blob: 9bd5d4adc1768c4b670734ebefc0b13578491f91 [file] [log] [blame]
Duraid Madinaa8c76822007-06-22 08:27:12 +00001//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator is derived from RegAllocLocal.cpp. Like it, this
11// allocator works on one basic block at a time, oblivious to others.
12// However, the algorithm used here is suited for long blocks of
13// instructions - registers are spilled by greedily choosing those holding
14// values that will not be needed for the longest amount of time. This works
15// particularly well for blocks with 10 or more times as many instructions
16// as machine registers, but can be used for general code.
17//
18//===----------------------------------------------------------------------===//
19//
20// TODO: - automagically invoke linearscan for (groups of) small BBs?
21// - break ties when picking regs? (probably not worth it in a
22// JIT context)
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "regalloc"
27#include "llvm/BasicBlock.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/RegAllocRegistry.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/ADT/IndexedMap.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/SmallVector.h"
Duraid Madina2e0930c2007-06-25 23:46:54 +000043#include "llvm/ADT/SmallPtrSet.h"
Duraid Madinaa8c76822007-06-22 08:27:12 +000044#include "llvm/ADT/Statistic.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumStores, "Number of stores added");
49STATISTIC(NumLoads , "Number of loads added");
50STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
51
52namespace {
53 static RegisterRegAlloc
54 bigBlockRegAlloc("bigblock", " Big-block register allocator",
55 createBigBlockRegisterAllocator);
56
57 struct VRegKeyInfo {
58 static inline unsigned getEmptyKey() { return -1U; }
59 static inline unsigned getTombstoneKey() { return -2U; }
60 static unsigned getHashValue(const unsigned &Key) { return Key; }
61 };
62
63 class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
64 public:
65 static char ID;
66 RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
67 private:
68 const TargetMachine *TM;
69 MachineFunction *MF;
70 const MRegisterInfo *RegInfo;
71 LiveVariables *LV;
72
Duraid Madinaa8c76822007-06-22 08:27:12 +000073 // VRegReadTable - maps VRegs in a BB to the set of times they are read
Duraid Madina2e0930c2007-06-25 23:46:54 +000074 // This is a sorted list
75 typedef SmallVector<unsigned, 2> VRegTimes;
76
77 DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
78 DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
Duraid Madinaa8c76822007-06-22 08:27:12 +000079
80 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
81 // values are spilled.
Duraid Madina2e0930c2007-06-25 23:46:54 +000082 //DenseMap<unsigned, int, VRegKeyInf> StackSlotForVirtReg;
83 IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
Duraid Madinaa8c76822007-06-22 08:27:12 +000084
85 // Virt2PhysRegMap - This map contains entries for each virtual register
86 // that is currently available in a physical register.
87 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
88
89 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
90 return Virt2PhysRegMap[VirtReg];
91 }
92
Duraid Madina2e0930c2007-06-25 23:46:54 +000093 unsigned &getVirt2StackSlot(unsigned VirtReg) {
94 return StackSlotForVirtReg[VirtReg];
95 }
96
97
Duraid Madinaa8c76822007-06-22 08:27:12 +000098 // PhysRegsUsed - This array is effectively a map, containing entries for
99 // each physical register that currently has a value (ie, it is in
100 // Virt2PhysRegMap). The value mapped to is the virtual register
101 // corresponding to the physical register (the inverse of the
102 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
103 // because it is used by a future instruction, and to -2 if it is not
104 // allocatable. If the entry for a physical register is -1, then the
105 // physical register is "not in the map".
106 //
107 std::vector<int> PhysRegsUsed;
108
Duraid Madinaa8c76822007-06-22 08:27:12 +0000109
110 // VirtRegModified - This bitset contains information about which virtual
111 // registers need to be spilled back to memory when their registers are
112 // scavenged. If a virtual register has simply been rematerialized, there
113 // is no reason to spill it to memory when we need the register back.
