blob: 7e2830782f19569da668526b75dac6c64e788dae [file] [log] [blame]
Chris Lattnerfe718932008-01-06 01:10:31 +00001//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
Chris Lattner6cefb772008-01-05 22:25:12 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattnerfe718932008-01-06 01:10:31 +000010// This file implements the CodeGenDAGPatterns class, which is used to read and
Chris Lattner6cefb772008-01-05 22:25:12 +000011// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner93c7e412008-01-05 23:37:52 +000015#include "CodeGenDAGPatterns.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000016#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Support/Debug.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000019#include "llvm/Support/Streams.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000020#include <set>
21using namespace llvm;
22
23//===----------------------------------------------------------------------===//
24// Helpers for working with extended types.
25
26/// FilterVTs - Filter a list of VT's according to a predicate.
27///
28template<typename T>
29static std::vector<MVT::ValueType>
30FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
31 std::vector<MVT::ValueType> Result;
32 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
33 if (Filter(InVTs[i]))
34 Result.push_back(InVTs[i]);
35 return Result;
36}
37
38template<typename T>
39static std::vector<unsigned char>
40FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
41 std::vector<unsigned char> Result;
42 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
43 if (Filter((MVT::ValueType)InVTs[i]))
44 Result.push_back(InVTs[i]);
45 return Result;
46}
47
48static std::vector<unsigned char>
49ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
50 std::vector<unsigned char> Result;
51 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
52 Result.push_back(InVTs[i]);
53 return Result;
54}
55
56static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
57 const std::vector<unsigned char> &RHS) {
58 if (LHS.size() > RHS.size()) return false;
59 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
60 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
61 return false;
62 return true;
63}
64
65/// isExtIntegerVT - Return true if the specified extended value type vector
66/// contains isInt or an integer value type.
67namespace llvm {
68namespace MVT {
69bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
70 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
71 return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
72}
73
74/// isExtFloatingPointVT - Return true if the specified extended value type
75/// vector contains isFP or a FP value type.
76bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
77 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
78 return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
79}
80} // end namespace MVT.
81} // end namespace llvm.
82
83//===----------------------------------------------------------------------===//
84// SDTypeConstraint implementation
85//
86
87SDTypeConstraint::SDTypeConstraint(Record *R) {
88 OperandNo = R->getValueAsInt("OperandNum");
89
90 if (R->isSubClassOf("SDTCisVT")) {
91 ConstraintType = SDTCisVT;
92 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
93 } else if (R->isSubClassOf("SDTCisPtrTy")) {
94 ConstraintType = SDTCisPtrTy;
95 } else if (R->isSubClassOf("SDTCisInt")) {
96 ConstraintType = SDTCisInt;
97 } else if (R->isSubClassOf("SDTCisFP")) {
98 ConstraintType = SDTCisFP;
99 } else if (R->isSubClassOf("SDTCisSameAs")) {
100 ConstraintType = SDTCisSameAs;
101 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
102 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
103 ConstraintType = SDTCisVTSmallerThanOp;
104 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
105 R->getValueAsInt("OtherOperandNum");
106 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
107 ConstraintType = SDTCisOpSmallerThanOp;
108 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
109 R->getValueAsInt("BigOperandNum");
110 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
111 ConstraintType = SDTCisIntVectorOfSameSize;
112 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
113 R->getValueAsInt("OtherOpNum");
114 } else {
115 cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
116 exit(1);
117 }
118}
119
120/// getOperandNum - Return the node corresponding to operand #OpNo in tree
121/// N, which has NumResults results.
122TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
123 TreePatternNode *N,
124 unsigned NumResults) const {
125 assert(NumResults <= 1 &&
126 "We only work with nodes with zero or one result so far!");
127
128 if (OpNo >= (NumResults + N->getNumChildren())) {
129 cerr << "Invalid operand number " << OpNo << " ";
130 N->dump();
131 cerr << '\n';
132 exit(1);
133 }
134
135 if (OpNo < NumResults)
136 return N; // FIXME: need value #
137 else
138 return N->getChild(OpNo-NumResults);
139}
140
141/// ApplyTypeConstraint - Given a node in a pattern, apply this type
142/// constraint to the nodes operands. This returns true if it makes a
143/// change, false otherwise. If a type contradiction is found, throw an
144/// exception.
145bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
146 const SDNodeInfo &NodeInfo,
147 TreePattern &TP) const {
148 unsigned NumResults = NodeInfo.getNumResults();
149 assert(NumResults <= 1 &&
150 "We only work with nodes with zero or one result so far!");
151
152 // Check that the number of operands is sane. Negative operands -> varargs.
153 if (NodeInfo.getNumOperands() >= 0) {
154 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
155 TP.error(N->getOperator()->getName() + " node requires exactly " +
156 itostr(NodeInfo.getNumOperands()) + " operands!");
157 }
158
159 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
160
161 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
162
163 switch (ConstraintType) {
164 default: assert(0 && "Unknown constraint type!");
165 case SDTCisVT:
166 // Operand must be a particular type.
167 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
168 case SDTCisPtrTy: {
169 // Operand must be same as target pointer type.
170 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
171 }
172 case SDTCisInt: {
173 // If there is only one integer type supported, this must be it.
174 std::vector<MVT::ValueType> IntVTs =
175 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
176
177 // If we found exactly one supported integer type, apply it.
178 if (IntVTs.size() == 1)
179 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
180 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
181 }
182 case SDTCisFP: {
183 // If there is only one FP type supported, this must be it.
184 std::vector<MVT::ValueType> FPVTs =
185 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
186
187 // If we found exactly one supported FP type, apply it.
188 if (FPVTs.size() == 1)
189 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
190 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
191 }
192 case SDTCisSameAs: {
193 TreePatternNode *OtherNode =
194 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
195 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
196 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
197 }
198 case SDTCisVTSmallerThanOp: {
199 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
200 // have an integer type that is smaller than the VT.
201 if (!NodeToApply->isLeaf() ||
202 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
203 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
204 ->isSubClassOf("ValueType"))
205 TP.error(N->getOperator()->getName() + " expects a VT operand!");
206 MVT::ValueType VT =
207 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
208 if (!MVT::isInteger(VT))
209 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
210
211 TreePatternNode *OtherNode =
212 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
213
214 // It must be integer.
215 bool MadeChange = false;
216 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
217
218 // This code only handles nodes that have one type set. Assert here so
219 // that we can change this if we ever need to deal with multiple value
220 // types at this point.
221 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
222 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
223 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
224 return false;
225 }
226 case SDTCisOpSmallerThanOp: {
227 TreePatternNode *BigOperand =
228 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
229
230 // Both operands must be integer or FP, but we don't care which.
231 bool MadeChange = false;
232
233 // This code does not currently handle nodes which have multiple types,
234 // where some types are integer, and some are fp. Assert that this is not
235 // the case.
236 assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
237 MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
238 !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
239 MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
240 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
241 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
242 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
243 else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
244 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
245 if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
246 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
247 else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
248 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
249
250 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
251
252 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
253 VTs = FilterVTs(VTs, MVT::isInteger);
254 } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
255 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
256 } else {
257 VTs.clear();
258 }
259
260 switch (VTs.size()) {
261 default: // Too many VT's to pick from.
262 case 0: break; // No info yet.
263 case 1:
264 // Only one VT of this flavor. Cannot ever satisify the constraints.
265 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
266 case 2:
267 // If we have exactly two possible types, the little operand must be the
268 // small one, the big operand should be the big one. Common with
269 // float/double for example.
270 assert(VTs[0] < VTs[1] && "Should be sorted!");
271 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
272 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
273 break;
274 }
275 return MadeChange;
276 }
277 case SDTCisIntVectorOfSameSize: {
278 TreePatternNode *OtherOperand =
279 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
280 N, NumResults);
281 if (OtherOperand->hasTypeSet()) {
282 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
283 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
284 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
285 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
286 return NodeToApply->UpdateNodeType(IVT, TP);
287 }
288 return false;
289 }
290 }
291 return false;
292}
293
294//===----------------------------------------------------------------------===//
295// SDNodeInfo implementation
296//
297SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
298 EnumName = R->getValueAsString("Opcode");
299 SDClassName = R->getValueAsString("SDClass");
300 Record *TypeProfile = R->getValueAsDef("TypeProfile");
301 NumResults = TypeProfile->getValueAsInt("NumResults");
302 NumOperands = TypeProfile->getValueAsInt("NumOperands");
303
304 // Parse the properties.
