blob: 825e4546a7e606e47b485d26d04bd2f2d28385f1 [file] [log] [blame]
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001// $Id$
2//***************************************************************************
3// File:
4// InstrScheduling.cpp
5//
6// Purpose:
7//
8// History:
9// 7/23/01 - Vikram Adve - Created
10//***************************************************************************
11
Chris Lattner1ff63a12001-09-07 21:19:42 +000012#include "llvm/CodeGen/InstrScheduling.h"
13#include "llvm/CodeGen/SchedPriorities.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000014#include "llvm/Analysis/LiveVar/BBLiveVar.h"
15#include "llvm/CodeGen/TargetMachine.h"
16#include "llvm/CodeGen/MachineInstr.h"
Chris Lattner1ff63a12001-09-07 21:19:42 +000017#include "llvm/Support/CommandLine.h"
18#include "llvm/Instruction.h"
19#include <hash_set>
20#include <algorithm>
21#include <iterator>
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000022
23cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
24 "enable instruction scheduling debugging information",
25 clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
26 clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
27 clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
28 clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
29
30
31//************************* Forward Declarations ***************************/
32
33class InstrSchedule;
34class SchedulingManager;
35class DelaySlotInfo;
36
37static void ForwardListSchedule (SchedulingManager& S);
38
39static void RecordSchedule (const BasicBlock* bb,
40 const SchedulingManager& S);
41
42static unsigned ChooseOneGroup (SchedulingManager& S);
43
44static void MarkSuccessorsReady (SchedulingManager& S,
45 const SchedGraphNode* node);
46
47static unsigned FindSlotChoices (SchedulingManager& S,
48 DelaySlotInfo*& getDelaySlotInfo);
49
50static void AssignInstructionsToSlots(class SchedulingManager& S,
51 unsigned maxIssue);
52
53static void ScheduleInstr (class SchedulingManager& S,
54 const SchedGraphNode* node,
55 unsigned int slotNum,
56 cycles_t curTime);
57
58static bool ViolatesMinimumGap (const SchedulingManager& S,
59 MachineOpCode opCode,
60 const cycles_t inCycle);
61
62static bool ConflictsWithChoices (const SchedulingManager& S,
63 MachineOpCode opCode);
64
65static void ChooseInstructionsForDelaySlots(SchedulingManager& S,
66 const BasicBlock* bb,
67 SchedGraph* graph);
68
69static bool NodeCanFillDelaySlot (const SchedulingManager& S,
70 const SchedGraphNode* node,
71 const SchedGraphNode* brNode,
72 bool nodeIsPredecessor);
73
74static void MarkNodeForDelaySlot (SchedulingManager& S,
75 SchedGraphNode* node,
76 const SchedGraphNode* brNode,
77 bool nodeIsPredecessor);
78
79//************************* Internal Data Types *****************************/
80
81
82//----------------------------------------------------------------------
83// class InstrGroup:
84//
85// Represents a group of instructions scheduled to be issued
86// in a single cycle.
87//----------------------------------------------------------------------
88
89class InstrGroup: public NonCopyable {
90public:
91 inline const SchedGraphNode* operator[](unsigned int slotNum) const {
92 assert(slotNum < group.size());
93 return group[slotNum];
94 }
95
96private:
97 friend class InstrSchedule;
98
99 inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
100 assert(slotNum < group.size());
101 group[slotNum] = node;
102 }
103
104 /*ctor*/ InstrGroup(unsigned int nslots)
105 : group(nslots, NULL) {}
106
107 /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
108
109private:
110 vector<const SchedGraphNode*> group;
111};
112
113
114//----------------------------------------------------------------------
115// class ScheduleIterator:
116//
117// Iterates over the machine instructions in the for a single basic block.
118// The schedule is represented by an InstrSchedule object.
119//----------------------------------------------------------------------
120
121template<class _NodeType>
122class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
123private:
124 unsigned cycleNum;
125 unsigned slotNum;
126 const InstrSchedule& S;
127public:
128 typedef ScheduleIterator<_NodeType> _Self;
129
130 /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
131 unsigned _cycleNum,
132 unsigned _slotNum)
133 : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
134 skipToNextInstr();
135 }
136
137 /*ctor*/ inline ScheduleIterator(const _Self& x)
138 : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
139
140 inline bool operator==(const _Self& x) const {
141 return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
142 }
143
144 inline bool operator!=(const _Self& x) const { return !operator==(x); }
145
146 inline _NodeType* operator*() const {
147 assert(cycleNum < S.groups.size());
148 return (*S.groups[cycleNum])[slotNum];
149 }
150 inline _NodeType* operator->() const { return operator*(); }
151
152 _Self& operator++(); // Preincrement
153 inline _Self operator++(int) { // Postincrement
154 _Self tmp(*this); ++*this; return tmp;
155 }
156
157 static _Self begin(const InstrSchedule& _schedule);
158 static _Self end( const InstrSchedule& _schedule);
159
160private:
161 inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
162 void skipToNextInstr();
163};
164
165
166//----------------------------------------------------------------------
167// class InstrSchedule:
168//
169// Represents the schedule of machine instructions for a single basic block.