114 //
Duraid Madina2e0930c2007-06-25 23:46:54 +0000115 std::vector<int> VirtRegModified;
116
117 // MBBLastInsnTime - the number of the the last instruction in MBB
118 int MBBLastInsnTime;
119
120 // MBBCurTime - the number of the the instruction being currently processed
121 int MBBCurTime;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000122
123 void markVirtRegModified(unsigned Reg, bool Val = true) {
124 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
125 Reg -= MRegisterInfo::FirstVirtualRegister;
126 if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
127 VirtRegModified[Reg] = Val;
128 }
129
130 bool isVirtRegModified(unsigned Reg) const {
131 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
132 assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
133 && "Illegal virtual register!");
134 return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
135 }
136
Duraid Madinaa8c76822007-06-22 08:27:12 +0000137 public:
138 virtual const char *getPassName() const {
139 return "BigBlock Register Allocator";
140 }
141
142 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
143 AU.addRequired<LiveVariables>();
144 AU.addRequiredID(PHIEliminationID);
145 AU.addRequiredID(TwoAddressInstructionPassID);
146 MachineFunctionPass::getAnalysisUsage(AU);
147 }
148
149 private:
150 /// runOnMachineFunction - Register allocate the whole function
151 bool runOnMachineFunction(MachineFunction &Fn);
152
153 /// AllocateBasicBlock - Register allocate the specified basic block.
154 void AllocateBasicBlock(MachineBasicBlock &MBB);
155
156 /// FillVRegReadTable - Fill out the table of vreg read times given a BB
157 void FillVRegReadTable(MachineBasicBlock &MBB);
158
159 /// areRegsEqual - This method returns true if the specified registers are
160 /// related to each other. To do this, it checks to see if they are equal
161 /// or if the first register is in the alias set of the second register.
162 ///
163 bool areRegsEqual(unsigned R1, unsigned R2) const {
164 if (R1 == R2) return true;
165 for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
166 *AliasSet; ++AliasSet) {
167 if (*AliasSet == R1) return true;
168 }
169 return false;
170 }
171
172 /// getStackSpaceFor - This returns the frame index of the specified virtual
173 /// register on the stack, allocating space if necessary.
174 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
175
176 /// removePhysReg - This method marks the specified physical register as no
177 /// longer being in use.
178 ///
179 void removePhysReg(unsigned PhysReg);
180
181 /// spillVirtReg - This method spills the value specified by PhysReg into
182 /// the virtual register slot specified by VirtReg. It then updates the RA
183 /// data structures to indicate the fact that PhysReg is now available.
184 ///
185 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
186 unsigned VirtReg, unsigned PhysReg);
187
188 /// spillPhysReg - This method spills the specified physical register into
189 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
190 /// true, then the request is ignored if the physical register does not
191 /// contain a virtual register.
192 ///
193 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
194 unsigned PhysReg, bool OnlyVirtRegs = false);
195
196 /// assignVirtToPhysReg - This method updates local state so that we know
197 /// that PhysReg is the proper container for VirtReg now. The physical
198 /// register must not be used for anything else when this is called.
199 ///
200 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
201
202 /// liberatePhysReg - Make sure the specified physical register is available
203 /// for use. If there is currently a value in it, it is either moved out of
204 /// the way or spilled to memory.
205 ///
206 void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
207 unsigned PhysReg);
208
209 /// isPhysRegAvailable - Return true if the specified physical register is
210 /// free and available for use. This also includes checking to see if
211 /// aliased registers are all free...
212 ///
213 bool isPhysRegAvailable(unsigned PhysReg) const;
214
215 /// getFreeReg - Look to see if there is a free register available in the
216 /// specified register class. If not, return 0.
217 ///
218 unsigned getFreeReg(const TargetRegisterClass *RC);
219
220 /// chooseReg - Pick a physical register to hold the specified
221 /// virtual register by choosing the one which will be read furthest
222 /// in the future.
223 ///
224 unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
225 unsigned VirtReg);
226
227 /// reloadVirtReg - This method transforms the specified specified virtual
228 /// register use to refer to a physical register. This method may do this
229 /// in one of several ways: if the register is available in a physical
230 /// register already, it uses that physical register. If the value is not
231 /// in a physical register, and if there are physical registers available,
232 /// it loads it into a register. If register pressure is high, and it is
233 /// possible, it tries to fold the load of the virtual register into the
234 /// instruction itself. It avoids doing this if register pressure is low to
235 /// improve the chance that subsequent instructions can use the reloaded
236 /// value. This method returns the modified instruction.
237 ///
238 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
239 unsigned OpNum);
240
241 };
242 char RABigBlock::ID = 0;
243}
244
245/// getStackSpaceFor - This allocates space for the specified virtual register
246/// to be held on the stack.
