blob: 3c937e05cc52a6e49b49295c6300ce604872a29a [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000078#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000079#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000080#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000081#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000082#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000083#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000085#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000086#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000087using namespace llvm;
88
Chris Lattner3b27d682006-12-19 22:30:33 +000089STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
Dan Gohman844731a2008-05-13 00:00:25 +000098static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +000099MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000101 "symbolically execute a constant "
102 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000103 cl::init(100));
104
Dan Gohman844731a2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000107char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000116
Chris Lattner53e677a2004-04-02 20:23:17 +0000117SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000118
Chris Lattner53e677a2004-04-02 20:23:17 +0000119void SCEV::dump() const {
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000120 print(errs());
121 errs() << '\n';
122}
123
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohman70a1fe72009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Chris Lattner53e677a2004-04-02 20:23:17 +0000135
Dan Gohman4d289bf2009-06-24 00:30:26 +0000136bool SCEV::isAllOnesValue() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isAllOnesValue();
139 return false;
140}
141
Owen Anderson753ad612009-06-22 21:57:23 +0000142SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc050fd92009-07-13 20:50:19 +0000143 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000144
Chris Lattner53e677a2004-04-02 20:23:17 +0000145bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000146 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000147 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000148}
149
150const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000152 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000153}
154
155bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000157 return false;
158}
159
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000160bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000163}
164
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000165void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000166 OS << "***COULDNOTCOMPUTE***";
167}
168
169bool SCEVCouldNotCompute::classof(const SCEV *S) {
170 return S->getSCEVType() == scCouldNotCompute;
171}
172
Dan Gohman0bba49c2009-07-07 17:06:11 +0000173const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000174 FoldingSetNodeID ID;
175 ID.AddInteger(scConstant);
176 ID.AddPointer(V);
177 void *IP = 0;
178 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
179 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000180 new (S) SCEVConstant(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000191 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000192 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc050fd92009-07-13 20:50:19 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc050fd92009-07-13 20:50:19 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000216 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
217 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc050fd92009-07-13 20:50:19 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000228 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
229 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc050fd92009-07-13 20:50:19 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000240 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
241 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
251 const char *OpStr = getOperationStr();
252 OS << "(" << *Operands[0];
253 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
254 OS << OpStr << *Operands[i];
255 OS << ")";
256}
257
Dan Gohmanecb403a2009-05-07 14:00:19 +0000258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260 if (!getOperand(i)->dominates(BB, DT))
261 return false;
262 }
263 return true;
264}
265
Dan Gohman6e70e312009-09-27 15:26:03 +0000266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268 if (!getOperand(i)->properlyDominates(BB, DT))
269 return false;
270 }
271 return true;
272}
273
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
Dan Gohman6e70e312009-09-27 15:26:03 +0000278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000282void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000283 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000284}
285
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000286const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000287 // In most cases the types of LHS and RHS will be the same, but in some
288 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289 // depend on the type for correctness, but handling types carefully can
290 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291 // a pointer type than the RHS, so use the RHS' type here.
292 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000296 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000297 if (!QueryLoop)
298 return false;
299
300 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000301 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000302 return false;
303
304 // This recurrence is variant w.r.t. QueryLoop if any of its operands
305 // are variant.
306 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307 if (!getOperand(i)->isLoopInvariant(QueryLoop))
308 return false;
309
310 // Otherwise it's loop-invariant.
311 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000312}
313
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000314void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315 OS << "{" << *Operands[0];
316 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
317 OS << ",+," << *Operands[i];
318 OS << "}<" << L->getHeader()->getName() + ">";
319}
Chris Lattner53e677a2004-04-02 20:23:17 +0000320
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000321void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
322 // LLVM struct fields don't have names, so just print the field number.
323 OS << "offsetof(" << *STy << ", " << FieldNo << ")";
324}
325
326void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
327 OS << "sizeof(" << *AllocTy << ")";
328}
329
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
331 // All non-instruction values are loop invariant. All instructions are loop
332 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000333 // Instructions are never considered invariant in the function body
334 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000335 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000336 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337 return true;
338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000340bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
341 if (Instruction *I = dyn_cast<Instruction>(getValue()))
342 return DT->dominates(I->getParent(), BB);
343 return true;
344}
345
Dan Gohman6e70e312009-09-27 15:26:03 +0000346bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
347 if (Instruction *I = dyn_cast<Instruction>(getValue()))
348 return DT->properlyDominates(I->getParent(), BB);
349 return true;
350}
351
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352const Type *SCEVUnknown::getType() const {
353 return V->getType();
354}
Chris Lattner53e677a2004-04-02 20:23:17 +0000355
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000356void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000357 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000358}
359
Chris Lattner8d741b82004-06-20 06:23:15 +0000360//===----------------------------------------------------------------------===//
361// SCEV Utilities
362//===----------------------------------------------------------------------===//
363
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000364static bool CompareTypes(const Type *A, const Type *B) {
365 if (A->getTypeID() != B->getTypeID())
366 return A->getTypeID() < B->getTypeID();
367 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
368 const IntegerType *BI = cast<IntegerType>(B);
369 return AI->getBitWidth() < BI->getBitWidth();
370 }
371 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
372 const PointerType *BI = cast<PointerType>(B);
373 return CompareTypes(AI->getElementType(), BI->getElementType());
374 }
375 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
376 const ArrayType *BI = cast<ArrayType>(B);
377 if (AI->getNumElements() != BI->getNumElements())
378 return AI->getNumElements() < BI->getNumElements();
379 return CompareTypes(AI->getElementType(), BI->getElementType());
380 }
381 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
382 const VectorType *BI = cast<VectorType>(B);
383 if (AI->getNumElements() != BI->getNumElements())
384 return AI->getNumElements() < BI->getNumElements();
385 return CompareTypes(AI->getElementType(), BI->getElementType());
386 }
387 if (const StructType *AI = dyn_cast<StructType>(A)) {
388 const StructType *BI = cast<StructType>(B);
389 if (AI->getNumElements() != BI->getNumElements())
390 return AI->getNumElements() < BI->getNumElements();
391 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
392 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
393 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
394 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
395 }
396 return false;
397}
398
Chris Lattner8d741b82004-06-20 06:23:15 +0000399namespace {
400 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401 /// than the complexity of the RHS. This comparator is used to canonicalize
402 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000403 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000404 LoopInfo *LI;
405 public:
406 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
407
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000408 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000409 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
410 if (LHS == RHS)
411 return false;
412
Dan Gohman72861302009-05-07 14:39:04 +0000413 // Primarily, sort the SCEVs by their getSCEVType().
