 break;
4888 case ICmpInst::ICMP_ULT:
4889 if (RA.isMaxValue()) {
4890 Pred = ICmpInst::ICMP_NE;
4891 Changed = true;
4892 break;
4893 }
4894 if ((RA - 1).isMinValue()) {
4895 Pred = ICmpInst::ICMP_EQ;
4896 RHS = getConstant(RA - 1);
4897 Changed = true;
4898 break;
4899 }
4900 if (RA.isMinValue()) goto trivially_false;
4901 break;
4902 case ICmpInst::ICMP_SGT:
4903 if (RA.isMinSignedValue()) {
4904 Pred = ICmpInst::ICMP_NE;
4905 Changed = true;
4906 break;
4907 }
4908 if ((RA + 1).isMaxSignedValue()) {
4909 Pred = ICmpInst::ICMP_EQ;
4910 RHS = getConstant(RA + 1);
4911 Changed = true;
4912 break;
4913 }
4914 if (RA.isMaxSignedValue()) goto trivially_false;
4915 break;
4916 case ICmpInst::ICMP_SLT:
4917 if (RA.isMaxSignedValue()) {
4918 Pred = ICmpInst::ICMP_NE;
4919 Changed = true;
4920 break;
4921 }
4922 if ((RA - 1).isMinSignedValue()) {
4923 Pred = ICmpInst::ICMP_EQ;
4924 RHS = getConstant(RA - 1);
4925 Changed = true;
4926 break;
4927 }
4928 if (RA.isMinSignedValue()) goto trivially_false;
4929 break;
4930 }
4931 }
4932
4933 // Check for obvious equality.
4934 if (HasSameValue(LHS, RHS)) {
4935 if (ICmpInst::isTrueWhenEqual(Pred))
4936 goto trivially_true;
4937 if (ICmpInst::isFalseWhenEqual(Pred))
4938 goto trivially_false;
4939 }
4940
Dan Gohman03557dc2010-05-03 16:35:17 +00004941 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4942 // adding or subtracting 1 from one of the operands.
4943 switch (Pred) {
4944 case ICmpInst::ICMP_SLE:
4945 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4946 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4947 /*HasNUW=*/false, /*HasNSW=*/true);
4948 Pred = ICmpInst::ICMP_SLT;
4949 Changed = true;
4950 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004951 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004952 /*HasNUW=*/false, /*HasNSW=*/true);
4953 Pred = ICmpInst::ICMP_SLT;
4954 Changed = true;
4955 }
4956 break;
4957 case ICmpInst::ICMP_SGE:
4958 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004959 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004960 /*HasNUW=*/false, /*HasNSW=*/true);
4961 Pred = ICmpInst::ICMP_SGT;
4962 Changed = true;
4963 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4964 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4965 /*HasNUW=*/false, /*HasNSW=*/true);
4966 Pred = ICmpInst::ICMP_SGT;
4967 Changed = true;
4968 }
4969 break;
4970 case ICmpInst::ICMP_ULE:
4971 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004972 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004973 /*HasNUW=*/true, /*HasNSW=*/false);
4974 Pred = ICmpInst::ICMP_ULT;
4975 Changed = true;
4976 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004977 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004978 /*HasNUW=*/true, /*HasNSW=*/false);
4979 Pred = ICmpInst::ICMP_ULT;
4980 Changed = true;
4981 }
4982 break;
4983 case ICmpInst::ICMP_UGE:
4984 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004985 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004986 /*HasNUW=*/true, /*HasNSW=*/false);
4987 Pred = ICmpInst::ICMP_UGT;
4988 Changed = true;
4989 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004990 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004991 /*HasNUW=*/true, /*HasNSW=*/false);
4992 Pred = ICmpInst::ICMP_UGT;
4993 Changed = true;
4994 }
4995 break;
4996 default:
4997 break;
4998 }
4999
Dan Gohmane9796502010-04-24 01:28:42 +00005000 // TODO: More simplifications are possible here.
5001
5002 return Changed;
5003
5004trivially_true:
5005 // Return 0 == 0.
5006 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5007 Pred = ICmpInst::ICMP_EQ;
5008 return true;
5009
5010trivially_false:
5011 // Return 0 != 0.