247int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
248 // Find the location Reg would belong...
Duraid Madina2e0930c2007-06-25 23:46:54 +0000249 int FrameIdx = getVirt2StackSlot(VirtReg);
Duraid Madinaa8c76822007-06-22 08:27:12 +0000250
Duraid Madina2e0930c2007-06-25 23:46:54 +0000251 if (FrameIdx)
252 return FrameIdx - 1; // Already has space allocated?
Duraid Madinaa8c76822007-06-22 08:27:12 +0000253
254 // Allocate a new stack object for this spill location...
Duraid Madina2e0930c2007-06-25 23:46:54 +0000255 FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
Duraid Madinaa8c76822007-06-22 08:27:12 +0000256 RC->getAlignment());
257
258 // Assign the slot...
Duraid Madina2e0930c2007-06-25 23:46:54 +0000259 getVirt2StackSlot(VirtReg) = FrameIdx + 1;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000260 return FrameIdx;
261}
262
263
264/// removePhysReg - This method marks the specified physical register as no
265/// longer being in use.
266///
267void RABigBlock::removePhysReg(unsigned PhysReg) {
268 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
Duraid Madinaa8c76822007-06-22 08:27:12 +0000269}
270
271
272/// spillVirtReg - This method spills the value specified by PhysReg into the
273/// virtual register slot specified by VirtReg. It then updates the RA data
274/// structures to indicate the fact that PhysReg is now available.
275///
276void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
277 MachineBasicBlock::iterator I,
278 unsigned VirtReg, unsigned PhysReg) {
279 assert(VirtReg && "Spilling a physical register is illegal!"
280 " Must not have appropriate kill for the register or use exists beyond"
281 " the intended one.");
282 DOUT << " Spilling register " << RegInfo->getName(PhysReg)
283 << " containing %reg" << VirtReg;
284 if (!isVirtRegModified(VirtReg))
285 DOUT << " which has not been modified, so no store necessary!";
286
287 // Otherwise, there is a virtual register corresponding to this physical
288 // register. We only need to spill it into its stack slot if it has been
289 // modified.
290 if (isVirtRegModified(VirtReg)) {
291 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
292 int FrameIndex = getStackSpaceFor(VirtReg, RC);
293 DOUT << " to stack slot #" << FrameIndex;
294 RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
295 ++NumStores; // Update statistics
296 }
297
298 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
299
300 DOUT << "\n";
301 removePhysReg(PhysReg);
302}
303
304
305/// spillPhysReg - This method spills the specified physical register into the
306/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
307/// then the request is ignored if the physical register does not contain a
308/// virtual register.
309///
310void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
311 unsigned PhysReg, bool OnlyVirtRegs) {
312 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
313 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
314 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
315 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
316 } else {
317 // If the selected register aliases any other registers, we must make
318 // sure that one of the aliases isn't alive.
319 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
320 *AliasSet; ++AliasSet)
321 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
322 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
323 if (PhysRegsUsed[*AliasSet] == 0) {
324 // This must have been a dead def due to something like this:
325 // %EAX :=
326 // := op %AL
327 // No more use of %EAX, %AH, etc.
328 // %EAX isn't dead upon definition, but %AH is. However %AH isn't
329 // an operand of definition MI so it's not marked as such.
330 DOUT << " Register " << RegInfo->getName(*AliasSet)
331 << " [%reg" << *AliasSet
332 << "] is never used, removing it frame live list\n";
333 removePhysReg(*AliasSet);
334 } else
335 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
336 }
337}
338
339
340/// assignVirtToPhysReg - This method updates local state so that we know
341/// that PhysReg is the proper container for VirtReg now. The physical
342/// register must not be used for anything else when this is called.
343///
344void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
345 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
346 // Update information to note the fact that this register was just used, and
347 // it holds VirtReg.
348 PhysRegsUsed[PhysReg] = VirtReg;
349 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000350}
351
352
353/// isPhysRegAvailable - Return true if the specified physical register is free
354/// and available for use. This also includes checking to see if aliased
355/// registers are all free...
356///
357bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
358 if (PhysRegsUsed[PhysReg] != -1) return false;
359
360 // If the selected register aliases any other allocated registers, it is
361 // not free!
362 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
363 *AliasSet; ++AliasSet)
364 if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
365 return false; // Can't use this reg then.
