blob: ec21cee5013fd36bcd1d2c9fdbd310ba69299a65 [file] [log] [blame]
Reid Spencer950bf602007-01-26 08:19:09 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
Reid Spencere7c3c602006-11-30 06:36:44 +00002//
3// The LLVM Compiler Infrastructure
4//
Reid Spencer950bf602007-01-26 08:19:09 +00005// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Reid Spencere7c3c602006-11-30 06:36:44 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer950bf602007-01-26 08:19:09 +000010// This file implements the bison parser for LLVM assembly languages files.
Reid Spencere7c3c602006-11-30 06:36:44 +000011//
12//===----------------------------------------------------------------------===//
13
14%{
Reid Spencer319a7302007-01-05 17:20:02 +000015#include "UpgradeInternals.h"
Reid Spencer950bf602007-01-26 08:19:09 +000016#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/SymbolTable.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
Reid Spencere7c3c602006-11-30 06:36:44 +000024#include <algorithm>
Reid Spencere7c3c602006-11-30 06:36:44 +000025#include <iostream>
Reid Spencer950bf602007-01-26 08:19:09 +000026#include <list>
27#include <utility>
28
29// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
30// relating to upreferences in the input stream.
31//
32//#define DEBUG_UPREFS 1
33#ifdef DEBUG_UPREFS
34#define UR_OUT(X) std::cerr << X
35#else
36#define UR_OUT(X)
37#endif
Reid Spencere7c3c602006-11-30 06:36:44 +000038
Reid Spencere77e35e2006-12-01 20:26:20 +000039#define YYERROR_VERBOSE 1
Reid Spencer96839be2006-11-30 16:50:26 +000040#define YYINCLUDED_STDLIB_H
Reid Spencere77e35e2006-12-01 20:26:20 +000041#define YYDEBUG 1
Reid Spencere7c3c602006-11-30 06:36:44 +000042
Reid Spencer950bf602007-01-26 08:19:09 +000043int yylex();
Reid Spencere7c3c602006-11-30 06:36:44 +000044int yyparse();
45
Reid Spencer950bf602007-01-26 08:19:09 +000046int yyerror(const char*);
47static void warning(const std::string& WarningMsg);
48
49namespace llvm {
50
Reid Spencer950bf602007-01-26 08:19:09 +000051std::istream* LexInput;
Reid Spencere7c3c602006-11-30 06:36:44 +000052static std::string CurFilename;
Reid Spencer96839be2006-11-30 16:50:26 +000053
Reid Spencer71d2ec92006-12-31 06:02:26 +000054// This bool controls whether attributes are ever added to function declarations
55// definitions and calls.
56static bool AddAttributes = false;
57
Reid Spencer950bf602007-01-26 08:19:09 +000058static Module *ParserResult;
59static bool ObsoleteVarArgs;
60static bool NewVarArgs;
61static BasicBlock *CurBB;
62static GlobalVariable *CurGV;
Reid Spencera50d5962006-12-02 04:11:07 +000063
Reid Spencer950bf602007-01-26 08:19:09 +000064// This contains info used when building the body of a function. It is
65// destroyed when the function is completed.
66//
67typedef std::vector<Value *> ValueList; // Numbered defs
68
69typedef std::pair<std::string,const Type*> RenameMapKey;
70typedef std::map<RenameMapKey,std::string> RenameMapType;
71
72static void
73ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
74 std::map<const Type *,ValueList> *FutureLateResolvers = 0);
75
76static struct PerModuleInfo {
77 Module *CurrentModule;
78 std::map<const Type *, ValueList> Values; // Module level numbered definitions
79 std::map<const Type *,ValueList> LateResolveValues;
80 std::vector<PATypeHolder> Types;
81 std::map<ValID, PATypeHolder> LateResolveTypes;
82 static Module::Endianness Endian;
83 static Module::PointerSize PointerSize;
84 RenameMapType RenameMap;
85
86 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
87 /// how they were referenced and on which line of the input they came from so
88 /// that we can resolve them later and print error messages as appropriate.
89 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
90
91 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
92 // references to global values. Global values may be referenced before they
93 // are defined, and if so, the temporary object that they represent is held
94 // here. This is used for forward references of GlobalValues.
95 //
96 typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*>
97 GlobalRefsType;
98 GlobalRefsType GlobalRefs;
99
100 void ModuleDone() {
101 // If we could not resolve some functions at function compilation time
102 // (calls to functions before they are defined), resolve them now... Types
103 // are resolved when the constant pool has been completely parsed.
104 //
105 ResolveDefinitions(LateResolveValues);
106
107 // Check to make sure that all global value forward references have been
108 // resolved!
109 //
110 if (!GlobalRefs.empty()) {
111 std::string UndefinedReferences = "Unresolved global references exist:\n";
112
113 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
114 I != E; ++I) {
115 UndefinedReferences += " " + I->first.first->getDescription() + " " +
116 I->first.second.getName() + "\n";
117 }
118 error(UndefinedReferences);
119 return;
120 }
121
122 if (CurrentModule->getDataLayout().empty()) {
123 std::string dataLayout;
124 if (Endian != Module::AnyEndianness)
125 dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
126 if (PointerSize != Module::AnyPointerSize) {
127 if (!dataLayout.empty())
128 dataLayout += "-";
129 dataLayout.append(PointerSize == Module::Pointer64 ?
130 "p:64:64" : "p:32:32");
131 }
132 CurrentModule->setDataLayout(dataLayout);
133 }
134
135 Values.clear(); // Clear out function local definitions
136 Types.clear();
137 CurrentModule = 0;
138 }
139
140 // GetForwardRefForGlobal - Check to see if there is a forward reference
141 // for this global. If so, remove it from the GlobalRefs map and return it.
142 // If not, just return null.
143 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
144 // Check to see if there is a forward reference to this global variable...
145 // if there is, eliminate it and patch the reference to use the new def'n.
146 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
147 GlobalValue *Ret = 0;
148 if (I != GlobalRefs.end()) {
149 Ret = I->second;
150 GlobalRefs.erase(I);
151 }
152 return Ret;
153 }
154 void setEndianness(Module::Endianness E) { Endian = E; }
155 void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
156} CurModule;
157
158Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness;
159Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
160
161static struct PerFunctionInfo {
162 Function *CurrentFunction; // Pointer to current function being created
163
164 std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
165 std::map<const Type*, ValueList> LateResolveValues;
166 bool isDeclare; // Is this function a forward declararation?
167 GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
168
169 /// BBForwardRefs - When we see forward references to basic blocks, keep
170 /// track of them here.
171 std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
172 std::vector<BasicBlock*> NumberedBlocks;
173 RenameMapType RenameMap;
Reid Spencer950bf602007-01-26 08:19:09 +0000174 unsigned NextBBNum;
175
176 inline PerFunctionInfo() {
177 CurrentFunction = 0;
178 isDeclare = false;
179 Linkage = GlobalValue::ExternalLinkage;
180 }
181
182 inline void FunctionStart(Function *M) {
183 CurrentFunction = M;
184 NextBBNum = 0;
185 }
186
187 void FunctionDone() {
188 NumberedBlocks.clear();
189
190 // Any forward referenced blocks left?
191 if (!BBForwardRefs.empty()) {
192 error("Undefined reference to label " +
193 BBForwardRefs.begin()->first->getName());
194 return;
195 }
196
197 // Resolve all forward references now.
198 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
199
200 Values.clear(); // Clear out function local definitions
201 RenameMap.clear();
Reid Spencer950bf602007-01-26 08:19:09 +0000202 CurrentFunction = 0;
203 isDeclare = false;
204 Linkage = GlobalValue::ExternalLinkage;
205 }
206} CurFun; // Info for the current function...
207
208static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
209
210
211//===----------------------------------------------------------------------===//
212// Code to handle definitions of all the types
213//===----------------------------------------------------------------------===//
214
215static int InsertValue(Value *V,
216 std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
217 if (V->hasName()) return -1; // Is this a numbered definition?
218
219 // Yes, insert the value into the value table...
220 ValueList &List = ValueTab[V->getType()];
221 List.push_back(V);
222 return List.size()-1;
223}
224
Reid Spencerd7c4f8c2007-01-26 19:59:25 +0000225static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
Reid Spencer950bf602007-01-26 08:19:09 +0000226 switch (D.Type) {
227 case ValID::NumberVal: // Is it a numbered definition?
228 // Module constants occupy the lowest numbered slots...
229 if ((unsigned)D.Num < CurModule.Types.size()) {
230 return CurModule.Types[(unsigned)D.Num];
231 }
232 break;
233 case ValID::NameVal: // Is it a named definition?
234 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
235 D.destroy(); // Free old strdup'd memory...
236 return N;
237 }
238 break;
239 default:
240 error("Internal parser error: Invalid symbol type reference");
241 return 0;
242 }
243
244 // If we reached here, we referenced either a symbol that we don't know about
245 // or an id number that hasn't been read yet. We may be referencing something
246 // forward, so just create an entry to be resolved later and get to it...
247 //
248 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
249
250
251 if (inFunctionScope()) {
252 if (D.Type == ValID::NameVal) {
253 error("Reference to an undefined type: '" + D.getName() + "'");
254 return 0;
255 } else {
256 error("Reference to an undefined type: #" + itostr(D.Num));
257 return 0;
258 }
259 }
260
261 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
262 if (I != CurModule.LateResolveTypes.end())
263 return I->second;
264
265 Type *Typ = OpaqueType::get();
266 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
267 return Typ;
268 }
269
270// getExistingValue - Look up the value specified by the provided type and
271// the provided ValID. If the value exists and has already been defined, return
272// it. Otherwise return null.
273//
274static Value *getExistingValue(const Type *Ty, const ValID &D) {
275 if (isa<FunctionType>(Ty)) {
276 error("Functions are not values and must be referenced as pointers");
277 }
278
279 switch (D.Type) {
280 case ValID::NumberVal: { // Is it a numbered definition?
281 unsigned Num = (unsigned)D.Num;
282
283 // Module constants occupy the lowest numbered slots...
284 std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
285 if (VI != CurModule.Values.end()) {
286 if (Num < VI->second.size())
287 return VI->second[Num];
288 Num -= VI->second.size();
289 }
290
291 // Make sure that our type is within bounds
292 VI = CurFun.Values.find(Ty);
293 if (VI == CurFun.Values.end()) return 0;
294
295 // Check that the number is within bounds...
296 if (VI->second.size() <= Num) return 0;
297
298 return VI->second[Num];
299 }
300
301 case ValID::NameVal: { // Is it a named definition?
302 // Get the name out of the ID
303 std::string Name(D.Name);
304 Value* V = 0;
305 RenameMapKey Key = std::make_pair(Name, Ty);
306 if (inFunctionScope()) {
307 // See if the name was renamed
308 RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
309 std::string LookupName;
310 if (I != CurFun.RenameMap.end())
311 LookupName = I->second;
312 else
313 LookupName = Name;
314 SymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
315 V = SymTab.lookup(Ty, LookupName);
316 }
317 if (!V) {
318 RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
319 std::string LookupName;
320 if (I != CurModule.RenameMap.end())
321 LookupName = I->second;
322 else
323 LookupName = Name;
324 V = CurModule.CurrentModule->getValueSymbolTable().lookup(Ty, LookupName);
325 }
326 if (V == 0)
327 return 0;
328
329 D.destroy(); // Free old strdup'd memory...
330 return V;
331 }
332
333 // Check to make sure that "Ty" is an integral type, and that our
334 // value will fit into the specified type...
335 case ValID::ConstSIntVal: // Is it a constant pool reference??
336 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
337 error("Signed integral constant '" + itostr(D.ConstPool64) +
338 "' is invalid for type '" + Ty->getDescription() + "'");
339 }
340 return ConstantInt::get(Ty, D.ConstPool64);
341
342 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
343 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
344 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
345 error("Integral constant '" + utostr(D.UConstPool64) +
346 "' is invalid or out of range");
347 else // This is really a signed reference. Transmogrify.
348 return ConstantInt::get(Ty, D.ConstPool64);
349 } else
350 return ConstantInt::get(Ty, D.UConstPool64);
351
352 case ValID::ConstFPVal: // Is it a floating point const pool reference?
353 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
354 error("FP constant invalid for type");
355 return ConstantFP::get(Ty, D.ConstPoolFP);
356
357 case ValID::ConstNullVal: // Is it a null value?
358 if (!isa<PointerType>(Ty))
359 error("Cannot create a a non pointer null");
360 return ConstantPointerNull::get(cast<PointerType>(Ty));
361
362 case ValID::ConstUndefVal: // Is it an undef value?
363 return UndefValue::get(Ty);
364
365 case ValID::ConstZeroVal: // Is it a zero value?
366 return Constant::getNullValue(Ty);
367
368 case ValID::ConstantVal: // Fully resolved constant?
369 if (D.ConstantValue->getType() != Ty)
370 error("Constant expression type different from required type");
371 return D.ConstantValue;
372
373 case ValID::InlineAsmVal: { // Inline asm expression
374 const PointerType *PTy = dyn_cast<PointerType>(Ty);
375 const FunctionType *FTy =
376 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
377 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
378 error("Invalid type for asm constraint string");
379 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
380 D.IAD->HasSideEffects);
381 D.destroy(); // Free InlineAsmDescriptor.
382 return IA;
383 }
384 default:
385 assert(0 && "Unhandled case");
386 return 0;
387 } // End of switch
388
389 assert(0 && "Unhandled case");
390 return 0;
391}
392
393// getVal - This function is identical to getExistingValue, except that if a
394// value is not already defined, it "improvises" by creating a placeholder var
395// that looks and acts just like the requested variable. When the value is
396// defined later, all uses of the placeholder variable are replaced with the
397// real thing.
398//
399static Value *getVal(const Type *Ty, const ValID &ID) {
400 if (Ty == Type::LabelTy)
401 error("Cannot use a basic block here");
402
403 // See if the value has already been defined.
404 Value *V = getExistingValue(Ty, ID);
405 if (V) return V;
406
407 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
408 error("Invalid use of a composite type");
409
410 // If we reached here, we referenced either a symbol that we don't know about
411 // or an id number that hasn't been read yet. We may be referencing something
412 // forward, so just create an entry to be resolved later and get to it...
Reid Spencer950bf602007-01-26 08:19:09 +0000413 V = new Argument(Ty);
414
415 // Remember where this forward reference came from. FIXME, shouldn't we try
416 // to recycle these things??
417 CurModule.PlaceHolderInfo.insert(
418 std::make_pair(V, std::make_pair(ID, Upgradelineno-1)));
419
420 if (inFunctionScope())
421 InsertValue(V, CurFun.LateResolveValues);
422 else
423 InsertValue(V, CurModule.LateResolveValues);
424 return V;
425}
426
427/// getBBVal - This is used for two purposes:
428/// * If isDefinition is true, a new basic block with the specified ID is being
429/// defined.
430/// * If isDefinition is true, this is a reference to a basic block, which may
431/// or may not be a forward reference.
432///
433static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
434 assert(inFunctionScope() && "Can't get basic block at global scope");
435
436 std::string Name;
437 BasicBlock *BB = 0;
438 switch (ID.Type) {
439 default:
440 error("Illegal label reference " + ID.getName());
441 break;
442 case ValID::NumberVal: // Is it a numbered definition?
443 if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
444 CurFun.NumberedBlocks.resize(ID.Num+1);
445 BB = CurFun.NumberedBlocks[ID.Num];
446 break;
447 case ValID::NameVal: // Is it a named definition?
448 Name = ID.Name;
449 if (Value *N = CurFun.CurrentFunction->
450 getValueSymbolTable().lookup(Type::LabelTy, Name)) {
451 if (N->getType() != Type::LabelTy)
452 error("Name '" + Name + "' does not refer to a BasicBlock");
453 BB = cast<BasicBlock>(N);
454 }
455 break;
456 }
457
458 // See if the block has already been defined.
459 if (BB) {
460 // If this is the definition of the block, make sure the existing value was
461 // just a forward reference. If it was a forward reference, there will be
462 // an entry for it in the PlaceHolderInfo map.
463 if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
464 // The existing value was a definition, not a forward reference.
465 error("Redefinition of label " + ID.getName());
466
467 ID.destroy(); // Free strdup'd memory.
468 return BB;
469 }
470
471 // Otherwise this block has not been seen before.
472 BB = new BasicBlock("", CurFun.CurrentFunction);
473 if (ID.Type == ValID::NameVal) {
474 BB->setName(ID.Name);
475 } else {
476 CurFun.NumberedBlocks[ID.Num] = BB;
477 }
478
479 // If this is not a definition, keep track of it so we can use it as a forward
480 // reference.