5012 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5013 Pred = ICmpInst::ICMP_NE;
5014 return true;
5015}
5016
Dan Gohman85b05a22009-07-13 21:35:55 +00005017bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5018 return getSignedRange(S).getSignedMax().isNegative();
5019}
5020
5021bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5022 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5023}
5024
5025bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5026 return !getSignedRange(S).getSignedMin().isNegative();
5027}
5028
5029bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5030 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5031}
5032
5033bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5034 return isKnownNegative(S) || isKnownPositive(S);
5035}
5036
5037bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5038 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005039 // Canonicalize the inputs first.
5040 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5041
Dan Gohman53c66ea2010-04-11 22:16:48 +00005042 // If LHS or RHS is an addrec, check to see if the condition is true in
5043 // every iteration of the loop.
5044 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5045 if (isLoopEntryGuardedByCond(
5046 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5047 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005048 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005049 return true;
5050 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5051 if (isLoopEntryGuardedByCond(
5052 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5053 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005054 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005055 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005056
Dan Gohman53c66ea2010-04-11 22:16:48 +00005057 // Otherwise see what can be done with known constant ranges.
5058 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5059}
5060
5061bool
5062ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5063 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005064 if (HasSameValue(LHS, RHS))
5065 return ICmpInst::isTrueWhenEqual(Pred);
5066
Dan Gohman53c66ea2010-04-11 22:16:48 +00005067 // This code is split out from isKnownPredicate because it is called from
5068 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005069 switch (Pred) {
5070 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005071 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005072 break;
5073 case ICmpInst::ICMP_SGT:
5074 Pred = ICmpInst::ICMP_SLT;
5075 std::swap(LHS, RHS);
5076 case ICmpInst::ICMP_SLT: {
5077 ConstantRange LHSRange = getSignedRange(LHS);
5078 ConstantRange RHSRange = getSignedRange(RHS);
5079 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5080 return true;
5081 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5082 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005083 break;
5084 }
5085 case ICmpInst::ICMP_SGE:
5086 Pred = ICmpInst::ICMP_SLE;
5087 std::swap(LHS, RHS);
5088 case ICmpInst::ICMP_SLE: {
5089 ConstantRange LHSRange = getSignedRange(LHS);
5090 ConstantRange RHSRange = getSignedRange(RHS);
5091 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5092 return true;
5093 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5094 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005095 break;
5096 }
5097 case ICmpInst::ICMP_UGT:
5098 Pred = ICmpInst::ICMP_ULT;
5099 std::swap(LHS, RHS);
5100 case ICmpInst::ICMP_ULT: {
5101 ConstantRange LHSRange = getUnsignedRange(LHS);
5102 ConstantRange RHSRange = getUnsignedRange(RHS);
5103 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5104 return true;
5105 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5106 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005107 break;
5108 }
5109 case ICmpInst::ICMP_UGE:
5110 Pred = ICmpInst::ICMP_ULE;
5111 std::swap(LHS, RHS);
5112 case ICmpInst::ICMP_ULE: {
5113 ConstantRange LHSRange = getUnsignedRange(LHS);
5114 ConstantRange RHSRange = getUnsignedRange(RHS);
5115 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5116 return true;
5117 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5118 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005119 break;
5120 }
5121 case ICmpInst::ICMP_NE: {
5122 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5123 return true;
5124 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5125 return true;
5126
5127 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5128 if (isKnownNonZero(Diff))
5129 return true;
5130 break;
5131 }
5132 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005133 // The check at the top of the function catches the case where
5134 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005135 break;
5136 }
5137 return false;
5138}
5139
5140/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5141/// protected by a conditional between LHS and RHS. This is used to
5142/// to eliminate casts.
5143bool
5144ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5145 ICmpInst::Predicate Pred,
5146 const SCEV *LHS, const SCEV *RHS) {
5147 // Interpret a null as meaning no loop, where there is obviously no guard
5148 // (interprocedural conditions notwithstanding).
5149 if (!L) return true;
5150
5151 BasicBlock *Latch = L->getLoopLatch();
5152 if (!Latch)
5153 return false;
5154
5155 BranchInst *LoopContinuePredicate =
5156 dyn_cast<BranchInst>(Latch->getTerminator());
5157 if (!LoopContinuePredicate ||
5158 LoopContinuePredicate->isUnconditional())
5159 return false;
5160
Dan Gohman0f4b2852009-07-21 23:03:19 +00005161 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5162 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005163}
5164
Dan Gohman3948d0b2010-04-11 19:27:13 +00005165/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005166/// by a conditional between LHS and RHS. This is used to help avoid max
5167/// expressions in loop trip counts, and to eliminate casts.