366 return true;
367}
368
369
370//////// FIX THIS:
371/// getFreeReg - Look to see if there is a free register available in the
372/// specified register class. If not, return 0.
373///
374unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
375 // Get iterators defining the range of registers that are valid to allocate in
376 // this class, which also specifies the preferred allocation order.
377 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
378 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
379
380 for (; RI != RE; ++RI)
381 if (isPhysRegAvailable(*RI)) { // Is reg unused?
382 assert(*RI != 0 && "Cannot use register!");
383 return *RI; // Found an unused register!
384 }
385 return 0;
386}
387
388
389/// liberatePhysReg - Make sure the specified physical register is available for
390/// use. If there is currently a value in it, it is either moved out of the way
391/// or spilled to memory.
392///
393void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB,
394 MachineBasicBlock::iterator &I,
395 unsigned PhysReg) {
396 spillPhysReg(MBB, I, PhysReg);
397}
398
399/// chooseReg - Pick a physical register to hold the specified
400/// virtual register by choosing the one whose value will be read
401/// furthest in the future.
402///
403unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
404 unsigned VirtReg) {
405 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
406 // First check to see if we have a free register of the requested type...
407 unsigned PhysReg = getFreeReg(RC);
408
409 // If we didn't find an unused register, find the one which will be
410 // read at the most distant point in time.
411 if (PhysReg == 0) {
412 unsigned delay=0, longest_delay=0;
Duraid Madina2e0930c2007-06-25 23:46:54 +0000413 VRegTimes* ReadTimes;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000414
Duraid Madina2e0930c2007-06-25 23:46:54 +0000415 unsigned curTime = MBBCurTime;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000416
417 // for all physical regs in the RC,
418 for(TargetRegisterClass::iterator pReg = RC->begin();
419 pReg != RC->end(); ++pReg) {
420 // how long until they're read?
421 if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
422 ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
Duraid Madina2e0930c2007-06-25 23:46:54 +0000423 if(ReadTimes && !ReadTimes->empty()) {
424 unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
425 while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
426 ++pt;
427 }
428
429 if(pt < ReadTimes->size())
430 delay = (*ReadTimes)[pt] - curTime;
431 else
432 delay = MBBLastInsnTime + 1 - curTime;
433 } else {
434 // This register is only defined, but never
435 // read in this MBB. Therefore the next read
436 // happens after the end of this MBB
437 delay = MBBLastInsnTime + 1 - curTime;
438 }
439
Duraid Madinaa8c76822007-06-22 08:27:12 +0000440
441 if(delay > longest_delay) {
442 longest_delay = delay;
443 PhysReg = *pReg;
444 }
445 }
446 }
447
448 assert(PhysReg && "couldn't grab a register from the table?");
449 // TODO: assert that RC->contains(PhysReg) / handle aliased registers
450
451 // since we needed to look in the table we need to spill this register.
452 spillPhysReg(MBB, I, PhysReg);
453 }
454
455 // assign the vreg to our chosen physical register
456 assignVirtToPhysReg(VirtReg, PhysReg);
457 return PhysReg; // and return it
458}
459
460
461/// reloadVirtReg - This method transforms an instruction with a virtual
462/// register use to one that references a physical register. It does this as
463/// follows:
464///
465/// 1) If the register is already in a physical register, it uses it.
466/// 2) Otherwise, if there is a free physical register, it uses that.
467/// 3) Otherwise, it calls chooseReg() to get the physical register
468/// holding the most distantly needed value, generating a spill in
469/// the process.
470///
471/// This method returns the modified instruction.
472MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
473 unsigned OpNum) {
474 unsigned VirtReg = MI->getOperand(OpNum).getReg();
475
476 // If the virtual register is already available in a physical register,
477 // just update the instruction and return.
478 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
479 MI->getOperand(OpNum).setReg(PR);
480 return MI;
481 }
482
483 // Otherwise, if we have free physical registers available to hold the
484 // value, use them.
485 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
486 unsigned PhysReg = getFreeReg(RC);
487 int FrameIndex = getStackSpaceFor(VirtReg, RC);
488
489 if (PhysReg) { // we have a free register, so use it.
490 assignVirtToPhysReg(VirtReg, PhysReg);
491 } else { // no free registers available.
492 // try to fold the spill into the instruction
493 if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) {
494 ++NumFolded;
495 // Since we changed the address of MI, make sure to update live variables
496 // to know that the new instruction has the properties of the old one.