481 if (!isDefinition) {
482 // Remember where this forward reference came from.
483 CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
484 } else {
485 // The forward declaration could have been inserted anywhere in the
486 // function: insert it into the correct place now.
487 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
488 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
489 }
490 ID.destroy();
491 return BB;
492}
493
494
495//===----------------------------------------------------------------------===//
496// Code to handle forward references in instructions
497//===----------------------------------------------------------------------===//
498//
499// This code handles the late binding needed with statements that reference
500// values not defined yet... for example, a forward branch, or the PHI node for
501// a loop body.
502//
503// This keeps a table (CurFun.LateResolveValues) of all such forward references
504// and back patchs after we are done.
505//
506
507// ResolveDefinitions - If we could not resolve some defs at parsing
508// time (forward branches, phi functions for loops, etc...) resolve the
509// defs now...
510//
511static void
512ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
513 std::map<const Type*,ValueList> *FutureLateResolvers) {
514 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
515 for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
516 E = LateResolvers.end(); LRI != E; ++LRI) {
517 ValueList &List = LRI->second;
518 while (!List.empty()) {
519 Value *V = List.back();
520 List.pop_back();
521
522 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
523 CurModule.PlaceHolderInfo.find(V);
524 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
525
526 ValID &DID = PHI->second.first;
527
528 Value *TheRealValue = getExistingValue(LRI->first, DID);
529 if (TheRealValue) {
530 V->replaceAllUsesWith(TheRealValue);
531 delete V;
532 CurModule.PlaceHolderInfo.erase(PHI);
533 } else if (FutureLateResolvers) {
534 // Functions have their unresolved items forwarded to the module late
535 // resolver table
536 InsertValue(V, *FutureLateResolvers);
537 } else {
538 if (DID.Type == ValID::NameVal) {
539 error("Reference to an invalid definition: '" +DID.getName()+
540 "' of type '" + V->getType()->getDescription() + "'",
541 PHI->second.second);
542 return;
543 } else {
544 error("Reference to an invalid definition: #" +
545 itostr(DID.Num) + " of type '" +
546 V->getType()->getDescription() + "'", PHI->second.second);
547 return;
548 }
549 }
550 }
551 }
552
553 LateResolvers.clear();
554}
555
556// ResolveTypeTo - A brand new type was just declared. This means that (if
557// name is not null) things referencing Name can be resolved. Otherwise, things
558// refering to the number can be resolved. Do this now.
559//
560static void ResolveTypeTo(char *Name, const Type *ToTy) {
561 ValID D;
562 if (Name) D = ValID::create(Name);
563 else D = ValID::create((int)CurModule.Types.size());
564
565 std::map<ValID, PATypeHolder>::iterator I =
566 CurModule.LateResolveTypes.find(D);
567 if (I != CurModule.LateResolveTypes.end()) {
568 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
569 CurModule.LateResolveTypes.erase(I);
570 }
571}
572
573static std::string makeNameUnique(const std::string& Name) {
574 static unsigned UniqueNameCounter = 1;
575 std::string Result(Name);
576 Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
577 return Result;
578}
579
580// setValueName - Set the specified value to the name given. The name may be
581// null potentially, in which case this is a noop. The string passed in is
582// assumed to be a malloc'd string buffer, and is free'd by this function.
583//
584static void setValueName(Value *V, char *NameStr) {
585 if (NameStr) {
586 std::string Name(NameStr); // Copy string
587 free(NameStr); // Free old string
588
589 if (V->getType() == Type::VoidTy) {
590 error("Can't assign name '" + Name + "' to value with void type");
591 return;
592 }
593
Reid Spencer950bf602007-01-26 08:19:09 +0000594 assert(inFunctionScope() && "Must be in function scope");
595
596 // Search the function's symbol table for an existing value of this name
597 Value* Existing = 0;
598 SymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
599 SymbolTable::plane_const_iterator PI = ST.plane_begin(), PE =ST.plane_end();
600 for ( ; PI != PE; ++PI) {
601 SymbolTable::value_const_iterator VI = PI->second.find(Name);
602 if (VI != PI->second.end()) {
603 Existing = VI->second;
604 break;
605 }
606 }
607 if (Existing) {
Anton Korobeynikovc4c87a32007-01-28 13:36:18 +0000608 if (Existing->getType() == V->getType()) {
609 // The type of the Existing value and the new one are the same. This
610 // is probably a type plane collapsing error. If the types involved
611 // are both integer, just rename it. Otherwise it
612 // is a redefinition error.
613 if (!Existing->getType()->isInteger()) {
614 error("Redefinition of value named '" + Name + "' in the '" +
615 V->getType()->getDescription() + "' type plane");
616 return;
617 }
Reid Spencer950bf602007-01-26 08:19:09 +0000618 }
619 // In LLVM 2.0 we don't allow names to be re-used for any values in a
620 // function, regardless of Type. Previously re-use of names was okay as
621 // long as they were distinct types. With type planes collapsing because
622 // of the signedness change and because of PR411, this can no longer be
623 // supported. We must search the entire symbol table for a conflicting
624 // name and make the name unique. No warning is needed as this can't
625 // cause a problem.
626 std::string NewName = makeNameUnique(Name);
627 // We're changing the name but it will probably be used by other
628 // instructions as operands later on. Consequently we have to retain
629 // a mapping of the renaming that we're doing.
630 RenameMapKey Key = std::make_pair(Name,V->getType());
631 CurFun.RenameMap[Key] = NewName;
632 Name = NewName;
633 }
634
635 // Set the name.
636 V->setName(Name);
637 }
638}
639
640/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
641/// this is a declaration, otherwise it is a definition.
642static GlobalVariable *
643ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
644 bool isConstantGlobal, const Type *Ty,
645 Constant *Initializer) {
646 if (isa<FunctionType>(Ty))
647 error("Cannot declare global vars of function type");
648
649 const PointerType *PTy = PointerType::get(Ty);
650
651 std::string Name;
652 if (NameStr) {
653 Name = NameStr; // Copy string
654 free(NameStr); // Free old string
655 }
656
657 // See if this global value was forward referenced. If so, recycle the
658 // object.
659 ValID ID;
660 if (!Name.empty()) {
661 ID = ValID::create((char*)Name.c_str());
662 } else {
663 ID = ValID::create((int)CurModule.Values[PTy].size());
664 }
665
666 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
667 // Move the global to the end of the list, from whereever it was
668 // previously inserted.
669 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
670 CurModule.CurrentModule->getGlobalList().remove(GV);
671 CurModule.CurrentModule->getGlobalList().push_back(GV);
672 GV->setInitializer(Initializer);
673 GV->setLinkage(Linkage);
674 GV->setConstant(isConstantGlobal);
675 InsertValue(GV, CurModule.Values);
676 return GV;
677 }
678
679 // If this global has a name, check to see if there is already a definition
680 // of this global in the module and emit warnings if there are conflicts.
681 if (!Name.empty()) {
682 // The global has a name. See if there's an existing one of the same name.
683 if (CurModule.CurrentModule->getNamedGlobal(Name)) {
684 // We found an existing global ov the same name. This isn't allowed
685 // in LLVM 2.0. Consequently, we must alter the name of the global so it
686 // can at least compile. This can happen because of type planes
687 // There is alread a global of the same name which means there is a
688 // conflict. Let's see what we can do about it.
689 std::string NewName(makeNameUnique(Name));
690 if (Linkage == GlobalValue::InternalLinkage) {
691 // The linkage type is internal so just warn about the rename without
692 // invoking "scarey language" about linkage failures. GVars with
693 // InternalLinkage can be renamed at will.
694 warning("Global variable '" + Name + "' was renamed to '"+
695 NewName + "'");
696 } else {
697 // The linkage of this gval is external so we can't reliably rename
698 // it because it could potentially create a linking problem.
699 // However, we can't leave the name conflict in the output either or
700 // it won't assemble with LLVM 2.0. So, all we can do is rename
701 // this one to something unique and emit a warning about the problem.
702 warning("Renaming global variable '" + Name + "' to '" + NewName +
703 "' may cause linkage errors");
704 }
705
706 // Put the renaming in the global rename map
707 RenameMapKey Key = std::make_pair(Name,PointerType::get(Ty));
708 CurModule.RenameMap[Key] = NewName;
709
710 // Rename it
711 Name = NewName;
712 }
713 }
714
715 // Otherwise there is no existing GV to use, create one now.
716 GlobalVariable *GV =
717 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
718 CurModule.CurrentModule);
719 InsertValue(GV, CurModule.Values);
720 return GV;
721}
722
723// setTypeName - Set the specified type to the name given. The name may be
724// null potentially, in which case this is a noop. The string passed in is
725// assumed to be a malloc'd string buffer, and is freed by this function.
726//
727// This function returns true if the type has already been defined, but is
728// allowed to be redefined in the specified context. If the name is a new name
729// for the type plane, it is inserted and false is returned.
730static bool setTypeName(const Type *T, char *NameStr) {
731 assert(!inFunctionScope() && "Can't give types function-local names");
732 if (NameStr == 0) return false;
733
734 std::string Name(NameStr); // Copy string
735 free(NameStr); // Free old string
736
737 // We don't allow assigning names to void type
738 if (T == Type::VoidTy) {
739 error("Can't assign name '" + Name + "' to the void type");
740 return false;
741 }
742
743 // Set the type name, checking for conflicts as we do so.
744 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
745
746 if (AlreadyExists) { // Inserting a name that is already defined???
747 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
748 assert(Existing && "Conflict but no matching type?");
749
750 // There is only one case where this is allowed: when we are refining an
751 // opaque type. In this case, Existing will be an opaque type.
752 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
753 // We ARE replacing an opaque type!
754 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
755 return true;
756 }
757
758 // Otherwise, this is an attempt to redefine a type. That's okay if
759 // the redefinition is identical to the original. This will be so if
760 // Existing and T point to the same Type object. In this one case we
761 // allow the equivalent redefinition.
762 if (Existing == T) return true; // Yes, it's equal.
763
764 // Any other kind of (non-equivalent) redefinition is an error.
765 error("Redefinition of type named '" + Name + "' in the '" +
766 T->getDescription() + "' type plane");
767 }
768
769 return false;
770}
771
772//===----------------------------------------------------------------------===//
773// Code for handling upreferences in type names...
774//
775
776// TypeContains - Returns true if Ty directly contains E in it.
777//
778static bool TypeContains(const Type *Ty, const Type *E) {
779 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
780 E) != Ty->subtype_end();
781}
782
783namespace {
784 struct UpRefRecord {
785 // NestingLevel - The number of nesting levels that need to be popped before
786 // this type is resolved.
787 unsigned NestingLevel;
788
789 // LastContainedTy - This is the type at the current binding level for the
790 // type. Every time we reduce the nesting level, this gets updated.
791 const Type *LastContainedTy;
792
793 // UpRefTy - This is the actual opaque type that the upreference is
794 // represented with.
795 OpaqueType *UpRefTy;
796
797 UpRefRecord(unsigned NL, OpaqueType *URTy)
798 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
799 };
800}
801
802// UpRefs - A list of the outstanding upreferences that need to be resolved.
803static std::vector<UpRefRecord> UpRefs;
804
805/// HandleUpRefs - Every time we finish a new layer of types, this function is
806/// called. It loops through the UpRefs vector, which is a list of the
807/// currently active types. For each type, if the up reference is contained in
808/// the newly completed type, we decrement the level count. When the level
809/// count reaches zero, the upreferenced type is the type that is passed in:
810/// thus we can complete the cycle.
811///
812static PATypeHolder HandleUpRefs(const Type *ty) {
813 // If Ty isn't abstract, or if there are no up-references in it, then there is
814 // nothing to resolve here.
815 if (!ty->isAbstract() || UpRefs.empty()) return ty;
816
817 PATypeHolder Ty(ty);
818 UR_OUT("Type '" << Ty->getDescription() <<
819 "' newly formed. Resolving upreferences.\n" <<
820 UpRefs.size() << " upreferences active!\n");
821
822 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
823 // to zero), we resolve them all together before we resolve them to Ty. At
824 // the end of the loop, if there is anything to resolve to Ty, it will be in
825 // this variable.
826 OpaqueType *TypeToResolve = 0;
827
828 for (unsigned i = 0; i != UpRefs.size(); ++i) {
829 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
830 << UpRefs[i].second->getDescription() << ") = "
831 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
832 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
833 // Decrement level of upreference
834 unsigned Level = --UpRefs[i].NestingLevel;
835 UpRefs[i].LastContainedTy = Ty;
836 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
837 if (Level == 0) { // Upreference should be resolved!
838 if (!TypeToResolve) {
839 TypeToResolve = UpRefs[i].UpRefTy;
840 } else {
841 UR_OUT(" * Resolving upreference for "
842 << UpRefs[i].second->getDescription() << "\n";
843 std::string OldName = UpRefs[i].UpRefTy->getDescription());
844 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
845 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
846 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
847 }
848 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
849 --i; // Do not skip the next element...
850 }
851 }
852 }
853
854 if (TypeToResolve) {
855 UR_OUT(" * Resolving upreference for "
856 << UpRefs[i].second->getDescription() << "\n";
857 std::string OldName = TypeToResolve->getDescription());
858 TypeToResolve->refineAbstractTypeTo(Ty);
859 }
860
861 return Ty;
862}
863
864static inline Instruction::TermOps
865getTermOp(TermOps op) {
866 switch (op) {
867 default : assert(0 && "Invalid OldTermOp");
868 case RetOp : return Instruction::Ret;
869 case BrOp : return Instruction::Br;
870 case SwitchOp : return Instruction::Switch;
871 case InvokeOp : return Instruction::Invoke;
872 case UnwindOp : return Instruction::Unwind;
873 case UnreachableOp: return Instruction::Unreachable;
874 }
875}
876
877static inline Instruction::BinaryOps
878getBinaryOp(BinaryOps op, const Type *Ty, Signedness Sign) {
879 switch (op) {
880 default : assert(0 && "Invalid OldBinaryOps");
881 case SetEQ :
882 case SetNE :
883 case SetLE :
884 case SetGE :
885 case SetLT :
886 case SetGT : assert(0 && "Should use getCompareOp");
887 case AddOp : return Instruction::Add;
888 case SubOp : return Instruction::Sub;
889 case MulOp : return Instruction::Mul;
890 case DivOp : {
891 // This is an obsolete instruction so we must upgrade it based on the
892 // types of its operands.
893 bool isFP = Ty->isFloatingPoint();
894 if (const PackedType* PTy = dyn_cast<PackedType>(Ty))
895 // If its a packed type we want to use the element type
896 isFP = PTy->getElementType()->isFloatingPoint();
897 if (isFP)
898 return Instruction::FDiv;
899 else if (Sign == Signed)
900 return Instruction::SDiv;
901 return Instruction::UDiv;
902 }
903 case UDivOp : return Instruction::UDiv;
904 case SDivOp : return Instruction::SDiv;
905 case FDivOp : return Instruction::FDiv;
906 case RemOp : {
907 // This is an obsolete instruction so we must upgrade it based on the
908 // types of its operands.