170//----------------------------------------------------------------------
171
172class InstrSchedule: public NonCopyable {
173private:
174 const unsigned int nslots;
175 unsigned int numInstr;
176 vector<InstrGroup*> groups; // indexed by cycle number
177 vector<cycles_t> startTime; // indexed by node id
178
179public: // iterators
180 typedef ScheduleIterator<SchedGraphNode> iterator;
181 typedef ScheduleIterator<const SchedGraphNode> const_iterator;
182
183 iterator begin();
184 const_iterator begin() const;
185 iterator end();
186 const_iterator end() const;
187
188public: // constructors and destructor
189 /*ctor*/ InstrSchedule (unsigned int _nslots,
190 unsigned int _numNodes);
191 /*dtor*/ ~InstrSchedule ();
192
193public: // accessor functions to query chosen schedule
194 const SchedGraphNode* getInstr (unsigned int slotNum,
195 cycles_t c) const {
196 const InstrGroup* igroup = this->getIGroup(c);
197 return (igroup == NULL)? NULL : (*igroup)[slotNum];
198 }
199
200 inline InstrGroup* getIGroup (cycles_t c) {
201 if (c >= groups.size())
202 groups.resize(c+1);
203 if (groups[c] == NULL)
204 groups[c] = new InstrGroup(nslots);
205 return groups[c];
206 }
207
208 inline const InstrGroup* getIGroup (cycles_t c) const {
209 assert(c < groups.size());
210 return groups[c];
211 }
212
213 inline cycles_t getStartTime (unsigned int nodeId) const {
214 assert(nodeId < startTime.size());
215 return startTime[nodeId];
216 }
217
218 unsigned int getNumInstructions() const {
219 return numInstr;
220 }
221
222 inline void scheduleInstr (const SchedGraphNode* node,
223 unsigned int slotNum,
224 cycles_t cycle) {
225 InstrGroup* igroup = this->getIGroup(cycle);
226 assert((*igroup)[slotNum] == NULL && "Slot already filled?");
227 igroup->addInstr(node, slotNum);
228 assert(node->getNodeId() < startTime.size());
229 startTime[node->getNodeId()] = cycle;
230 ++numInstr;
231 }
232
233private:
234 friend class iterator;
235 friend class const_iterator;
236 /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
237};
238
239
240/*ctor*/
241InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
242 : nslots(_nslots),
243 numInstr(0),
244 groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
245 startTime(_numNodes, (cycles_t) -1) // set all to -1
246{
247}
248
249
250/*dtor*/
251InstrSchedule::~InstrSchedule()
252{
253 for (unsigned c=0, NC=groups.size(); c < NC; c++)
254 if (groups[c] != NULL)
255 delete groups[c]; // delete InstrGroup objects
256}
257
258
259template<class _NodeType>
260inline
261void
262ScheduleIterator<_NodeType>::skipToNextInstr()
263{
264 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
265 ++cycleNum; // skip cycles with no instructions
266
267 while (cycleNum < S.groups.size() &&
268 (*S.groups[cycleNum])[slotNum] == NULL)
269 {
270 ++slotNum;
271 if (slotNum == S.nslots)
272 {
273 ++cycleNum;
274 slotNum = 0;
275 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
276 ++cycleNum; // skip cycles with no instructions
277 }
278 }
279}
280
281template<class _NodeType>
282inline
283ScheduleIterator<_NodeType>&
284ScheduleIterator<_NodeType>::operator++() // Preincrement
285{
286 ++slotNum;
287 if (slotNum == S.nslots)
288 {
289 ++cycleNum;
290 slotNum = 0;
291 }
292 skipToNextInstr();
293 return *this;
294}
295
296template<class _NodeType>
297ScheduleIterator<_NodeType>
298ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
299{
300 return _Self(_schedule, 0, 0);
301}
302
303template<class _NodeType>
304ScheduleIterator<_NodeType>
305ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
306{
307 return _Self(_schedule, _schedule.groups.size(), 0);
308}
309
310InstrSchedule::iterator
311InstrSchedule::begin()
312{
313 return iterator::begin(*this);
314}
315
316InstrSchedule::const_iterator
317InstrSchedule::begin() const
318{
319 return const_iterator::begin(*this);
320}
321
322InstrSchedule::iterator
323InstrSchedule::end()
324{
325 return iterator::end(*this);
326}
327
328InstrSchedule::const_iterator
329InstrSchedule::end() const
330{
331 return const_iterator::end( *this);
332}
333
334
335//----------------------------------------------------------------------
336// class DelaySlotInfo:
337//
338// Record information about delay slots for a single branch instruction.
339// Delay slots are simply indexed by slot number 1 ... numDelaySlots
340//----------------------------------------------------------------------
341
342class DelaySlotInfo: public NonCopyable {
343private:
344 const SchedGraphNode* brNode;
345 unsigned int ndelays;
346 vector<const SchedGraphNode*> delayNodeVec;
347 cycles_t delayedNodeCycle;
348 unsigned int delayedNodeSlotNum;
349
350public:
351 /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
352 unsigned _ndelays)
353 : brNode(_brNode), ndelays(_ndelays),
354 delayedNodeCycle(0), delayedNodeSlotNum(0) {}
355
356 inline unsigned getNumDelays () {
357 return ndelays;
358 }
359
360 inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
361 return delayNodeVec;
362 }
363
364 inline void addDelayNode (const SchedGraphNode* node) {
365 delayNodeVec.push_back(node);
366 assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
367 }
368
369 inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
370 delayedNodeCycle = cycle;
371 delayedNodeSlotNum = slotNum;
372 }
373
374 void scheduleDelayedNode (SchedulingManager& S);
375};
376
377
378//----------------------------------------------------------------------
379// class SchedulingManager:
380//
381// Represents the schedule of machine instructions for a single basic block.
382//----------------------------------------------------------------------
383
384class SchedulingManager: public NonCopyable {
385public: // publicly accessible data members
386 const unsigned int nslots;
387 const MachineSchedInfo& schedInfo;
388 SchedPriorities& schedPrio;
389 InstrSchedule isched;
390
391private:
392 unsigned int totalInstrCount;
393 cycles_t curTime;
394 cycles_t nextEarliestIssueTime; // next cycle we can issue
395 vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
396 vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
397 vector<int> numInClass; // indexed by sched class
398 vector<cycles_t> nextEarliestStartTime; // indexed by opCode
399 hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
400 // indexed by branch node ptr
401
402public:
403 /*ctor*/ SchedulingManager (const TargetMachine& _target,
404 const SchedGraph* graph,
405 SchedPriorities& schedPrio);
406 /*dtor*/ ~SchedulingManager () {}
407
408 //----------------------------------------------------------------------
409 // Simplify access to the machine instruction info
410 //----------------------------------------------------------------------
411
412 inline const MachineInstrInfo& getInstrInfo () const {
413 return schedInfo.getInstrInfo();
414 }
415
416 //----------------------------------------------------------------------
417 // Interface for checking and updating the current time
418 //----------------------------------------------------------------------
419
420 inline cycles_t getTime () const {
421 return curTime;
422 }
423
424 inline cycles_t getEarliestIssueTime() const {
425 return nextEarliestIssueTime;
426 }
427
428 inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
429 assert(opCode < (int) nextEarliestStartTime.size());
430 return nextEarliestStartTime[opCode];
431 }
432
433 // Update current time to specified cycle
434 inline void updateTime (cycles_t c) {
435 curTime = c;
436 schedPrio.updateTime(c);
437 }
438
439 //----------------------------------------------------------------------
440 // Functions to manage the choices for the current cycle including:
441 // -- a vector of choices by priority (choiceVec)
442 // -- vectors of the choices for each instruction slot (choicesForSlot[])
443 // -- number of choices in each sched class, used to check issue conflicts
444 // between choices for a single cycle
445 //----------------------------------------------------------------------
446
447 inline unsigned int getNumChoices () const {
448 return choiceVec.size();
449 }
450
451 inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
452 assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
453 return numInClass[sc];
454 }
455
456 inline const SchedGraphNode* getChoice(unsigned int i) const {
457 // assert(i < choiceVec.size()); don't check here.