305 Properties = 0;
306 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
307 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
308 if (PropList[i]->getName() == "SDNPCommutative") {
309 Properties |= 1 << SDNPCommutative;
310 } else if (PropList[i]->getName() == "SDNPAssociative") {
311 Properties |= 1 << SDNPAssociative;
312 } else if (PropList[i]->getName() == "SDNPHasChain") {
313 Properties |= 1 << SDNPHasChain;
314 } else if (PropList[i]->getName() == "SDNPOutFlag") {
315 Properties |= 1 << SDNPOutFlag;
316 } else if (PropList[i]->getName() == "SDNPInFlag") {
317 Properties |= 1 << SDNPInFlag;
318 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
319 Properties |= 1 << SDNPOptInFlag;
320 } else {
321 cerr << "Unknown SD Node property '" << PropList[i]->getName()
322 << "' on node '" << R->getName() << "'!\n";
323 exit(1);
324 }
325 }
326
327
328 // Parse the type constraints.
329 std::vector<Record*> ConstraintList =
330 TypeProfile->getValueAsListOfDefs("Constraints");
331 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
332}
333
334//===----------------------------------------------------------------------===//
335// TreePatternNode implementation
336//
337
338TreePatternNode::~TreePatternNode() {
339#if 0 // FIXME: implement refcounted tree nodes!
340 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
341 delete getChild(i);
342#endif
343}
344
345/// UpdateNodeType - Set the node type of N to VT if VT contains
346/// information. If N already contains a conflicting type, then throw an
347/// exception. This returns true if any information was updated.
348///
349bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
350 TreePattern &TP) {
351 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
352
353 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
354 return false;
355 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
356 setTypes(ExtVTs);
357 return true;
358 }
359
360 if (getExtTypeNum(0) == MVT::iPTR) {
361 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
362 return false;
363 if (MVT::isExtIntegerInVTs(ExtVTs)) {
364 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
365 if (FVTs.size()) {
366 setTypes(ExtVTs);
367 return true;
368 }
369 }
370 }
371
372 if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) {
373 assert(hasTypeSet() && "should be handled above!");
374 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
375 if (getExtTypes() == FVTs)
376 return false;
377 setTypes(FVTs);
378 return true;
379 }
380 if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) {
381 //assert(hasTypeSet() && "should be handled above!");
382 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
383 if (getExtTypes() == FVTs)
384 return false;
385 if (FVTs.size()) {
386 setTypes(FVTs);
387 return true;
388 }
389 }
390 if (ExtVTs[0] == MVT::isFP && MVT::isExtFloatingPointInVTs(getExtTypes())) {
391 assert(hasTypeSet() && "should be handled above!");
392 std::vector<unsigned char> FVTs =
393 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
394 if (getExtTypes() == FVTs)
395 return false;
396 setTypes(FVTs);
397 return true;
398 }
399
400 // If we know this is an int or fp type, and we are told it is a specific one,
401 // take the advice.
402 //
403 // Similarly, we should probably set the type here to the intersection of
404 // {isInt|isFP} and ExtVTs
405 if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) ||
406 (getExtTypeNum(0) == MVT::isFP && MVT::isExtFloatingPointInVTs(ExtVTs))){
407 setTypes(ExtVTs);
408 return true;
409 }
410 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
411 setTypes(ExtVTs);
412 return true;
413 }
414
415 if (isLeaf()) {
416 dump();
417 cerr << " ";
418 TP.error("Type inference contradiction found in node!");
419 } else {
420 TP.error("Type inference contradiction found in node " +
421 getOperator()->getName() + "!");
422 }
423 return true; // unreachable
424}
425
426
427void TreePatternNode::print(std::ostream &OS) const {
428 if (isLeaf()) {
429 OS << *getLeafValue();
430 } else {
431 OS << "(" << getOperator()->getName();
432 }
433
434 // FIXME: At some point we should handle printing all the value types for
435 // nodes that are multiply typed.
436 switch (getExtTypeNum(0)) {
437 case MVT::Other: OS << ":Other"; break;
438 case MVT::isInt: OS << ":isInt"; break;
439 case MVT::isFP : OS << ":isFP"; break;
440 case MVT::isUnknown: ; /*OS << ":?";*/ break;
441 case MVT::iPTR: OS << ":iPTR"; break;
442 default: {
443 std::string VTName = llvm::getName(getTypeNum(0));
444 // Strip off MVT:: prefix if present.
445 if (VTName.substr(0,5) == "MVT::")
446 VTName = VTName.substr(5);
447 OS << ":" << VTName;
448 break;
449 }
450 }
451
452 if (!isLeaf()) {
453 if (getNumChildren() != 0) {
454 OS << " ";
455 getChild(0)->print(OS);
456 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
457 OS << ", ";
458 getChild(i)->print(OS);
459 }
460 }
461 OS << ")";
462 }
463
464 if (!PredicateFn.empty())
465 OS << "<<P:" << PredicateFn << ">>";
466 if (TransformFn)
467 OS << "<<X:" << TransformFn->getName() << ">>";
468 if (!getName().empty())
469 OS << ":$" << getName();
470
471}
472void TreePatternNode::dump() const {
473 print(*cerr.stream());
474}
475
476/// isIsomorphicTo - Return true if this node is recursively isomorphic to
477/// the specified node. For this comparison, all of the state of the node
478/// is considered, except for the assigned name. Nodes with differing names
479/// that are otherwise identical are considered isomorphic.
480bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
481 if (N == this) return true;
482 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
483 getPredicateFn() != N->getPredicateFn() ||
484 getTransformFn() != N->getTransformFn())
485 return false;
486
487 if (isLeaf()) {
488 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
489 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
490 return DI->getDef() == NDI->getDef();
491 return getLeafValue() == N->getLeafValue();
492 }
493
494 if (N->getOperator() != getOperator() ||
495 N->getNumChildren() != getNumChildren()) return false;
496 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
497 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
498 return false;
499 return true;
500}
501
502/// clone - Make a copy of this tree and all of its children.
503///
504TreePatternNode *TreePatternNode::clone() const {
505 TreePatternNode *New;
506 if (isLeaf()) {
507 New = new TreePatternNode(getLeafValue());
508 } else {
509 std::vector<TreePatternNode*> CChildren;
510 CChildren.reserve(Children.size());
511 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
512 CChildren.push_back(getChild(i)->clone());
513 New = new TreePatternNode(getOperator(), CChildren);
514 }
515 New->setName(getName());
516 New->setTypes(getExtTypes());
517 New->setPredicateFn(getPredicateFn());
518 New->setTransformFn(getTransformFn());
519 return New;
520}
521
522/// SubstituteFormalArguments - Replace the formal arguments in this tree
523/// with actual values specified by ArgMap.
524void TreePatternNode::
525SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
526 if (isLeaf()) return;
527
528 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
529 TreePatternNode *Child = getChild(i);
530 if (Child->isLeaf()) {
531 Init *Val = Child->getLeafValue();
532 if (dynamic_cast<DefInit*>(Val) &&
533 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
534 // We found a use of a formal argument, replace it with its value.
535 Child = ArgMap[Child->getName()];
536 assert(Child && "Couldn't find formal argument!");
537 setChild(i, Child);
538 }
539 } else {
540 getChild(i)->SubstituteFormalArguments(ArgMap);
541 }
542 }
543}
544
545
546/// InlinePatternFragments - If this pattern refers to any pattern
547/// fragments, inline them into place, giving us a pattern without any
548/// PatFrag references.
549TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
550 if (isLeaf()) return this; // nothing to do.
551 Record *Op = getOperator();
552
553 if (!Op->isSubClassOf("PatFrag")) {
554 // Just recursively inline children nodes.
555 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
556 setChild(i, getChild(i)->InlinePatternFragments(TP));
557 return this;
558 }
559
560 // Otherwise, we found a reference to a fragment. First, look up its
561 // TreePattern record.
562 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
563
564 // Verify that we are passing the right number of operands.
565 if (Frag->getNumArgs() != Children.size())
566 TP.error("'" + Op->getName() + "' fragment requires " +
567 utostr(Frag->getNumArgs()) + " operands!");
568
569 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
570
571 // Resolve formal arguments to their actual value.
572 if (Frag->getNumArgs()) {
573 // Compute the map of formal to actual arguments.