909 bool isFP = Ty->isFloatingPoint();
910 if (const PackedType* PTy = dyn_cast<PackedType>(Ty))
911 // If its a packed type we want to use the element type
912 isFP = PTy->getElementType()->isFloatingPoint();
913 // Select correct opcode
914 if (isFP)
915 return Instruction::FRem;
916 else if (Sign == Signed)
917 return Instruction::SRem;
918 return Instruction::URem;
919 }
920 case URemOp : return Instruction::URem;
921 case SRemOp : return Instruction::SRem;
922 case FRemOp : return Instruction::FRem;
923 case AndOp : return Instruction::And;
924 case OrOp : return Instruction::Or;
925 case XorOp : return Instruction::Xor;
926 }
927}
928
929static inline Instruction::OtherOps
930getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
931 Signedness Sign) {
932 bool isSigned = Sign == Signed;
933 bool isFP = Ty->isFloatingPoint();
934 switch (op) {
935 default : assert(0 && "Invalid OldSetCC");
936 case SetEQ :
937 if (isFP) {
938 predicate = FCmpInst::FCMP_OEQ;
939 return Instruction::FCmp;
940 } else {
941 predicate = ICmpInst::ICMP_EQ;
942 return Instruction::ICmp;
943 }
944 case SetNE :
945 if (isFP) {
946 predicate = FCmpInst::FCMP_UNE;
947 return Instruction::FCmp;
948 } else {
949 predicate = ICmpInst::ICMP_NE;
950 return Instruction::ICmp;
951 }
952 case SetLE :
953 if (isFP) {
954 predicate = FCmpInst::FCMP_OLE;
955 return Instruction::FCmp;
956 } else {
957 if (isSigned)
958 predicate = ICmpInst::ICMP_SLE;
959 else
960 predicate = ICmpInst::ICMP_ULE;
961 return Instruction::ICmp;
962 }
963 case SetGE :
964 if (isFP) {
965 predicate = FCmpInst::FCMP_OGE;
966 return Instruction::FCmp;
967 } else {
968 if (isSigned)
969 predicate = ICmpInst::ICMP_SGE;
970 else
971 predicate = ICmpInst::ICMP_UGE;
972 return Instruction::ICmp;
973 }
974 case SetLT :
975 if (isFP) {
976 predicate = FCmpInst::FCMP_OLT;
977 return Instruction::FCmp;
978 } else {
979 if (isSigned)
980 predicate = ICmpInst::ICMP_SLT;
981 else
982 predicate = ICmpInst::ICMP_ULT;
983 return Instruction::ICmp;
984 }
985 case SetGT :
986 if (isFP) {
987 predicate = FCmpInst::FCMP_OGT;
988 return Instruction::FCmp;
989 } else {
990 if (isSigned)
991 predicate = ICmpInst::ICMP_SGT;
992 else
993 predicate = ICmpInst::ICMP_UGT;
994 return Instruction::ICmp;
995 }
996 }
997}
998
999static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
1000 switch (op) {
1001 default : assert(0 && "Invalid OldMemoryOps");
1002 case MallocOp : return Instruction::Malloc;
1003 case FreeOp : return Instruction::Free;
1004 case AllocaOp : return Instruction::Alloca;
1005 case LoadOp : return Instruction::Load;
1006 case StoreOp : return Instruction::Store;
1007 case GetElementPtrOp : return Instruction::GetElementPtr;
1008 }
1009}
1010
1011static inline Instruction::OtherOps
1012getOtherOp(OtherOps op, Signedness Sign) {
1013 switch (op) {
1014 default : assert(0 && "Invalid OldOtherOps");
1015 case PHIOp : return Instruction::PHI;
1016 case CallOp : return Instruction::Call;
1017 case ShlOp : return Instruction::Shl;
1018 case ShrOp :
1019 if (Sign == Signed)
1020 return Instruction::AShr;
1021 return Instruction::LShr;
1022 case SelectOp : return Instruction::Select;
1023 case UserOp1 : return Instruction::UserOp1;
1024 case UserOp2 : return Instruction::UserOp2;
1025 case VAArg : return Instruction::VAArg;
1026 case ExtractElementOp : return Instruction::ExtractElement;
1027 case InsertElementOp : return Instruction::InsertElement;
1028 case ShuffleVectorOp : return Instruction::ShuffleVector;
1029 case ICmpOp : return Instruction::ICmp;
1030 case FCmpOp : return Instruction::FCmp;
1031 case LShrOp : return Instruction::LShr;
1032 case AShrOp : return Instruction::AShr;
1033 };
1034}
1035
1036static inline Value*
1037getCast(CastOps op, Value *Src, Signedness SrcSign, const Type *DstTy,
1038 Signedness DstSign, bool ForceInstruction = false) {
1039 Instruction::CastOps Opcode;
1040 const Type* SrcTy = Src->getType();
1041 if (op == CastOp) {
1042 if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
1043 // fp -> ptr cast is no longer supported but we must upgrade this
1044 // by doing a double cast: fp -> int -> ptr
1045 SrcTy = Type::Int64Ty;
1046 Opcode = Instruction::IntToPtr;
1047 if (isa<Constant>(Src)) {
1048 Src = ConstantExpr::getCast(Instruction::FPToUI,
1049 cast<Constant>(Src), SrcTy);
1050 } else {
1051 std::string NewName(makeNameUnique(Src->getName()));
1052 Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
1053 }
1054 } else if (isa<IntegerType>(DstTy) &&
1055 cast<IntegerType>(DstTy)->getBitWidth() == 1) {
1056 // cast type %x to bool was previously defined as setne type %x, null
1057 // The cast semantic is now to truncate, not compare so we must retain
1058 // the original intent by replacing the cast with a setne
1059 Constant* Null = Constant::getNullValue(SrcTy);
1060 Instruction::OtherOps Opcode = Instruction::ICmp;
1061 unsigned short predicate = ICmpInst::ICMP_NE;
1062 if (SrcTy->isFloatingPoint()) {
1063 Opcode = Instruction::FCmp;
1064 predicate = FCmpInst::FCMP_ONE;
1065 } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
1066 error("Invalid cast to bool");
1067 }
1068 if (isa<Constant>(Src) && !ForceInstruction)
1069 return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
1070 else
1071 return CmpInst::create(Opcode, predicate, Src, Null);
1072 }
1073 // Determine the opcode to use by calling CastInst::getCastOpcode
1074 Opcode =
1075 CastInst::getCastOpcode(Src, SrcSign == Signed, DstTy, DstSign == Signed);
1076
1077 } else switch (op) {
1078 default: assert(0 && "Invalid cast token");
1079 case TruncOp: Opcode = Instruction::Trunc; break;
1080 case ZExtOp: Opcode = Instruction::ZExt; break;
1081 case SExtOp: Opcode = Instruction::SExt; break;
1082 case FPTruncOp: Opcode = Instruction::FPTrunc; break;
1083 case FPExtOp: Opcode = Instruction::FPExt; break;
1084 case FPToUIOp: Opcode = Instruction::FPToUI; break;
1085 case FPToSIOp: Opcode = Instruction::FPToSI; break;
1086 case UIToFPOp: Opcode = Instruction::UIToFP; break;
1087 case SIToFPOp: Opcode = Instruction::SIToFP; break;
1088 case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
1089 case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
1090 case BitCastOp: Opcode = Instruction::BitCast; break;
1091 }
1092
1093 if (isa<Constant>(Src) && !ForceInstruction)
1094 return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
1095 return CastInst::create(Opcode, Src, DstTy);
1096}
1097
1098static Instruction *
1099upgradeIntrinsicCall(const Type* RetTy, const ValID &ID,
1100 std::vector<Value*>& Args) {
1101
1102 std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
1103 if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
1104 if (Args.size() != 2)
1105 error("Invalid prototype for " + Name + " prototype");
1106 return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
1107 } else {
1108 static unsigned upgradeCount = 1;
1109 const Type* PtrTy = PointerType::get(Type::Int8Ty);
1110 std::vector<const Type*> Params;
1111 if (Name == "llvm.va_start" || Name == "llvm.va_end") {
1112 if (Args.size() != 1)
1113 error("Invalid prototype for " + Name + " prototype");
1114 Params.push_back(PtrTy);
1115 const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false);
1116 const PointerType *PFTy = PointerType::get(FTy);
1117 Value* Func = getVal(PFTy, ID);
1118 std::string InstName("va_upgrade");
1119 InstName += llvm::utostr(upgradeCount++);
1120 Args[0] = new BitCastInst(Args[0], PtrTy, InstName, CurBB);
1121 return new CallInst(Func, Args);
1122 } else if (Name == "llvm.va_copy") {
1123 if (Args.size() != 2)
1124 error("Invalid prototype for " + Name + " prototype");
1125 Params.push_back(PtrTy);
1126 Params.push_back(PtrTy);
1127 const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false);
1128 const PointerType *PFTy = PointerType::get(FTy);
1129 Value* Func = getVal(PFTy, ID);
1130 std::string InstName0("va_upgrade");
1131 InstName0 += llvm::utostr(upgradeCount++);
1132 std::string InstName1("va_upgrade");
1133 InstName1 += llvm::utostr(upgradeCount++);
1134 Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
1135 Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
1136 return new CallInst(Func, Args);
1137 }
1138 }
1139 return 0;
1140}
1141
1142const Type* upgradeGEPIndices(const Type* PTy,
1143 std::vector<ValueInfo> *Indices,
1144 std::vector<Value*> &VIndices,
1145 std::vector<Constant*> *CIndices = 0) {
1146 // Traverse the indices with a gep_type_iterator so we can build the list
1147 // of constant and value indices for use later. Also perform upgrades
1148 VIndices.clear();
1149 if (CIndices) CIndices->clear();
1150 for (unsigned i = 0, e = Indices->size(); i != e; ++i)
1151 VIndices.push_back((*Indices)[i].V);
1152 generic_gep_type_iterator<std::vector<Value*>::iterator>
1153 GTI = gep_type_begin(PTy, VIndices.begin(), VIndices.end()),
1154 GTE = gep_type_end(PTy, VIndices.begin(), VIndices.end());
1155 for (unsigned i = 0, e = Indices->size(); i != e && GTI != GTE; ++i, ++GTI) {
1156 Value *Index = VIndices[i];
1157 if (CIndices && !isa<Constant>(Index))
1158 error("Indices to constant getelementptr must be constants");
1159 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
1160 // struct indices to i32 struct indices with ZExt for compatibility.
1161 else if (isa<StructType>(*GTI)) { // Only change struct indices
1162 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Index))
1163 if (CUI->getType()->getBitWidth() == 8)
1164 Index =
1165 ConstantExpr::getCast(Instruction::ZExt, CUI, Type::Int32Ty);
1166 } else {
1167 // Make sure that unsigned SequentialType indices are zext'd to
1168 // 64-bits if they were smaller than that because LLVM 2.0 will sext
1169 // all indices for SequentialType elements. We must retain the same
1170 // semantic (zext) for unsigned types.
1171 if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType()))
Reid Spencer38f682b2007-01-26 20:31:18 +00001172 if (Ity->getBitWidth() < 64 && (*Indices)[i].S == Unsigned) {
Reid Spencer950bf602007-01-26 08:19:09 +00001173 if (CIndices)
1174 Index = ConstantExpr::getCast(Instruction::ZExt,
1175 cast<Constant>(Index), Type::Int64Ty);
1176 else
1177 Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001178 makeNameUnique("gep_upgrade"), CurBB);
Reid Spencer38f682b2007-01-26 20:31:18 +00001179 VIndices[i] = Index;
1180 }
Reid Spencer950bf602007-01-26 08:19:09 +00001181 }
1182 // Add to the CIndices list, if requested.
1183 if (CIndices)
1184 CIndices->push_back(cast<Constant>(Index));
1185 }
1186
1187 const Type *IdxTy =
1188 GetElementPtrInst::getIndexedType(PTy, VIndices, true);
1189 if (!IdxTy)
1190 error("Index list invalid for constant getelementptr");
1191 return IdxTy;
1192}
1193
1194Module* UpgradeAssembly(const std::string &infile, std::istream& in,
1195 bool debug, bool addAttrs)
Reid Spencere7c3c602006-11-30 06:36:44 +00001196{
1197 Upgradelineno = 1;
1198 CurFilename = infile;
Reid Spencer96839be2006-11-30 16:50:26 +00001199 LexInput = &in;
Reid Spencere77e35e2006-12-01 20:26:20 +00001200 yydebug = debug;
Reid Spencer71d2ec92006-12-31 06:02:26 +00001201 AddAttributes = addAttrs;
Reid Spencer950bf602007-01-26 08:19:09 +00001202 ObsoleteVarArgs = false;
1203 NewVarArgs = false;
Reid Spencere7c3c602006-11-30 06:36:44 +00001204
Reid Spencer950bf602007-01-26 08:19:09 +00001205 CurModule.CurrentModule = new Module(CurFilename);
1206
1207 // Check to make sure the parser succeeded
Reid Spencere7c3c602006-11-30 06:36:44 +00001208 if (yyparse()) {
Reid Spencer950bf602007-01-26 08:19:09 +00001209 if (ParserResult)
1210 delete ParserResult;
Reid Spencer30d0c582007-01-15 00:26:18 +00001211 std::cerr << "llvm-upgrade: parse failed.\n";
Reid Spencer30d0c582007-01-15 00:26:18 +00001212 return 0;
1213 }
1214
Reid Spencer950bf602007-01-26 08:19:09 +00001215 // Check to make sure that parsing produced a result
1216 if (!ParserResult) {
1217 std::cerr << "llvm-upgrade: no parse result.\n";
1218 return 0;
Reid Spencer30d0c582007-01-15 00:26:18 +00001219 }
1220
Reid Spencer950bf602007-01-26 08:19:09 +00001221 // Reset ParserResult variable while saving its value for the result.
1222 Module *Result = ParserResult;
1223 ParserResult = 0;
Reid Spencer30d0c582007-01-15 00:26:18 +00001224
Reid Spencer950bf602007-01-26 08:19:09 +00001225 //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
Reid Spencer30d0c582007-01-15 00:26:18 +00001226 {
Reid Spencer950bf602007-01-26 08:19:09 +00001227 Function* F;
1228 if ((F = Result->getNamedFunction("llvm.va_start"))
1229 && F->getFunctionType()->getNumParams() == 0)
1230 ObsoleteVarArgs = true;
1231 if((F = Result->getNamedFunction("llvm.va_copy"))
1232 && F->getFunctionType()->getNumParams() == 1)
1233 ObsoleteVarArgs = true;
Reid Spencer280d8012006-12-01 23:40:53 +00001234 }
Reid Spencer319a7302007-01-05 17:20:02 +00001235
Reid Spencer950bf602007-01-26 08:19:09 +00001236 if (ObsoleteVarArgs && NewVarArgs) {
1237 error("This file is corrupt: it uses both new and old style varargs");
1238 return 0;
Reid Spencer319a7302007-01-05 17:20:02 +00001239 }
Reid Spencer319a7302007-01-05 17:20:02 +00001240
Reid Spencer950bf602007-01-26 08:19:09 +00001241 if(ObsoleteVarArgs) {
1242 if(Function* F = Result->getNamedFunction("llvm.va_start")) {
1243 if (F->arg_size() != 0) {
1244 error("Obsolete va_start takes 0 argument");
Reid Spencer319a7302007-01-05 17:20:02 +00001245 return 0;
1246 }
Reid Spencer950bf602007-01-26 08:19:09 +00001247
1248 //foo = va_start()
1249 // ->
1250 //bar = alloca typeof(foo)
1251 //va_start(bar)
1252 //foo = load bar
Reid Spencer319a7302007-01-05 17:20:02 +00001253
Reid Spencer950bf602007-01-26 08:19:09 +00001254 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1255 const Type* ArgTy = F->getFunctionType()->getReturnType();
1256 const Type* ArgTyPtr = PointerType::get(ArgTy);
1257 Function* NF = cast<Function>(Result->getOrInsertFunction(
1258 "llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
1259
1260 while (!F->use_empty()) {
1261 CallInst* CI = cast<CallInst>(F->use_back());
1262 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
1263 new CallInst(NF, bar, "", CI);
1264 Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
1265 CI->replaceAllUsesWith(foo);
1266 CI->getParent()->getInstList().erase(CI);
Reid Spencerf8383de2007-01-06 06:04:32 +00001267 }
Reid Spencer950bf602007-01-26 08:19:09 +00001268 Result->getFunctionList().erase(F);
Reid Spencerf8383de2007-01-06 06:04:32 +00001269 }
Reid Spencer950bf602007-01-26 08:19:09 +00001270
1271 if(Function* F = Result->getNamedFunction("llvm.va_end")) {
1272 if(F->arg_size() != 1) {
1273 error("Obsolete va_end takes 1 argument");
1274 return 0;
Reid Spencerf8383de2007-01-06 06:04:32 +00001275 }
Reid Spencerf8383de2007-01-06 06:04:32 +00001276
Reid Spencer950bf602007-01-26 08:19:09 +00001277 //vaend foo
1278 // ->
1279 //bar = alloca 1 of typeof(foo)
1280 //vaend bar
1281 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1282 const Type* ArgTy = F->getFunctionType()->getParamType(0);
1283 const Type* ArgTyPtr = PointerType::get(ArgTy);
1284 Function* NF = cast<Function>(Result->getOrInsertFunction(
1285 "llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
Reid Spencerf8383de2007-01-06 06:04:32 +00001286
Reid Spencer950bf602007-01-26 08:19:09 +00001287 while (!F->use_empty()) {
1288 CallInst* CI = cast<CallInst>(F->use_back());
1289 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
1290 new StoreInst(CI->getOperand(1), bar, CI);
1291 new CallInst(NF, bar, "", CI);
1292 CI->getParent()->getInstList().erase(CI);
Reid Spencere77e35e2006-12-01 20:26:20 +00001293 }
Reid Spencer950bf602007-01-26 08:19:09 +00001294 Result->getFunctionList().erase(F);
Reid Spencere77e35e2006-12-01 20:26:20 +00001295 }
Reid Spencer950bf602007-01-26 08:19:09 +00001296
1297 if(Function* F = Result->getNamedFunction("llvm.va_copy")) {
1298 if(F->arg_size() != 1) {
1299 error("Obsolete va_copy takes 1 argument");
1300 return 0;
Reid Spencere77e35e2006-12-01 20:26:20 +00001301 }
Reid Spencer950bf602007-01-26 08:19:09 +00001302 //foo = vacopy(bar)
1303 // ->
1304 //a = alloca 1 of typeof(foo)
1305 //b = alloca 1 of typeof(foo)
1306 //store bar -> b
1307 //vacopy(a, b)
1308 //foo = load a
1309
1310 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1311 const Type* ArgTy = F->getFunctionType()->getReturnType();
1312 const Type* ArgTyPtr = PointerType::get(ArgTy);
1313 Function* NF = cast<Function>(Result->getOrInsertFunction(
1314 "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
Reid Spencere77e35e2006-12-01 20:26:20 +00001315
Reid Spencer950bf602007-01-26 08:19:09 +00001316 while (!F->use_empty()) {
1317 CallInst* CI = cast<CallInst>(F->use_back());
1318 AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
1319 AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
1320 new StoreInst(CI->getOperand(1), b, CI);
1321 new CallInst(NF, a, b, "", CI);
1322 Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
1323 CI->replaceAllUsesWith(foo);
1324 CI->getParent()->getInstList().erase(CI);
1325 }
1326 Result->getFunctionList().erase(F);
Reid Spencer319a7302007-01-05 17:20:02 +00001327 }
1328 }
1329
Reid Spencer52402b02007-01-02 05:45:11 +00001330 return Result;
1331}
1332
Reid Spencer950bf602007-01-26 08:19:09 +00001333} // end llvm namespace
Reid Spencer319a7302007-01-05 17:20:02 +00001334
Reid Spencer950bf602007-01-26 08:19:09 +00001335using namespace llvm;
Reid Spencer30d0c582007-01-15 00:26:18 +00001336
Reid Spencere7c3c602006-11-30 06:36:44 +00001337%}
1338
Reid Spencere77e35e2006-12-01 20:26:20 +00001339%union {
Reid Spencer950bf602007-01-26 08:19:09 +00001340 llvm::Module *ModuleVal;
1341 llvm::Function *FunctionVal;
1342 std::pair<llvm::PATypeInfo, char*> *ArgVal;
1343 llvm::BasicBlock *BasicBlockVal;
1344 llvm::TerminatorInst *TermInstVal;
1345 llvm::InstrInfo InstVal;
1346 llvm::ConstInfo ConstVal;
1347 llvm::ValueInfo ValueVal;
1348 llvm::PATypeInfo TypeVal;
1349 llvm::TypeInfo PrimType;
1350 llvm::PHIListInfo PHIList;
1351 std::list<llvm::PATypeInfo> *TypeList;
1352 std::vector<llvm::ValueInfo> *ValueList;
1353 std::vector<llvm::ConstInfo> *ConstVector;
1354
1355
1356 std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
1357 // Represent the RHS of PHI node
1358 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
1359
1360 llvm::GlobalValue::LinkageTypes Linkage;
1361 int64_t SInt64Val;
1362 uint64_t UInt64Val;
1363 int SIntVal;
1364 unsigned UIntVal;
1365 double FPVal;
1366 bool BoolVal;
1367
1368 char *StrVal; // This memory is strdup'd!