5168bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005169ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5170 ICmpInst::Predicate Pred,
5171 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005172 // Interpret a null as meaning no loop, where there is obviously no guard
5173 // (interprocedural conditions notwithstanding).
5174 if (!L) return false;
5175
Dan Gohman859b4822009-05-18 15:36:09 +00005176 // Starting at the loop predecessor, climb up the predecessor chain, as long
5177 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005178 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005179 for (std::pair<BasicBlock *, BasicBlock *>
5180 Pair(getLoopPredecessor(L), L->getHeader());
5181 Pair.first;
5182 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005183
5184 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005185 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005186 if (!LoopEntryPredicate ||
5187 LoopEntryPredicate->isUnconditional())
5188 continue;
5189
Dan Gohman0f4b2852009-07-21 23:03:19 +00005190 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005191 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005192 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005193 }
5194
Dan Gohman38372182008-08-12 20:17:31 +00005195 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005196}
5197
Dan Gohman0f4b2852009-07-21 23:03:19 +00005198/// isImpliedCond - Test whether the condition described by Pred, LHS,
5199/// and RHS is true whenever the given Cond value evaluates to true.
5200bool ScalarEvolution::isImpliedCond(Value *CondValue,
5201 ICmpInst::Predicate Pred,
5202 const SCEV *LHS, const SCEV *RHS,
5203 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005204 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005205 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5206 if (BO->getOpcode() == Instruction::And) {
5207 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005208 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5209 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005210 } else if (BO->getOpcode() == Instruction::Or) {
5211 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005212 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5213 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005214 }
5215 }
5216
5217 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5218 if (!ICI) return false;
5219
Dan Gohman85b05a22009-07-13 21:35:55 +00005220 // Bail if the ICmp's operands' types are wider than the needed type
5221 // before attempting to call getSCEV on them. This avoids infinite
5222 // recursion, since the analysis of widening casts can require loop
5223 // exit condition information for overflow checking, which would
5224 // lead back here.
5225 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005226 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005227 return false;
5228
Dan Gohman0f4b2852009-07-21 23:03:19 +00005229 // Now that we found a conditional branch that dominates the loop, check to
5230 // see if it is the comparison we are looking for.
5231 ICmpInst::Predicate FoundPred;
5232 if (Inverse)
5233 FoundPred = ICI->getInversePredicate();
5234 else
5235 FoundPred = ICI->getPredicate();
5236
5237 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5238 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005239
5240 // Balance the types. The case where FoundLHS' type is wider than
5241 // LHS' type is checked for above.
5242 if (getTypeSizeInBits(LHS->getType()) >
5243 getTypeSizeInBits(FoundLHS->getType())) {
5244 if (CmpInst::isSigned(Pred)) {
5245 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5246 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5247 } else {
5248 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5249 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5250 }
5251 }
5252
Dan Gohman0f4b2852009-07-21 23:03:19 +00005253 // Canonicalize the query to match the way instcombine will have
5254 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005255 if (SimplifyICmpOperands(Pred, LHS, RHS))
5256 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005257 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005258 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5259 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005260 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005261
5262 // Check to see if we can make the LHS or RHS match.
5263 if (LHS == FoundRHS || RHS == FoundLHS) {
5264 if (isa<SCEVConstant>(RHS)) {
5265 std::swap(FoundLHS, FoundRHS);
5266 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5267 } else {
5268 std::swap(LHS, RHS);
5269 Pred = ICmpInst::getSwappedPredicate(Pred);
5270 }
5271 }
5272
5273 // Check whether the found predicate is the same as the desired predicate.
5274 if (FoundPred == Pred)
5275 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5276
5277 // Check whether swapping the found predicate makes it the same as the
5278 // desired predicate.
5279 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5280 if (isa<SCEVConstant>(RHS))
5281 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5282 else
5283 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5284 RHS, LHS, FoundLHS, FoundRHS);
5285 }
5286
5287 // Check whether the actual condition is beyond sufficient.
5288 if (FoundPred == ICmpInst::ICMP_EQ)
5289 if (ICmpInst::isTrueWhenEqual(Pred))
5290 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5291 return true;
5292 if (Pred == ICmpInst::ICMP_NE)
5293 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5294 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5295 return true;
5296
5297 // Otherwise assume the worst.