574 std::map<std::string, TreePatternNode*> ArgMap;
575 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
576 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
577
578 FragTree->SubstituteFormalArguments(ArgMap);
579 }
580
581 FragTree->setName(getName());
582 FragTree->UpdateNodeType(getExtTypes(), TP);
583
584 // Get a new copy of this fragment to stitch into here.
585 //delete this; // FIXME: implement refcounting!
586 return FragTree;
587}
588
589/// getImplicitType - Check to see if the specified record has an implicit
590/// type which should be applied to it. This infer the type of register
591/// references from the register file information, for example.
592///
593static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
594 TreePattern &TP) {
595 // Some common return values
596 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
597 std::vector<unsigned char> Other(1, MVT::Other);
598
599 // Check to see if this is a register or a register class...
600 if (R->isSubClassOf("RegisterClass")) {
601 if (NotRegisters)
602 return Unknown;
603 const CodeGenRegisterClass &RC =
604 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
605 return ConvertVTs(RC.getValueTypes());
606 } else if (R->isSubClassOf("PatFrag")) {
607 // Pattern fragment types will be resolved when they are inlined.
608 return Unknown;
609 } else if (R->isSubClassOf("Register")) {
610 if (NotRegisters)
611 return Unknown;
612 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
613 return T.getRegisterVTs(R);
614 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
615 // Using a VTSDNode or CondCodeSDNode.
616 return Other;
617 } else if (R->isSubClassOf("ComplexPattern")) {
618 if (NotRegisters)
619 return Unknown;
620 std::vector<unsigned char>
621 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
622 return ComplexPat;
623 } else if (R->getName() == "ptr_rc") {
624 Other[0] = MVT::iPTR;
625 return Other;
626 } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
627 R->getName() == "zero_reg") {
628 // Placeholder.
629 return Unknown;
630 }
631
632 TP.error("Unknown node flavor used in pattern: " + R->getName());
633 return Other;
634}
635
636/// ApplyTypeConstraints - Apply all of the type constraints relevent to
637/// this node and its children in the tree. This returns true if it makes a
638/// change, false otherwise. If a type contradiction is found, throw an
639/// exception.
640bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
Chris Lattnerfe718932008-01-06 01:10:31 +0000641 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
Chris Lattner6cefb772008-01-05 22:25:12 +0000642 if (isLeaf()) {
643 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
644 // If it's a regclass or something else known, include the type.
645 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
646 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
647 // Int inits are always integers. :)
648 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
649
650 if (hasTypeSet()) {
651 // At some point, it may make sense for this tree pattern to have
652 // multiple types. Assert here that it does not, so we revisit this
653 // code when appropriate.
654 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
655 MVT::ValueType VT = getTypeNum(0);
656 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
657 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
658
659 VT = getTypeNum(0);
660 if (VT != MVT::iPTR) {
661 unsigned Size = MVT::getSizeInBits(VT);
662 // Make sure that the value is representable for this type.
663 if (Size < 32) {
664 int Val = (II->getValue() << (32-Size)) >> (32-Size);
665 if (Val != II->getValue())
666 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
667 "' is out of range for type '" +
668 getEnumName(getTypeNum(0)) + "'!");
669 }
670 }
671 }
672
673 return MadeChange;
674 }
675 return false;
676 }
677
678 // special handling for set, which isn't really an SDNode.
679 if (getOperator()->getName() == "set") {
680 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
681 unsigned NC = getNumChildren();
682 bool MadeChange = false;
683 for (unsigned i = 0; i < NC-1; ++i) {
684 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
685 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
686
687 // Types of operands must match.
688 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
689 TP);
690 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
691 TP);
692 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
693 }
694 return MadeChange;
695 } else if (getOperator()->getName() == "implicit" ||
696 getOperator()->getName() == "parallel") {
697 bool MadeChange = false;
698 for (unsigned i = 0; i < getNumChildren(); ++i)
699 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
700 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
701 return MadeChange;
702 } else if (getOperator() == CDP.get_intrinsic_void_sdnode() ||
703 getOperator() == CDP.get_intrinsic_w_chain_sdnode() ||
704 getOperator() == CDP.get_intrinsic_wo_chain_sdnode()) {
705 unsigned IID =
706 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
707 const CodeGenIntrinsic &Int = CDP.getIntrinsicInfo(IID);
708 bool MadeChange = false;
709
710 // Apply the result type to the node.
711 MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
712
713 if (getNumChildren() != Int.ArgVTs.size())
714 TP.error("Intrinsic '" + Int.Name + "' expects " +
715 utostr(Int.ArgVTs.size()-1) + " operands, not " +
716 utostr(getNumChildren()-1) + " operands!");
717
718 // Apply type info to the intrinsic ID.
719 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
720
721 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
722 MVT::ValueType OpVT = Int.ArgVTs[i];
723 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
724 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
725 }
726 return MadeChange;
727 } else if (getOperator()->isSubClassOf("SDNode")) {
728 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
729
730 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
731 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
732 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
733 // Branch, etc. do not produce results and top-level forms in instr pattern
734 // must have void types.
735 if (NI.getNumResults() == 0)
736 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
737
738 // If this is a vector_shuffle operation, apply types to the build_vector
739 // operation. The types of the integers don't matter, but this ensures they
740 // won't get checked.
741 if (getOperator()->getName() == "vector_shuffle" &&
742 getChild(2)->getOperator()->getName() == "build_vector") {
743 TreePatternNode *BV = getChild(2);
744 const std::vector<MVT::ValueType> &LegalVTs
745 = CDP.getTargetInfo().getLegalValueTypes();
746 MVT::ValueType LegalIntVT = MVT::Other;
747 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
748 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
749 LegalIntVT = LegalVTs[i];
750 break;
751 }
752 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
753
754 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
755 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
756 }
757 return MadeChange;
758 } else if (getOperator()->isSubClassOf("Instruction")) {
759 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
760 bool MadeChange = false;
761 unsigned NumResults = Inst.getNumResults();
762
763 assert(NumResults <= 1 &&
764 "Only supports zero or one result instrs!");
765
766 CodeGenInstruction &InstInfo =
767 CDP.getTargetInfo().getInstruction(getOperator()->getName());
768 // Apply the result type to the node
769 if (NumResults == 0 || InstInfo.NumDefs == 0) {
770 MadeChange = UpdateNodeType(MVT::isVoid, TP);
771 } else {
772 Record *ResultNode = Inst.getResult(0);
773
774 if (ResultNode->getName() == "ptr_rc") {
775 std::vector<unsigned char> VT;
776 VT.push_back(MVT::iPTR);
777 MadeChange = UpdateNodeType(VT, TP);
778 } else {
779 assert(ResultNode->isSubClassOf("RegisterClass") &&
780 "Operands should be register classes!");
781
782 const CodeGenRegisterClass &RC =
783 CDP.getTargetInfo().getRegisterClass(ResultNode);
784 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
785 }
786 }
787
788 unsigned ChildNo = 0;
789 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
790 Record *OperandNode = Inst.getOperand(i);
791
792 // If the instruction expects a predicate or optional def operand, we
793 // codegen this by setting the operand to it's default value if it has a
794 // non-empty DefaultOps field.
795 if ((OperandNode->isSubClassOf("PredicateOperand") ||
796 OperandNode->isSubClassOf("OptionalDefOperand")) &&
797 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
798 continue;
799
800 // Verify that we didn't run out of provided operands.
801 if (ChildNo >= getNumChildren())
802 TP.error("Instruction '" + getOperator()->getName() +
803 "' expects more operands than were provided.");
804
805 MVT::ValueType VT;
806 TreePatternNode *Child = getChild(ChildNo++);
807 if (OperandNode->isSubClassOf("RegisterClass")) {
808 const CodeGenRegisterClass &RC =
809 CDP.getTargetInfo().getRegisterClass(OperandNode);
810 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
811 } else if (OperandNode->isSubClassOf("Operand")) {
812 VT = getValueType(OperandNode->getValueAsDef("Type"));
813 MadeChange |= Child->UpdateNodeType(VT, TP);
814 } else if (OperandNode->getName() == "ptr_rc") {
815 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
816 } else {
817 assert(0 && "Unknown operand type!");
818 abort();
819 }
820 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
821 }
822
823 if (ChildNo != getNumChildren())
824 TP.error("Instruction '" + getOperator()->getName() +
825 "' was provided too many operands!");
826
827 return MadeChange;
828 } else {
829 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
830
831 // Node transforms always take one operand.
