blob: dc1a13c79fa557ed15d8d101291a3b247e8f6818 [file] [log] [blame]
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
Evan Cheng559806f2006-01-27 08:10:46 +000018#include "X86Subtarget.h"
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000019#include "llvm/Target/TargetLowering.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21
22namespace llvm {
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000023 namespace X86ISD {
Evan Chengd9558e02006-01-06 00:43:03 +000024 // X86 Specific DAG Nodes
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000025 enum NodeType {
26 // Start the numbering where the builtin ops leave off.
Evan Cheng7df96d62005-12-17 01:21:05 +000027 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000028
Evan Chenge3413162006-01-09 18:33:28 +000029 /// ADD_FLAG, SUB_FLAG - Same as ISD::ADD and ISD::SUB except it also
30 /// produces a flag result.
31 ADD_FLAG,
32 SUB_FLAG,
33
34 /// ADC, SBB - Add with carry and subtraction with borrow. These
35 /// correspond to X86::ADCxx and X86::SBBxx instructions.
36 ADC,
37 SBB,
38
39 /// SHLD, SHRD - Double shift instructions. These correspond to
40 /// X86::SHLDxx and X86::SHRDxx instructions.
41 SHLD,
42 SHRD,
43
Evan Chengef6ffb12006-01-31 03:14:29 +000044 /// FAND - Bitwise logical AND of floating point values. This corresponds
45 /// to X86::ANDPS or X86::ANDPD.
46 FAND,
47
Evan Cheng223547a2006-01-31 22:28:30 +000048 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
49 /// to X86::XORPS or X86::XORPD.
50 FXOR,
51
Evan Chenge3de85b2006-02-04 02:20:30 +000052 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
53 /// integer source in memory and FP reg result. This corresponds to the
54 /// X86::FILD*m instructions. It has three inputs (token chain, address,
55 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
56 /// also produces a flag).
Evan Chenga3195e82006-01-12 22:54:21 +000057 FILD,
Evan Chenge3de85b2006-02-04 02:20:30 +000058 FILD_FLAG,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000059
60 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
61 /// integer destination in memory and a FP reg source. This corresponds
62 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
Evan Chenga3195e82006-01-12 22:54:21 +000063 /// has two inputs (token chain and address) and two outputs (int value and
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000064 /// token chain).
65 FP_TO_INT16_IN_MEM,
66 FP_TO_INT32_IN_MEM,
67 FP_TO_INT64_IN_MEM,
68
Evan Chengb077b842005-12-21 02:39:21 +000069 /// FLD - This instruction implements an extending load to FP stack slots.
70 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
Evan Cheng38bcbaf2005-12-23 07:31:11 +000071 /// operand, ptr to load from, and a ValueType node indicating the type
72 /// to load to.
Evan Chengb077b842005-12-21 02:39:21 +000073 FLD,
74
Evan Chengd90eb7f2006-01-05 00:27:02 +000075 /// FST - This instruction implements a truncating store to FP stack
76 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
77 /// chain operand, value to store, address, and a ValueType to store it
78 /// as.
79 FST,
80
81 /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction
82 /// which copies from ST(0) to the destination. It takes a chain and writes
83 /// a RFP result and a chain.
84 FP_GET_RESULT,
85
Evan Chengb077b842005-12-21 02:39:21 +000086 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction
87 /// which copies the source operand to ST(0). It takes a chain and writes
88 /// a chain and a flag.
89 FP_SET_RESULT,
90
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000091 /// CALL/TAILCALL - These operations represent an abstract X86 call
92 /// instruction, which includes a bunch of information. In particular the
93 /// operands of these node are:
94 ///
95 /// #0 - The incoming token chain
96 /// #1 - The callee
97 /// #2 - The number of arg bytes the caller pushes on the stack.
98 /// #3 - The number of arg bytes the callee pops off the stack.
99 /// #4 - The value to pass in AL/AX/EAX (optional)
100 /// #5 - The value to pass in DL/DX/EDX (optional)
101 ///
102 /// The result values of these nodes are:
103 ///
104 /// #0 - The outgoing token chain
105 /// #1 - The first register result value (optional)
106 /// #2 - The second register result value (optional)
107 ///
108 /// The CALL vs TAILCALL distinction boils down to whether the callee is
109 /// known not to modify the caller's stack frame, as is standard with
110 /// LLVM.
111 CALL,
112 TAILCALL,
Andrew Lenharthb873ff32005-11-20 21:41:10 +0000113
114 /// RDTSC_DAG - This operation implements the lowering for
115 /// readcyclecounter
116 RDTSC_DAG,
Evan Cheng7df96d62005-12-17 01:21:05 +0000117
118 /// X86 compare and logical compare instructions.
119 CMP, TEST,
120
Evan Chengd5781fc2005-12-21 20:21:51 +0000121 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
122 /// operand produced by a CMP instruction.