414 if (LHS->getSCEVType() != RHS->getSCEVType())
415 return LHS->getSCEVType() < RHS->getSCEVType();
416
417 // Aside from the getSCEVType() ordering, the particular ordering
418 // isn't very important except that it's beneficial to be consistent,
419 // so that (a + b) and (b + a) don't end up as different expressions.
420
421 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
422 // not as complete as it could be.
423 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
424 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
425
Dan Gohman5be18e82009-05-19 02:15:55 +0000426 // Order pointer values after integer values. This helps SCEVExpander
427 // form GEPs.
428 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
429 return false;
430 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
431 return true;
432
Dan Gohman72861302009-05-07 14:39:04 +0000433 // Compare getValueID values.
434 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
435 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
436
437 // Sort arguments by their position.
438 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
439 const Argument *RA = cast<Argument>(RU->getValue());
440 return LA->getArgNo() < RA->getArgNo();
441 }
442
443 // For instructions, compare their loop depth, and their opcode.
444 // This is pretty loose.
445 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
446 Instruction *RV = cast<Instruction>(RU->getValue());
447
448 // Compare loop depths.
449 if (LI->getLoopDepth(LV->getParent()) !=
450 LI->getLoopDepth(RV->getParent()))
451 return LI->getLoopDepth(LV->getParent()) <
452 LI->getLoopDepth(RV->getParent());
453
454 // Compare opcodes.
455 if (LV->getOpcode() != RV->getOpcode())
456 return LV->getOpcode() < RV->getOpcode();
457
458 // Compare the number of operands.
459 if (LV->getNumOperands() != RV->getNumOperands())
460 return LV->getNumOperands() < RV->getNumOperands();
461 }
462
463 return false;
464 }
465
Dan Gohman4dfad292009-06-14 22:51:25 +0000466 // Compare constant values.
467 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
468 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000469 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
470 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000471 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
472 }
473
474 // Compare addrec loop depths.
475 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
476 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
477 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
478 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
479 }
Dan Gohman72861302009-05-07 14:39:04 +0000480
481 // Lexicographically compare n-ary expressions.
482 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
483 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
484 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
485 if (i >= RC->getNumOperands())
486 return false;
487 if (operator()(LC->getOperand(i), RC->getOperand(i)))
488 return true;
489 if (operator()(RC->getOperand(i), LC->getOperand(i)))
490 return false;
491 }
492 return LC->getNumOperands() < RC->getNumOperands();
493 }
494
Dan Gohmana6b35e22009-05-07 19:23:21 +0000495 // Lexicographically compare udiv expressions.
496 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
497 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
498 if (operator()(LC->getLHS(), RC->getLHS()))
499 return true;
500 if (operator()(RC->getLHS(), LC->getLHS()))
501 return false;
502 if (operator()(LC->getRHS(), RC->getRHS()))
503 return true;
504 if (operator()(RC->getRHS(), LC->getRHS()))
505 return false;
506 return false;
507 }
508
Dan Gohman72861302009-05-07 14:39:04 +0000509 // Compare cast expressions by operand.
510 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
511 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
512 return operator()(LC->getOperand(), RC->getOperand());
513 }
514
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000515 // Compare offsetof expressions.
516 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
517 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
518 if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
519 CompareTypes(RA->getStructType(), LA->getStructType()))
520 return CompareTypes(LA->getStructType(), RA->getStructType());
521 return LA->getFieldNo() < RA->getFieldNo();
522 }
523
524 // Compare sizeof expressions by the allocation type.
525 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
526 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
527 return CompareTypes(LA->getAllocType(), RA->getAllocType());
528 }
529
Torok Edwinc23197a2009-07-14 16:55:14 +0000530 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000531 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000532 }
533 };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine. In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000546static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000547 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000548 if (Ops.size() < 2) return; // Noop
549 if (Ops.size() == 2) {
550 // This is the common case, which also happens to be trivially simple.
551 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000552 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000553 std::swap(Ops[0], Ops[1]);
554 return;
555 }
556
557 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000558 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000559
560 // Now that we are sorted by complexity, group elements of the same
561 // complexity. Note that this is, at worst, N^2, but the vector is likely to
562 // be extremely short in practice. Note that we take this approach because we
563 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000564 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000565 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000566 unsigned Complexity = S->getSCEVType();
567
568 // If there are any objects of the same complexity and same value as this
569 // one, group them.
570 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571 if (Ops[j] == S) { // Found a duplicate.
572 // Move it to immediately after i'th element.
573 std::swap(Ops[i+1], Ops[j]);
574 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000575 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000576 }
577 }
578 }
579}
580
Chris Lattner53e677a2004-04-02 20:23:17 +0000581
Chris Lattner53e677a2004-04-02 20:23:17 +0000582
583//===----------------------------------------------------------------------===//
584// Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
Eli Friedmanb42a6262008-08-04 23:49:06 +0000587/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000588/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000589static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000590 ScalarEvolution &SE,
591 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000592 // Handle the simplest case efficiently.
593 if (K == 1)
594 return SE.getTruncateOrZeroExtend(It, ResultTy);
595
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000596 // We are using the following formula for BC(It, K):
597 //
598 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000600 // Suppose, W is the bitwidth of the return value. We must be prepared for
601 // overflow. Hence, we must assure that the result of our computation is
602 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
603 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000604 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000605 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000606 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000607 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000609 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000610 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000611 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000612 // This formula is trivially equivalent to the previous formula. However,
613 // this formula can be implemented much more efficiently. The trick is that
614 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615 // arithmetic. To do exact division in modular arithmetic, all we have
616 // to do is multiply by the inverse. Therefore, this step can be done at
617 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000618 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000619 // The next issue is how to safely do the division by 2^T. The way this
620 // is done is by doing the multiplication step at a width of at least W + T
621 // bits. This way, the bottom W+T bits of the product are accurate. Then,
622 // when we perform the division by 2^T (which is equivalent to a right shift
623 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
624 // truncated out after the division by 2^T.