5298 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005299}
5300
Dan Gohman0f4b2852009-07-21 23:03:19 +00005301/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005302/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005303/// and FoundRHS is true.
5304bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5305 const SCEV *LHS, const SCEV *RHS,
5306 const SCEV *FoundLHS,
5307 const SCEV *FoundRHS) {
5308 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5309 FoundLHS, FoundRHS) ||
5310 // ~x < ~y --> x > y
5311 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5312 getNotSCEV(FoundRHS),
5313 getNotSCEV(FoundLHS));
5314}
5315
5316/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005317/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005318/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005319bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005320ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5321 const SCEV *LHS, const SCEV *RHS,
5322 const SCEV *FoundLHS,
5323 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005324 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005325 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5326 case ICmpInst::ICMP_EQ:
5327 case ICmpInst::ICMP_NE:
5328 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5329 return true;
5330 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005331 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005332 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005333 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5334 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005335 return true;
5336 break;
5337 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005338 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005339 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5340 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005341 return true;
5342 break;
5343 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005344 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005345 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5346 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005347 return true;
5348 break;
5349 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005350 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005351 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5352 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005353 return true;
5354 break;
5355 }
5356
5357 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005358}
5359
Dan Gohman51f53b72009-06-21 23:46:38 +00005360/// getBECount - Subtract the end and start values and divide by the step,
5361/// rounding up, to get the number of times the backedge is executed. Return
5362/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005363const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005364 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005365 const SCEV *Step,
5366 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005367 assert(!isKnownNegative(Step) &&
5368 "This code doesn't handle negative strides yet!");
5369
Dan Gohman51f53b72009-06-21 23:46:38 +00005370 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005371 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005372 const SCEV *Diff = getMinusSCEV(End, Start);
5373 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005374
5375 // Add an adjustment to the difference between End and Start so that
5376 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005377 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005378
Dan Gohman1f96e672009-09-17 18:05:20 +00005379 if (!NoWrap) {
5380 // Check Add for unsigned overflow.
5381 // TODO: More sophisticated things could be done here.
5382 const Type *WideTy = IntegerType::get(getContext(),
5383 getTypeSizeInBits(Ty) + 1);
5384 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5385 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5386 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5387 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5388 return getCouldNotCompute();
5389 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005390
5391 return getUDivExpr(Add, Step);
5392}
5393
Chris Lattnerdb25de42005-08-15 23:33:51 +00005394/// HowManyLessThans - Return the number of times a backedge containing the
5395/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005396/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005397ScalarEvolution::BackedgeTakenInfo
5398ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5399 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005400 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005401 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005402
Dan Gohman35738ac2009-05-04 22:30:44 +00005403 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005404 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005405 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005406
Dan Gohman1f96e672009-09-17 18:05:20 +00005407 // Check to see if we have a flag which makes analysis easy.
5408 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5409 AddRec->hasNoUnsignedWrap();
5410
Chris Lattnerdb25de42005-08-15 23:33:51 +00005411 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005412 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005413 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005414
Dan Gohman52fddd32010-01-26 04:40:18 +00005415 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005416 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005417 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005418 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005419 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005420 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005421 // value and past the maximum value for its type in a single step.
5422 // Note that it's not sufficient to check NoWrap here, because even
5423 // though the value after a wrap is undefined, it's not undefined
5424 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005425 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005426 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005427 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005428 if (isSigned) {
5429 APInt Max = APInt::getSignedMaxValue(BitWidth);
5430 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5431 .slt(getSignedRange(RHS).getSignedMax()))
5432 return getCouldNotCompute();
5433 } else {
5434 APInt Max = APInt::getMaxValue(BitWidth);
5435 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5436 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5437 return getCouldNotCompute();
5438 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005439 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005440 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005441 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005442
Dan Gohmana1af7572009-04-30 20:47:05 +00005443 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5444 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5445 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005446 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005447
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005448 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005449 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005450
Dan Gohmana1af7572009-04-30 20:47:05 +00005451 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005452 const SCEV *MinStart = getConstant(isSigned ?