1369 llvm::ValID ValIDVal; // strdup'd memory maybe!
1370
1371 llvm::BinaryOps BinaryOpVal;
1372 llvm::TermOps TermOpVal;
1373 llvm::MemoryOps MemOpVal;
1374 llvm::OtherOps OtherOpVal;
1375 llvm::CastOps CastOpVal;
1376 llvm::ICmpInst::Predicate IPred;
1377 llvm::FCmpInst::Predicate FPred;
1378 llvm::Module::Endianness Endianness;
Reid Spencere77e35e2006-12-01 20:26:20 +00001379}
1380
Reid Spencer950bf602007-01-26 08:19:09 +00001381%type <ModuleVal> Module FunctionList
1382%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1383%type <BasicBlockVal> BasicBlock InstructionList
1384%type <TermInstVal> BBTerminatorInst
1385%type <InstVal> Inst InstVal MemoryInst
1386%type <ConstVal> ConstVal ConstExpr
1387%type <ConstVector> ConstVector
1388%type <ArgList> ArgList ArgListH
1389%type <ArgVal> ArgVal
1390%type <PHIList> PHIList
1391%type <ValueList> ValueRefList ValueRefListE // For call param lists
1392%type <ValueList> IndexList // For GEP derived indices
1393%type <TypeList> TypeListI ArgTypeListI
1394%type <JumpTable> JumpTable
1395%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1396%type <BoolVal> OptVolatile // 'volatile' or not
1397%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1398%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1399%type <Linkage> OptLinkage
1400%type <Endianness> BigOrLittle
Reid Spencere77e35e2006-12-01 20:26:20 +00001401
Reid Spencer950bf602007-01-26 08:19:09 +00001402// ValueRef - Unresolved reference to a definition or BB
1403%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1404%type <ValueVal> ResolvedVal // <type> <valref> pair
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001405
Reid Spencer950bf602007-01-26 08:19:09 +00001406// Tokens and types for handling constant integer values
1407//
1408// ESINT64VAL - A negative number within long long range
1409%token <SInt64Val> ESINT64VAL
Reid Spencere77e35e2006-12-01 20:26:20 +00001410
Reid Spencer950bf602007-01-26 08:19:09 +00001411// EUINT64VAL - A positive number within uns. long long range
1412%token <UInt64Val> EUINT64VAL
1413%type <SInt64Val> EINT64VAL
Reid Spencere77e35e2006-12-01 20:26:20 +00001414
Reid Spencer950bf602007-01-26 08:19:09 +00001415%token <SIntVal> SINTVAL // Signed 32 bit ints...
1416%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
1417%type <SIntVal> INTVAL
1418%token <FPVal> FPVAL // Float or Double constant
Reid Spencere77e35e2006-12-01 20:26:20 +00001419
Reid Spencer950bf602007-01-26 08:19:09 +00001420// Built in types...
1421%type <TypeVal> Types TypesV UpRTypes UpRTypesV
1422%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
1423%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
1424%token <PrimType> FLOAT DOUBLE TYPE LABEL
Reid Spencere77e35e2006-12-01 20:26:20 +00001425
Reid Spencer950bf602007-01-26 08:19:09 +00001426%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
1427%type <StrVal> Name OptName OptAssign
1428%type <UIntVal> OptAlign OptCAlign
1429%type <StrVal> OptSection SectionString
1430
1431%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1432%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
1433%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
1434%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1435%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
1436%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1437%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
1438%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1439%token DATALAYOUT
1440%type <UIntVal> OptCallingConv
1441
1442// Basic Block Terminating Operators
1443%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
1444%token UNWIND EXCEPT
1445
1446// Binary Operators
1447%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
1448%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM
1449%token <BinaryOpVal> AND OR XOR
1450%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
1451%token <OtherOpVal> ICMP FCMP
1452
1453// Memory Instructions
1454%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1455
1456// Other Operators
1457%type <OtherOpVal> ShiftOps
1458%token <OtherOpVal> PHI_TOK SELECT SHL SHR ASHR LSHR VAARG
1459%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1460%token VAARG_old VANEXT_old //OBSOLETE
1461
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001462// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
Reid Spencer950bf602007-01-26 08:19:09 +00001463%type <IPred> IPredicates
1464%type <FPred> FPredicates
1465%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1466%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1467
1468%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI
1469%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST
1470%type <CastOpVal> CastOps
Reid Spencere7c3c602006-11-30 06:36:44 +00001471
1472%start Module
1473
1474%%
1475
1476// Handle constant integer size restriction and conversion...
Reid Spencer950bf602007-01-26 08:19:09 +00001477//
1478INTVAL
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001479 : SINTVAL
Reid Spencer950bf602007-01-26 08:19:09 +00001480 | UINTVAL {
1481 if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
1482 error("Value too large for type");
1483 $$ = (int32_t)$1;
1484 }
1485 ;
1486
1487EINT64VAL
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001488 : ESINT64VAL // These have same type and can't cause problems...
Reid Spencer950bf602007-01-26 08:19:09 +00001489 | EUINT64VAL {
1490 if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
1491 error("Value too large for type");
1492 $$ = (int64_t)$1;
1493 };
Reid Spencere7c3c602006-11-30 06:36:44 +00001494
1495// Operations that are notably excluded from this list include:
1496// RET, BR, & SWITCH because they end basic blocks and are treated specially.
Reid Spencer950bf602007-01-26 08:19:09 +00001497//
1498ArithmeticOps
1499 : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
1500 ;
1501
1502LogicalOps
1503 : AND | OR | XOR
1504 ;
1505
1506SetCondOps
1507 : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
1508 ;
1509
1510IPredicates
1511 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1512 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1513 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1514 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1515 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1516 ;
1517
1518FPredicates
1519 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1520 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1521 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1522 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1523 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1524 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1525 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1526 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1527 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1528 ;
1529ShiftOps
1530 : SHL | SHR | ASHR | LSHR
1531 ;
1532
1533CastOps
1534 : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI
1535 | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
1536 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001537
1538// These are some types that allow classification if we only want a particular
1539// thing... for example, only a signed, unsigned, or integral type.
Reid Spencer950bf602007-01-26 08:19:09 +00001540SIntType
1541 : LONG | INT | SHORT | SBYTE
1542 ;
1543
1544UIntType
1545 : ULONG | UINT | USHORT | UBYTE
1546 ;
1547
1548IntType
1549 : SIntType | UIntType
1550 ;
1551
1552FPType
1553 : FLOAT | DOUBLE
1554 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001555
1556// OptAssign - Value producing statements have an optional assignment component
Reid Spencer950bf602007-01-26 08:19:09 +00001557OptAssign
1558 : Name '=' {
Reid Spencere7c3c602006-11-30 06:36:44 +00001559 $$ = $1;
1560 }
1561 | /*empty*/ {
Reid Spencer950bf602007-01-26 08:19:09 +00001562 $$ = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00001563 };
1564
1565OptLinkage
Reid Spencer950bf602007-01-26 08:19:09 +00001566 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1567 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1568 | WEAK { $$ = GlobalValue::WeakLinkage; }
1569 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1570 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1571 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1572 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1573 | /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1574 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001575
1576OptCallingConv
Reid Spencer950bf602007-01-26 08:19:09 +00001577 : /*empty*/ { $$ = CallingConv::C; }
1578 | CCC_TOK { $$ = CallingConv::C; }
Anton Korobeynikovc4c87a32007-01-28 13:36:18 +00001579 | CSRETCC_TOK { $$ = CallingConv::C; }
Reid Spencer950bf602007-01-26 08:19:09 +00001580 | FASTCC_TOK { $$ = CallingConv::Fast; }
1581 | COLDCC_TOK { $$ = CallingConv::Cold; }
1582 | X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; }
1583 | X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; }
1584 | CC_TOK EUINT64VAL {
1585 if ((unsigned)$2 != $2)
1586 error("Calling conv too large");
1587 $$ = $2;
1588 }
1589 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001590
1591// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1592// a comma before it.
1593OptAlign
Reid Spencer950bf602007-01-26 08:19:09 +00001594 : /*empty*/ { $$ = 0; }
1595 | ALIGN EUINT64VAL {
1596 $$ = $2;
1597 if ($$ != 0 && !isPowerOf2_32($$))
1598 error("Alignment must be a power of two");
1599 }
1600 ;
Reid Spencerf0cf1322006-12-07 04:23:03 +00001601
Reid Spencere7c3c602006-11-30 06:36:44 +00001602OptCAlign
Reid Spencer950bf602007-01-26 08:19:09 +00001603 : /*empty*/ { $$ = 0; }
1604 | ',' ALIGN EUINT64VAL {
1605 $$ = $3;
1606 if ($$ != 0 && !isPowerOf2_32($$))
1607 error("Alignment must be a power of two");
1608 }
1609 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001610
1611SectionString
Reid Spencer950bf602007-01-26 08:19:09 +00001612 : SECTION STRINGCONSTANT {
1613 for (unsigned i = 0, e = strlen($2); i != e; ++i)
1614 if ($2[i] == '"' || $2[i] == '\\')
1615 error("Invalid character in section name");
1616 $$ = $2;
1617 }
1618 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001619
Reid Spencer950bf602007-01-26 08:19:09 +00001620OptSection
1621 : /*empty*/ { $$ = 0; }
1622 | SectionString { $$ = $1; }
1623 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001624
Reid Spencer950bf602007-01-26 08:19:09 +00001625// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1626// is set to be the global we are processing.
1627//
Reid Spencere7c3c602006-11-30 06:36:44 +00001628GlobalVarAttributes
Reid Spencer950bf602007-01-26 08:19:09 +00001629 : /* empty */ {}
1630 | ',' GlobalVarAttribute GlobalVarAttributes {}
1631 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001632
Reid Spencer950bf602007-01-26 08:19:09 +00001633GlobalVarAttribute
1634 : SectionString {
1635 CurGV->setSection($1);
1636 free($1);
1637 }
1638 | ALIGN EUINT64VAL {
1639 if ($2 != 0 && !isPowerOf2_32($2))
1640 error("Alignment must be a power of two");
1641 CurGV->setAlignment($2);
1642
1643 }
1644 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001645
1646//===----------------------------------------------------------------------===//
1647// Types includes all predefined types... except void, because it can only be
1648// used in specific contexts (function returning void for example). To have
1649// access to it, a user must explicitly use TypesV.
1650//
1651
1652// TypesV includes all of 'Types', but it also includes the void type.
Reid Spencer950bf602007-01-26 08:19:09 +00001653TypesV
1654 : Types
1655 | VOID {
1656 $$.T = new PATypeHolder($1.T);
1657 $$.S = Signless;
1658 }
1659 ;
1660
1661UpRTypesV
1662 : UpRTypes
1663 | VOID {
1664 $$.T = new PATypeHolder($1.T);
1665 $$.S = Signless;
1666 }
1667 ;
1668
1669Types
1670 : UpRTypes {
1671 if (!UpRefs.empty())
1672 error("Invalid upreference in type: " + (*$1.T)->getDescription());
1673 $$ = $1;
1674 }
1675 ;
1676
1677PrimType
1678 : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
1679 | LONG | ULONG | FLOAT | DOUBLE | LABEL
1680 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001681
1682// Derived types are added later...
Reid Spencera50d5962006-12-02 04:11:07 +00001683UpRTypes
Reid Spencer950bf602007-01-26 08:19:09 +00001684 : PrimType {
1685 $$.T = new PATypeHolder($1.T);
1686 $$.S = $1.S;
Reid Spencera50d5962006-12-02 04:11:07 +00001687 }
Reid Spencer950bf602007-01-26 08:19:09 +00001688 | OPAQUE {
1689 $$.T = new PATypeHolder(OpaqueType::get());
1690 $$.S = Signless;
1691 }
1692 | SymbolicValueRef { // Named types are also simple types...
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001693 const Type* tmp = getType($1);
Reid Spencer950bf602007-01-26 08:19:09 +00001694 $$.T = new PATypeHolder(tmp);
1695 $$.S = Signless; // FIXME: what if its signed?