625 //
626 // In comparison to just directly using the first formula, this technique
627 // is much more efficient; using the first formula requires W * K bits,
628 // but this formula less than W + K bits. Also, the first formula requires
629 // a division step, whereas this formula only requires multiplies and shifts.
630 //
631 // It doesn't matter whether the subtraction step is done in the calculation
632 // width or the input iteration count's width; if the subtraction overflows,
633 // the result must be zero anyway. We prefer here to do it in the width of
634 // the induction variable because it helps a lot for certain cases; CodeGen
635 // isn't smart enough to ignore the overflow, which leads to much less
636 // efficient code if the width of the subtraction is wider than the native
637 // register width.
638 //
639 // (It's possible to not widen at all by pulling out factors of 2 before
640 // the multiplication; for example, K=2 can be calculated as
641 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642 // extra arithmetic, so it's not an obvious win, and it gets
643 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000644
Eli Friedmanb42a6262008-08-04 23:49:06 +0000645 // Protection from insane SCEVs; this bound is conservative,
646 // but it probably doesn't matter.
647 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000648 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000649
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000650 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000651
Eli Friedmanb42a6262008-08-04 23:49:06 +0000652 // Calculate K! / 2^T and T; we divide out the factors of two before
653 // multiplying for calculating K! / 2^T to avoid overflow.
654 // Other overflow doesn't matter because we only care about the bottom
655 // W bits of the result.
656 APInt OddFactorial(W, 1);
657 unsigned T = 1;
658 for (unsigned i = 3; i <= K; ++i) {
659 APInt Mult(W, i);
660 unsigned TwoFactors = Mult.countTrailingZeros();
661 T += TwoFactors;
662 Mult = Mult.lshr(TwoFactors);
663 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000664 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000667 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668
669 // Calcuate 2^T, at width T+W.
670 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672 // Calculate the multiplicative inverse of K! / 2^T;
673 // this multiplication factor will perform the exact division by
674 // K! / 2^T.
675 APInt Mod = APInt::getSignedMinValue(W+1);
676 APInt MultiplyFactor = OddFactorial.zext(W+1);
677 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678 MultiplyFactor = MultiplyFactor.trunc(W);
679
680 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000681 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
682 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000683 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000685 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 Dividend = SE.getMulExpr(Dividend,
687 SE.getTruncateOrZeroExtend(S, CalculationTy));
688 }
689
690 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000691 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000692
693 // Truncate the result, and divide by K! / 2^T.
694
695 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
696 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000697}
698
Chris Lattner53e677a2004-04-02 20:23:17 +0000699/// evaluateAtIteration - Return the value of this chain of recurrences at
700/// the specified iteration number. We can evaluate this recurrence by
701/// multiplying each element in the chain by the binomial coefficient
702/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
703///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000704/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000705///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000706/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000707///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000708const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000709 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000710 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000711 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712 // The computation is correct in the face of overflow provided that the
713 // multiplication is performed _after_ the evaluation of the binomial
714 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000715 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000716 if (isa<SCEVCouldNotCompute>(Coeff))
717 return Coeff;
718
719 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000720 }
721 return Result;
722}
723
Chris Lattner53e677a2004-04-02 20:23:17 +0000724//===----------------------------------------------------------------------===//
725// SCEV Expression folder implementations
726//===----------------------------------------------------------------------===//
727
Dan Gohman0bba49c2009-07-07 17:06:11 +0000728const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000729 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000730 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000731 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000732 assert(isSCEVable(Ty) &&
733 "This is not a conversion to a SCEVable type!");
734 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000735
Dan Gohmanc050fd92009-07-13 20:50:19 +0000736 FoldingSetNodeID ID;
737 ID.AddInteger(scTruncate);
738 ID.AddPointer(Op);
739 ID.AddPointer(Ty);
740 void *IP = 0;
741 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
742
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000743 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000744 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000745 return getConstant(
746 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000747
Dan Gohman20900ca2009-04-22 16:20:48 +0000748 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000749 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000750 return getTruncateExpr(ST->getOperand(), Ty);
751
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000752 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000753 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000754 return getTruncateOrSignExtend(SS->getOperand(), Ty);
755
756 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000757 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000758 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
759
Dan Gohman6864db62009-06-18 16:24:47 +0000760 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000761 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000763 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000764 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
765 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000766 }
767
Dan Gohmanc050fd92009-07-13 20:50:19 +0000768 // The cast wasn't folded; create an explicit cast node.
769 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000770 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
771 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000772 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000773 UniqueSCEVs.InsertNode(S, IP);
774 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000775}
776
Dan Gohman0bba49c2009-07-07 17:06:11 +0000777const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000778 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000779 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000780 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000781 assert(isSCEVable(Ty) &&
782 "This is not a conversion to a SCEVable type!");
783 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000784
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000785 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000786 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000787 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000788 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
789 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000790 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000791 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000792
Dan Gohman20900ca2009-04-22 16:20:48 +0000793 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000794 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000795 return getZeroExtendExpr(SZ->getOperand(), Ty);
796
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000797 // Before doing any expensive analysis, check to see if we've already
798 // computed a SCEV for this Op and Ty.
799 FoldingSetNodeID ID;
800 ID.AddInteger(scZeroExtend);
801 ID.AddPointer(Op);
802 ID.AddPointer(Ty);
803 void *IP = 0;
804 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
805
Dan Gohman01ecca22009-04-27 20:16:15 +0000806 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000807 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000808 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000809 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000810 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000811 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000812 const SCEV *Start = AR->getStart();
813 const SCEV *Step = AR->getStepRecurrence(*this);
814 unsigned BitWidth = getTypeSizeInBits(AR->getType());
815 const Loop *L = AR->getLoop();
816
Dan Gohmaneb490a72009-07-25 01:22:26 +0000817 // If we have special knowledge that this addrec won't overflow,
818 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000819 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000820 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
821 getZeroExtendExpr(Step, Ty),
822 L);
823
Dan Gohman01ecca22009-04-27 20:16:15 +0000824 // Check whether the backedge-taken count is SCEVCouldNotCompute.