458 return choiceVec[i];
459 }
460
461 inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
462 assert(slotNum < nslots);
463 return choicesForSlot[slotNum];
464 }
465
466 inline void addChoice (const SchedGraphNode* node) {
467 // Append the instruction to the vector of choices for current cycle.
468 // Increment numInClass[c] for the sched class to which the instr belongs.
469 choiceVec.push_back(node);
Chris Lattner1ff63a12001-09-07 21:19:42 +0000470 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000471 assert(sc < (int) numInClass.size());
472 numInClass[sc]++;
473 }
474
475 inline void addChoiceToSlot (unsigned int slotNum,
476 const SchedGraphNode* node) {
477 // Add the instruction to the choice set for the specified slot
478 assert(slotNum < nslots);
479 choicesForSlot[slotNum].insert(node);
480 }
481
482 inline void resetChoices () {
483 choiceVec.clear();
484 for (unsigned int s=0; s < nslots; s++)
485 choicesForSlot[s].clear();
486 for (unsigned int c=0; c < numInClass.size(); c++)
487 numInClass[c] = 0;
488 }
489
490 //----------------------------------------------------------------------
491 // Code to query and manage the partial instruction schedule so far
492 //----------------------------------------------------------------------
493
494 inline unsigned int getNumScheduled () const {
495 return isched.getNumInstructions();
496 }
497
498 inline unsigned int getNumUnscheduled() const {
499 return totalInstrCount - isched.getNumInstructions();
500 }
501
502 inline bool isScheduled (const SchedGraphNode* node) const {
503 return (isched.getStartTime(node->getNodeId()) >= 0);
504 }
505
506 inline void scheduleInstr (const SchedGraphNode* node,
507 unsigned int slotNum,
508 cycles_t cycle)
509 {
510 assert(! isScheduled(node) && "Instruction already scheduled?");
511
512 // add the instruction to the schedule
513 isched.scheduleInstr(node, slotNum, cycle);
514
515 // update the earliest start times of all nodes that conflict with `node'
516 // and the next-earliest time anything can issue if `node' causes bubbles
517 updateEarliestStartTimes(node, cycle);
518
519 // remove the instruction from the choice sets for all slots
520 for (unsigned s=0; s < nslots; s++)
521 choicesForSlot[s].erase(node);
522
523 // and decrement the instr count for the sched class to which it belongs
Chris Lattner1ff63a12001-09-07 21:19:42 +0000524 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000525 assert(sc < (int) numInClass.size());
526 numInClass[sc]--;
527 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000528
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000529 //----------------------------------------------------------------------
530 // Create and retrieve delay slot info for delayed instructions
531 //----------------------------------------------------------------------
532
533 inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
534 bool createIfMissing=false)
535 {
536 DelaySlotInfo* dinfo;
537 hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator
538 I = delaySlotInfoForBranches.find(bn);
539 if (I == delaySlotInfoForBranches.end())
540 {
541 if (createIfMissing)
542 {
543 dinfo = new DelaySlotInfo(bn,
Chris Lattner1ff63a12001-09-07 21:19:42 +0000544 getInstrInfo().getNumDelaySlots(bn->getMachineInstr()->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000545 delaySlotInfoForBranches[bn] = dinfo;
546 }
547 else
548 dinfo = NULL;
549 }
550 else
551 dinfo = (*I).second;
552
553 return dinfo;
554 }
555
556private:
557 /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT.
558 void updateEarliestStartTimes(const SchedGraphNode* node,
559 cycles_t schedTime);
560};
561
562
563/*ctor*/
564SchedulingManager::SchedulingManager(const TargetMachine& target,
565 const SchedGraph* graph,
566 SchedPriorities& _schedPrio)
567 : nslots(target.getSchedInfo().getMaxNumIssueTotal()),
568 schedInfo(target.getSchedInfo()),
569 schedPrio(_schedPrio),
570 isched(nslots, graph->getNumNodes()),
571 totalInstrCount(graph->getNumNodes() - 2),
572 nextEarliestIssueTime(0),
573 choicesForSlot(nslots),
574 numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
575 nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
576 (cycles_t) 0) // set all to 0
577{
578 updateTime(0);
579
580 // Note that an upper bound on #choices for each slot is = nslots since
581 // we use this vector to hold a feasible set of instructions, and more
582 // would be infeasible. Reserve that much memory since it is probably small.
583 for (unsigned int i=0; i < nslots; i++)
584 choicesForSlot[i].resize(nslots);
585}
586
587
588void
589SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
590 cycles_t schedTime)
591{
Chris Lattner1ff63a12001-09-07 21:19:42 +0000592 if (schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000593 { // Update next earliest time before which *nothing* can issue.