832 if (getNumChildren() != 1)
833 TP.error("Node transform '" + getOperator()->getName() +
834 "' requires one operand!");
835
836 // If either the output or input of the xform does not have exact
837 // type info. We assume they must be the same. Otherwise, it is perfectly
838 // legal to transform from one type to a completely different type.
839 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
840 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
841 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
842 return MadeChange;
843 }
844 return false;
845 }
846}
847
848/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
849/// RHS of a commutative operation, not the on LHS.
850static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
851 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
852 return true;
853 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
854 return true;
855 return false;
856}
857
858
859/// canPatternMatch - If it is impossible for this pattern to match on this
860/// target, fill in Reason and return false. Otherwise, return true. This is
861/// used as a santity check for .td files (to prevent people from writing stuff
862/// that can never possibly work), and to prevent the pattern permuter from
863/// generating stuff that is useless.
864bool TreePatternNode::canPatternMatch(std::string &Reason,
Chris Lattnerfe718932008-01-06 01:10:31 +0000865 CodeGenDAGPatterns &CDP){
Chris Lattner6cefb772008-01-05 22:25:12 +0000866 if (isLeaf()) return true;
867
868 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
869 if (!getChild(i)->canPatternMatch(Reason, CDP))
870 return false;
871
872 // If this is an intrinsic, handle cases that would make it not match. For
873 // example, if an operand is required to be an immediate.
874 if (getOperator()->isSubClassOf("Intrinsic")) {
875 // TODO:
876 return true;
877 }
878
879 // If this node is a commutative operator, check that the LHS isn't an
880 // immediate.
881 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
882 if (NodeInfo.hasProperty(SDNPCommutative)) {
883 // Scan all of the operands of the node and make sure that only the last one
884 // is a constant node, unless the RHS also is.
885 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
886 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
887 if (OnlyOnRHSOfCommutative(getChild(i))) {
888 Reason="Immediate value must be on the RHS of commutative operators!";
889 return false;
890 }
891 }
892 }
893
894 return true;
895}
896
897//===----------------------------------------------------------------------===//
898// TreePattern implementation
899//
900
901TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000902 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000903 isInputPattern = isInput;
904 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
905 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
906}
907
908TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000909 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000910 isInputPattern = isInput;
911 Trees.push_back(ParseTreePattern(Pat));
912}
913
914TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000915 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000916 isInputPattern = isInput;
917 Trees.push_back(Pat);
918}
919
920
921
922void TreePattern::error(const std::string &Msg) const {
923 dump();
924 throw "In " + TheRecord->getName() + ": " + Msg;
925}
926
927TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
928 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
929 if (!OpDef) error("Pattern has unexpected operator type!");
930 Record *Operator = OpDef->getDef();
931
932 if (Operator->isSubClassOf("ValueType")) {
933 // If the operator is a ValueType, then this must be "type cast" of a leaf
934 // node.
935 if (Dag->getNumArgs() != 1)
936 error("Type cast only takes one operand!");
937
938 Init *Arg = Dag->getArg(0);
939 TreePatternNode *New;
940 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
941 Record *R = DI->getDef();
942 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
943 Dag->setArg(0, new DagInit(DI,
944 std::vector<std::pair<Init*, std::string> >()));
945 return ParseTreePattern(Dag);
946 }
947 New = new TreePatternNode(DI);
948 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
949 New = ParseTreePattern(DI);
950 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
951 New = new TreePatternNode(II);
952 if (!Dag->getArgName(0).empty())
953 error("Constant int argument should not have a name!");
954 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
955 // Turn this into an IntInit.
956 Init *II = BI->convertInitializerTo(new IntRecTy());
957 if (II == 0 || !dynamic_cast<IntInit*>(II))
958 error("Bits value must be constants!");
959
960 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
961 if (!Dag->getArgName(0).empty())
962 error("Constant int argument should not have a name!");
963 } else {
964 Arg->dump();
965 error("Unknown leaf value for tree pattern!");
966 return 0;
967 }
968
969 // Apply the type cast.
970 New->UpdateNodeType(getValueType(Operator), *this);
971 New->setName(Dag->getArgName(0));
972 return New;
973 }
974
975 // Verify that this is something that makes sense for an operator.
976 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
977 !Operator->isSubClassOf("Instruction") &&
978 !Operator->isSubClassOf("SDNodeXForm") &&
979 !Operator->isSubClassOf("Intrinsic") &&
980 Operator->getName() != "set" &&
981 Operator->getName() != "implicit" &&
982 Operator->getName() != "parallel")
983 error("Unrecognized node '" + Operator->getName() + "'!");
984
985 // Check to see if this is something that is illegal in an input pattern.
986 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
987 Operator->isSubClassOf("SDNodeXForm")))
988 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
989
990 std::vector<TreePatternNode*> Children;
991
992 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
993 Init *Arg = Dag->getArg(i);
994 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
995 Children.push_back(ParseTreePattern(DI));
996 if (Children.back()->getName().empty())
997 Children.back()->setName(Dag->getArgName(i));
998 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
999 Record *R = DefI->getDef();
1000 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1001 // TreePatternNode if its own.
1002 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1003 Dag->setArg(i, new DagInit(DefI,
1004 std::vector<std::pair<Init*, std::string> >()));
1005 --i; // Revisit this node...
1006 } else {
1007 TreePatternNode *Node = new TreePatternNode(DefI);
1008 Node->setName(Dag->getArgName(i));
1009 Children.push_back(Node);
1010
1011 // Input argument?
1012 if (R->getName() == "node") {
1013 if (Dag->getArgName(i).empty())
1014 error("'node' argument requires a name to match with operand list");
1015 Args.push_back(Dag->getArgName(i));
1016 }
1017 }
1018 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1019 TreePatternNode *Node = new TreePatternNode(II);
1020 if (!Dag->getArgName(i).empty())
1021 error("Constant int argument should not have a name!");
1022 Children.push_back(Node);
1023 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1024 // Turn this into an IntInit.
1025 Init *II = BI->convertInitializerTo(new IntRecTy());
1026 if (II == 0 || !dynamic_cast<IntInit*>(II))
1027 error("Bits value must be constants!");
1028
1029 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1030 if (!Dag->getArgName(i).empty())
1031 error("Constant int argument should not have a name!");
1032 Children.push_back(Node);
1033 } else {
1034 cerr << '"';
1035 Arg->dump();
1036 cerr << "\": ";
1037 error("Unknown leaf value for tree pattern!");
1038 }
1039 }
1040
1041 // If the operator is an intrinsic, then this is just syntactic sugar for for
1042 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1043 // convert the intrinsic name to a number.
1044 if (Operator->isSubClassOf("Intrinsic")) {
1045 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1046 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1047
1048 // If this intrinsic returns void, it must have side-effects and thus a
1049 // chain.
1050 if (Int.ArgVTs[0] == MVT::isVoid) {
1051 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1052 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1053 // Has side-effects, requires chain.
1054 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1055 } else {
1056 // Otherwise, no chain.
1057 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1058 }
1059
1060 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1061 Children.insert(Children.begin(), IIDNode);
1062 }
1063
1064 return new TreePatternNode(Operator, Children);
1065}
1066
1067/// InferAllTypes - Infer/propagate as many types throughout the expression
1068/// patterns as possible. Return true if all types are infered, false
1069/// otherwise. Throw an exception if a type contradiction is found.
1070bool TreePattern::InferAllTypes() {
1071 bool MadeChange = true;
1072 while (MadeChange) {
1073 MadeChange = false;
1074 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1075 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1076 }
1077
1078 bool HasUnresolvedTypes = false;
1079 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1080 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1081 return !HasUnresolvedTypes;
1082}
1083
1084void TreePattern::print(std::ostream &OS) const {
1085 OS << getRecord()->getName();
1086 if (!Args.empty()) {
1087 OS << "(" << Args[0];
1088 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1089 OS << ", " << Args[i];
1090 OS << ")";
1091 }
1092 OS << ": ";
1093
1094 if (Trees.size() > 1)
1095 OS << "[\n";
1096 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1097 OS << "\t";
1098 Trees[i]->print(OS);
1099 OS << "\n";
1100 }
1101
1102 if (Trees.size() > 1)
1103 OS << "]\n";
1104}
1105
1106void TreePattern::dump() const { print(*cerr.stream()); }
1107
1108//===----------------------------------------------------------------------===//
Chris Lattnerfe718932008-01-06 01:10:31 +00001109// CodeGenDAGPatterns implementation
Chris Lattner6cefb772008-01-05 22:25:12 +00001110//
1111
1112// FIXME: REMOVE OSTREAM ARGUMENT
Chris Lattnerfe718932008-01-06 01:10:31 +00001113CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001114 Intrinsics = LoadIntrinsics(Records);
1115 ParseNodeInfo();
Chris Lattner443e3f92008-01-05 22:54:53 +00001116 ParseNodeTransforms();
Chris Lattner6cefb772008-01-05 22:25:12 +00001117 ParseComplexPatterns();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001118 ParsePatternFragments();
Chris Lattner6cefb772008-01-05 22:25:12 +00001119 ParseDefaultOperands();
1120 ParseInstructions();
1121 ParsePatterns();
1122
1123 // Generate variants. For example, commutative patterns can match
1124 // multiple ways. Add them to PatternsToMatch as well.