825 // Note that this serves two purposes: It filters out loops that are
826 // simply not analyzable, and it covers the case where this code is
827 // being called from within backedge-taken count analysis, such that
828 // attempting to ask for the backedge-taken count would likely result
829 // in infinite recursion. In the later case, the analysis code will
830 // cope with a conservative value, and it will take care to purge
831 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000832 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000833 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000834 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000835 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000836
837 // Check whether the backedge-taken count can be losslessly casted to
838 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000840 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000842 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
843 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000844 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000845 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846 const SCEV *ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000847 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000848 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000849 const SCEV *Add = getAddExpr(Start, ZMul);
850 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000851 getAddExpr(getZeroExtendExpr(Start, WideTy),
852 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853 getZeroExtendExpr(Step, WideTy)));
854 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000855 // Return the expression with the addrec on the outside.
856 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000858 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000859
860 // Similar to above, only this time treat the step value as signed.
861 // This covers loops that count down.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000862 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000863 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000864 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000865 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000866 OperandExtendedAdd =
867 getAddExpr(getZeroExtendExpr(Start, WideTy),
868 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
869 getSignExtendExpr(Step, WideTy)));
870 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000871 // Return the expression with the addrec on the outside.
872 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
873 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000874 L);
875 }
876
877 // If the backedge is guarded by a comparison with the pre-inc value
878 // the addrec is safe. Also, if the entry is guarded by a comparison
879 // with the start value and the backedge is guarded by a comparison
880 // with the post-inc value, the addrec is safe.
881 if (isKnownPositive(Step)) {
882 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
883 getUnsignedRange(Step).getUnsignedMax());
884 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
885 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
886 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
887 AR->getPostIncExpr(*this), N)))
888 // Return the expression with the addrec on the outside.
889 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
890 getZeroExtendExpr(Step, Ty),
891 L);
892 } else if (isKnownNegative(Step)) {
893 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
894 getSignedRange(Step).getSignedMin());
895 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
896 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
897 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
898 AR->getPostIncExpr(*this), N)))
899 // Return the expression with the addrec on the outside.
900 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
901 getSignExtendExpr(Step, Ty),
902 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 }
904 }
905 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000906
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000907 // The cast wasn't folded; create an explicit cast node.
908 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000909 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
910 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000911 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000912 UniqueSCEVs.InsertNode(S, IP);
913 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000914}
915
Dan Gohman0bba49c2009-07-07 17:06:11 +0000916const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000917 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000918 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000919 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000920 assert(isSCEVable(Ty) &&
921 "This is not a conversion to a SCEVable type!");
922 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000923
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000924 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000925 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000926 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000927 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
928 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000929 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000930 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000931
Dan Gohman20900ca2009-04-22 16:20:48 +0000932 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000933 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000934 return getSignExtendExpr(SS->getOperand(), Ty);
935
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000936 // Before doing any expensive analysis, check to see if we've already
937 // computed a SCEV for this Op and Ty.
938 FoldingSetNodeID ID;
939 ID.AddInteger(scSignExtend);
940 ID.AddPointer(Op);
941 ID.AddPointer(Ty);
942 void *IP = 0;
943 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
944
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000946 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000947 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000948 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000949 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000950 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 const SCEV *Start = AR->getStart();
952 const SCEV *Step = AR->getStepRecurrence(*this);
953 unsigned BitWidth = getTypeSizeInBits(AR->getType());
954 const Loop *L = AR->getLoop();
955
Dan Gohmaneb490a72009-07-25 01:22:26 +0000956 // If we have special knowledge that this addrec won't overflow,
957 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000958 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000959 return getAddRecExpr(getSignExtendExpr(Start, Ty),
960 getSignExtendExpr(Step, Ty),
961 L);
962
Dan Gohman01ecca22009-04-27 20:16:15 +0000963 // Check whether the backedge-taken count is SCEVCouldNotCompute.
964 // Note that this serves two purposes: It filters out loops that are
965 // simply not analyzable, and it covers the case where this code is
966 // being called from within backedge-taken count analysis, such that
967 // attempting to ask for the backedge-taken count would likely result
968 // in infinite recursion. In the later case, the analysis code will
969 // cope with a conservative value, and it will take care to purge
970 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000971 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000972 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000973 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000974 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000975
976 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000977 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000978 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000979 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000980 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000981 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
982 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000983 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000984 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000985 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000986 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000987 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000988 const SCEV *Add = getAddExpr(Start, SMul);
989 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000990 getAddExpr(getSignExtendExpr(Start, WideTy),
991 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
992 getSignExtendExpr(Step, WideTy)));
993 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000994 // Return the expression with the addrec on the outside.
995 return getAddRecExpr(getSignExtendExpr(Start, Ty),
996 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000997 L);
Dan Gohman850f7912009-07-16 17:34:36 +0000998
999 // Similar to above, only this time treat the step value as unsigned.
1000 // This covers loops that count up with an unsigned step.
1001 const SCEV *UMul =
1002 getMulExpr(CastedMaxBECount,
1003 getTruncateOrZeroExtend(Step, Start->getType()));
1004 Add = getAddExpr(Start, UMul);
1005 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001006 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001007 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1008 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001009 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001010 // Return the expression with the addrec on the outside.
1011 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1012 getZeroExtendExpr(Step, Ty),
1013 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001014 }
1015
1016 // If the backedge is guarded by a comparison with the pre-inc value
1017 // the addrec is safe. Also, if the entry is guarded by a comparison
1018 // with the start value and the backedge is guarded by a comparison
1019 // with the post-inc value, the addrec is safe.
1020 if (isKnownPositive(Step)) {
1021 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1022 getSignedRange(Step).getSignedMax());
1023 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1024 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1025 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1026 AR->getPostIncExpr(*this), N)))
1027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1029 getSignExtendExpr(Step, Ty),
1030 L);
1031 } else if (isKnownNegative(Step)) {
1032 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1033 getSignedRange(Step).getSignedMin());
1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1035 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1037 AR->getPostIncExpr(*this), N)))
1038 // Return the expression with the addrec on the outside.
1039 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
1041 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001042 }
1043 }
1044 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001045
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001046 // The cast wasn't folded; create an explicit cast node.
1047 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001048 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1049 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001050 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001051 UniqueSCEVs.InsertNode(S, IP);
1052 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001053}
1054
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001055/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1056/// unspecified bits out to the given type.
1057///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001058const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001059 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001060 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1061 "This is not an extending conversion!");
1062 assert(isSCEVable(Ty) &&
1063 "This is not a conversion to a SCEVable type!");
1064 Ty = getEffectiveSCEVType(Ty);
1065
1066 // Sign-extend negative constants.