594 nextEarliestIssueTime = max(nextEarliestIssueTime,
Chris Lattner1ff63a12001-09-07 21:19:42 +0000595 curTime + 1 + schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000596 }
597
598 const vector<MachineOpCode>*
Chris Lattner1ff63a12001-09-07 21:19:42 +0000599 conflictVec = schedInfo.getConflictList(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000600
601 if (conflictVec != NULL)
602 for (unsigned i=0; i < conflictVec->size(); i++)
603 {
604 MachineOpCode toOp = (*conflictVec)[i];
Chris Lattner1ff63a12001-09-07 21:19:42 +0000605 cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getMachineInstr()->getOpCode(),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000606 toOp);
607 assert(toOp < (int) nextEarliestStartTime.size());
608 if (nextEarliestStartTime[toOp] < est)
609 nextEarliestStartTime[toOp] = est;
610 }
611}
612
613//************************* External Functions *****************************/
614
615
616//---------------------------------------------------------------------------
617// Function: ScheduleInstructionsWithSSA
618//
619// Purpose:
620// Entry point for instruction scheduling on SSA form.
621// Schedules the machine instructions generated by instruction selection.
622// Assumes that register allocation has not been done, i.e., operands
623// are still in SSA form.
624//---------------------------------------------------------------------------
625
626bool
627ScheduleInstructionsWithSSA(Method* method,
628 const TargetMachine &target)
629{
630 SchedGraphSet graphSet(method, target);
631
632 if (SchedDebugLevel >= Sched_PrintSchedGraphs)
633 {
634 cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING"
635 << endl;
636 graphSet.dump();
637 }
638
639 for (SchedGraphSet::const_iterator GI=graphSet.begin();
640 GI != graphSet.end(); ++GI)
641 {
642 SchedGraph* graph = (*GI).second;
643 const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks();
644 assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
645 const BasicBlock* bb = bbvec[0];
646
647 if (SchedDebugLevel >= Sched_PrintSchedTrace)
648 cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
649
650 SchedPriorities schedPrio(method, graph); // expensive!
651 SchedulingManager S(target, graph, schedPrio);
652
653 ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
654
655 ForwardListSchedule(S); // computes schedule in S
656
657 RecordSchedule((*GI).first, S); // records schedule in BB
658 }
659
660 if (SchedDebugLevel >= Sched_PrintMachineCode)
661 {
662 cout << endl
663 << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl;
664 PrintMachineInstructions(method);
665 }
666
667 return false; // no reason to fail yet
668}
669
670
671// Check minimum gap requirements relative to instructions scheduled in
672// previous cycles.
673// Note that we do not need to consider `nextEarliestIssueTime' here because
674// that is also captured in the earliest start times for each opcode.
675//
676static inline bool
677ViolatesMinimumGap(const SchedulingManager& S,
678 MachineOpCode opCode,
679 const cycles_t inCycle)
680{
681 return (inCycle < S.getEarliestStartTimeForOp(opCode));
682}
683
684
685// Check if the instruction would conflict with instructions already
686// chosen for the current cycle
687//
688static inline bool
689ConflictsWithChoices(const SchedulingManager& S,
690 MachineOpCode opCode)
691{
692 // Check if the instruction must issue by itself, and some feasible
693 // choices have already been made for this cycle
694 if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
695 return true;
696
697 // For each class that opCode belongs to, check if there are too many
698 // instructions of that class.
699 //
700 const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
701 return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
702}
703
704
705// Check if any issue restrictions would prevent the instruction from
706// being issued in the current cycle
707//
708bool
709instrIsFeasible(const SchedulingManager& S,
710 MachineOpCode opCode)
711{
712 // skip the instruction if it cannot be issued due to issue restrictions
713 // caused by previously issued instructions
714 if (ViolatesMinimumGap(S, opCode, S.getTime()))
715 return false;
716
717 // skip the instruction if it cannot be issued due to issue restrictions
718 // caused by previously chosen instructions for the current cycle
719 if (ConflictsWithChoices(S, opCode))
720 return false;
721
722 return true;
723}
724
725//************************* Internal Functions *****************************/
726
727
728static void
729ForwardListSchedule(SchedulingManager& S)
730{
731 unsigned N;
732 const SchedGraphNode* node;
733
734 S.schedPrio.initialize();
735
736 while ((N = S.schedPrio.getNumReady()) > 0)
737 {
738 // Choose one group of instructions for a cycle. This will
739 // advance S.getTime() to the first cycle instructions can be issued.
740 // It may also schedule delay slot instructions in later cycles,
741 // but those are ignored here because they are outside the graph.
742 //
743 unsigned numIssued = ChooseOneGroup(S);
744 assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
745
746 // Notify the priority manager of scheduled instructions and mark
747 // any successors that may now be ready
748 //
749 const InstrGroup* igroup = S.isched.getIGroup(S.getTime());
750 for (unsigned int s=0; s < S.nslots; s++)
751 if ((node = (*igroup)[s]) != NULL)
752 {
753 S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
754 MarkSuccessorsReady(S, node);
755 }
756
757 // Move to the next the next earliest cycle for which
758 // an instruction can be issued, or the next earliest in which
759 // one will be ready, or to the next cycle, whichever is latest.
760 //
761 S.updateTime(max(S.getTime() + 1,
762 max(S.getEarliestIssueTime(),
763 S.schedPrio.getEarliestReadyTime())));
764 }
765}
766
767
768//
769// For now, just assume we are scheduling within a single basic block.
770// Get the machine instruction vector for the basic block and clear it,
771// then append instructions in scheduled order.
772// Also, re-insert the dummy PHI instructions that were at the beginning
773// of the basic block, since they are not part of the schedule.
774//
775static void
776RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
777{
778 if (S.isched.getNumInstructions() == 0)
779 return; // empty basic block!
780
781 MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
782 unsigned int oldSize = mvec.size();
783
784 // First find the dummy instructions at the start of the basic block
785 const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
786 MachineCodeForBasicBlock::iterator I = mvec.begin();
787 for ( ; I != mvec.end(); ++I)
788 if (! mii.isDummyPhiInstr((*I)->getOpCode()))
789 break;
790
791 // Erase all except the dummy PHI instructions from mvec, and
792 // pre-allocate create space for the ones we will be put back in.