1125 GenerateVariants();
1126}
1127
Chris Lattnerfe718932008-01-06 01:10:31 +00001128CodeGenDAGPatterns::~CodeGenDAGPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001129 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1130 E = PatternFragments.end(); I != E; ++I)
1131 delete I->second;
1132}
1133
1134
Chris Lattnerfe718932008-01-06 01:10:31 +00001135Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Chris Lattner6cefb772008-01-05 22:25:12 +00001136 Record *N = Records.getDef(Name);
1137 if (!N || !N->isSubClassOf("SDNode")) {
1138 cerr << "Error getting SDNode '" << Name << "'!\n";
1139 exit(1);
1140 }
1141 return N;
1142}
1143
1144// Parse all of the SDNode definitions for the target, populating SDNodes.
Chris Lattnerfe718932008-01-06 01:10:31 +00001145void CodeGenDAGPatterns::ParseNodeInfo() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001146 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1147 while (!Nodes.empty()) {
1148 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1149 Nodes.pop_back();
1150 }
1151
1152 // Get the buildin intrinsic nodes.
1153 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1154 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1155 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1156}
1157
1158/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1159/// map, and emit them to the file as functions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001160void CodeGenDAGPatterns::ParseNodeTransforms() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001161 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1162 while (!Xforms.empty()) {
1163 Record *XFormNode = Xforms.back();
1164 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1165 std::string Code = XFormNode->getValueAsCode("XFormFunction");
Chris Lattner443e3f92008-01-05 22:54:53 +00001166 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Chris Lattner6cefb772008-01-05 22:25:12 +00001167
1168 Xforms.pop_back();
1169 }
1170}
1171
Chris Lattnerfe718932008-01-06 01:10:31 +00001172void CodeGenDAGPatterns::ParseComplexPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001173 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1174 while (!AMs.empty()) {
1175 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1176 AMs.pop_back();
1177 }
1178}
1179
1180
1181/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1182/// file, building up the PatternFragments map. After we've collected them all,
1183/// inline fragments together as necessary, so that there are no references left
1184/// inside a pattern fragment to a pattern fragment.
1185///
Chris Lattnerfe718932008-01-06 01:10:31 +00001186void CodeGenDAGPatterns::ParsePatternFragments() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001187 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1188
Chris Lattnerdc32f982008-01-05 22:43:57 +00001189 // First step, parse all of the fragments.
Chris Lattner6cefb772008-01-05 22:25:12 +00001190 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1191 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1192 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1193 PatternFragments[Fragments[i]] = P;
1194
Chris Lattnerdc32f982008-01-05 22:43:57 +00001195 // Validate the argument list, converting it to set, to discard duplicates.
Chris Lattner6cefb772008-01-05 22:25:12 +00001196 std::vector<std::string> &Args = P->getArgList();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001197 std::set<std::string> OperandsSet(Args.begin(), Args.end());
Chris Lattner6cefb772008-01-05 22:25:12 +00001198
Chris Lattnerdc32f982008-01-05 22:43:57 +00001199 if (OperandsSet.count(""))
Chris Lattner6cefb772008-01-05 22:25:12 +00001200 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1201
1202 // Parse the operands list.
1203 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1204 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1205 // Special cases: ops == outs == ins. Different names are used to
1206 // improve readibility.
1207 if (!OpsOp ||
1208 (OpsOp->getDef()->getName() != "ops" &&
1209 OpsOp->getDef()->getName() != "outs" &&
1210 OpsOp->getDef()->getName() != "ins"))
1211 P->error("Operands list should start with '(ops ... '!");
1212
1213 // Copy over the arguments.
1214 Args.clear();
1215 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1216 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1217 static_cast<DefInit*>(OpsList->getArg(j))->
1218 getDef()->getName() != "node")
1219 P->error("Operands list should all be 'node' values.");
1220 if (OpsList->getArgName(j).empty())
1221 P->error("Operands list should have names for each operand!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001222 if (!OperandsSet.count(OpsList->getArgName(j)))
Chris Lattner6cefb772008-01-05 22:25:12 +00001223 P->error("'" + OpsList->getArgName(j) +
1224 "' does not occur in pattern or was multiply specified!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001225 OperandsSet.erase(OpsList->getArgName(j));
Chris Lattner6cefb772008-01-05 22:25:12 +00001226 Args.push_back(OpsList->getArgName(j));
1227 }
1228
Chris Lattnerdc32f982008-01-05 22:43:57 +00001229 if (!OperandsSet.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001230 P->error("Operands list does not contain an entry for operand '" +
Chris Lattnerdc32f982008-01-05 22:43:57 +00001231 *OperandsSet.begin() + "'!");
Chris Lattner6cefb772008-01-05 22:25:12 +00001232
Chris Lattnerdc32f982008-01-05 22:43:57 +00001233 // If there is a code init for this fragment, keep track of the fact that
1234 // this fragment uses it.
Chris Lattner6cefb772008-01-05 22:25:12 +00001235 std::string Code = Fragments[i]->getValueAsCode("Predicate");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001236 if (!Code.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001237 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
Chris Lattner6cefb772008-01-05 22:25:12 +00001238
1239 // If there is a node transformation corresponding to this, keep track of
1240 // it.
1241 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1242 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1243 P->getOnlyTree()->setTransformFn(Transform);
1244 }
1245
Chris Lattner6cefb772008-01-05 22:25:12 +00001246 // Now that we've parsed all of the tree fragments, do a closure on them so
1247 // that there are not references to PatFrags left inside of them.
1248 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1249 E = PatternFragments.end(); I != E; ++I) {
1250 TreePattern *ThePat = I->second;
1251 ThePat->InlinePatternFragments();
1252
1253 // Infer as many types as possible. Don't worry about it if we don't infer
1254 // all of them, some may depend on the inputs of the pattern.
1255 try {
1256 ThePat->InferAllTypes();
1257 } catch (...) {
1258 // If this pattern fragment is not supported by this target (no types can
1259 // satisfy its constraints), just ignore it. If the bogus pattern is
1260 // actually used by instructions, the type consistency error will be
1261 // reported there.
1262 }
1263
1264 // If debugging, print out the pattern fragment result.
1265 DEBUG(ThePat->dump());
1266 }
1267}
1268
Chris Lattnerfe718932008-01-06 01:10:31 +00001269void CodeGenDAGPatterns::ParseDefaultOperands() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001270 std::vector<Record*> DefaultOps[2];
1271 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1272 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1273
1274 // Find some SDNode.
1275 assert(!SDNodes.empty() && "No SDNodes parsed?");
1276 Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1277
1278 for (unsigned iter = 0; iter != 2; ++iter) {
1279 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1280 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1281
1282 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1283 // SomeSDnode so that we can parse this.
1284 std::vector<std::pair<Init*, std::string> > Ops;
1285 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1286 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1287 DefaultInfo->getArgName(op)));
1288 DagInit *DI = new DagInit(SomeSDNode, Ops);
1289
1290 // Create a TreePattern to parse this.
1291 TreePattern P(DefaultOps[iter][i], DI, false, *this);
1292 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1293
1294 // Copy the operands over into a DAGDefaultOperand.
1295 DAGDefaultOperand DefaultOpInfo;
1296
1297 TreePatternNode *T = P.getTree(0);
1298 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1299 TreePatternNode *TPN = T->getChild(op);
1300 while (TPN->ApplyTypeConstraints(P, false))
1301 /* Resolve all types */;
1302
1303 if (TPN->ContainsUnresolvedType())
1304 if (iter == 0)
1305 throw "Value #" + utostr(i) + " of PredicateOperand '" +
1306 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1307 else
1308 throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1309 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1310
1311 DefaultOpInfo.DefaultOps.push_back(TPN);
1312 }
1313
1314 // Insert it into the DefaultOperands map so we can find it later.