1067 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1068 if (SC->getValue()->getValue().isNegative())
1069 return getSignExtendExpr(Op, Ty);
1070
1071 // Peel off a truncate cast.
1072 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001073 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001074 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1075 return getAnyExtendExpr(NewOp, Ty);
1076 return getTruncateOrNoop(NewOp, Ty);
1077 }
1078
1079 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001080 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001081 if (!isa<SCEVZeroExtendExpr>(ZExt))
1082 return ZExt;
1083
1084 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001085 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001086 if (!isa<SCEVSignExtendExpr>(SExt))
1087 return SExt;
1088
1089 // If the expression is obviously signed, use the sext cast value.
1090 if (isa<SCEVSMaxExpr>(Op))
1091 return SExt;
1092
1093 // Absent any other information, use the zext cast value.
1094 return ZExt;
1095}
1096
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001097/// CollectAddOperandsWithScales - Process the given Ops list, which is
1098/// a list of operands to be added under the given scale, update the given
1099/// map. This is a helper function for getAddRecExpr. As an example of
1100/// what it does, given a sequence of operands that would form an add
1101/// expression like this:
1102///
1103/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1104///
1105/// where A and B are constants, update the map with these values:
1106///
1107/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1108///
1109/// and add 13 + A*B*29 to AccumulatedConstant.
1110/// This will allow getAddRecExpr to produce this:
1111///
1112/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1113///
1114/// This form often exposes folding opportunities that are hidden in
1115/// the original operand list.
1116///
1117/// Return true iff it appears that any interesting folding opportunities
1118/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1119/// the common case where no interesting opportunities are present, and
1120/// is also used as a check to avoid infinite recursion.
1121///
1122static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001123CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1124 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001125 APInt &AccumulatedConstant,
Dan Gohman0bba49c2009-07-07 17:06:11 +00001126 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001127 const APInt &Scale,
1128 ScalarEvolution &SE) {
1129 bool Interesting = false;
1130
1131 // Iterate over the add operands.
1132 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1133 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1134 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1135 APInt NewScale =
1136 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1137 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1138 // A multiplication of a constant with another add; recurse.
1139 Interesting |=
1140 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1141 cast<SCEVAddExpr>(Mul->getOperand(1))
1142 ->getOperands(),
1143 NewScale, SE);
1144 } else {
1145 // A multiplication of a constant with some other value. Update
1146 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001147 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1148 const SCEV *Key = SE.getMulExpr(MulOps);
1149 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001150 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001151 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001152 NewOps.push_back(Pair.first->first);
1153 } else {
1154 Pair.first->second += NewScale;
1155 // The map already had an entry for this value, which may indicate
1156 // a folding opportunity.
1157 Interesting = true;
1158 }
1159 }
1160 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1161 // Pull a buried constant out to the outside.
1162 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1163 Interesting = true;
1164 AccumulatedConstant += Scale * C->getValue()->getValue();
1165 } else {
1166 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001167 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001168 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001169 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170 NewOps.push_back(Pair.first->first);
1171 } else {
1172 Pair.first->second += Scale;
1173 // The map already had an entry for this value, which may indicate
1174 // a folding opportunity.
1175 Interesting = true;
1176 }
1177 }
1178 }
1179
1180 return Interesting;
1181}
1182
1183namespace {
1184 struct APIntCompare {
1185 bool operator()(const APInt &LHS, const APInt &RHS) const {
1186 return LHS.ult(RHS);
1187 }
1188 };
1189}
1190
Dan Gohman6c0866c2009-05-24 23:45:28 +00001191/// getAddExpr - Get a canonical add expression, or something simpler if
1192/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001193const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1194 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001195 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001196 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001197#ifndef NDEBUG
1198 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1199 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1200 getEffectiveSCEVType(Ops[0]->getType()) &&
1201 "SCEVAddExpr operand types don't match!");
1202#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001203
1204 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001205 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001206
1207 // If there are any constants, fold them together.
1208 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001209 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001210 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001211 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001212 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001213 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001214 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1215 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001216 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001217 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001218 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001219 }
1220
1221 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001222 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001223 Ops.erase(Ops.begin());
1224 --Idx;
1225 }
1226 }
1227
Chris Lattner627018b2004-04-07 16:16:11 +00001228 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001229
Chris Lattner53e677a2004-04-02 20:23:17 +00001230 // Okay, check to see if the same value occurs in the operand list twice. If
1231 // so, merge them together into an multiply expression. Since we sorted the
1232 // list, these values are required to be adjacent.
1233 const Type *Ty = Ops[0]->getType();
1234 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1235 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1236 // Found a match, merge the two values into a multiply, and add any
1237 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001238 const SCEV *Two = getIntegerSCEV(2, Ty);
1239 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001240 if (Ops.size() == 2)
1241 return Mul;
1242 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1243 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001244 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001245 }
1246
Dan Gohman728c7f32009-05-08 21:03:19 +00001247 // Check for truncates. If all the operands are truncated from the same
1248 // type, see if factoring out the truncate would permit the result to be
1249 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1250 // if the contents of the resulting outer trunc fold to something simple.
1251 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1252 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1253 const Type *DstType = Trunc->getType();
1254 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001255 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001256 bool Ok = true;
1257 // Check all the operands to see if they can be represented in the
1258 // source type of the truncate.
1259 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1260 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1261 if (T->getOperand()->getType() != SrcType) {
1262 Ok = false;
1263 break;
1264 }
1265 LargeOps.push_back(T->getOperand());
1266 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1267 // This could be either sign or zero extension, but sign extension
1268 // is much more likely to be foldable here.
1269 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1270 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001271 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001272 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1273 if (const SCEVTruncateExpr *T =
1274 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1275 if (T->getOperand()->getType() != SrcType) {
1276 Ok = false;
1277 break;
1278 }
1279 LargeMulOps.push_back(T->getOperand());
1280 } else if (const SCEVConstant *C =
1281 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1282 // This could be either sign or zero extension, but sign extension
1283 // is much more likely to be foldable here.
1284 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1285 } else {
1286 Ok = false;
1287 break;
1288 }
1289 }
1290 if (Ok)
1291 LargeOps.push_back(getMulExpr(LargeMulOps));
1292 } else {
1293 Ok = false;
1294 break;
1295 }
1296 }
1297 if (Ok) {
1298 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001299 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001300 // If it folds to something simple, use it. Otherwise, don't.