793 mvec.erase(I, mvec.end());
794 mvec.reserve(mvec.size() + S.isched.getNumInstructions());
795
796 InstrSchedule::const_iterator NIend = S.isched.end();
797 for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
Chris Lattner2e530932001-09-09 19:41:52 +0000798 mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000799}
800
801
802static unsigned
803ChooseOneGroup(SchedulingManager& S)
804{
805 assert(S.schedPrio.getNumReady() > 0
806 && "Don't get here without ready instructions.");
807
808 DelaySlotInfo* getDelaySlotInfo;
809
810 // Choose up to `nslots' feasible instructions and their possible slots.
811 unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
812
813 while (numIssued == 0)
814 {
815 S.updateTime(S.getTime()+1);
816 numIssued = FindSlotChoices(S, getDelaySlotInfo);
817 }
818
819 AssignInstructionsToSlots(S, numIssued);
820
821 if (getDelaySlotInfo != NULL)
822 getDelaySlotInfo->scheduleDelayedNode(S);
823
824 // Print trace of scheduled instructions before newly ready ones
825 if (SchedDebugLevel >= Sched_PrintSchedTrace)
826 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000827 cout << " Cycle " << S.getTime() << " : Scheduled instructions:\n";
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000828 const InstrGroup* igroup = S.isched.getIGroup(S.getTime());
829 for (unsigned int s=0; s < S.nslots; s++)
830 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000831 cout << " ";
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000832 if ((*igroup)[s] != NULL)
833 cout << * ((*igroup)[s])->getMachineInstr() << endl;
834 else
835 cout << "<none>" << endl;
836 }
837 }
838
839 return numIssued;
840}
841
842
843static void
844MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
845{
846 // Check if any successors are now ready that were not already marked
847 // ready before, and that have not yet been scheduled.
848 //
849 for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
850 if (! (*SI)->isDummyNode()
851 && ! S.isScheduled(*SI)
852 && ! S.schedPrio.nodeIsReady(*SI))
853 {// successor not scheduled and not marked ready; check *its* preds.
854
855 bool succIsReady = true;
856 for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
857 if (! (*P)->isDummyNode()
858 && ! S.isScheduled(*P))
859 {
860 succIsReady = false;
861 break;
862 }
863
864 if (succIsReady) // add the successor to the ready list
865 S.schedPrio.insertReady(*SI);
866 }
867}
868
869
870// Choose up to `nslots' FEASIBLE instructions and assign each
871// instruction to all possible slots that do not violate feasibility.
872// FEASIBLE means it should be guaranteed that the set
873// of chosen instructions can be issued in a single group.
874//
875// Return value:
876// maxIssue : total number of feasible instructions
877// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
878//
879static unsigned
880FindSlotChoices(SchedulingManager& S,
881 DelaySlotInfo*& getDelaySlotInfo)
882{
883 // initialize result vectors to empty
884 S.resetChoices();
885
886 // find the slot to start from, in the current cycle
887 unsigned int startSlot = 0;
888 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
889 for (int s = S.nslots - 1; s >= 0; s--)
890 if ((*igroup)[s] != NULL)
891 {
892 startSlot = s+1;
893 break;
894 }
895
896 // Make sure we pick at most one instruction that would break the group.
897 // Also, if we do pick one, remember which it was.
898 unsigned int indexForBreakingNode = S.nslots;
899 unsigned int indexForDelayedInstr = S.nslots;
900 DelaySlotInfo* delaySlotInfo = NULL;
901
902 getDelaySlotInfo = NULL;
903
904 // Choose instructions in order of priority.
905 // Add choices to the choice vector in the SchedulingManager class as
906 // we choose them so that subsequent choices will be correctly tested
907 // for feasibility, w.r.t. higher priority choices for the same cycle.
908 //
909 while (S.getNumChoices() < S.nslots - startSlot)
910 {
911 const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
912 if (nextNode == NULL)
913 break; // no more instructions for this cycle
914
Chris Lattner1ff63a12001-09-07 21:19:42 +0000915 if (S.getInstrInfo().getNumDelaySlots(nextNode->getMachineInstr()->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000916 {
917 delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
918 if (delaySlotInfo != NULL)
919 {
920 if (indexForBreakingNode < S.nslots)
921 // cannot issue a delayed instr in the same cycle as one
922 // that breaks the issue group or as another delayed instr
923 nextNode = NULL;
924 else
925 indexForDelayedInstr = S.getNumChoices();
926 }
927 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000928 else if (S.schedInfo.breaksIssueGroup(nextNode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000929 {
930 if (indexForBreakingNode < S.nslots)
931 // have a breaking instruction already so throw this one away
932 nextNode = NULL;
933 else
934 indexForBreakingNode = S.getNumChoices();
935 }
936
937 if (nextNode != NULL)
938 S.addChoice(nextNode);
939
Chris Lattner1ff63a12001-09-07 21:19:42 +0000940 if (S.schedInfo.isSingleIssue(nextNode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000941 {
942 assert(S.getNumChoices() == 1 &&
943 "Prioritizer returned invalid instr for this cycle!");
944 break;
945 }
946
947 if (indexForDelayedInstr < S.nslots)
948 break; // leave the rest for delay slots
949 }
950
951 assert(S.getNumChoices() <= S.nslots);
952 assert(! (indexForDelayedInstr < S.nslots &&
953 indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
954
955 // Assign each chosen instruction to all possible slots for that instr.
956 // But if only one instruction was chosen, put it only in the first
957 // feasible slot; no more analysis will be needed.
958 //
959 if (indexForDelayedInstr >= S.nslots &&
960 indexForBreakingNode >= S.nslots)
961 { // No instructions that break the issue group or that have delay slots.
962 // This is the common case, so handle it separately for efficiency.