1315 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1316 }
1317 }
1318}
1319
1320/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1321/// instruction input. Return true if this is a real use.
1322static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1323 std::map<std::string, TreePatternNode*> &InstInputs,
1324 std::vector<Record*> &InstImpInputs) {
1325 // No name -> not interesting.
1326 if (Pat->getName().empty()) {
1327 if (Pat->isLeaf()) {
1328 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1329 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1330 I->error("Input " + DI->getDef()->getName() + " must be named!");
1331 else if (DI && DI->getDef()->isSubClassOf("Register"))
1332 InstImpInputs.push_back(DI->getDef());
1333 ;
1334 }
1335 return false;
1336 }
1337
1338 Record *Rec;
1339 if (Pat->isLeaf()) {
1340 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1341 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1342 Rec = DI->getDef();
1343 } else {
1344 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1345 Rec = Pat->getOperator();
1346 }
1347
1348 // SRCVALUE nodes are ignored.
1349 if (Rec->getName() == "srcvalue")
1350 return false;
1351
1352 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1353 if (!Slot) {
1354 Slot = Pat;
1355 } else {
1356 Record *SlotRec;
1357 if (Slot->isLeaf()) {
1358 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1359 } else {
1360 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1361 SlotRec = Slot->getOperator();
1362 }
1363
1364 // Ensure that the inputs agree if we've already seen this input.
1365 if (Rec != SlotRec)
1366 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1367 if (Slot->getExtTypes() != Pat->getExtTypes())
1368 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1369 }
1370 return true;
1371}
1372
1373/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1374/// part of "I", the instruction), computing the set of inputs and outputs of
1375/// the pattern. Report errors if we see anything naughty.
Chris Lattnerfe718932008-01-06 01:10:31 +00001376void CodeGenDAGPatterns::
Chris Lattner6cefb772008-01-05 22:25:12 +00001377FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1378 std::map<std::string, TreePatternNode*> &InstInputs,
1379 std::map<std::string, TreePatternNode*>&InstResults,
1380 std::vector<Record*> &InstImpInputs,
1381 std::vector<Record*> &InstImpResults) {
1382 if (Pat->isLeaf()) {
1383 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1384 if (!isUse && Pat->getTransformFn())
1385 I->error("Cannot specify a transform function for a non-input value!");
1386 return;
1387 } else if (Pat->getOperator()->getName() == "implicit") {
1388 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1389 TreePatternNode *Dest = Pat->getChild(i);
1390 if (!Dest->isLeaf())
1391 I->error("implicitly defined value should be a register!");
1392
1393 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1394 if (!Val || !Val->getDef()->isSubClassOf("Register"))
1395 I->error("implicitly defined value should be a register!");
1396 InstImpResults.push_back(Val->getDef());
1397 }
1398 return;
1399 } else if (Pat->getOperator()->getName() != "set") {
1400 // If this is not a set, verify that the children nodes are not void typed,
1401 // and recurse.
1402 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1403 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1404 I->error("Cannot have void nodes inside of patterns!");
1405 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1406 InstImpInputs, InstImpResults);
1407 }
1408
1409 // If this is a non-leaf node with no children, treat it basically as if
1410 // it were a leaf. This handles nodes like (imm).
1411 bool isUse = false;
1412 if (Pat->getNumChildren() == 0)
1413 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1414
1415 if (!isUse && Pat->getTransformFn())
1416 I->error("Cannot specify a transform function for a non-input value!");
1417 return;
1418 }
1419
1420 // Otherwise, this is a set, validate and collect instruction results.
1421 if (Pat->getNumChildren() == 0)
1422 I->error("set requires operands!");
1423
1424 if (Pat->getTransformFn())
1425 I->error("Cannot specify a transform function on a set node!");
1426
1427 // Check the set destinations.
1428 unsigned NumDests = Pat->getNumChildren()-1;
1429 for (unsigned i = 0; i != NumDests; ++i) {
1430 TreePatternNode *Dest = Pat->getChild(i);
1431 if (!Dest->isLeaf())
1432 I->error("set destination should be a register!");
1433
1434 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1435 if (!Val)
1436 I->error("set destination should be a register!");
1437
1438 if (Val->getDef()->isSubClassOf("RegisterClass") ||
1439 Val->getDef()->getName() == "ptr_rc") {
1440 if (Dest->getName().empty())
1441 I->error("set destination must have a name!");
1442 if (InstResults.count(Dest->getName()))
1443 I->error("cannot set '" + Dest->getName() +"' multiple times");
1444 InstResults[Dest->getName()] = Dest;
1445 } else if (Val->getDef()->isSubClassOf("Register")) {
1446 InstImpResults.push_back(Val->getDef());
1447 } else {
1448 I->error("set destination should be a register!");
1449 }
1450 }
1451
1452 // Verify and collect info from the computation.
1453 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1454 InstInputs, InstResults,
1455 InstImpInputs, InstImpResults);
1456}
1457
1458/// ParseInstructions - Parse all of the instructions, inlining and resolving
1459/// any fragments involved. This populates the Instructions list with fully
1460/// resolved instructions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001461void CodeGenDAGPatterns::ParseInstructions() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001462 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1463
1464 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1465 ListInit *LI = 0;
1466
1467 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1468 LI = Instrs[i]->getValueAsListInit("Pattern");
1469
1470 // If there is no pattern, only collect minimal information about the
1471 // instruction for its operand list. We have to assume that there is one
1472 // result, as we have no detailed info.
1473 if (!LI || LI->getSize() == 0) {
1474 std::vector<Record*> Results;
1475 std::vector<Record*> Operands;
1476
1477 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1478
1479 if (InstInfo.OperandList.size() != 0) {
1480 if (InstInfo.NumDefs == 0) {
1481 // These produce no results
1482 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1483 Operands.push_back(InstInfo.OperandList[j].Rec);
1484 } else {
1485 // Assume the first operand is the result.
1486 Results.push_back(InstInfo.OperandList[0].Rec);
1487
1488 // The rest are inputs.
1489 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1490 Operands.push_back(InstInfo.OperandList[j].Rec);
1491 }
1492 }
1493
1494 // Create and insert the instruction.
1495 std::vector<Record*> ImpResults;
1496 std::vector<Record*> ImpOperands;
1497 Instructions.insert(std::make_pair(Instrs[i],
1498 DAGInstruction(0, Results, Operands, ImpResults,
1499 ImpOperands)));
1500 continue; // no pattern.
1501 }
1502
1503 // Parse the instruction.
1504 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1505 // Inline pattern fragments into it.
1506 I->InlinePatternFragments();
1507
1508 // Infer as many types as possible. If we cannot infer all of them, we can
1509 // never do anything with this instruction pattern: report it to the user.
1510 if (!I->InferAllTypes())
1511 I->error("Could not infer all types in pattern!");
1512
1513 // InstInputs - Keep track of all of the inputs of the instruction, along
1514 // with the record they are declared as.
1515 std::map<std::string, TreePatternNode*> InstInputs;
1516
1517 // InstResults - Keep track of all the virtual registers that are 'set'
1518 // in the instruction, including what reg class they are.
1519 std::map<std::string, TreePatternNode*> InstResults;
1520
1521 std::vector<Record*> InstImpInputs;
1522 std::vector<Record*> InstImpResults;
1523
1524 // Verify that the top-level forms in the instruction are of void type, and
1525 // fill in the InstResults map.
1526 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1527 TreePatternNode *Pat = I->getTree(j);
1528 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1529 I->error("Top-level forms in instruction pattern should have"
1530 " void types");
1531
1532 // Find inputs and outputs, and verify the structure of the uses/defs.
1533 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1534 InstImpInputs, InstImpResults);
1535 }
1536
1537 // Now that we have inputs and outputs of the pattern, inspect the operands
1538 // list for the instruction. This determines the order that operands are
1539 // added to the machine instruction the node corresponds to.
1540 unsigned NumResults = InstResults.size();
1541
1542 // Parse the operands list from the (ops) list, validating it.
1543 assert(I->getArgList().empty() && "Args list should still be empty here!");
1544 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1545
1546 // Check that all of the results occur first in the list.