1301 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1302 return getTruncateExpr(Fold, DstType);
1303 }
1304 }
1305
1306 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001307 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1308 ++Idx;
1309
1310 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001311 if (Idx < Ops.size()) {
1312 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001313 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 // If we have an add, expand the add operands onto the end of the operands
1315 // list.
1316 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1317 Ops.erase(Ops.begin()+Idx);
1318 DeletedAdd = true;
1319 }
1320
1321 // If we deleted at least one add, we added operands to the end of the list,
1322 // and they are not necessarily sorted. Recurse to resort and resimplify
1323 // any operands we just aquired.
1324 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001325 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001326 }
1327
1328 // Skip over the add expression until we get to a multiply.
1329 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1330 ++Idx;
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332 // Check to see if there are any folding opportunities present with
1333 // operands multiplied by constant values.
1334 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1335 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001336 DenseMap<const SCEV *, APInt> M;
1337 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 APInt AccumulatedConstant(BitWidth, 0);
1339 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1340 Ops, APInt(BitWidth, 1), *this)) {
1341 // Some interesting folding opportunity is present, so its worthwhile to
1342 // re-generate the operands list. Group the operands by constant scale,
1343 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001344 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1345 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001346 E = NewOps.end(); I != E; ++I)
1347 MulOpLists[M.find(*I)->second].push_back(*I);
1348 // Re-generate the operands list.
1349 Ops.clear();
1350 if (AccumulatedConstant != 0)
1351 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001352 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1353 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001354 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001355 Ops.push_back(getMulExpr(getConstant(I->first),
1356 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001357 if (Ops.empty())
1358 return getIntegerSCEV(0, Ty);
1359 if (Ops.size() == 1)
1360 return Ops[0];
1361 return getAddExpr(Ops);
1362 }
1363 }
1364
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 // If we are adding something to a multiply expression, make sure the
1366 // something is not already an operand of the multiply. If so, merge it into
1367 // the multiply.
1368 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001369 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001370 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001371 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001372 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001373 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001374 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001375 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001376 if (Mul->getNumOperands() != 2) {
1377 // If the multiply has more than two operands, we must get the
1378 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001379 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001380 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001381 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001382 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001383 const SCEV *One = getIntegerSCEV(1, Ty);
1384 const SCEV *AddOne = getAddExpr(InnerMul, One);
1385 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001386 if (Ops.size() == 2) return OuterMul;
1387 if (AddOp < Idx) {
1388 Ops.erase(Ops.begin()+AddOp);
1389 Ops.erase(Ops.begin()+Idx-1);
1390 } else {
1391 Ops.erase(Ops.begin()+Idx);
1392 Ops.erase(Ops.begin()+AddOp-1);
1393 }
1394 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001395 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001397
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 // Check this multiply against other multiplies being added together.
1399 for (unsigned OtherMulIdx = Idx+1;
1400 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1401 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001402 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // If MulOp occurs in OtherMul, we can fold the two multiplies
1404 // together.
1405 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1406 OMulOp != e; ++OMulOp)
1407 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1408 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001409 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001410 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001411 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1412 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001414 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001416 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001417 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001418 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1419 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001421 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001422 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1424 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001425 if (Ops.size() == 2) return OuterMul;
1426 Ops.erase(Ops.begin()+Idx);
1427 Ops.erase(Ops.begin()+OtherMulIdx-1);
1428 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001429 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 }
1431 }
1432 }
1433 }
1434
1435 // If there are any add recurrences in the operands list, see if any other
1436 // added values are loop invariant. If so, we can fold them into the
1437 // recurrence.
1438 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1439 ++Idx;
1440
1441 // Scan over all recurrences, trying to fold loop invariants into them.
1442 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1443 // Scan all of the other operands to this add and add them to the vector if
1444 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001445 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001446 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001447 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1448 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1449 LIOps.push_back(Ops[i]);
1450 Ops.erase(Ops.begin()+i);
1451 --i; --e;
1452 }
1453
1454 // If we found some loop invariants, fold them into the recurrence.
1455 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001456 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001457 LIOps.push_back(AddRec->getStart());
1458
Dan Gohman0bba49c2009-07-07 17:06:11 +00001459 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001460 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001461 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001462
Dan Gohman3a5d4092009-12-18 03:57:04 +00001463 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // If all of the other operands were loop invariant, we are done.
1465 if (Ops.size() == 1) return NewRec;
1466
1467 // Otherwise, add the folded AddRec by the non-liv parts.
1468 for (unsigned i = 0;; ++i)
1469 if (Ops[i] == AddRec) {
1470 Ops[i] = NewRec;
1471 break;
1472 }
Dan Gohman246b2562007-10-22 18:31:58 +00001473 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 }
1475
1476 // Okay, if there weren't any loop invariants to be folded, check to see if
1477 // there are multiple AddRec's with the same loop induction variable being
1478 // added together. If so, we can fold them.
1479 for (unsigned OtherIdx = Idx+1;
1480 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1481 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001482 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001483 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1484 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001485 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1486 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1488 if (i >= NewOps.size()) {
1489 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1490 OtherAddRec->op_end());
1491 break;
1492 }
Dan Gohman246b2562007-10-22 18:31:58 +00001493 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001495 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001496
1497 if (Ops.size() == 2) return NewAddRec;
1498
1499 Ops.erase(Ops.begin()+Idx);
1500 Ops.erase(Ops.begin()+OtherIdx-1);
1501 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 }
1504 }
1505
1506 // Otherwise couldn't fold anything into this recurrence. Move onto the
1507 // next one.
1508 }
1509
1510 // Okay, it looks like we really DO need an add expr. Check to see if we
1511 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001512 FoldingSetNodeID ID;
1513 ID.AddInteger(scAddExpr);
1514 ID.AddInteger(Ops.size());
1515 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1516 ID.AddPointer(Ops[i]);
1517 void *IP = 0;
1518 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001519 SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001520 new (S) SCEVAddExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001521 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001522 if (HasNUW) S->setHasNoUnsignedWrap(true);
1523 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001524 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001525}
1526
1527
Dan Gohman6c0866c2009-05-24 23:45:28 +00001528/// getMulExpr - Get a canonical multiply expression, or something simpler if
1529/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001530const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1531 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001532 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001533#ifndef NDEBUG
1534 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1535 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1536 getEffectiveSCEVType(Ops[0]->getType()) &&
1537 "SCEVMulExpr operand types don't match!");
1538#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001539
1540 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001541 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001542
1543 // If there are any constants, fold them together.