963
964 if (S.getNumChoices() == 1)
965 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000966 MachineOpCode opCode = S.getChoice(0)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000967 unsigned int s;
968 for (s=startSlot; s < S.nslots; s++)
969 if (S.schedInfo.instrCanUseSlot(opCode, s))
970 break;
971 assert(s < S.nslots && "No feasible slot for this opCode?");
972 S.addChoiceToSlot(s, S.getChoice(0));
973 }
974 else
975 {
976 for (unsigned i=0; i < S.getNumChoices(); i++)
977 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000978 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000979 for (unsigned int s=startSlot; s < S.nslots; s++)
980 if (S.schedInfo.instrCanUseSlot(opCode, s))
981 S.addChoiceToSlot(s, S.getChoice(i));
982 }
983 }
984 }
985 else if (indexForDelayedInstr < S.nslots)
986 {
987 // There is an instruction that needs delay slots.
988 // Try to assign that instruction to a higher slot than any other
989 // instructions in the group, so that its delay slots can go
990 // right after it.
991 //
992
993 assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
994 "Instruction with delay slots should be last choice!");
995 assert(delaySlotInfo != NULL && "No delay slot info for instr?");
996
997 const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
Chris Lattner1ff63a12001-09-07 21:19:42 +0000998 MachineOpCode delayOpCode = delayedNode->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000999 unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
1000
1001 unsigned delayedNodeSlot = S.nslots;
1002 int highestSlotUsed;
1003
1004 // Find the last possible slot for the delayed instruction that leaves
1005 // at least `d' slots vacant after it (d = #delay slots)
1006 for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
1007 if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
1008 {
1009 delayedNodeSlot = s;
1010 break;
1011 }
1012
1013 highestSlotUsed = -1;
1014 for (unsigned i=0; i < S.getNumChoices() - 1; i++)
1015 {
1016 // Try to assign every other instruction to a lower numbered
1017 // slot than delayedNodeSlot.
Chris Lattner1ff63a12001-09-07 21:19:42 +00001018 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001019 bool noSlotFound = true;
1020 unsigned int s;
1021 for (s=startSlot; s < delayedNodeSlot; s++)
1022 if (S.schedInfo.instrCanUseSlot(opCode, s))
1023 {
1024 S.addChoiceToSlot(s, S.getChoice(i));
1025 noSlotFound = false;
1026 }
1027
1028 // No slot before `delayedNodeSlot' was found for this opCode
1029 // Use a later slot, and allow some delay slots to fall in
1030 // the next cycle.
1031 if (noSlotFound)
1032 for ( ; s < S.nslots; s++)
1033 if (S.schedInfo.instrCanUseSlot(opCode, s))
1034 {
1035 S.addChoiceToSlot(s, S.getChoice(i));
1036 break;
1037 }
1038
1039 assert(s < S.nslots && "No feasible slot for instruction?");
1040
1041 highestSlotUsed = max(highestSlotUsed, (int) s);
1042 }
1043
1044 assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
1045
1046 // We will put the delayed node in the first slot after the
1047 // highest slot used. But we just mark that for now, and
1048 // schedule it separately because we want to schedule the delay
1049 // slots for the node at the same time.
1050 cycles_t dcycle = S.getTime();
1051 unsigned int dslot = highestSlotUsed + 1;
1052 if (dslot == S.nslots)
1053 {
1054 dslot = 0;
1055 ++dcycle;
1056 }
1057 delaySlotInfo->recordChosenSlot(dcycle, dslot);
1058 getDelaySlotInfo = delaySlotInfo;
1059 }
1060 else
1061 { // There is an instruction that breaks the issue group.
1062 // For such an instruction, assign to the last possible slot in
1063 // the current group, and then don't assign any other instructions
1064 // to later slots.
1065 assert(indexForBreakingNode < S.nslots);
1066 const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
1067 unsigned breakingSlot = INT_MAX;
1068 unsigned int nslotsToUse = S.nslots;
1069
1070 // Find the last possible slot for this instruction.
1071 for (int s = S.nslots-1; s >= (int) startSlot; s--)
Chris Lattner1ff63a12001-09-07 21:19:42 +00001072 if (S.schedInfo.instrCanUseSlot(breakingNode->getMachineInstr()->getOpCode(), s))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001073 {
1074 breakingSlot = s;
1075 break;
1076 }
1077 assert(breakingSlot < S.nslots &&
1078 "No feasible slot for `breakingNode'?");
1079
1080 // Higher priority instructions than the one that breaks the group:
1081 // These can be assigned to all slots, but will be assigned only
1082 // to earlier slots if possible.
1083 for (unsigned i=0;
1084 i < S.getNumChoices() && i < indexForBreakingNode; i++)
1085 {
Chris Lattner1ff63a12001-09-07 21:19:42 +00001086 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001087
1088 // If a higher priority instruction cannot be assigned to
1089 // any earlier slots, don't schedule the breaking instruction.
1090 //
1091 bool foundLowerSlot = false;
1092 nslotsToUse = S.nslots; // May be modified in the loop
1093 for (unsigned int s=startSlot; s < nslotsToUse; s++)
1094 if (S.schedInfo.instrCanUseSlot(opCode, s))
1095 {
1096 if (breakingSlot < S.nslots && s < breakingSlot)
1097 {
1098 foundLowerSlot = true;
1099 nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
1100 }
1101
1102 S.addChoiceToSlot(s, S.getChoice(i));
1103 }
1104
1105 if (!foundLowerSlot)
1106 breakingSlot = INT_MAX; // disable breaking instr
1107 }
1108
1109 // Assign the breaking instruction (if any) to a single slot
1110 // Otherwise, just ignore the instruction. It will simply be
1111 // scheduled in a later cycle.
1112 if (breakingSlot < S.nslots)
1113 {
1114 S.addChoiceToSlot(breakingSlot, breakingNode);
1115 nslotsToUse = breakingSlot;
1116 }
1117 else
1118 nslotsToUse = S.nslots;
1119
1120 // For lower priority instructions than the one that breaks the
1121 // group, only assign them to slots lower than the breaking slot.
1122 // Otherwise, just ignore the instruction.
1123 for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
1124 {
1125 bool foundLowerSlot = false;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001126 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001127 for (unsigned int s=startSlot; s < nslotsToUse; s++)
1128 if (S.schedInfo.instrCanUseSlot(opCode, s))
1129 S.addChoiceToSlot(s, S.getChoice(i));
1130 }
1131 } // endif (no delay slots and no breaking slots)
1132
1133 return S.getNumChoices();
1134}
1135
1136
1137static void
1138AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
1139{
1140 // find the slot to start from, in the current cycle
1141 unsigned int startSlot = 0;
1142 cycles_t curTime = S.getTime();
1143
1144 assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
1145
1146 // If only one instruction can be issued, do so.