1547 std::vector<Record*> Results;
1548 TreePatternNode *Res0Node = NULL;
1549 for (unsigned i = 0; i != NumResults; ++i) {
1550 if (i == CGI.OperandList.size())
1551 I->error("'" + InstResults.begin()->first +
1552 "' set but does not appear in operand list!");
1553 const std::string &OpName = CGI.OperandList[i].Name;
1554
1555 // Check that it exists in InstResults.
1556 TreePatternNode *RNode = InstResults[OpName];
1557 if (RNode == 0)
1558 I->error("Operand $" + OpName + " does not exist in operand list!");
1559
1560 if (i == 0)
1561 Res0Node = RNode;
1562 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1563 if (R == 0)
1564 I->error("Operand $" + OpName + " should be a set destination: all "
1565 "outputs must occur before inputs in operand list!");
1566
1567 if (CGI.OperandList[i].Rec != R)
1568 I->error("Operand $" + OpName + " class mismatch!");
1569
1570 // Remember the return type.
1571 Results.push_back(CGI.OperandList[i].Rec);
1572
1573 // Okay, this one checks out.
1574 InstResults.erase(OpName);
1575 }
1576
1577 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1578 // the copy while we're checking the inputs.
1579 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1580
1581 std::vector<TreePatternNode*> ResultNodeOperands;
1582 std::vector<Record*> Operands;
1583 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1584 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1585 const std::string &OpName = Op.Name;
1586 if (OpName.empty())
1587 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1588
1589 if (!InstInputsCheck.count(OpName)) {
1590 // If this is an predicate operand or optional def operand with an
1591 // DefaultOps set filled in, we can ignore this. When we codegen it,
1592 // we will do so as always executed.
1593 if (Op.Rec->isSubClassOf("PredicateOperand") ||
1594 Op.Rec->isSubClassOf("OptionalDefOperand")) {
1595 // Does it have a non-empty DefaultOps field? If so, ignore this
1596 // operand.
1597 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1598 continue;
1599 }
1600 I->error("Operand $" + OpName +
1601 " does not appear in the instruction pattern");
1602 }
1603 TreePatternNode *InVal = InstInputsCheck[OpName];
1604 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1605
1606 if (InVal->isLeaf() &&
1607 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1608 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1609 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1610 I->error("Operand $" + OpName + "'s register class disagrees"
1611 " between the operand and pattern");
1612 }
1613 Operands.push_back(Op.Rec);
1614
1615 // Construct the result for the dest-pattern operand list.
1616 TreePatternNode *OpNode = InVal->clone();
1617
1618 // No predicate is useful on the result.
1619 OpNode->setPredicateFn("");
1620
1621 // Promote the xform function to be an explicit node if set.
1622 if (Record *Xform = OpNode->getTransformFn()) {
1623 OpNode->setTransformFn(0);
1624 std::vector<TreePatternNode*> Children;
1625 Children.push_back(OpNode);
1626 OpNode = new TreePatternNode(Xform, Children);
1627 }
1628
1629 ResultNodeOperands.push_back(OpNode);
1630 }
1631
1632 if (!InstInputsCheck.empty())
1633 I->error("Input operand $" + InstInputsCheck.begin()->first +
1634 " occurs in pattern but not in operands list!");
1635
1636 TreePatternNode *ResultPattern =
1637 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1638 // Copy fully inferred output node type to instruction result pattern.
1639 if (NumResults > 0)
1640 ResultPattern->setTypes(Res0Node->getExtTypes());
1641
1642 // Create and insert the instruction.
1643 // FIXME: InstImpResults and InstImpInputs should not be part of
1644 // DAGInstruction.
1645 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1646 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1647
1648 // Use a temporary tree pattern to infer all types and make sure that the
1649 // constructed result is correct. This depends on the instruction already
1650 // being inserted into the Instructions map.
1651 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1652 Temp.InferAllTypes();
1653
1654 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1655 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1656
1657 DEBUG(I->dump());
1658 }
1659
1660 // If we can, convert the instructions to be patterns that are matched!
1661 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1662 E = Instructions.end(); II != E; ++II) {
1663 DAGInstruction &TheInst = II->second;
Chris Lattnerf1ab4f12008-01-06 01:52:22 +00001664 const TreePattern *I = TheInst.getPattern();
Chris Lattner6cefb772008-01-05 22:25:12 +00001665 if (I == 0) continue; // No pattern.
1666
1667 // FIXME: Assume only the first tree is the pattern. The others are clobber
1668 // nodes.
1669 TreePatternNode *Pattern = I->getTree(0);
1670 TreePatternNode *SrcPattern;
1671 if (Pattern->getOperator()->getName() == "set") {
1672 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1673 } else{
1674 // Not a set (store or something?)
1675 SrcPattern = Pattern;
1676 }
1677
1678 std::string Reason;
1679 if (!SrcPattern->canPatternMatch(Reason, *this))
1680 I->error("Instruction can never match: " + Reason);
1681
1682 Record *Instr = II->first;
1683 TreePatternNode *DstPattern = TheInst.getResultPattern();
1684 PatternsToMatch.
1685 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1686 SrcPattern, DstPattern, TheInst.getImpResults(),
1687 Instr->getValueAsInt("AddedComplexity")));
1688 }
1689}
1690
Chris Lattnerfe718932008-01-06 01:10:31 +00001691void CodeGenDAGPatterns::ParsePatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001692 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1693
1694 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1695 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1696 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
1697 Record *Operator = OpDef->getDef();
1698 TreePattern *Pattern;
1699 if (Operator->getName() != "parallel")
1700 Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1701 else {
1702 std::vector<Init*> Values;
1703 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
1704 Values.push_back(Tree->getArg(j));
1705 ListInit *LI = new ListInit(Values);
1706 Pattern = new TreePattern(Patterns[i], LI, true, *this);
1707 }
1708
1709 // Inline pattern fragments into it.
1710 Pattern->InlinePatternFragments();
1711
1712 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1713 if (LI->getSize() == 0) continue; // no pattern.
1714
1715 // Parse the instruction.
1716 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1717
1718 // Inline pattern fragments into it.
1719 Result->InlinePatternFragments();
1720
1721 if (Result->getNumTrees() != 1)
1722 Result->error("Cannot handle instructions producing instructions "
1723 "with temporaries yet!");
1724
1725 bool IterateInference;
1726 bool InferredAllPatternTypes, InferredAllResultTypes;
1727 do {
1728 // Infer as many types as possible. If we cannot infer all of them, we
1729 // can never do anything with this pattern: report it to the user.
1730 InferredAllPatternTypes = Pattern->InferAllTypes();
1731
1732 // Infer as many types as possible. If we cannot infer all of them, we
1733 // can never do anything with this pattern: report it to the user.
1734 InferredAllResultTypes = Result->InferAllTypes();
1735
1736 // Apply the type of the result to the source pattern. This helps us
1737 // resolve cases where the input type is known to be a pointer type (which
1738 // is considered resolved), but the result knows it needs to be 32- or
1739 // 64-bits. Infer the other way for good measure.
1740 IterateInference = Pattern->getTree(0)->
1741 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
1742 IterateInference |= Result->getTree(0)->
1743 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
1744 } while (IterateInference);
1745
1746 // Verify that we inferred enough types that we can do something with the
1747 // pattern and result. If these fire the user has to add type casts.
1748 if (!InferredAllPatternTypes)
1749 Pattern->error("Could not infer all types in pattern!");
1750 if (!InferredAllResultTypes)
1751 Result->error("Could not infer all types in pattern result!");
1752
1753 // Validate that the input pattern is correct.
1754 std::map<std::string, TreePatternNode*> InstInputs;
1755 std::map<std::string, TreePatternNode*> InstResults;
1756 std::vector<Record*> InstImpInputs;
1757 std::vector<Record*> InstImpResults;
1758 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
1759 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
1760 InstInputs, InstResults,
1761 InstImpInputs, InstImpResults);
1762
1763 // Promote the xform function to be an explicit node if set.