497 LV->instructionChanged(MI, FMI);
498 return MBB.insert(MBB.erase(MI), FMI);
499 }
500
501 // determine which of the physical registers we'll kill off, since we
502 // couldn't fold.
503 PhysReg = chooseReg(MBB, MI, VirtReg);
504 }
505
506 // this virtual register is now unmodified (since we just reloaded it)
507 markVirtRegModified(VirtReg, false);
508
509 DOUT << " Reloading %reg" << VirtReg << " into "
510 << RegInfo->getName(PhysReg) << "\n";
511
512 // Add move instruction(s)
513 RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
514 ++NumLoads; // Update statistics
515
516 MF->setPhysRegUsed(PhysReg);
517 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
518 return MI;
519}
520
521/// Fill out the vreg read timetable. Since ReadTime increases
522/// monotonically, the individual readtime sets will be sorted
523/// in ascending order.
524void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
525 // loop over each instruction
526 MachineBasicBlock::iterator MII;
527 unsigned ReadTime;
528
529 for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
530 MachineInstr *MI = MII;
531
Duraid Madinaa8c76822007-06-22 08:27:12 +0000532 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
533 MachineOperand& MO = MI->getOperand(i);
534 // look for vreg reads..
535 if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
536 MRegisterInfo::isVirtualRegister(MO.getReg())) {
Duraid Madina2e0930c2007-06-25 23:46:54 +0000537 // ..and add them to the read table.
538 VRegTimes* &Times = VRegReadTable[MO.getReg()];
539 if(!VRegReadTable[MO.getReg()]) {
540 Times = new VRegTimes;
541 VRegReadIdx[MO.getReg()] = 0;
542 }
543 Times->push_back(ReadTime);
Duraid Madinaa8c76822007-06-22 08:27:12 +0000544 }
545 }
546
547 }
548
Duraid Madina2e0930c2007-06-25 23:46:54 +0000549 MBBLastInsnTime = ReadTime;
550
551 for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
552 Reads != VRegReadTable.end(); ++Reads) {
553 if(Reads->second) {
554 DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
555 }
556 }
Duraid Madinaa8c76822007-06-22 08:27:12 +0000557}
558
Duraid Madina2e0930c2007-06-25 23:46:54 +0000559
Duraid Madinaa8c76822007-06-22 08:27:12 +0000560void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
561 // loop over each instruction
562 MachineBasicBlock::iterator MII = MBB.begin();
563 const TargetInstrInfo &TII = *TM->getInstrInfo();
564
565 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
566 if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
567
568 // If this is the first basic block in the machine function, add live-in
569 // registers as active.
570 if (&MBB == &*MF->begin()) {
571 for (MachineFunction::livein_iterator I = MF->livein_begin(),
572 E = MF->livein_end(); I != E; ++I) {
573 unsigned Reg = I->first;
574 MF->setPhysRegUsed(Reg);
575 PhysRegsUsed[Reg] = 0; // It is free and reserved now
Duraid Madinaa8c76822007-06-22 08:27:12 +0000576 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
577 *AliasSet; ++AliasSet) {
578 if (PhysRegsUsed[*AliasSet] != -2) {
Duraid Madinaa8c76822007-06-22 08:27:12 +0000579 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
580 MF->setPhysRegUsed(*AliasSet);
581 }
582 }
583 }
584 }
585
586 // Otherwise, sequentially allocate each instruction in the MBB.
Duraid Madina2e0930c2007-06-25 23:46:54 +0000587 MBBCurTime = -1;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000588 while (MII != MBB.end()) {
589 MachineInstr *MI = MII++;
Duraid Madina2e0930c2007-06-25 23:46:54 +0000590 MBBCurTime++;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000591 const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
Duraid Madina2e0930c2007-06-25 23:46:54 +0000592 DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
Duraid Madinaa8c76822007-06-22 08:27:12 +0000593 DOUT << " Regs have values: ";
594 for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
595 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
596 DOUT << "[" << RegInfo->getName(i)
597 << ",%reg" << PhysRegsUsed[i] << "] ";
598 DOUT << "\n");
599
Duraid Madinaa8c76822007-06-22 08:27:12 +0000600 SmallVector<unsigned, 8> Kills;
601 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
602 MachineOperand& MO = MI->getOperand(i);
603 if (MO.isRegister() && MO.isKill())
604 Kills.push_back(MO.getReg());
605 }
606
607 // Get the used operands into registers. This has the potential to spill
608 // incoming values if we are out of registers. Note that we completely
609 // ignore physical register uses here. We assume that if an explicit
610 // physical register is referenced by the instruction, that it is guaranteed
611 // to be live-in, or the input is badly hosed.