1544 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001545 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001546
1547 // C1*(C2+V) -> C1*C2 + C1*V
1548 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001549 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001550 if (Add->getNumOperands() == 2 &&
1551 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001552 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1553 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001554
1555
1556 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001557 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001559 ConstantInt *Fold = ConstantInt::get(getContext(),
1560 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001561 RHSC->getValue()->getValue());
1562 Ops[0] = getConstant(Fold);
1563 Ops.erase(Ops.begin()+1); // Erase the folded element
1564 if (Ops.size() == 1) return Ops[0];
1565 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 }
1567
1568 // If we are left with a constant one being multiplied, strip it off.
1569 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1570 Ops.erase(Ops.begin());
1571 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001572 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 // If we have a multiply of zero, it will always be zero.
1574 return Ops[0];
1575 }
1576 }
1577
1578 // Skip over the add expression until we get to a multiply.
1579 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1580 ++Idx;
1581
1582 if (Ops.size() == 1)
1583 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001584
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 // If there are mul operands inline them all into this expression.
1586 if (Idx < Ops.size()) {
1587 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001588 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 // If we have an mul, expand the mul operands onto the end of the operands
1590 // list.
1591 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1592 Ops.erase(Ops.begin()+Idx);
1593 DeletedMul = true;
1594 }
1595
1596 // If we deleted at least one mul, we added operands to the end of the list,
1597 // and they are not necessarily sorted. Recurse to resort and resimplify
1598 // any operands we just aquired.
1599 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001600 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 }
1602
1603 // If there are any add recurrences in the operands list, see if any other
1604 // added values are loop invariant. If so, we can fold them into the
1605 // recurrence.
1606 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1607 ++Idx;
1608
1609 // Scan over all recurrences, trying to fold loop invariants into them.
1610 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1611 // Scan all of the other operands to this mul and add them to the vector if
1612 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001613 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001614 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1616 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1617 LIOps.push_back(Ops[i]);
1618 Ops.erase(Ops.begin()+i);
1619 --i; --e;
1620 }
1621
1622 // If we found some loop invariants, fold them into the recurrence.
1623 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001624 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001625 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001626 NewOps.reserve(AddRec->getNumOperands());
1627 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001628 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001629 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001630 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001631 } else {
1632 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001633 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001634 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001635 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 }
1637 }
1638
Dan Gohmand281ed22009-12-18 02:09:29 +00001639 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1640 AddRec->hasNoUnsignedWrap() && HasNUW,
1641 AddRec->hasNoSignedWrap() && HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001642
1643 // If all of the other operands were loop invariant, we are done.
1644 if (Ops.size() == 1) return NewRec;
1645
1646 // Otherwise, multiply the folded AddRec by the non-liv parts.
1647 for (unsigned i = 0;; ++i)
1648 if (Ops[i] == AddRec) {
1649 Ops[i] = NewRec;
1650 break;
1651 }
Dan Gohman246b2562007-10-22 18:31:58 +00001652 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001653 }
1654
1655 // Okay, if there weren't any loop invariants to be folded, check to see if
1656 // there are multiple AddRec's with the same loop induction variable being
1657 // multiplied together. If so, we can fold them.
1658 for (unsigned OtherIdx = Idx+1;
1659 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1660 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001661 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1663 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001664 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001665 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001667 const SCEV *B = F->getStepRecurrence(*this);
1668 const SCEV *D = G->getStepRecurrence(*this);
1669 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001670 getMulExpr(G, B),
1671 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001672 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001673 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 if (Ops.size() == 2) return NewAddRec;
1675
1676 Ops.erase(Ops.begin()+Idx);
1677 Ops.erase(Ops.begin()+OtherIdx-1);
1678 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001679 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 }
1681 }
1682
1683 // Otherwise couldn't fold anything into this recurrence. Move onto the
1684 // next one.
1685 }
1686
1687 // Okay, it looks like we really DO need an mul expr. Check to see if we
1688 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001689 FoldingSetNodeID ID;
1690 ID.AddInteger(scMulExpr);
1691 ID.AddInteger(Ops.size());
1692 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1693 ID.AddPointer(Ops[i]);
1694 void *IP = 0;
1695 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001696 SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001697 new (S) SCEVMulExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001698 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001699 if (HasNUW) S->setHasNoUnsignedWrap(true);
1700 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001701 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001702}
1703
Andreas Bolka8a11c982009-08-07 22:55:26 +00001704/// getUDivExpr - Get a canonical unsigned division expression, or something
1705/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001706const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1707 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001708 assert(getEffectiveSCEVType(LHS->getType()) ==
1709 getEffectiveSCEVType(RHS->getType()) &&
1710 "SCEVUDivExpr operand types don't match!");
1711
Dan Gohman622ed672009-05-04 22:02:23 +00001712 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001714 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001715 if (RHSC->isZero())
1716 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001717
Dan Gohman185cf032009-05-08 20:18:49 +00001718 // Determine if the division can be folded into the operands of
1719 // its operands.
1720 // TODO: Generalize this to non-constants by using known-bits information.
1721 const Type *Ty = LHS->getType();
1722 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1723 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1724 // For non-power-of-two values, effectively round the value up to the
1725 // nearest power of two.
1726 if (!RHSC->getValue()->getValue().isPowerOf2())
1727 ++MaxShiftAmt;
1728 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001729 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001730 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1731 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1732 if (const SCEVConstant *Step =
1733 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1734 if (!Step->getValue()->getValue()
1735 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001736 getZeroExtendExpr(AR, ExtTy) ==
1737 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1738 getZeroExtendExpr(Step, ExtTy),
1739 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001740 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001741 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1742 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1743 return getAddRecExpr(Operands, AR->getLoop());
1744 }
1745 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001746 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001747 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001748 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1749 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1750 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001751 // Find an operand that's safely divisible.