Reid Spencer78720742006-12-02 20:21:22 +00001696 }
1697 | '\\' EUINT64VAL { // Type UpReference
Reid Spencer950bf602007-01-26 08:19:09 +00001698 if ($2 > (uint64_t)~0U)
1699 error("Value out of range");
1700 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1701 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1702 $$.T = new PATypeHolder(OT);
1703 $$.S = Signless;
1704 UR_OUT("New Upreference!\n");
Reid Spencere7c3c602006-11-30 06:36:44 +00001705 }
1706 | UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
Reid Spencer950bf602007-01-26 08:19:09 +00001707 std::vector<const Type*> Params;
1708 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
1709 E = $3->end(); I != E; ++I) {
1710 Params.push_back(I->T->get());
1711 delete I->T;
Reid Spencer52402b02007-01-02 05:45:11 +00001712 }
Reid Spencer950bf602007-01-26 08:19:09 +00001713 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1714 if (isVarArg) Params.pop_back();
1715
1716 $$.T = new PATypeHolder(HandleUpRefs(
1717 FunctionType::get($1.T->get(),Params,isVarArg)));
1718 $$.S = $1.S;
1719 delete $1.T; // Delete the return type handle
1720 delete $3; // Delete the argument list
Reid Spencere7c3c602006-11-30 06:36:44 +00001721 }
1722 | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
Reid Spencer950bf602007-01-26 08:19:09 +00001723 $$.T = new PATypeHolder(HandleUpRefs(ArrayType::get($4.T->get(),
1724 (unsigned)$2)));
1725 $$.S = $4.S;
1726 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001727 }
1728 | '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
Reid Spencer950bf602007-01-26 08:19:09 +00001729 const llvm::Type* ElemTy = $4.T->get();
1730 if ((unsigned)$2 != $2)
1731 error("Unsigned result not equal to signed result");
1732 if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
1733 error("Elements of a PackedType must be integer or floating point");
1734 if (!isPowerOf2_32($2))
1735 error("PackedType length should be a power of 2");
1736 $$.T = new PATypeHolder(HandleUpRefs(PackedType::get(ElemTy,
1737 (unsigned)$2)));
1738 $$.S = $4.S;
1739 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001740 }
1741 | '{' TypeListI '}' { // Structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001742 std::vector<const Type*> Elements;
1743 for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
1744 E = $2->end(); I != E; ++I)
1745 Elements.push_back(I->T->get());
1746 $$.T = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1747 $$.S = Signless;
1748 delete $2;
Reid Spencere7c3c602006-11-30 06:36:44 +00001749 }
1750 | '{' '}' { // Empty structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001751 $$.T = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1752 $$.S = Signless;
Reid Spencere7c3c602006-11-30 06:36:44 +00001753 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001754 | '<' '{' TypeListI '}' '>' { // Packed Structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001755 std::vector<const Type*> Elements;
1756 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
1757 E = $3->end(); I != E; ++I) {
1758 Elements.push_back(I->T->get());
1759 delete I->T;
Reid Spencer52402b02007-01-02 05:45:11 +00001760 }
Reid Spencer950bf602007-01-26 08:19:09 +00001761 $$.T = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1762 $$.S = Signless;
1763 delete $3;
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001764 }
1765 | '<' '{' '}' '>' { // Empty packed structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001766 $$.T = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
1767 $$.S = Signless;
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001768 }
Reid Spencere7c3c602006-11-30 06:36:44 +00001769 | UpRTypes '*' { // Pointer type?
Reid Spencer950bf602007-01-26 08:19:09 +00001770 if ($1.T->get() == Type::LabelTy)
1771 error("Cannot form a pointer to a basic block");
1772 $$.T = new PATypeHolder(HandleUpRefs(PointerType::get($1.T->get())));
1773 $$.S = $1.S;
1774 delete $1.T;
1775 }
1776 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001777
1778// TypeList - Used for struct declarations and as a basis for function type
1779// declaration type lists
1780//
Reid Spencere77e35e2006-12-01 20:26:20 +00001781TypeListI
1782 : UpRTypes {
Reid Spencer950bf602007-01-26 08:19:09 +00001783 $$ = new std::list<PATypeInfo>();
1784 $$->push_back($1);
Reid Spencere77e35e2006-12-01 20:26:20 +00001785 }
1786 | TypeListI ',' UpRTypes {
Reid Spencer950bf602007-01-26 08:19:09 +00001787 ($$=$1)->push_back($3);
1788 }
1789 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001790
1791// ArgTypeList - List of types for a function type declaration...
Reid Spencere77e35e2006-12-01 20:26:20 +00001792ArgTypeListI
Reid Spencer950bf602007-01-26 08:19:09 +00001793 : TypeListI
Reid Spencere7c3c602006-11-30 06:36:44 +00001794 | TypeListI ',' DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00001795 PATypeInfo VoidTI;
1796 VoidTI.T = new PATypeHolder(Type::VoidTy);
1797 VoidTI.S = Signless;
1798 ($$=$1)->push_back(VoidTI);
Reid Spencere7c3c602006-11-30 06:36:44 +00001799 }
1800 | DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00001801 $$ = new std::list<PATypeInfo>();
1802 PATypeInfo VoidTI;
1803 VoidTI.T = new PATypeHolder(Type::VoidTy);
1804 VoidTI.S = Signless;
1805 $$->push_back(VoidTI);
Reid Spencere7c3c602006-11-30 06:36:44 +00001806 }
1807 | /*empty*/ {
Reid Spencer950bf602007-01-26 08:19:09 +00001808 $$ = new std::list<PATypeInfo>();
1809 }
1810 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001811
1812// ConstVal - The various declarations that go into the constant pool. This
1813// production is used ONLY to represent constants that show up AFTER a 'const',
1814// 'constant' or 'global' token at global scope. Constants that can be inlined
1815// into other expressions (such as integers and constexprs) are handled by the
1816// ResolvedVal, ValueRef and ConstValueRef productions.
1817//
Reid Spencer950bf602007-01-26 08:19:09 +00001818ConstVal
1819 : Types '[' ConstVector ']' { // Nonempty unsized arr
1820 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1821 if (ATy == 0)
1822 error("Cannot make array constant with type: '" +
1823 $1.T->get()->getDescription() + "'");
1824 const Type *ETy = ATy->getElementType();
1825 int NumElements = ATy->getNumElements();
1826
1827 // Verify that we have the correct size...
1828 if (NumElements != -1 && NumElements != (int)$3->size())
1829 error("Type mismatch: constant sized array initialized with " +
1830 utostr($3->size()) + " arguments, but has size of " +
1831 itostr(NumElements) + "");
1832
1833 // Verify all elements are correct type!
1834 std::vector<Constant*> Elems;
1835 for (unsigned i = 0; i < $3->size(); i++) {
1836 Constant *C = (*$3)[i].C;
1837 const Type* ValTy = C->getType();
1838 if (ETy != ValTy)
1839 error("Element #" + utostr(i) + " is not of type '" +
1840 ETy->getDescription() +"' as required!\nIt is of type '"+
1841 ValTy->getDescription() + "'");
1842 Elems.push_back(C);
1843 }
1844 $$.C = ConstantArray::get(ATy, Elems);
1845 $$.S = $1.S;
1846 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001847 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00001848 }
1849 | Types '[' ']' {
Reid Spencer950bf602007-01-26 08:19:09 +00001850 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1851 if (ATy == 0)
1852 error("Cannot make array constant with type: '" +
1853 $1.T->get()->getDescription() + "'");
1854 int NumElements = ATy->getNumElements();
1855 if (NumElements != -1 && NumElements != 0)
1856 error("Type mismatch: constant sized array initialized with 0"
1857 " arguments, but has size of " + itostr(NumElements) +"");
1858 $$.C = ConstantArray::get(ATy, std::vector<Constant*>());
1859 $$.S = $1.S;
1860 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001861 }
1862 | Types 'c' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00001863 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1864 if (ATy == 0)
1865 error("Cannot make array constant with type: '" +
1866 $1.T->get()->getDescription() + "'");
1867 int NumElements = ATy->getNumElements();
1868 const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
1869 if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
1870 error("String arrays require type i8, not '" + ETy->getDescription() +
1871 "'");
1872 char *EndStr = UnEscapeLexed($3, true);
1873 if (NumElements != -1 && NumElements != (EndStr-$3))
1874 error("Can't build string constant of size " +
1875 itostr((int)(EndStr-$3)) + " when array has size " +
1876 itostr(NumElements) + "");
1877 std::vector<Constant*> Vals;
1878 for (char *C = (char *)$3; C != (char *)EndStr; ++C)
1879 Vals.push_back(ConstantInt::get(ETy, *C));
1880 free($3);
1881 $$.C = ConstantArray::get(ATy, Vals);
1882 $$.S = $1.S;
1883 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001884 }
1885 | Types '<' ConstVector '>' { // Nonempty unsized arr
Reid Spencer950bf602007-01-26 08:19:09 +00001886 const PackedType *PTy = dyn_cast<PackedType>($1.T->get());
1887 if (PTy == 0)
1888 error("Cannot make packed constant with type: '" +
1889 $1.T->get()->getDescription() + "'");
1890 const Type *ETy = PTy->getElementType();
1891 int NumElements = PTy->getNumElements();
1892 // Verify that we have the correct size...
1893 if (NumElements != -1 && NumElements != (int)$3->size())
1894 error("Type mismatch: constant sized packed initialized with " +
1895 utostr($3->size()) + " arguments, but has size of " +
1896 itostr(NumElements) + "");
1897 // Verify all elements are correct type!
1898 std::vector<Constant*> Elems;
1899 for (unsigned i = 0; i < $3->size(); i++) {
1900 Constant *C = (*$3)[i].C;
1901 const Type* ValTy = C->getType();
1902 if (ETy != ValTy)
1903 error("Element #" + utostr(i) + " is not of type '" +
1904 ETy->getDescription() +"' as required!\nIt is of type '"+
1905 ValTy->getDescription() + "'");
1906 Elems.push_back(C);
1907 }
1908 $$.C = ConstantPacked::get(PTy, Elems);
1909 $$.S = $1.S;
1910 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001911 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00001912 }
1913 | Types '{' ConstVector '}' {
Reid Spencer950bf602007-01-26 08:19:09 +00001914 const StructType *STy = dyn_cast<StructType>($1.T->get());
1915 if (STy == 0)
1916 error("Cannot make struct constant with type: '" +
1917 $1.T->get()->getDescription() + "'");
1918 if ($3->size() != STy->getNumContainedTypes())
1919 error("Illegal number of initializers for structure type");
1920
1921 // Check to ensure that constants are compatible with the type initializer!
1922 std::vector<Constant*> Fields;
1923 for (unsigned i = 0, e = $3->size(); i != e; ++i) {
1924 Constant *C = (*$3)[i].C;
1925 if (C->getType() != STy->getElementType(i))
1926 error("Expected type '" + STy->getElementType(i)->getDescription() +
1927 "' for element #" + utostr(i) + " of structure initializer");
1928 Fields.push_back(C);
1929 }
1930 $$.C = ConstantStruct::get(STy, Fields);
1931 $$.S = $1.S;
1932 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001933 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00001934 }
1935 | Types '{' '}' {
Reid Spencer950bf602007-01-26 08:19:09 +00001936 const StructType *STy = dyn_cast<StructType>($1.T->get());
1937 if (STy == 0)
1938 error("Cannot make struct constant with type: '" +
1939 $1.T->get()->getDescription() + "'");
1940 if (STy->getNumContainedTypes() != 0)
1941 error("Illegal number of initializers for structure type");
1942 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
1943 $$.S = $1.S;
1944 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001945 }
Reid Spencer950bf602007-01-26 08:19:09 +00001946 | Types '<' '{' ConstVector '}' '>' {
1947 const StructType *STy = dyn_cast<StructType>($1.T->get());
1948 if (STy == 0)
1949 error("Cannot make packed struct constant with type: '" +
1950 $1.T->get()->getDescription() + "'");
1951 if ($4->size() != STy->getNumContainedTypes())
1952 error("Illegal number of initializers for packed structure type");
Reid Spencere7c3c602006-11-30 06:36:44 +00001953
Reid Spencer950bf602007-01-26 08:19:09 +00001954 // Check to ensure that constants are compatible with the type initializer!
1955 std::vector<Constant*> Fields;
1956 for (unsigned i = 0, e = $4->size(); i != e; ++i) {
1957 Constant *C = (*$4)[i].C;
1958 if (C->getType() != STy->getElementType(i))
1959 error("Expected type '" + STy->getElementType(i)->getDescription() +
1960 "' for element #" + utostr(i) + " of packed struct initializer");
1961 Fields.push_back(C);
Reid Spencer280d8012006-12-01 23:40:53 +00001962 }
Reid Spencer950bf602007-01-26 08:19:09 +00001963 $$.C = ConstantStruct::get(STy, Fields);
1964 $$.S = $1.S;
1965 delete $1.T;
Reid Spencere77e35e2006-12-01 20:26:20 +00001966 delete $4;
Reid Spencere7c3c602006-11-30 06:36:44 +00001967 }
Reid Spencer950bf602007-01-26 08:19:09 +00001968 | Types '<' '{' '}' '>' {
1969 const StructType *STy = dyn_cast<StructType>($1.T->get());
1970 if (STy == 0)
1971 error("Cannot make packed struct constant with type: '" +
1972 $1.T->get()->getDescription() + "'");
1973 if (STy->getNumContainedTypes() != 0)
1974 error("Illegal number of initializers for packed structure type");
1975 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
1976 $$.S = $1.S;
1977 delete $1.T;
1978 }
1979 | Types NULL_TOK {
1980 const PointerType *PTy = dyn_cast<PointerType>($1.T->get());
1981 if (PTy == 0)
1982 error("Cannot make null pointer constant with type: '" +
1983 $1.T->get()->getDescription() + "'");
1984 $$.C = ConstantPointerNull::get(PTy);
1985 $$.S = $1.S;
1986 delete $1.T;
1987 }
1988 | Types UNDEF {
1989 $$.C = UndefValue::get($1.T->get());
1990 $$.S = $1.S;
1991 delete $1.T;
1992 }
1993 | Types SymbolicValueRef {
1994 const PointerType *Ty = dyn_cast<PointerType>($1.T->get());
1995 if (Ty == 0)
1996 error("Global const reference must be a pointer type, not" +
1997 $1.T->get()->getDescription());
1998
1999 // ConstExprs can exist in the body of a function, thus creating
2000 // GlobalValues whenever they refer to a variable. Because we are in
2001 // the context of a function, getExistingValue will search the functions
2002 // symbol table instead of the module symbol table for the global symbol,
2003 // which throws things all off. To get around this, we just tell
2004 // getExistingValue that we are at global scope here.
2005 //
2006 Function *SavedCurFn = CurFun.CurrentFunction;
2007 CurFun.CurrentFunction = 0;
2008 Value *V = getExistingValue(Ty, $2);
2009 CurFun.CurrentFunction = SavedCurFn;
2010
2011 // If this is an initializer for a constant pointer, which is referencing a
2012 // (currently) undefined variable, create a stub now that shall be replaced
2013 // in the future with the right type of variable.
2014 //
2015 if (V == 0) {
2016 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
2017 const PointerType *PT = cast<PointerType>(Ty);
2018
2019 // First check to see if the forward references value is already created!
2020 PerModuleInfo::GlobalRefsType::iterator I =
2021 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
2022
2023 if (I != CurModule.GlobalRefs.end()) {
2024 V = I->second; // Placeholder already exists, use it...
2025 $2.destroy();
2026 } else {
2027 std::string Name;
2028 if ($2.Type == ValID::NameVal) Name = $2.Name;
2029
2030 // Create the forward referenced global.