5453 getSignedRange(Start).getSignedMin() :
5454 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005455
Dan Gohmana1af7572009-04-30 20:47:05 +00005456 // If we know that the condition is true in order to enter the loop,
5457 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005458 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5459 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005460 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005461 if (!isLoopEntryGuardedByCond(L,
5462 isSigned ? ICmpInst::ICMP_SLT :
5463 ICmpInst::ICMP_ULT,
5464 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005465 End = isSigned ? getSMaxExpr(RHS, Start)
5466 : getUMaxExpr(RHS, Start);
5467
5468 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005469 const SCEV *MaxEnd = getConstant(isSigned ?
5470 getSignedRange(End).getSignedMax() :
5471 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005472
Dan Gohman52fddd32010-01-26 04:40:18 +00005473 // If MaxEnd is within a step of the maximum integer value in its type,
5474 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005475 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005476 // compute the correct value.
5477 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005478 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005479 MaxEnd = isSigned ?
5480 getSMinExpr(MaxEnd,
5481 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5482 StepMinusOne)) :
5483 getUMinExpr(MaxEnd,
5484 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5485 StepMinusOne));
5486
Dan Gohmana1af7572009-04-30 20:47:05 +00005487 // Finally, we subtract these two values and divide, rounding up, to get
5488 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005489 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005490
5491 // The maximum backedge count is similar, except using the minimum start
5492 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005493 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005494
5495 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005496 }
5497
Dan Gohman1c343752009-06-27 21:21:31 +00005498 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005499}
5500
Chris Lattner53e677a2004-04-02 20:23:17 +00005501/// getNumIterationsInRange - Return the number of iterations of this loop that
5502/// produce values in the specified constant range. Another way of looking at
5503/// this is that it returns the first iteration number where the value is not in
5504/// the condition, thus computing the exit count. If the iteration count can't
5505/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005506const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005507 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005508 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005509 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005510
5511 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005512 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005513 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005514 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005515 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005516 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005517 if (const SCEVAddRecExpr *ShiftedAddRec =
5518 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005519 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005520 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005521 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005522 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005523 }
5524
5525 // The only time we can solve this is when we have all constant indices.
5526 // Otherwise, we cannot determine the overflow conditions.
5527 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5528 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005529 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005530
5531
5532 // Okay at this point we know that all elements of the chrec are constants and
5533 // that the start element is zero.
5534
5535 // First check to see if the range contains zero. If not, the first
5536 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005537 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005538 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005539 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005540
Chris Lattner53e677a2004-04-02 20:23:17 +00005541 if (isAffine()) {
5542 // If this is an affine expression then we have this situation:
5543 // Solve {0,+,A} in Range === Ax in Range
5544
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005545 // We know that zero is in the range. If A is positive then we know that
5546 // the upper value of the range must be the first possible exit value.
5547 // If A is negative then the lower of the range is the last possible loop
5548 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005549 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005550 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5551 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005552
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005553 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005554 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005555 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005556
5557 // Evaluate at the exit value. If we really did fall out of the valid
5558 // range, then we computed our trip count, otherwise wrap around or other
5559 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005560 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005561 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005562 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005563
5564 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005565 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005566 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005567 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005568 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005569 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005570 } else if (isQuadratic()) {
5571 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5572 // quadratic equation to solve it. To do this, we must frame our problem in
5573 // terms of figuring out when zero is crossed, instead of when
5574 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005575 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005576 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005577 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005578
5579 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005580 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005581 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005582 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5583 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005584 if (R1) {
5585 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005586 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005587 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005588 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005589 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005590 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005591
Chris Lattner53e677a2004-04-02 20:23:17 +00005592 // Make sure the root is not off by one. The returned iteration should
5593 // not be in the range, but the previous one should be. When solving
5594 // for "X*X < 5", for example, we should not return a root of 2.
5595 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005596 R1->getValue(),
5597 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005598 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005599 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005600 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005601 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005602
Dan Gohman246b2562007-10-22 18:31:58 +00005603 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005604 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005605 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005606 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005607 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005608
Chris Lattner53e677a2004-04-02 20:23:17 +00005609 // If R1 was not in the range, then it is a good return value. Make
5610 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005611 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005612 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005613 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005614 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005615 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005616 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005617 }
5618 }
5619 }
5620
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005621 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005622}
5623
5624
5625
5626//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005627// SCEVCallbackVH Class Implementation
5628//===----------------------------------------------------------------------===//
5629
Dan Gohman1959b752009-05-19 19:22:47 +00005630void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005631 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005632 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5633 SE->ConstantEvolutionLoopExitValue.erase(PN);
5634 SE->Scalars.erase(getValPtr());
5635 // this now dangles!