612 //
613 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
614 MachineOperand& MO = MI->getOperand(i);
615 // here we are looking for only used operands (never def&use)
616 if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
617 MRegisterInfo::isVirtualRegister(MO.getReg()))
618 MI = reloadVirtReg(MBB, MI, i);
619 }
620
621 // If this instruction is the last user of this register, kill the
622 // value, freeing the register being used, so it doesn't need to be
623 // spilled to memory.
624 //
625 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
626 unsigned VirtReg = Kills[i];
627 unsigned PhysReg = VirtReg;
628 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
629 // If the virtual register was never materialized into a register, it
630 // might not be in the map, but it won't hurt to zero it out anyway.
631 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
632 PhysReg = PhysRegSlot;
633 PhysRegSlot = 0;
634 } else if (PhysRegsUsed[PhysReg] == -2) {
635 // Unallocatable register dead, ignore.
636 continue;
637 }
638
639 if (PhysReg) {
640 DOUT << " Last use of " << RegInfo->getName(PhysReg)
641 << "[%reg" << VirtReg <<"], removing it from live set\n";
642 removePhysReg(PhysReg);
643 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
644 *AliasSet; ++AliasSet) {
645 if (PhysRegsUsed[*AliasSet] != -2) {
646 DOUT << " Last use of "
647 << RegInfo->getName(*AliasSet)
648 << "[%reg" << VirtReg <<"], removing it from live set\n";
649 removePhysReg(*AliasSet);
650 }
651 }
652 }
653 }
654
655 // Loop over all of the operands of the instruction, spilling registers that
656 // are defined, and marking explicit destinations in the PhysRegsUsed map.
657 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
658 MachineOperand& MO = MI->getOperand(i);
659 if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
660 MRegisterInfo::isPhysicalRegister(MO.getReg())) {
661 unsigned Reg = MO.getReg();
662 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
663
664 MF->setPhysRegUsed(Reg);
665 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
666 PhysRegsUsed[Reg] = 0; // It is free and reserved now
Duraid Madinaa8c76822007-06-22 08:27:12 +0000667 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
668 *AliasSet; ++AliasSet) {
669 if (PhysRegsUsed[*AliasSet] != -2) {
Duraid Madinaa8c76822007-06-22 08:27:12 +0000670 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
671 MF->setPhysRegUsed(*AliasSet);
672 }
673 }
674 }
675 }
676
677 // Loop over the implicit defs, spilling them as well.
678 if (TID.ImplicitDefs) {
679 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
680 *ImplicitDefs; ++ImplicitDefs) {
681 unsigned Reg = *ImplicitDefs;
682 bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
683 if (!IsNonAllocatable) {
684 spillPhysReg(MBB, MI, Reg, true);
Duraid Madinaa8c76822007-06-22 08:27:12 +0000685 PhysRegsUsed[Reg] = 0; // It is free and reserved now
686 }
687 MF->setPhysRegUsed(Reg);
688
689 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
690 *AliasSet; ++AliasSet) {
691 if (PhysRegsUsed[*AliasSet] != -2) {
692 if (!IsNonAllocatable) {
Duraid Madinaa8c76822007-06-22 08:27:12 +0000693 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
694 }
695 MF->setPhysRegUsed(*AliasSet);
696 }
697 }
698 }
699 }
700
701 SmallVector<unsigned, 8> DeadDefs;
702 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
703 MachineOperand& MO = MI->getOperand(i);
704 if (MO.isRegister() && MO.isDead())
705 DeadDefs.push_back(MO.getReg());
706 }
707
708 // Okay, we have allocated all of the source operands and spilled any values
709 // that would be destroyed by defs of this instruction. Loop over the
710 // explicit defs and assign them to a register, spilling incoming values if
711 // we need to scavenge a register.