2031 GlobalValue *GV;
2032 if (const FunctionType *FTy =
2033 dyn_cast<FunctionType>(PT->getElementType())) {
2034 GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
2035 CurModule.CurrentModule);
2036 } else {
2037 GV = new GlobalVariable(PT->getElementType(), false,
2038 GlobalValue::ExternalLinkage, 0,
2039 Name, CurModule.CurrentModule);
2040 }
2041
2042 // Keep track of the fact that we have a forward ref to recycle it
2043 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
2044 V = GV;
2045 }
2046 }
2047 $$.C = cast<GlobalValue>(V);
2048 $$.S = $1.S;
2049 delete $1.T; // Free the type handle
2050 }
2051 | Types ConstExpr {
2052 if ($1.T->get() != $2.C->getType())
2053 error("Mismatched types for constant expression");
2054 $$ = $2;
2055 $$.S = $1.S;
2056 delete $1.T;
2057 }
2058 | Types ZEROINITIALIZER {
2059 const Type *Ty = $1.T->get();
2060 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
2061 error("Cannot create a null initialized value of this type");
2062 $$.C = Constant::getNullValue(Ty);
2063 $$.S = $1.S;
2064 delete $1.T;
2065 }
2066 | SIntType EINT64VAL { // integral constants
2067 const Type *Ty = $1.T;
2068 if (!ConstantInt::isValueValidForType(Ty, $2))
2069 error("Constant value doesn't fit in type");
2070 $$.C = ConstantInt::get(Ty, $2);
2071 $$.S = Signed;
2072 }
2073 | UIntType EUINT64VAL { // integral constants
2074 const Type *Ty = $1.T;
2075 if (!ConstantInt::isValueValidForType(Ty, $2))
2076 error("Constant value doesn't fit in type");
2077 $$.C = ConstantInt::get(Ty, $2);
2078 $$.S = Unsigned;
2079 }
2080 | BOOL TRUETOK { // Boolean constants
2081 $$.C = ConstantInt::get(Type::Int1Ty, true);
2082 $$.S = Unsigned;
2083 }
2084 | BOOL FALSETOK { // Boolean constants
2085 $$.C = ConstantInt::get(Type::Int1Ty, false);
2086 $$.S = Unsigned;
2087 }
2088 | FPType FPVAL { // Float & Double constants
2089 if (!ConstantFP::isValueValidForType($1.T, $2))
2090 error("Floating point constant invalid for type");
2091 $$.C = ConstantFP::get($1.T, $2);
2092 $$.S = Signless;
2093 }
2094 ;
2095
2096ConstExpr
2097 : CastOps '(' ConstVal TO Types ')' {
2098 const Type* SrcTy = $3.C->getType();
2099 const Type* DstTy = $5.T->get();
2100 Signedness SrcSign = $3.S;
2101 Signedness DstSign = $5.S;
2102 if (!SrcTy->isFirstClassType())
2103 error("cast constant expression from a non-primitive type: '" +
2104 SrcTy->getDescription() + "'");
2105 if (!DstTy->isFirstClassType())
2106 error("cast constant expression to a non-primitive type: '" +
2107 DstTy->getDescription() + "'");
2108 $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
2109 $$.S = DstSign;
2110 delete $5.T;
2111 }
2112 | GETELEMENTPTR '(' ConstVal IndexList ')' {
2113 const Type *Ty = $3.C->getType();
2114 if (!isa<PointerType>(Ty))
2115 error("GetElementPtr requires a pointer operand");
2116
2117 std::vector<Value*> VIndices;
2118 std::vector<Constant*> CIndices;
2119 upgradeGEPIndices($3.C->getType(), $4, VIndices, &CIndices);
2120
2121 delete $4;
2122 $$.C = ConstantExpr::getGetElementPtr($3.C, CIndices);
2123 $$.S = Signless;
2124 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002125 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002126 if (!$3.C->getType()->isInteger() ||
2127 cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
2128 error("Select condition must be bool type");
2129 if ($5.C->getType() != $7.C->getType())
2130 error("Select operand types must match");
2131 $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
2132 $$.S = Unsigned;
Reid Spencere7c3c602006-11-30 06:36:44 +00002133 }
2134 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002135 const Type *Ty = $3.C->getType();
2136 if (Ty != $5.C->getType())
2137 error("Binary operator types must match");
2138 // First, make sure we're dealing with the right opcode by upgrading from
2139 // obsolete versions.
2140 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2141
2142 // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
2143 // To retain backward compatibility with these early compilers, we emit a
2144 // cast to the appropriate integer type automatically if we are in the
2145 // broken case. See PR424 for more information.
2146 if (!isa<PointerType>(Ty)) {
2147 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2148 } else {
2149 const Type *IntPtrTy = 0;
2150 switch (CurModule.CurrentModule->getPointerSize()) {
2151 case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
2152 case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
2153 default: error("invalid pointer binary constant expr");
2154 }
2155 $$.C = ConstantExpr::get(Opcode,
2156 ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
2157 ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
2158 $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
2159 }
2160 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002161 }
2162 | LogicalOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002163 const Type* Ty = $3.C->getType();
2164 if (Ty != $5.C->getType())
2165 error("Logical operator types must match");
2166 if (!Ty->isInteger()) {
2167 if (!isa<PackedType>(Ty) ||
2168 !cast<PackedType>(Ty)->getElementType()->isInteger())
2169 error("Logical operator requires integer operands");
2170 }
2171 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2172 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2173 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002174 }
2175 | SetCondOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002176 const Type* Ty = $3.C->getType();
2177 if (Ty != $5.C->getType())
2178 error("setcc operand types must match");
2179 unsigned short pred;
2180 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
2181 $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
2182 $$.S = Unsigned;
Reid Spencere7c3c602006-11-30 06:36:44 +00002183 }
Reid Spencer57f28f92006-12-03 07:10:26 +00002184 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002185 if ($4.C->getType() != $6.C->getType())
2186 error("icmp operand types must match");
2187 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2188 $$.S = Unsigned;
Reid Spencer57f28f92006-12-03 07:10:26 +00002189 }
2190 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002191 if ($4.C->getType() != $6.C->getType())
2192 error("fcmp operand types must match");
2193 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2194 $$.S = Unsigned;
Reid Spencer229e9362006-12-02 22:14:11 +00002195 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002196 | ShiftOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002197 if (!$5.C->getType()->isInteger() ||
2198 cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
2199 error("Shift count for shift constant must be unsigned byte");
2200 if (!$3.C->getType()->isInteger())
2201 error("Shift constant expression requires integer operand");
2202 $$.C = ConstantExpr::get(getOtherOp($1, $3.S), $3.C, $5.C);
2203 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002204 }
2205 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002206 if (!ExtractElementInst::isValidOperands($3.C, $5.C))
2207 error("Invalid extractelement operands");
2208 $$.C = ConstantExpr::getExtractElement($3.C, $5.C);
2209 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002210 }
2211 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002212 if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
2213 error("Invalid insertelement operands");
2214 $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
2215 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002216 }
2217 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002218 if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
2219 error("Invalid shufflevector operands");
2220 $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
2221 $$.S = $3.S;
2222 }
2223 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002224
2225
2226// ConstVector - A list of comma separated constants.
Reid Spencere77e35e2006-12-01 20:26:20 +00002227ConstVector
Reid Spencer950bf602007-01-26 08:19:09 +00002228 : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
2229 | ConstVal {
2230 $$ = new std::vector<ConstInfo>();
2231 $$->push_back($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002232 }
Reid Spencere77e35e2006-12-01 20:26:20 +00002233 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002234
2235
2236// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
Reid Spencer950bf602007-01-26 08:19:09 +00002237GlobalType
2238 : GLOBAL { $$ = false; }
2239 | CONSTANT { $$ = true; }
2240 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002241
2242
2243//===----------------------------------------------------------------------===//
2244// Rules to match Modules
2245//===----------------------------------------------------------------------===//
2246
2247// Module rule: Capture the result of parsing the whole file into a result
2248// variable...
2249//
Reid Spencer950bf602007-01-26 08:19:09 +00002250Module
2251 : FunctionList {
2252 $$ = ParserResult = $1;
2253 CurModule.ModuleDone();
Reid Spencere7c3c602006-11-30 06:36:44 +00002254 }
Jeff Cohenac2dca92007-01-21 19:30:52 +00002255 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002256
Reid Spencer950bf602007-01-26 08:19:09 +00002257// FunctionList - A list of functions, preceeded by a constant pool.
2258//
2259FunctionList
2260 : FunctionList Function { $$ = $1; CurFun.FunctionDone(); }
2261 | FunctionList FunctionProto { $$ = $1; }
2262 | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }
2263 | FunctionList IMPLEMENTATION { $$ = $1; }
2264 | ConstPool {
2265 $$ = CurModule.CurrentModule;
2266 // Emit an error if there are any unresolved types left.
2267 if (!CurModule.LateResolveTypes.empty()) {
2268 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
2269 if (DID.Type == ValID::NameVal) {
2270 error("Reference to an undefined type: '"+DID.getName() + "'");
2271 } else {
2272 error("Reference to an undefined type: #" + itostr(DID.Num));
2273 }
2274 }
2275 }
2276 ;
Reid Spencer78720742006-12-02 20:21:22 +00002277
Reid Spencere7c3c602006-11-30 06:36:44 +00002278// ConstPool - Constants with optional names assigned to them.
Reid Spencer950bf602007-01-26 08:19:09 +00002279ConstPool
2280 : ConstPool OptAssign TYPE TypesV {
2281 // Eagerly resolve types. This is not an optimization, this is a
2282 // requirement that is due to the fact that we could have this:
2283 //
2284 // %list = type { %list * }
2285 // %list = type { %list * } ; repeated type decl
2286 //
2287 // If types are not resolved eagerly, then the two types will not be
2288 // determined to be the same type!
2289 //
2290 const Type* Ty = $4.T->get();
2291 ResolveTypeTo($2, Ty);
2292
2293 if (!setTypeName(Ty, $2) && !$2) {
2294 // If this is a named type that is not a redefinition, add it to the slot
2295 // table.
2296 CurModule.Types.push_back(Ty);
Reid Spencera50d5962006-12-02 04:11:07 +00002297 }
Reid Spencer950bf602007-01-26 08:19:09 +00002298 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002299 }
2300 | ConstPool FunctionProto { // Function prototypes can be in const pool
Reid Spencere7c3c602006-11-30 06:36:44 +00002301 }
2302 | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
Reid Spencere7c3c602006-11-30 06:36:44 +00002303 }
Reid Spencer950bf602007-01-26 08:19:09 +00002304 | ConstPool OptAssign OptLinkage GlobalType ConstVal {
2305 if ($5.C == 0)
2306 error("Global value initializer is not a constant");
2307 CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C);
2308 } GlobalVarAttributes {
2309 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002310 }
Reid Spencer950bf602007-01-26 08:19:09 +00002311 | ConstPool OptAssign EXTERNAL GlobalType Types {
2312 const Type *Ty = $5.T->get();
2313 CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0);
2314 delete $5.T;
2315 } GlobalVarAttributes {
2316 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002317 }
Reid Spencer950bf602007-01-26 08:19:09 +00002318 | ConstPool OptAssign DLLIMPORT GlobalType Types {
2319 const Type *Ty = $5.T->get();
2320 CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0);
2321 delete $5.T;
2322 } GlobalVarAttributes {
2323 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002324 }
Reid Spencer950bf602007-01-26 08:19:09 +00002325 | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
2326 const Type *Ty = $5.T->get();
2327 CurGV =
2328 ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0);
2329 delete $5.T;
2330 } GlobalVarAttributes {
2331 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002332 }
2333 | ConstPool TARGET TargetDefinition {
Reid Spencere7c3c602006-11-30 06:36:44 +00002334 }
2335 | ConstPool DEPLIBS '=' LibrariesDefinition {
Reid Spencere7c3c602006-11-30 06:36:44 +00002336 }
2337 | /* empty: end of list */ {
Reid Spencer950bf602007-01-26 08:19:09 +00002338 }
2339 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002340
Reid Spencer950bf602007-01-26 08:19:09 +00002341AsmBlock
2342 : STRINGCONSTANT {
2343 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2344 char *EndStr = UnEscapeLexed($1, true);
2345 std::string NewAsm($1, EndStr);
2346 free($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002347
Reid Spencer950bf602007-01-26 08:19:09 +00002348 if (AsmSoFar.empty())
2349 CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
2350 else
2351 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
2352 }
2353 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002354
Reid Spencer950bf602007-01-26 08:19:09 +00002355BigOrLittle
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00002356 : BIG { $$ = Module::BigEndian; }
Reid Spencer950bf602007-01-26 08:19:09 +00002357 | LITTLE { $$ = Module::LittleEndian; }
2358 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002359
2360TargetDefinition
2361 : ENDIAN '=' BigOrLittle {
Reid Spencer950bf602007-01-26 08:19:09 +00002362 CurModule.setEndianness($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002363 }
2364 | POINTERSIZE '=' EUINT64VAL {
Reid Spencer950bf602007-01-26 08:19:09 +00002365 if ($3 == 32)
2366 CurModule.setPointerSize(Module::Pointer32);
2367 else if ($3 == 64)
2368 CurModule.setPointerSize(Module::Pointer64);
2369 else
2370 error("Invalid pointer size: '" + utostr($3) + "'");
Reid Spencere7c3c602006-11-30 06:36:44 +00002371 }
2372 | TRIPLE '=' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002373 CurModule.CurrentModule->setTargetTriple($3);
2374 free($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002375 }
2376 | DATALAYOUT '=' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002377 CurModule.CurrentModule->setDataLayout($3);
2378 free($3);
2379 }
2380 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002381
2382LibrariesDefinition
Reid Spencer950bf602007-01-26 08:19:09 +00002383 : '[' LibList ']'
2384 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002385
2386LibList
2387 : LibList ',' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002388 CurModule.CurrentModule->addLibrary($3);
2389 free($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002390 }
Reid Spencer950bf602007-01-26 08:19:09 +00002391 | STRINGCONSTANT {
2392 CurModule.CurrentModule->addLibrary($1);
2393 free($1);
2394 }
2395 | /* empty: end of list */ { }
2396 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002397
2398//===----------------------------------------------------------------------===//
2399// Rules to match Function Headers
2400//===----------------------------------------------------------------------===//
2401
Reid Spencer950bf602007-01-26 08:19:09 +00002402Name
2403 : VAR_ID | STRINGCONSTANT
2404 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002405
Reid Spencer950bf602007-01-26 08:19:09 +00002406OptName
2407 : Name
2408 | /*empty*/ { $$ = 0; }
2409 ;
2410
2411ArgVal
2412 : Types OptName {
2413 if ($1.T->get() == Type::VoidTy)
2414 error("void typed arguments are invalid");
2415 $$ = new std::pair<PATypeInfo, char*>($1, $2);
Reid Spencer52402b02007-01-02 05:45:11 +00002416 }
Reid Spencer950bf602007-01-26 08:19:09 +00002417 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002418
Reid Spencer950bf602007-01-26 08:19:09 +00002419ArgListH
2420 : ArgListH ',' ArgVal {
2421 $$ = $1;
2422 $$->push_back(*$3);
Reid Spencere77e35e2006-12-01 20:26:20 +00002423 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00002424 }
2425 | ArgVal {
Reid Spencer950bf602007-01-26 08:19:09 +00002426 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2427 $$->push_back(*$1);
2428 delete $1;
Reid Spencere7c3c602006-11-30 06:36:44 +00002429 }
Reid Spencer950bf602007-01-26 08:19:09 +00002430 ;
2431
2432ArgList
2433 : ArgListH { $$ = $1; }
Reid Spencere7c3c602006-11-30 06:36:44 +00002434 | ArgListH ',' DOTDOTDOT {
Reid Spencere7c3c602006-11-30 06:36:44 +00002435 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00002436 PATypeInfo VoidTI;
2437 VoidTI.T = new PATypeHolder(Type::VoidTy);
2438 VoidTI.S = Signless;
2439 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
Reid Spencere7c3c602006-11-30 06:36:44 +00002440 }
2441 | DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00002442 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2443 PATypeInfo VoidTI;
2444 VoidTI.T = new PATypeHolder(Type::VoidTy);
2445 VoidTI.S = Signless;
2446 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
Reid Spencere7c3c602006-11-30 06:36:44 +00002447 }
Reid Spencer950bf602007-01-26 08:19:09 +00002448 | /* empty */ { $$ = 0; }
2449 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002450
Reid Spencer71d2ec92006-12-31 06:02:26 +00002451FunctionHeaderH
2452 : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00002453 UnEscapeLexed($3);
2454 std::string FunctionName($3);
2455 free($3); // Free strdup'd memory!
Reid Spencere7c3c602006-11-30 06:36:44 +00002456
Reid Spencer950bf602007-01-26 08:19:09 +00002457 const Type* RetTy = $2.T->get();
2458
2459 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
2460 error("LLVM functions cannot return aggregate types");
2461
2462 std::vector<const Type*> ParamTypeList;
2463
2464 // In LLVM 2.0 the signatures of three varargs intrinsics changed to take
2465 // i8*. We check here for those names and override the parameter list
2466 // types to ensure the prototype is correct.
2467 if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
2468 ParamTypeList.push_back(PointerType::get(Type::Int8Ty));
2469 } else if (FunctionName == "llvm.va_copy") {
2470 ParamTypeList.push_back(PointerType::get(Type::Int8Ty));
2471 ParamTypeList.push_back(PointerType::get(Type::Int8Ty));
2472 } else if ($5) { // If there are arguments...
2473 for (std::vector<std::pair<PATypeInfo,char*> >::iterator
2474 I = $5->begin(), E = $5->end(); I != E; ++I) {
2475 const Type *Ty = I->first.T->get();
2476 ParamTypeList.push_back(Ty);
2477 }
2478 }
2479
2480 bool isVarArg =
2481 ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2482 if (isVarArg) ParamTypeList.pop_back();
2483
2484 const FunctionType *FT = FunctionType::get(RetTy, ParamTypeList, isVarArg);
2485 const PointerType *PFT = PointerType::get(FT);
2486 delete $2.T;
2487
2488 ValID ID;
2489 if (!FunctionName.empty()) {
2490 ID = ValID::create((char*)FunctionName.c_str());
2491 } else {
2492 ID = ValID::create((int)CurModule.Values[PFT].size());
2493 }
2494
2495 Function *Fn = 0;
2496 // See if this function was forward referenced. If so, recycle the object.