1147 if (maxIssue == 1)
1148 for (unsigned s=startSlot; s < S.nslots; s++)
1149 if (S.getChoicesForSlot(s).size() > 0)
1150 {// found the one instruction
1151 S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
1152 return;
1153 }
1154
1155 // Otherwise, choose from the choices for each slot
1156 //
1157 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
1158 assert(igroup != NULL && "Group creation failed?");
1159
1160 // Find a slot that has only a single choice, and take it.
1161 // If all slots have 0 or multiple choices, pick the first slot with
1162 // choices and use its last instruction (just to avoid shifting the vector).
1163 unsigned numIssued;
1164 for (numIssued = 0; numIssued < maxIssue; numIssued++)
1165 {
1166 int chosenSlot = -1, chosenNodeIndex = -1;
1167 for (unsigned s=startSlot; s < S.nslots; s++)
1168 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
1169 {
1170 chosenSlot = (int) s;
1171 break;
1172 }
1173
1174 if (chosenSlot == -1)
1175 for (unsigned s=startSlot; s < S.nslots; s++)
1176 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
1177 {
1178 chosenSlot = (int) s;
1179 break;
1180 }
1181
1182 if (chosenSlot != -1)
1183 { // Insert the chosen instr in the chosen slot and
1184 // erase it from all slots.
1185 const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
1186 S.scheduleInstr(node, chosenSlot, curTime);
1187 }
1188 }
1189
1190 assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
1191}
1192
1193
1194
1195//---------------------------------------------------------------------
1196// Code for filling delay slots for delayed terminator instructions
1197// (e.g., BRANCH and RETURN). Delay slots for non-terminator
1198// instructions (e.g., CALL) are not handled here because they almost
1199// always can be filled with instructions from the call sequence code
1200// before a call. That's preferable because we incur many tradeoffs here
1201// when we cannot find single-cycle instructions that can be reordered.
1202//----------------------------------------------------------------------
1203
1204static void
1205ChooseInstructionsForDelaySlots(SchedulingManager& S,
1206 const BasicBlock* bb,
1207 SchedGraph* graph)
1208{
1209 // Look for instructions that can be used for delay slots.
1210 // Remove them from the graph, and mark them to be used for delay slots.
1211 const MachineInstrInfo& mii = S.getInstrInfo();
1212 const TerminatorInst* term = bb->getTerminator();
1213 MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
1214
1215 // Find the first branch instr in the sequence of machine instrs for term
1216 //
1217 unsigned first = 0;
1218 while (! mii.isBranch(termMvec[first]->getOpCode()))
1219 ++first;
1220 assert(first < termMvec.size() &&
1221 "No branch instructions for BR? Ok, but weird! Delete assertion.");
1222 if (first == termMvec.size())
1223 return;
1224
1225 SchedGraphNode* brNode = graph->getGraphNodeForInstr(termMvec[first]);
Chris Lattner1ff63a12001-09-07 21:19:42 +00001226 assert(! mii.isCall(brNode->getMachineInstr()->getOpCode()) && "Call used as terminator?");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001227
Chris Lattner1ff63a12001-09-07 21:19:42 +00001228 unsigned ndelays = mii.getNumDelaySlots(brNode->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001229 if (ndelays == 0)
1230 return;
1231
1232 // Use vectors to remember the nodes chosen for delay slots, and the
1233 // NOPs that will be unused. We cannot remove them from the graph while
1234 // walking through the preds and succs of the brNode here, so we
1235 // remember the nodes in the vectors and remove them later.
1236 // We use separate vectors for the single-cycle and multi-cycle nodes,
1237 // so that we can give preference to single-cycle nodes.
1238 //
1239 vector<SchedGraphNode*> sdelayNodeVec;
1240 vector<SchedGraphNode*> mdelayNodeVec;
1241 vector<SchedGraphNode*> nopNodeVec;
1242 unsigned numUseful = 0;
1243
1244 sdelayNodeVec.reserve(ndelays);
1245
1246 for (sg_pred_iterator P = pred_begin(brNode);
1247 P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
1248 if (! (*P)->isDummyNode() &&
Chris Lattner1ff63a12001-09-07 21:19:42 +00001249 ! mii.isNop((*P)->getMachineInstr()->getOpCode()) &&
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001250 NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
1251 {
1252 ++numUseful;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001253 if (mii.maxLatency((*P)->getMachineInstr()->getOpCode()) > 1)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001254 mdelayNodeVec.push_back(*P);
1255 else
1256 sdelayNodeVec.push_back(*P);
1257 }
1258
1259 // If not enough single-cycle instructions were found, select the
1260 // lowest-latency multi-cycle instructions and use them.
1261 // Note that this is the most efficient code when only 1 (or even 2)
1262 // values need to be selected.
1263 //
1264 while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
1265 {
1266 unsigned latency;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001267 unsigned minLatency = mii.maxLatency(mdelayNodeVec[0]->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001268 unsigned minIndex = 0;
1269 for (unsigned i=1; i < mdelayNodeVec.size(); i++)
1270 if (minLatency >=
Chris Lattner1ff63a12001-09-07 21:19:42 +00001271 (latency = mii.maxLatency(mdelayNodeVec[i]->getMachineInstr()->getOpCode())))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001272 {
1273 minLatency = latency;
1274 minIndex = i;
1275 }
1276 sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
1277 if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
1278 mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
1279 }
1280
1281 // Now, remove the NOPs currently in delay slots from the graph.
1282 // If not enough useful instructions were found, use the NOPs to
1283 // fill delay slots, otherwise, just discard them.