123 SETCC,
124
125 /// X86 conditional moves. Operand 1 and operand 2 are the two values
126 /// to select from (operand 1 is a R/W operand). Operand 3 is the condition
127 /// code, and operand 4 is the flag operand produced by a CMP or TEST
Evan Chenge3413162006-01-09 18:33:28 +0000128 /// instruction. It also writes a flag result.
Evan Cheng7df96d62005-12-17 01:21:05 +0000129 CMOV,
Evan Cheng898101c2005-12-19 23:12:38 +0000130
Evan Chengd5781fc2005-12-21 20:21:51 +0000131 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
132 /// is the block to branch if condition is true, operand 3 is the
133 /// condition code, and operand 4 is the flag operand produced by a CMP
134 /// or TEST instruction.
Evan Cheng898101c2005-12-19 23:12:38 +0000135 BRCOND,
Evan Chengb077b842005-12-21 02:39:21 +0000136
Evan Cheng67f92a72006-01-11 22:15:48 +0000137 /// Return with a flag operand. Operand 1 is the chain operand, operand
138 /// 2 is the number of bytes of stack to pop.
Evan Chengb077b842005-12-21 02:39:21 +0000139 RET_FLAG,
Evan Cheng67f92a72006-01-11 22:15:48 +0000140
141 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
142 REP_STOS,
143
144 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
145 REP_MOVS,
Evan Cheng223547a2006-01-31 22:28:30 +0000146
147 /// LOAD_PACK Load a 128-bit packed float / double value. It has the same
148 /// operands as a normal load.
149 LOAD_PACK,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000150 };
Evan Chengd9558e02006-01-06 00:43:03 +0000151
152 // X86 specific condition code. These correspond to X86_*_COND in
153 // X86InstrInfo.td. They must be kept in synch.
154 enum CondCode {
155 COND_A = 0,
156 COND_AE = 1,
157 COND_B = 2,
158 COND_BE = 3,
159 COND_E = 4,
160 COND_G = 5,
161 COND_GE = 6,
162 COND_L = 7,
163 COND_LE = 8,
164 COND_NE = 9,
165 COND_NO = 10,
166 COND_NP = 11,
167 COND_NS = 12,
168 COND_O = 13,
169 COND_P = 14,
170 COND_S = 15,
171 COND_INVALID
172 };
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000173 }
174
175 //===----------------------------------------------------------------------===//
176 // X86TargetLowering - X86 Implementation of the TargetLowering interface
177 class X86TargetLowering : public TargetLowering {
178 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
179 int ReturnAddrIndex; // FrameIndex for return slot.
180 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
181 int BytesCallerReserves; // Number of arg bytes caller makes.
182 public:
183 X86TargetLowering(TargetMachine &TM);
184
185 // Return the number of bytes that a function should pop when it returns (in
186 // addition to the space used by the return address).
187 //
188 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
189
190 // Return the number of bytes that the caller reserves for arguments passed
191 // to this function.
192 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
193
194 /// LowerOperation - Provide custom lowering hooks for some operations.
195 ///
196 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
197
198 /// LowerArguments - This hook must be implemented to indicate how we should
199 /// lower the arguments for the specified function, into the specified DAG.
200 virtual std::vector<SDOperand>
201 LowerArguments(Function &F, SelectionDAG &DAG);
202
203 /// LowerCallTo - This hook lowers an abstract call to a function into an
204 /// actual call.
205 virtual std::pair<SDOperand, SDOperand>
206 LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
207 bool isTailCall, SDOperand Callee, ArgListTy &Args,
208 SelectionDAG &DAG);
209
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000210 virtual std::pair<SDOperand, SDOperand>
211 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
212 SelectionDAG &DAG);
213
Evan Cheng4a460802006-01-11 00:33:36 +0000214 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
215 MachineBasicBlock *MBB);
216
Evan Cheng72261582005-12-20 06:22:03 +0000217 /// getTargetNodeName - This method returns the name of a target specific
218 /// DAG node.
219 virtual const char *getTargetNodeName(unsigned Opcode) const;
220
Nate Begeman368e18d2006-02-16 21:11:51 +0000221 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
222 /// in Mask are known to be either zero or one and return them in the
223 /// KnownZero/KnownOne bitsets.
224 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
225 uint64_t Mask,
226 uint64_t &KnownZero,
227 uint64_t &KnownOne,
228 unsigned Depth = 0) const;
229
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000230 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
231
Chris Lattner259e97c2006-01-31 19:43:35 +0000232 std::vector<unsigned>
233 getRegForInlineAsmConstraint(const std::string &Constraint) const;
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000234 private:
235 // C Calling Convention implementation.
236 std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG);
237 std::pair<SDOperand, SDOperand>
238 LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
239 bool isTailCall,
240 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
241
242 // Fast Calling Convention implementation.
243 std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG);
244 std::pair<SDOperand, SDOperand>
245 LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall,
246 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
Evan Cheng559806f2006-01-27 08:10:46 +0000247
248 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
249 /// make the right decision when generating code for different targets.
250 const X86Subtarget *Subtarget;
251
252 /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
253 bool X86ScalarSSE;
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000254 };
255}
256
257#endif // X86ISELLOWERING_H