2497 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2498 // Move the function to the end of the list, from whereever it was
2499 // previously inserted.
2500 Fn = cast<Function>(FWRef);
2501 CurModule.CurrentModule->getFunctionList().remove(Fn);
2502 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2503 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2504 (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
2505 // If this is the case, either we need to be a forward decl, or it needs
2506 // to be.
2507 if (!CurFun.isDeclare && !Fn->isExternal())
2508 error("Redefinition of function '" + FunctionName + "'");
2509
2510 // Make sure to strip off any argument names so we can't get conflicts.
2511 if (Fn->isExternal())
2512 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2513 AI != AE; ++AI)
2514 AI->setName("");
2515 } else { // Not already defined?
2516 Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
2517 CurModule.CurrentModule);
2518
2519 InsertValue(Fn, CurModule.Values);
2520 }
2521
2522 CurFun.FunctionStart(Fn);
2523
2524 if (CurFun.isDeclare) {
2525 // If we have declaration, always overwrite linkage. This will allow us
2526 // to correctly handle cases, when pointer to function is passed as
2527 // argument to another function.
2528 Fn->setLinkage(CurFun.Linkage);
2529 }
2530 Fn->setCallingConv($1);
2531 Fn->setAlignment($8);
2532 if ($7) {
2533 Fn->setSection($7);
2534 free($7);
2535 }
2536
2537 // Add all of the arguments we parsed to the function...
2538 if ($5) { // Is null if empty...
2539 if (isVarArg) { // Nuke the last entry
2540 assert($5->back().first.T->get() == Type::VoidTy &&
2541 $5->back().second == 0 && "Not a varargs marker");
2542 delete $5->back().first.T;
2543 $5->pop_back(); // Delete the last entry
2544 }
2545 Function::arg_iterator ArgIt = Fn->arg_begin();
2546 for (std::vector<std::pair<PATypeInfo,char*> >::iterator
2547 I = $5->begin(), E = $5->end(); I != E; ++I, ++ArgIt) {
2548 delete I->first.T; // Delete the typeholder...
2549 setValueName(ArgIt, I->second); // Insert arg into symtab...
2550 InsertValue(ArgIt);
2551 }
2552 delete $5; // We're now done with the argument list
2553 }
2554 }
2555 ;
2556
2557BEGIN
2558 : BEGINTOK | '{' // Allow BEGIN or '{' to start a function
Jeff Cohenac2dca92007-01-21 19:30:52 +00002559 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002560
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002561FunctionHeader
2562 : OptLinkage FunctionHeaderH BEGIN {
Reid Spencer950bf602007-01-26 08:19:09 +00002563 $$ = CurFun.CurrentFunction;
2564
2565 // Make sure that we keep track of the linkage type even if there was a
2566 // previous "declare".
2567 $$->setLinkage($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002568 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002569 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002570
Reid Spencer950bf602007-01-26 08:19:09 +00002571END
2572 : ENDTOK | '}' // Allow end of '}' to end a function
2573 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002574
Reid Spencer950bf602007-01-26 08:19:09 +00002575Function
2576 : BasicBlockList END {
2577 $$ = $1;
2578 };
Reid Spencere7c3c602006-11-30 06:36:44 +00002579
Reid Spencere77e35e2006-12-01 20:26:20 +00002580FnDeclareLinkage
Reid Spencer950bf602007-01-26 08:19:09 +00002581 : /*default*/
2582 | DLLIMPORT { CurFun.Linkage = GlobalValue::DLLImportLinkage; }
2583 | EXTERN_WEAK { CurFun.Linkage = GlobalValue::ExternalWeakLinkage; }
Reid Spencere7c3c602006-11-30 06:36:44 +00002584 ;
2585
2586FunctionProto
Reid Spencer950bf602007-01-26 08:19:09 +00002587 : DECLARE { CurFun.isDeclare = true; } FnDeclareLinkage FunctionHeaderH {
2588 $$ = CurFun.CurrentFunction;
2589 CurFun.FunctionDone();
2590
2591 }
2592 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002593
2594//===----------------------------------------------------------------------===//
2595// Rules to match Basic Blocks
2596//===----------------------------------------------------------------------===//
2597
Reid Spencer950bf602007-01-26 08:19:09 +00002598OptSideEffect
2599 : /* empty */ { $$ = false; }
2600 | SIDEEFFECT { $$ = true; }
2601 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002602
Reid Spencere77e35e2006-12-01 20:26:20 +00002603ConstValueRef
Reid Spencer950bf602007-01-26 08:19:09 +00002604 // A reference to a direct constant
2605 : ESINT64VAL { $$ = ValID::create($1); }
2606 | EUINT64VAL { $$ = ValID::create($1); }
2607 | FPVAL { $$ = ValID::create($1); }
2608 | TRUETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true)); }
2609 | FALSETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); }
2610 | NULL_TOK { $$ = ValID::createNull(); }
2611 | UNDEF { $$ = ValID::createUndef(); }
2612 | ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
2613 | '<' ConstVector '>' { // Nonempty unsized packed vector
2614 const Type *ETy = (*$2)[0].C->getType();
2615 int NumElements = $2->size();
2616 PackedType* pt = PackedType::get(ETy, NumElements);
2617 PATypeHolder* PTy = new PATypeHolder(
2618 HandleUpRefs(PackedType::get(ETy, NumElements)));
2619
2620 // Verify all elements are correct type!
2621 std::vector<Constant*> Elems;
2622 for (unsigned i = 0; i < $2->size(); i++) {
2623 Constant *C = (*$2)[i].C;
2624 const Type *CTy = C->getType();
2625 if (ETy != CTy)
2626 error("Element #" + utostr(i) + " is not of type '" +
2627 ETy->getDescription() +"' as required!\nIt is of type '" +
2628 CTy->getDescription() + "'");
2629 Elems.push_back(C);
Reid Spencere7c3c602006-11-30 06:36:44 +00002630 }
Reid Spencer950bf602007-01-26 08:19:09 +00002631 $$ = ValID::create(ConstantPacked::get(pt, Elems));
2632 delete PTy; delete $2;
2633 }
2634 | ConstExpr {
2635 $$ = ValID::create($1.C);
2636 }
2637 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2638 char *End = UnEscapeLexed($3, true);
2639 std::string AsmStr = std::string($3, End);
2640 End = UnEscapeLexed($5, true);
2641 std::string Constraints = std::string($5, End);
2642 $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
2643 free($3);
2644 free($5);
2645 }
2646 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002647
Reid Spencer950bf602007-01-26 08:19:09 +00002648// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2649// another value.
2650//
2651SymbolicValueRef
2652 : INTVAL { $$ = ValID::create($1); }
2653 | Name { $$ = ValID::create($1); }
2654 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002655
2656// ValueRef - A reference to a definition... either constant or symbolic
Reid Spencerf459d392006-12-02 16:19:52 +00002657ValueRef
Reid Spencer950bf602007-01-26 08:19:09 +00002658 : SymbolicValueRef | ConstValueRef
Reid Spencerf459d392006-12-02 16:19:52 +00002659 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002660
Reid Spencer950bf602007-01-26 08:19:09 +00002661
Reid Spencere7c3c602006-11-30 06:36:44 +00002662// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2663// type immediately preceeds the value reference, and allows complex constant
2664// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
Reid Spencer950bf602007-01-26 08:19:09 +00002665ResolvedVal
2666 : Types ValueRef {
2667 const Type *Ty = $1.T->get();
2668 $$.S = $1.S;
2669 $$.V = getVal(Ty, $2);
2670 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002671 }
Reid Spencer950bf602007-01-26 08:19:09 +00002672 ;
2673
2674BasicBlockList
2675 : BasicBlockList BasicBlock {
2676 $$ = $1;
2677 }
2678 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2679 $$ = $1;
Reid Spencere7c3c602006-11-30 06:36:44 +00002680 };
2681
2682
2683// Basic blocks are terminated by branching instructions:
2684// br, br/cc, switch, ret
2685//
Reid Spencer950bf602007-01-26 08:19:09 +00002686BasicBlock
2687 : InstructionList OptAssign BBTerminatorInst {
2688 setValueName($3, $2);
2689 InsertValue($3);
2690 $1->getInstList().push_back($3);
2691 InsertValue($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002692 $$ = $1;
2693 }
Reid Spencer950bf602007-01-26 08:19:09 +00002694 ;
2695
2696InstructionList
2697 : InstructionList Inst {
2698 if ($2.I)
2699 $1->getInstList().push_back($2.I);
2700 $$ = $1;
2701 }
2702 | /* empty */ {
2703 $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
2704 // Make sure to move the basic block to the correct location in the
2705 // function, instead of leaving it inserted wherever it was first
2706 // referenced.
2707 Function::BasicBlockListType &BBL =
2708 CurFun.CurrentFunction->getBasicBlockList();
2709 BBL.splice(BBL.end(), BBL, $$);
2710 }
2711 | LABELSTR {
2712 $$ = CurBB = getBBVal(ValID::create($1), true);
2713 // Make sure to move the basic block to the correct location in the
2714 // function, instead of leaving it inserted wherever it was first
2715 // referenced.
2716 Function::BasicBlockListType &BBL =
2717 CurFun.CurrentFunction->getBasicBlockList();
2718 BBL.splice(BBL.end(), BBL, $$);
2719 }
2720 ;
2721
2722Unwind : UNWIND | EXCEPT;
2723
2724BBTerminatorInst
2725 : RET ResolvedVal { // Return with a result...
2726 $$ = new ReturnInst($2.V);
2727 }
2728 | RET VOID { // Return with no result...
2729 $$ = new ReturnInst();
2730 }
2731 | BR LABEL ValueRef { // Unconditional Branch...
2732 BasicBlock* tmpBB = getBBVal($3);
2733 $$ = new BranchInst(tmpBB);
2734 } // Conditional Branch...
2735 | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2736 BasicBlock* tmpBBA = getBBVal($6);
2737 BasicBlock* tmpBBB = getBBVal($9);
2738 Value* tmpVal = getVal(Type::Int1Ty, $3);
2739 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2740 }
2741 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2742 Value* tmpVal = getVal($2.T, $3);
2743 BasicBlock* tmpBB = getBBVal($6);
2744 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2745 $$ = S;
2746 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2747 E = $8->end();
2748 for (; I != E; ++I) {
2749 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2750 S->addCase(CI, I->second);
2751 else
2752 error("Switch case is constant, but not a simple integer");
2753 }
2754 delete $8;
2755 }
2756 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2757 Value* tmpVal = getVal($2.T, $3);
2758 BasicBlock* tmpBB = getBBVal($6);
2759 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2760 $$ = S;
2761 }
2762 | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
2763 TO LABEL ValueRef Unwind LABEL ValueRef {
2764 const PointerType *PFTy;
2765 const FunctionType *Ty;
2766
2767 if (!(PFTy = dyn_cast<PointerType>($3.T->get())) ||
2768 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2769 // Pull out the types of all of the arguments...
2770 std::vector<const Type*> ParamTypes;
2771 if ($6) {
2772 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
2773 I != E; ++I)
2774 ParamTypes.push_back((*I).V->getType());
2775 }
2776 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2777 if (isVarArg) ParamTypes.pop_back();
2778 Ty = FunctionType::get($3.T->get(), ParamTypes, isVarArg);
2779 PFTy = PointerType::get(Ty);
2780 }
2781 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2782 BasicBlock *Normal = getBBVal($10);
2783 BasicBlock *Except = getBBVal($13);
2784
2785 // Create the call node...
2786 if (!$6) { // Has no arguments?
2787 $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
2788 } else { // Has arguments?
2789 // Loop through FunctionType's arguments and ensure they are specified
2790 // correctly!
2791 //
2792 FunctionType::param_iterator I = Ty->param_begin();
2793 FunctionType::param_iterator E = Ty->param_end();
2794 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
2795
2796 std::vector<Value*> Args;
2797 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2798 if ((*ArgI).V->getType() != *I)
2799 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
2800 (*I)->getDescription() + "'");
2801 Args.push_back((*ArgI).V);
2802 }
2803
2804 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2805 error("Invalid number of parameters detected");
2806
2807 $$ = new InvokeInst(V, Normal, Except, Args);
2808 }
2809 cast<InvokeInst>($$)->setCallingConv($2);
2810 delete $3.T;
2811 delete $6;
2812 }
2813 | Unwind {
2814 $$ = new UnwindInst();
2815 }
2816 | UNREACHABLE {
2817 $$ = new UnreachableInst();
2818 }
2819 ;
2820
2821JumpTable
2822 : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2823 $$ = $1;
2824 Constant *V = cast<Constant>(getExistingValue($2.T, $3));
2825
2826 if (V == 0)
2827 error("May only switch on a constant pool value");
2828
2829 BasicBlock* tmpBB = getBBVal($6);
2830 $$->push_back(std::make_pair(V, tmpBB));
2831 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002832 | IntType ConstValueRef ',' LABEL ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002833 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2834 Constant *V = cast<Constant>(getExistingValue($1.T, $2));
2835
2836 if (V == 0)
2837 error("May only switch on a constant pool value");
2838
2839 BasicBlock* tmpBB = getBBVal($5);
2840 $$->push_back(std::make_pair(V, tmpBB));
2841 }
2842 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002843
2844Inst
2845 : OptAssign InstVal {
Reid Spencer950bf602007-01-26 08:19:09 +00002846 bool omit = false;
2847 if ($1)
2848 if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
2849 if (BCI->getSrcTy() == BCI->getDestTy() &&
2850 BCI->getOperand(0)->getName() == $1)
2851 // This is a useless bit cast causing a name redefinition. It is
2852 // a bit cast from a type to the same type of an operand with the
2853 // same name as the name we would give this instruction. Since this
2854 // instruction results in no code generation, it is safe to omit
2855 // the instruction. This situation can occur because of collapsed
2856 // type planes. For example:
2857 // %X = add int %Y, %Z
2858 // %X = cast int %Y to uint
2859 // After upgrade, this looks like:
2860 // %X = add i32 %Y, %Z
2861 // %X = bitcast i32 to i32
2862 // The bitcast is clearly useless so we omit it.
2863 omit = true;
2864 if (omit) {
2865 $$.I = 0;
2866 $$.S = Signless;
2867 } else {
2868 setValueName($2.I, $1);
2869 InsertValue($2.I);
2870 $$ = $2;
Reid Spencerf5626a32007-01-01 01:20:41 +00002871 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002872 };
2873
Reid Spencer950bf602007-01-26 08:19:09 +00002874PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2875 $$.P = new std::list<std::pair<Value*, BasicBlock*> >();
2876 $$.S = $1.S;
2877 Value* tmpVal = getVal($1.T->get(), $3);
2878 BasicBlock* tmpBB = getBBVal($5);
2879 $$.P->push_back(std::make_pair(tmpVal, tmpBB));
2880 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002881 }
2882 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
Reid Spencere7c3c602006-11-30 06:36:44 +00002883 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00002884 Value* tmpVal = getVal($1.P->front().first->getType(), $4);
2885 BasicBlock* tmpBB = getBBVal($6);
2886 $1.P->push_back(std::make_pair(tmpVal, tmpBB));
2887 }
2888 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002889
Reid Spencer950bf602007-01-26 08:19:09 +00002890ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
2891 $$ = new std::vector<ValueInfo>();
Reid Spencerf8483652006-12-02 15:16:01 +00002892 $$->push_back($1);
2893 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002894 | ValueRefList ',' ResolvedVal {
Reid Spencere7c3c602006-11-30 06:36:44 +00002895 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00002896 $1->push_back($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002897 };
2898
2899// ValueRefListE - Just like ValueRefList, except that it may also be empty!
2900ValueRefListE
Reid Spencer950bf602007-01-26 08:19:09 +00002901 : ValueRefList
2902 | /*empty*/ { $$ = 0; }
Reid Spencere7c3c602006-11-30 06:36:44 +00002903 ;
2904
2905OptTailCall
2906 : TAIL CALL {
Reid Spencer950bf602007-01-26 08:19:09 +00002907 $$ = true;
Reid Spencere7c3c602006-11-30 06:36:44 +00002908 }
Reid Spencer950bf602007-01-26 08:19:09 +00002909 | CALL {
2910 $$ = false;
2911 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002912 ;
2913
Reid Spencer950bf602007-01-26 08:19:09 +00002914InstVal
2915 : ArithmeticOps Types ValueRef ',' ValueRef {
2916 const Type* Ty = $2.T->get();
2917 if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<PackedType>(Ty))
2918 error("Arithmetic operator requires integer, FP, or packed operands");
2919 if (isa<PackedType>(Ty) &&
2920 ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
2921 error("Remainder not supported on packed types");
2922 // Upgrade the opcode from obsolete versions before we do anything with it.