5636}
5637
Dan Gohman1959b752009-05-19 19:22:47 +00005638void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005639 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005640
5641 // Forget all the expressions associated with users of the old value,
5642 // so that future queries will recompute the expressions using the new
5643 // value.
5644 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005645 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005646 Value *Old = getValPtr();
5647 bool DeleteOld = false;
5648 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5649 UI != UE; ++UI)
5650 Worklist.push_back(*UI);
5651 while (!Worklist.empty()) {
5652 User *U = Worklist.pop_back_val();
5653 // Deleting the Old value will cause this to dangle. Postpone
5654 // that until everything else is done.
5655 if (U == Old) {
5656 DeleteOld = true;
5657 continue;
5658 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005659 if (!Visited.insert(U))
5660 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005661 if (PHINode *PN = dyn_cast<PHINode>(U))
5662 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005663 SE->Scalars.erase(U);
5664 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5665 UI != UE; ++UI)
5666 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005667 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005668 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005669 if (DeleteOld) {
5670 if (PHINode *PN = dyn_cast<PHINode>(Old))
5671 SE->ConstantEvolutionLoopExitValue.erase(PN);
5672 SE->Scalars.erase(Old);
5673 // this now dangles!
5674 }
5675 // this may dangle!
5676}
5677
Dan Gohman1959b752009-05-19 19:22:47 +00005678ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005679 : CallbackVH(V), SE(se) {}
5680
5681//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005682// ScalarEvolution Class Implementation
5683//===----------------------------------------------------------------------===//
5684
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005685ScalarEvolution::ScalarEvolution()
Evan Cheng1d451df2010-06-09 18:59:43 +00005686 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005687}
5688
Chris Lattner53e677a2004-04-02 20:23:17 +00005689bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005690 this->F = &F;
5691 LI = &getAnalysis<LoopInfo>();
5692 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005693 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005694 return false;
5695}
5696
5697void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005698 Scalars.clear();
5699 BackedgeTakenCounts.clear();
5700 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005701 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005702 UniqueSCEVs.clear();
5703 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005704}
5705
5706void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5707 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005708 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005709 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005710}
5711
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005712bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005713 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005714}
5715
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005716static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005717 const Loop *L) {
5718 // Print all inner loops first
5719 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5720 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005721
Dan Gohman30733292010-01-09 18:17:45 +00005722 OS << "Loop ";
5723 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5724 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005725
Dan Gohman5d984912009-12-18 01:14:11 +00005726 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005727 L->getExitBlocks(ExitBlocks);
5728 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005729 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005730
Dan Gohman46bdfb02009-02-24 18:55:53 +00005731 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5732 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005733 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005734 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005735 }
5736
Dan Gohman30733292010-01-09 18:17:45 +00005737 OS << "\n"
5738 "Loop ";
5739 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5740 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005741
5742 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5743 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5744 } else {
5745 OS << "Unpredictable max backedge-taken count. ";
5746 }
5747
5748 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005749}
5750
Dan Gohman5d984912009-12-18 01:14:11 +00005751void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005752 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005753 // out SCEV values of all instructions that are interesting. Doing
5754 // this potentially causes it to create new SCEV objects though,
5755 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005756 // observable from outside the class though, so casting away the
5757 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005758 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005759
Dan Gohman30733292010-01-09 18:17:45 +00005760 OS << "Classifying expressions for: ";
5761 WriteAsOperand(OS, F, /*PrintType=*/false);
5762 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005763 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005764 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005765 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005766 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005767 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005768 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005769
Dan Gohman0c689c52009-06-19 17:49:54 +00005770 const Loop *L = LI->getLoopFor((*I).getParent());
5771
Dan Gohman0bba49c2009-07-07 17:06:11 +00005772 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005773 if (AtUse != SV) {
5774 OS << " --> ";
5775 AtUse->print(OS);
5776 }
5777
5778 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005779 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005780 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005781 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005782 OS << "<<Unknown>>";
5783 } else {
5784 OS << *ExitValue;
5785 }
5786 }
5787
Chris Lattner53e677a2004-04-02 20:23:17 +00005788 OS << "\n";
5789 }
5790
Dan Gohman30733292010-01-09 18:17:45 +00005791 OS << "Determining loop execution counts for: ";
5792 WriteAsOperand(OS, F, /*PrintType=*/false);
5793 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005794 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5795 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005796}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005797