1284 for (sg_succ_iterator I=succ_begin(brNode); I != succ_end(brNode); ++I)
1285 if (! (*I)->isDummyNode()
Chris Lattner1ff63a12001-09-07 21:19:42 +00001286 && mii.isNop((*I)->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001287 {
1288 if (sdelayNodeVec.size() < ndelays)
1289 sdelayNodeVec.push_back(*I);
1290 else
1291 nopNodeVec.push_back(*I);
1292 }
1293
1294 // Mark the nodes chosen for delay slots. This removes them from the graph.
1295 for (unsigned i=0; i < sdelayNodeVec.size(); i++)
1296 MarkNodeForDelaySlot(S, sdelayNodeVec[i], brNode, true);
1297
1298 // And remove the unused NOPs the graph.
1299 for (unsigned i=0; i < nopNodeVec.size(); i++)
1300 nopNodeVec[i]->eraseAllEdges();
1301}
1302
1303
1304bool
1305NodeCanFillDelaySlot(const SchedulingManager& S,
1306 const SchedGraphNode* node,
1307 const SchedGraphNode* brNode,
1308 bool nodeIsPredecessor)
1309{
1310 assert(! node->isDummyNode());
1311
1312 // don't put a branch in the delay slot of another branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001313 if (S.getInstrInfo().isBranch(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001314 return false;
1315
1316 // don't put a single-issue instruction in the delay slot of a branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001317 if (S.schedInfo.isSingleIssue(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001318 return false;
1319
1320 // don't put a load-use dependence in the delay slot of a branch
1321 const MachineInstrInfo& mii = S.getInstrInfo();
1322
1323 for (SchedGraphNode::const_iterator EI = node->beginInEdges();
1324 EI != node->endInEdges(); ++EI)
1325 if (! (*EI)->getSrc()->isDummyNode()
Chris Lattner1ff63a12001-09-07 21:19:42 +00001326 && mii.isLoad((*EI)->getSrc()->getMachineInstr()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001327 && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
1328 return false;
1329
1330 // for now, don't put an instruction that does not have operand
1331 // interlocks in the delay slot of a branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001332 if (! S.getInstrInfo().hasOperandInterlock(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001333 return false;
1334
1335 // Finally, if the instruction preceeds the branch, we make sure the
1336 // instruction can be reordered relative to the branch. We simply check
1337 // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
1338 //
1339 if (nodeIsPredecessor)
1340 {
1341 bool onlyCDEdgeToBranch = true;
1342 for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
1343 OEI != node->endOutEdges(); ++OEI)
1344 if (! (*OEI)->getSink()->isDummyNode()
1345 && ((*OEI)->getSink() != brNode
1346 || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
1347 {
1348 onlyCDEdgeToBranch = false;
1349 break;
1350 }
1351
1352 if (!onlyCDEdgeToBranch)
1353 return false;
1354 }
1355
1356 return true;
1357}
1358
1359
1360void
1361MarkNodeForDelaySlot(SchedulingManager& S,
1362 SchedGraphNode* node,
1363 const SchedGraphNode* brNode,
1364 bool nodeIsPredecessor)
1365{
1366 if (nodeIsPredecessor)
1367 { // If node is in the same basic block (i.e., preceeds brNode),
1368 // remove it and all its incident edges from the graph.
1369 node->eraseAllEdges();
1370 }
1371 else
1372 { // If the node was from a target block, add the node to the graph
1373 // and add a CD edge from brNode to node.
1374 assert(0 && "NOT IMPLEMENTED YET");
1375 }
1376
1377 DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
1378 dinfo->addDelayNode(node);
1379}
1380
1381
1382//
1383// Schedule the delayed branch and its delay slots
1384//
1385void
1386DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
1387{
1388 assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
1389 assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
1390 && "Slot for branch should be empty");
1391
1392 unsigned int nextSlot = delayedNodeSlotNum;
1393 cycles_t nextTime = delayedNodeCycle;
1394
1395 S.scheduleInstr(brNode, nextSlot, nextTime);
1396
1397 for (unsigned d=0; d < ndelays; d++)
1398 {
1399 ++nextSlot;
1400 if (nextSlot == S.nslots)
1401 {
1402 nextSlot = 0;
1403 nextTime++;
1404 }
1405
1406 // Find the first feasible instruction for this delay slot
1407 // Note that we only check for issue restrictions here.
1408 // We do *not* check for flow dependences but rely on pipeline
1409 // interlocks to resolve them. Machines without interlocks
1410 // will require this code to be modified.
1411 for (unsigned i=0; i < delayNodeVec.size(); i++)
1412 {
1413 const SchedGraphNode* dnode = delayNodeVec[i];
1414 if ( ! S.isScheduled(dnode)
Chris Lattner1ff63a12001-09-07 21:19:42 +00001415 && S.schedInfo.instrCanUseSlot(dnode->getMachineInstr()->getOpCode(), nextSlot)
1416 && instrIsFeasible(S, dnode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001417 {
Chris Lattner1ff63a12001-09-07 21:19:42 +00001418 assert(S.getInstrInfo().hasOperandInterlock(dnode->getMachineInstr()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001419 && "Instructions without interlocks not yet supported "
1420 "when filling branch delay slots");
1421 S.scheduleInstr(dnode, nextSlot, nextTime);
1422 break;
1423 }
1424 }
1425 }
1426
1427 // Update current time if delay slots overflowed into later cycles.
1428 // Do this here because we know exactly which cycle is the last cycle
1429 // that contains delay slots. The next loop doesn't compute that.
1430 if (nextTime > S.getTime())
1431 S.updateTime(nextTime);
1432
1433 // Now put any remaining instructions in the unfilled delay slots.
1434 // This could lead to suboptimal performance but needed for correctness.
1435 nextSlot = delayedNodeSlotNum;
1436 nextTime = delayedNodeCycle;
1437 for (unsigned i=0; i < delayNodeVec.size(); i++)
1438 if (! S.isScheduled(delayNodeVec[i]))
1439 {
1440 do { // find the next empty slot
1441 ++nextSlot;
1442 if (nextSlot == S.nslots)
1443 {
1444 nextSlot = 0;
1445 nextTime++;
1446 }
1447 } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
1448
1449 S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
1450 break;
1451 }
1452}
1453