2923 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
2924 Value* val1 = getVal(Ty, $3);
2925 Value* val2 = getVal(Ty, $5);
2926 $$.I = BinaryOperator::create(Opcode, val1, val2);
2927 if ($$.I == 0)
2928 error("binary operator returned null");
2929 $$.S = $2.S;
2930 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002931 }
2932 | LogicalOps Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002933 const Type *Ty = $2.T->get();
2934 if (!Ty->isInteger()) {
2935 if (!isa<PackedType>(Ty) ||
2936 !cast<PackedType>(Ty)->getElementType()->isInteger())
2937 error("Logical operator requires integral operands");
2938 }
2939 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
2940 Value* tmpVal1 = getVal(Ty, $3);
2941 Value* tmpVal2 = getVal(Ty, $5);
2942 $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
2943 if ($$.I == 0)
2944 error("binary operator returned null");
2945 $$.S = $2.S;
2946 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002947 }
2948 | SetCondOps Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002949 const Type* Ty = $2.T->get();
2950 if(isa<PackedType>(Ty))
2951 error("PackedTypes currently not supported in setcc instructions");
2952 unsigned short pred;
2953 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
2954 Value* tmpVal1 = getVal(Ty, $3);
2955 Value* tmpVal2 = getVal(Ty, $5);
2956 $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
2957 if ($$.I == 0)
2958 error("binary operator returned null");
2959 $$.S = Unsigned;
2960 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002961 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002962 | ICMP IPredicates Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002963 const Type *Ty = $3.T->get();
2964 if (isa<PackedType>(Ty))
2965 error("PackedTypes currently not supported in icmp instructions");
2966 else if (!Ty->isInteger() && !isa<PointerType>(Ty))
2967 error("icmp requires integer or pointer typed operands");
2968 Value* tmpVal1 = getVal(Ty, $4);
2969 Value* tmpVal2 = getVal(Ty, $6);
2970 $$.I = new ICmpInst($2, tmpVal1, tmpVal2);
2971 $$.S = Unsigned;
2972 delete $3.T;
Reid Spencer57f28f92006-12-03 07:10:26 +00002973 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002974 | FCMP FPredicates Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002975 const Type *Ty = $3.T->get();
2976 if (isa<PackedType>(Ty))
2977 error("PackedTypes currently not supported in fcmp instructions");
2978 else if (!Ty->isFloatingPoint())
2979 error("fcmp instruction requires floating point operands");
2980 Value* tmpVal1 = getVal(Ty, $4);
2981 Value* tmpVal2 = getVal(Ty, $6);
2982 $$.I = new FCmpInst($2, tmpVal1, tmpVal2);
2983 $$.S = Unsigned;
2984 delete $3.T;
2985 }
2986 | NOT ResolvedVal {
2987 warning("Use of obsolete 'not' instruction: Replacing with 'xor");
2988 const Type *Ty = $2.V->getType();
2989 Value *Ones = ConstantInt::getAllOnesValue(Ty);
2990 if (Ones == 0)
2991 error("Expected integral type for not instruction");
2992 $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
2993 if ($$.I == 0)
2994 error("Could not create a xor instruction");
2995 $$.S = $2.S
Reid Spencer229e9362006-12-02 22:14:11 +00002996 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002997 | ShiftOps ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00002998 if (!$4.V->getType()->isInteger() ||
2999 cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
3000 error("Shift amount must be int8");
3001 if (!$2.V->getType()->isInteger())
3002 error("Shift constant expression requires integer operand");
3003 $$.I = new ShiftInst(getOtherOp($1, $2.S), $2.V, $4.V);
3004 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003005 }
Reid Spencerfcb5df82006-12-01 22:34:43 +00003006 | CastOps ResolvedVal TO Types {
Reid Spencer950bf602007-01-26 08:19:09 +00003007 const Type *DstTy = $4.T->get();
3008 if (!DstTy->isFirstClassType())
3009 error("cast instruction to a non-primitive type: '" +
3010 DstTy->getDescription() + "'");
3011 $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
3012 $$.S = $4.S;
3013 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003014 }
3015 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003016 if (!$2.V->getType()->isInteger() ||
3017 cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
3018 error("select condition must be bool");
3019 if ($4.V->getType() != $6.V->getType())
3020 error("select value types should match");
3021 $$.I = new SelectInst($2.V, $4.V, $6.V);
3022 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003023 }
3024 | VAARG ResolvedVal ',' Types {
Reid Spencer950bf602007-01-26 08:19:09 +00003025 const Type *Ty = $4.T->get();
3026 NewVarArgs = true;
3027 $$.I = new VAArgInst($2.V, Ty);
3028 $$.S = $4.S;
3029 delete $4.T;
3030 }
3031 | VAARG_old ResolvedVal ',' Types {
3032 const Type* ArgTy = $2.V->getType();
3033 const Type* DstTy = $4.T->get();
3034 ObsoleteVarArgs = true;
3035 Function* NF = cast<Function>(CurModule.CurrentModule->
3036 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3037
3038 //b = vaarg a, t ->
3039 //foo = alloca 1 of t
3040 //bar = vacopy a
3041 //store bar -> foo
3042 //b = vaarg foo, t
3043 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
3044 CurBB->getInstList().push_back(foo);
3045 CallInst* bar = new CallInst(NF, $2.V);
3046 CurBB->getInstList().push_back(bar);
3047 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3048 $$.I = new VAArgInst(foo, DstTy);
3049 $$.S = $4.S;
3050 delete $4.T;
3051 }
3052 | VANEXT_old ResolvedVal ',' Types {
3053 const Type* ArgTy = $2.V->getType();
3054 const Type* DstTy = $4.T->get();
3055 ObsoleteVarArgs = true;
3056 Function* NF = cast<Function>(CurModule.CurrentModule->
3057 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3058
3059 //b = vanext a, t ->
3060 //foo = alloca 1 of t
3061 //bar = vacopy a
3062 //store bar -> foo
3063 //tmp = vaarg foo, t
3064 //b = load foo
3065 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
3066 CurBB->getInstList().push_back(foo);
3067 CallInst* bar = new CallInst(NF, $2.V);
3068 CurBB->getInstList().push_back(bar);
3069 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3070 Instruction* tmp = new VAArgInst(foo, DstTy);
3071 CurBB->getInstList().push_back(tmp);
3072 $$.I = new LoadInst(foo);
3073 $$.S = $4.S;
3074 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003075 }
3076 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003077 if (!ExtractElementInst::isValidOperands($2.V, $4.V))
3078 error("Invalid extractelement operands");
3079 $$.I = new ExtractElementInst($2.V, $4.V);
3080 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003081 }
3082 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003083 if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
3084 error("Invalid insertelement operands");
3085 $$.I = new InsertElementInst($2.V, $4.V, $6.V);
3086 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003087 }
3088 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003089 if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
3090 error("Invalid shufflevector operands");
3091 $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
3092 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003093 }
3094 | PHI_TOK PHIList {
Reid Spencer950bf602007-01-26 08:19:09 +00003095 const Type *Ty = $2.P->front().first->getType();
3096 if (!Ty->isFirstClassType())
3097 error("PHI node operands must be of first class type");
3098 PHINode *PHI = new PHINode(Ty);
3099 PHI->reserveOperandSpace($2.P->size());
3100 while ($2.P->begin() != $2.P->end()) {
3101 if ($2.P->front().first->getType() != Ty)
3102 error("All elements of a PHI node must be of the same type");
3103 PHI->addIncoming($2.P->front().first, $2.P->front().second);
3104 $2.P->pop_front();
3105 }
3106 $$.I = PHI;
3107 $$.S = $2.S;
3108 delete $2.P; // Free the list...
Reid Spencere7c3c602006-11-30 06:36:44 +00003109 }
3110 | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00003111
3112 // Handle the short call syntax
3113 const PointerType *PFTy;
3114 const FunctionType *FTy;
3115 if (!(PFTy = dyn_cast<PointerType>($3.T->get())) ||
3116 !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3117 // Pull out the types of all of the arguments...
3118 std::vector<const Type*> ParamTypes;
3119 if ($6) {
3120 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
3121 I != E; ++I)
3122 ParamTypes.push_back((*I).V->getType());
Reid Spencerc4d96252007-01-13 00:03:30 +00003123 }
Reid Spencer950bf602007-01-26 08:19:09 +00003124
3125 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
3126 if (isVarArg) ParamTypes.pop_back();
3127
3128 const Type *RetTy = $3.T->get();
3129 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
3130 error("Functions cannot return aggregate types");
3131
3132 FTy = FunctionType::get(RetTy, ParamTypes, isVarArg);
3133 PFTy = PointerType::get(FTy);
Reid Spencerf8483652006-12-02 15:16:01 +00003134 }
Reid Spencer950bf602007-01-26 08:19:09 +00003135
3136 // First upgrade any intrinsic calls.
3137 std::vector<Value*> Args;
3138 if ($6)
3139 for (unsigned i = 0, e = $6->size(); i < e; ++i)
3140 Args.push_back((*$6)[i].V);
3141 Instruction *Inst = upgradeIntrinsicCall(FTy, $4, Args);
3142
3143 // If we got an upgraded intrinsic
3144 if (Inst) {
3145 $$.I = Inst;
3146 $$.S = Signless;
3147 } else {
3148 // Get the function we're calling
3149 Value *V = getVal(PFTy, $4);
3150
3151 // Check the argument values match
3152 if (!$6) { // Has no arguments?
3153 // Make sure no arguments is a good thing!
3154 if (FTy->getNumParams() != 0)
3155 error("No arguments passed to a function that expects arguments");
3156 } else { // Has arguments?
3157 // Loop through FunctionType's arguments and ensure they are specified
3158 // correctly!
3159 //
3160 FunctionType::param_iterator I = FTy->param_begin();
3161 FunctionType::param_iterator E = FTy->param_end();
3162 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
3163
3164 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
3165 if ((*ArgI).V->getType() != *I)
3166 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
3167 (*I)->getDescription() + "'");
3168
3169 if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
3170 error("Invalid number of parameters detected");
3171 }
3172
3173 // Create the call instruction
3174 CallInst *CI = new CallInst(V, Args);
3175 CI->setTailCall($1);
3176 CI->setCallingConv($2);
3177 $$.I = CI;
3178 $$.S = $3.S;
3179 }
3180 delete $3.T;
3181 delete $6;
Reid Spencere7c3c602006-11-30 06:36:44 +00003182 }
Reid Spencer950bf602007-01-26 08:19:09 +00003183 | MemoryInst {
3184 $$ = $1;
3185 }
3186 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00003187
3188
3189// IndexList - List of indices for GEP based instructions...
3190IndexList
Reid Spencer950bf602007-01-26 08:19:09 +00003191 : ',' ValueRefList { $$ = $2; }
3192 | /* empty */ { $$ = new std::vector<ValueInfo>(); }
Reid Spencere7c3c602006-11-30 06:36:44 +00003193 ;
3194
3195OptVolatile
Reid Spencer950bf602007-01-26 08:19:09 +00003196 : VOLATILE { $$ = true; }
3197 | /* empty */ { $$ = false; }
Reid Spencere7c3c602006-11-30 06:36:44 +00003198 ;
3199
Reid Spencer950bf602007-01-26 08:19:09 +00003200MemoryInst
3201 : MALLOC Types OptCAlign {
3202 const Type *Ty = $2.T->get();
3203 $$.S = $2.S;
3204 $$.I = new MallocInst(Ty, 0, $3);
3205 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003206 }
3207 | MALLOC Types ',' UINT ValueRef OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003208 const Type *Ty = $2.T->get();
3209 $$.S = $2.S;
3210 $$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
3211 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003212 }
3213 | ALLOCA Types OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003214 const Type *Ty = $2.T->get();
3215 $$.S = $2.S;
3216 $$.I = new AllocaInst(Ty, 0, $3);
3217 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003218 }
3219 | ALLOCA Types ',' UINT ValueRef OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003220 const Type *Ty = $2.T->get();
3221 $$.S = $2.S;
3222 $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
3223 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003224 }
3225 | FREE ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003226 const Type *PTy = $2.V->getType();
3227 if (!isa<PointerType>(PTy))
3228 error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
3229 $$.I = new FreeInst($2.V);
3230 $$.S = Signless;
Reid Spencere7c3c602006-11-30 06:36:44 +00003231 }
3232 | OptVolatile LOAD Types ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003233 const Type* Ty = $3.T->get();
3234 $$.S = $3.S;
3235 if (!isa<PointerType>(Ty))
3236 error("Can't load from nonpointer type: " + Ty->getDescription());
3237 if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
3238 error("Can't load from pointer of non-first-class type: " +
3239 Ty->getDescription());
3240 Value* tmpVal = getVal(Ty, $4);
3241 $$.I = new LoadInst(tmpVal, "", $1);
3242 delete $3.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003243 }
3244 | OptVolatile STORE ResolvedVal ',' Types ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003245 const PointerType *PTy = dyn_cast<PointerType>($5.T->get());
3246 if (!PTy)
3247 error("Can't store to a nonpointer type: " +
3248 $5.T->get()->getDescription());
3249 const Type *ElTy = PTy->getElementType();
3250 if (ElTy != $3.V->getType())
3251 error("Can't store '" + $3.V->getType()->getDescription() +
3252 "' into space of type '" + ElTy->getDescription() + "'");
3253 Value* tmpVal = getVal(PTy, $6);
3254 $$.I = new StoreInst($3.V, tmpVal, $1);
3255 $$.S = Signless;
3256 delete $5.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003257 }
3258 | GETELEMENTPTR Types ValueRef IndexList {
Reid Spencer950bf602007-01-26 08:19:09 +00003259 const Type* Ty = $2.T->get();
3260 if (!isa<PointerType>(Ty))
3261 error("getelementptr insn requires pointer operand");
3262
3263 std::vector<Value*> VIndices;
3264 upgradeGEPIndices(Ty, $4, VIndices);
3265
3266 Value* tmpVal = getVal(Ty, $3);
3267 $$.I = new GetElementPtrInst(tmpVal, VIndices);
3268 $$.S = Signless;
3269 delete $2.T;
Reid Spencer30d0c582007-01-15 00:26:18 +00003270 delete $4;
Reid Spencere7c3c602006-11-30 06:36:44 +00003271 };
3272
Reid Spencer950bf602007-01-26 08:19:09 +00003273
Reid Spencere7c3c602006-11-30 06:36:44 +00003274%%
3275
3276int yyerror(const char *ErrorMsg) {
3277 std::string where
3278 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
Reid Spencer950bf602007-01-26 08:19:09 +00003279 + ":" + llvm::utostr((unsigned) Upgradelineno-1) + ": ";
3280 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3281 if (yychar != YYEMPTY && yychar != 0)
3282 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3283 "'.";
Reid Spencer71d2ec92006-12-31 06:02:26 +00003284 std::cerr << "llvm-upgrade: " << errMsg << '\n';
Reid Spencer950bf602007-01-26 08:19:09 +00003285 std::cout << "llvm-upgrade: parse failed.\n";
Reid Spencere7c3c602006-11-30 06:36:44 +00003286 exit(1);
3287}
Reid Spencer319a7302007-01-05 17:20:02 +00003288
Reid Spencer30d0c582007-01-15 00:26:18 +00003289void warning(const std::string& ErrorMsg) {
Reid Spencer319a7302007-01-05 17:20:02 +00003290 std::string where
3291 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
Reid Spencer950bf602007-01-26 08:19:09 +00003292 + ":" + llvm::utostr((unsigned) Upgradelineno-1) + ": ";
3293 std::string errMsg = where + "warning: " + std::string(ErrorMsg);
3294 if (yychar != YYEMPTY && yychar != 0)
3295 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3296 "'.";
Reid Spencer319a7302007-01-05 17:20:02 +00003297 std::cerr << "llvm-upgrade: " << errMsg << '\n';
3298}
Reid Spencer950bf602007-01-26 08:19:09 +00003299
3300void error(const std::string& ErrorMsg, int LineNo) {
3301 if (LineNo == -1) LineNo = Upgradelineno;
3302 Upgradelineno = LineNo;
3303 yyerror(ErrorMsg.c_str());
3304}
3305