712 //
713 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
714 MachineOperand& MO = MI->getOperand(i);
715 if (MO.isRegister() && MO.isDef() && MO.getReg() &&
716 MRegisterInfo::isVirtualRegister(MO.getReg())) {
717 unsigned DestVirtReg = MO.getReg();
718 unsigned DestPhysReg;
719
720 // If DestVirtReg already has a value, use it.
721 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
722 DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
723 MF->setPhysRegUsed(DestPhysReg);
724 markVirtRegModified(DestVirtReg);
725 MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
726 }
727 }
728
729 // If this instruction defines any registers that are immediately dead,
730 // kill them now.
731 //
732 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
733 unsigned VirtReg = DeadDefs[i];
734 unsigned PhysReg = VirtReg;
735 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
736 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
737 PhysReg = PhysRegSlot;
738 assert(PhysReg != 0);
739 PhysRegSlot = 0;
740 } else if (PhysRegsUsed[PhysReg] == -2) {
741 // Unallocatable register dead, ignore.
742 continue;
743 }
744
745 if (PhysReg) {
746 DOUT << " Register " << RegInfo->getName(PhysReg)
747 << " [%reg" << VirtReg
748 << "] is never used, removing it frame live list\n";
749 removePhysReg(PhysReg);
750 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
751 *AliasSet; ++AliasSet) {
752 if (PhysRegsUsed[*AliasSet] != -2) {
753 DOUT << " Register " << RegInfo->getName(*AliasSet)
754 << " [%reg" << *AliasSet
755 << "] is never used, removing it frame live list\n";
756 removePhysReg(*AliasSet);
757 }
758 }
759 }
760 }
761
762 // Finally, if this is a noop copy instruction, zap it.
763 unsigned SrcReg, DstReg;
764 if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
765 LV->removeVirtualRegistersKilled(MI);
766 LV->removeVirtualRegistersDead(MI);
767 MBB.erase(MI);
768 }
769 }
770
771 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
772
773 // Spill all physical registers holding virtual registers now.
774 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
775 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
776 if (unsigned VirtReg = PhysRegsUsed[i])
777 spillVirtReg(MBB, MI, VirtReg, i);
778 else
779 removePhysReg(i);
780
781#if 0
782 // This checking code is very expensive.
783 bool AllOk = true;
784 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
785 e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
786 if (unsigned PR = Virt2PhysRegMap[i]) {
787 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
788 AllOk = false;
789 }
790 assert(AllOk && "Virtual registers still in phys regs?");
791#endif
792
793 // Clear any physical register which appear live at the end of the basic
794 // block, but which do not hold any virtual registers. e.g., the stack
795 // pointer.
Duraid Madinaa8c76822007-06-22 08:27:12 +0000796}
797
798/// runOnMachineFunction - Register allocate the whole function
799///
800bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
801 DOUT << "Machine Function " << "\n";
802 MF = &Fn;
803 TM = &Fn.getTarget();
804 RegInfo = TM->getRegisterInfo();
805 LV = &getAnalysis<LiveVariables>();
806
807 PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
808
809 // At various places we want to efficiently check to see whether a register
810 // is allocatable. To handle this, we mark all unallocatable registers as
811 // being pinned down, permanently.
812 {
813 BitVector Allocable = RegInfo->getAllocatableSet(Fn);
814 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
815 if (!Allocable[i])
816 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
817 }
818
819 // initialize the virtual->physical register map to have a 'null'
820 // mapping for all virtual registers
821 Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
Duraid Madina2e0930c2007-06-25 23:46:54 +0000822 StackSlotForVirtReg.grow(MF->getSSARegMap()->getLastVirtReg());
823 VirtRegModified.resize(MF->getSSARegMap()->getLastVirtReg() - MRegisterInfo::FirstVirtualRegister + 1,0);
Duraid Madinaa8c76822007-06-22 08:27:12 +0000824
825 // Loop over all of the basic blocks, eliminating virtual register references
826 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
827 MBB != MBBe; ++MBB) {
828 // fill out the read timetable
829 FillVRegReadTable(*MBB);
830 // use it to allocate the BB
831 AllocateBasicBlock(*MBB);
832 // clear it
833 VRegReadTable.clear();
834 }
835
836 StackSlotForVirtReg.clear();
837 PhysRegsUsed.clear();
838 VirtRegModified.clear();
839 Virt2PhysRegMap.clear();
840 return true;
841}
842
843FunctionPass *llvm::createBigBlockRegisterAllocator() {
844 return new RABigBlock();
845}