1764 TreePatternNode *DstPattern = Result->getOnlyTree();
1765 std::vector<TreePatternNode*> ResultNodeOperands;
1766 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1767 TreePatternNode *OpNode = DstPattern->getChild(ii);
1768 if (Record *Xform = OpNode->getTransformFn()) {
1769 OpNode->setTransformFn(0);
1770 std::vector<TreePatternNode*> Children;
1771 Children.push_back(OpNode);
1772 OpNode = new TreePatternNode(Xform, Children);
1773 }
1774 ResultNodeOperands.push_back(OpNode);
1775 }
1776 DstPattern = Result->getOnlyTree();
1777 if (!DstPattern->isLeaf())
1778 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1779 ResultNodeOperands);
1780 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1781 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1782 Temp.InferAllTypes();
1783
1784 std::string Reason;
1785 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
1786 Pattern->error("Pattern can never match: " + Reason);
1787
1788 PatternsToMatch.
1789 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1790 Pattern->getTree(0),
1791 Temp.getOnlyTree(), InstImpResults,
1792 Patterns[i]->getValueAsInt("AddedComplexity")));
1793 }
1794}
1795
1796/// CombineChildVariants - Given a bunch of permutations of each child of the
1797/// 'operator' node, put them together in all possible ways.
1798static void CombineChildVariants(TreePatternNode *Orig,
1799 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1800 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001801 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001802 // Make sure that each operand has at least one variant to choose from.
1803 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1804 if (ChildVariants[i].empty())
1805 return;
1806
1807 // The end result is an all-pairs construction of the resultant pattern.
1808 std::vector<unsigned> Idxs;
1809 Idxs.resize(ChildVariants.size());
1810 bool NotDone = true;
1811 while (NotDone) {
1812 // Create the variant and add it to the output list.
1813 std::vector<TreePatternNode*> NewChildren;
1814 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1815 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1816 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1817
1818 // Copy over properties.
1819 R->setName(Orig->getName());
1820 R->setPredicateFn(Orig->getPredicateFn());
1821 R->setTransformFn(Orig->getTransformFn());
1822 R->setTypes(Orig->getExtTypes());
1823
1824 // If this pattern cannot every match, do not include it as a variant.
1825 std::string ErrString;
1826 if (!R->canPatternMatch(ErrString, CDP)) {
1827 delete R;
1828 } else {
1829 bool AlreadyExists = false;
1830
1831 // Scan to see if this pattern has already been emitted. We can get
1832 // duplication due to things like commuting:
1833 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1834 // which are the same pattern. Ignore the dups.
1835 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1836 if (R->isIsomorphicTo(OutVariants[i])) {
1837 AlreadyExists = true;
1838 break;
1839 }
1840
1841 if (AlreadyExists)
1842 delete R;
1843 else
1844 OutVariants.push_back(R);
1845 }
1846
1847 // Increment indices to the next permutation.
1848 NotDone = false;
1849 // Look for something we can increment without causing a wrap-around.
1850 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1851 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1852 NotDone = true; // Found something to increment.
1853 break;
1854 }
1855 Idxs[IdxsIdx] = 0;
1856 }
1857 }
1858}
1859
1860/// CombineChildVariants - A helper function for binary operators.
1861///
1862static void CombineChildVariants(TreePatternNode *Orig,
1863 const std::vector<TreePatternNode*> &LHS,
1864 const std::vector<TreePatternNode*> &RHS,
1865 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001866 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001867 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1868 ChildVariants.push_back(LHS);
1869 ChildVariants.push_back(RHS);
1870 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP);
1871}
1872
1873
1874static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1875 std::vector<TreePatternNode *> &Children) {
1876 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1877 Record *Operator = N->getOperator();
1878
1879 // Only permit raw nodes.
1880 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1881 N->getTransformFn()) {
1882 Children.push_back(N);
1883 return;
1884 }
1885
1886 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1887 Children.push_back(N->getChild(0));
1888 else
1889 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1890
1891 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1892 Children.push_back(N->getChild(1));
1893 else
1894 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1895}
1896
1897/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1898/// the (potentially recursive) pattern by using algebraic laws.
1899///
1900static void GenerateVariantsOf(TreePatternNode *N,
1901 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001902 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001903 // We cannot permute leaves.
1904 if (N->isLeaf()) {
1905 OutVariants.push_back(N);
1906 return;
1907 }
1908
1909 // Look up interesting info about the node.
1910 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
1911
1912 // If this node is associative, reassociate.
1913 if (NodeInfo.hasProperty(SDNPAssociative)) {
1914 // Reassociate by pulling together all of the linked operators
1915 std::vector<TreePatternNode*> MaximalChildren;
1916 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1917
1918 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1919 // permutations.
1920 if (MaximalChildren.size() == 3) {
1921 // Find the variants of all of our maximal children.
1922 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1923 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP);
1924 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP);
1925 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP);
1926
1927 // There are only two ways we can permute the tree:
1928 // (A op B) op C and A op (B op C)
1929 // Within these forms, we can also permute A/B/C.
1930
1931 // Generate legal pair permutations of A/B/C.
1932 std::vector<TreePatternNode*> ABVariants;
1933 std::vector<TreePatternNode*> BAVariants;
1934 std::vector<TreePatternNode*> ACVariants;
1935 std::vector<TreePatternNode*> CAVariants;
1936 std::vector<TreePatternNode*> BCVariants;
1937 std::vector<TreePatternNode*> CBVariants;
1938 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP);
1939 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP);
1940 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP);
1941 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP);
1942 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP);
1943 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP);
1944
1945 // Combine those into the result: (x op x) op x
1946 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP);
1947 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP);
1948 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP);
1949 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP);
1950 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP);
1951 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP);
1952
1953 // Combine those into the result: x op (x op x)
1954 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP);
1955 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP);
1956 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP);
1957 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP);
1958 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP);
1959 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP);
1960 return;
1961 }
1962 }
1963
1964 // Compute permutations of all children.
1965 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1966 ChildVariants.resize(N->getNumChildren());
1967 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1968 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP);
1969
1970 // Build all permutations based on how the children were formed.
1971 CombineChildVariants(N, ChildVariants, OutVariants, CDP);
1972
1973 // If this node is commutative, consider the commuted order.
1974 if (NodeInfo.hasProperty(SDNPCommutative)) {
1975 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1976 // Don't count children which are actually register references.
1977 unsigned NC = 0;
1978 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1979 TreePatternNode *Child = N->getChild(i);
1980 if (Child->isLeaf())
1981 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1982 Record *RR = DI->getDef();
1983 if (RR->isSubClassOf("Register"))
1984 continue;
1985 }
1986 NC++;
1987 }
1988 // Consider the commuted order.
1989 if (NC == 2)
1990 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
1991 OutVariants, CDP);
1992 }
1993}
1994
1995
1996// GenerateVariants - Generate variants. For example, commutative patterns can
1997// match multiple ways. Add them to PatternsToMatch as well.
Chris Lattnerfe718932008-01-06 01:10:31 +00001998void CodeGenDAGPatterns::GenerateVariants() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001999 DOUT << "Generating instruction variants.\n";
2000
2001 // Loop over all of the patterns we've collected, checking to see if we can
2002 // generate variants of the instruction, through the exploitation of
2003 // identities. This permits the target to provide agressive matching without
2004 // the .td file having to contain tons of variants of instructions.
2005 //
2006 // Note that this loop adds new patterns to the PatternsToMatch list, but we
2007 // intentionally do not reconsider these. Any variants of added patterns have
2008 // already been added.
2009 //
2010 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2011 std::vector<TreePatternNode*> Variants;
2012 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
2013
2014 assert(!Variants.empty() && "Must create at least original variant!");
2015 Variants.erase(Variants.begin()); // Remove the original pattern.
2016
2017 if (Variants.empty()) // No variants for this pattern.
2018 continue;
2019
2020 DOUT << "FOUND VARIANTS OF: ";
2021 DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2022 DOUT << "\n";
2023
2024 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2025 TreePatternNode *Variant = Variants[v];
2026
2027 DOUT << " VAR#" << v << ": ";
2028 DEBUG(Variant->dump());
2029 DOUT << "\n";
2030
2031 // Scan to see if an instruction or explicit pattern already matches this.
2032 bool AlreadyExists = false;
2033 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2034 // Check to see if this variant already exists.
2035 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
2036 DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
2037 AlreadyExists = true;
2038 break;
2039 }
2040 }
2041 // If we already have it, ignore the variant.
2042 if (AlreadyExists) continue;
2043
2044 // Otherwise, add it to the list of patterns we have.
2045 PatternsToMatch.
2046 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2047 Variant, PatternsToMatch[i].getDstPattern(),
2048 PatternsToMatch[i].getDstRegs(),
2049 PatternsToMatch[i].getAddedComplexity()));
2050 }
2051
2052 DOUT << "\n";
2053 }
2054}
2055