1752 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001753 const SCEV *Op = M->getOperand(i);
1754 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001755 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001756 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1757 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohmana82752c2009-06-14 22:47:23 +00001758 MOperands.end());
Dan Gohman185cf032009-05-08 20:18:49 +00001759 Operands[i] = Div;
1760 return getMulExpr(Operands);
1761 }
1762 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001763 }
Dan Gohman185cf032009-05-08 20:18:49 +00001764 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001765 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001766 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001767 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1768 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1769 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1770 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001771 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001772 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001773 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1774 break;
1775 Operands.push_back(Op);
1776 }
1777 if (Operands.size() == A->getNumOperands())
1778 return getAddExpr(Operands);
1779 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001780 }
Dan Gohman185cf032009-05-08 20:18:49 +00001781
1782 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001783 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 Constant *LHSCV = LHSC->getValue();
1785 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001786 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001787 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 }
1789 }
1790
Dan Gohman1c343752009-06-27 21:21:31 +00001791 FoldingSetNodeID ID;
1792 ID.AddInteger(scUDivExpr);
1793 ID.AddPointer(LHS);
1794 ID.AddPointer(RHS);
1795 void *IP = 0;
1796 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1797 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001798 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001799 UniqueSCEVs.InsertNode(S, IP);
1800 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801}
1802
1803
Dan Gohman6c0866c2009-05-24 23:45:28 +00001804/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1805/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001806const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001807 const SCEV *Step, const Loop *L,
1808 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001809 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001810 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001811 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001812 if (StepChrec->getLoop() == L) {
1813 Operands.insert(Operands.end(), StepChrec->op_begin(),
1814 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001815 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 }
1817
1818 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001819 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001820}
1821
Dan Gohman6c0866c2009-05-24 23:45:28 +00001822/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1823/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001824const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001825ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001826 const Loop *L,
1827 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001828 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001829#ifndef NDEBUG
1830 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1831 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1832 getEffectiveSCEVType(Operands[0]->getType()) &&
1833 "SCEVAddRecExpr operand types don't match!");
1834#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001836 if (Operands.back()->isZero()) {
1837 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001838 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001839 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001840
Dan Gohmand9cc7492008-08-08 18:33:12 +00001841 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001843 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmand9cc7492008-08-08 18:33:12 +00001844 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001845 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001846 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001847 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001848 // AddRecs require their operands be loop-invariant with respect to their
1849 // loops. Don't perform this transformation if it would break this
1850 // requirement.
1851 bool AllInvariant = true;
1852 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1853 if (!Operands[i]->isLoopInvariant(L)) {
1854 AllInvariant = false;
1855 break;
1856 }
1857 if (AllInvariant) {
1858 NestedOperands[0] = getAddRecExpr(Operands, L);
1859 AllInvariant = true;
1860 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1861 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1862 AllInvariant = false;
1863 break;
1864 }
1865 if (AllInvariant)
1866 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00001867 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00001868 }
1869 // Reset Operands to its original state.
1870 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00001871 }
1872 }
1873
Dan Gohman1c343752009-06-27 21:21:31 +00001874 FoldingSetNodeID ID;
1875 ID.AddInteger(scAddRecExpr);
1876 ID.AddInteger(Operands.size());
1877 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1878 ID.AddPointer(Operands[i]);
1879 ID.AddPointer(L);
1880 void *IP = 0;
1881 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001882 SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001883 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohman1c343752009-06-27 21:21:31 +00001884 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001885 if (HasNUW) S->setHasNoUnsignedWrap(true);
1886 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001887 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001888}
1889
Dan Gohman9311ef62009-06-24 14:49:00 +00001890const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1891 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001892 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001893 Ops.push_back(LHS);
1894 Ops.push_back(RHS);
1895 return getSMaxExpr(Ops);
1896}
1897
Dan Gohman0bba49c2009-07-07 17:06:11 +00001898const SCEV *
1899ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001900 assert(!Ops.empty() && "Cannot get empty smax!");
1901 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001902#ifndef NDEBUG
1903 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1904 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1905 getEffectiveSCEVType(Ops[0]->getType()) &&
1906 "SCEVSMaxExpr operand types don't match!");
1907#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001908
1909 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001910 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001911
1912 // If there are any constants, fold them together.
1913 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001914 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001915 ++Idx;
1916 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001917 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001918 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001919 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001920 APIntOps::smax(LHSC->getValue()->getValue(),
1921 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001922 Ops[0] = getConstant(Fold);
1923 Ops.erase(Ops.begin()+1); // Erase the folded element
1924 if (Ops.size() == 1) return Ops[0];
1925 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001926 }
1927
Dan Gohmane5aceed2009-06-24 14:46:22 +00001928 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001929 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1930 Ops.erase(Ops.begin());
1931 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00001932 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1933 // If we have an smax with a constant maximum-int, it will always be
1934 // maximum-int.
1935 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001936 }
1937 }
1938
1939 if (Ops.size() == 1) return Ops[0];
1940
1941 // Find the first SMax
1942 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1943 ++Idx;
1944
1945 // Check to see if one of the operands is an SMax. If so, expand its operands
1946 // onto our operand list, and recurse to simplify.
1947 if (Idx < Ops.size()) {
1948 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001949 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001950 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1951 Ops.erase(Ops.begin()+Idx);
1952 DeletedSMax = true;
1953 }
1954
1955 if (DeletedSMax)
1956 return getSMaxExpr(Ops);
1957 }
1958
1959 // Okay, check to see if the same value occurs in the operand list twice. If
1960 // so, delete one. Since we sorted the list, these values are required to
1961 // be adjacent.
1962 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1963 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1964 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1965 --i; --e;
1966 }
1967
1968 if (Ops.size() == 1) return Ops[0];
1969
1970 assert(!Ops.empty() && "Reduced smax down to nothing!");
1971
Nick Lewycky3e630762008-02-20 06:48:22 +00001972 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001973 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001974 FoldingSetNodeID ID;
1975 ID.AddInteger(scSMaxExpr);
1976 ID.AddInteger(Ops.size());
1977 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1978 ID.AddPointer(Ops[i]);
1979 void *IP = 0;
1980 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1981 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001982 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001983 UniqueSCEVs.InsertNode(S, IP);
1984 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001985}
1986
Dan Gohman9311ef62009-06-24 14:49:00 +00001987const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1988 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001989 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00001990 Ops.push_back(LHS);
1991 Ops.push_back(RHS);
1992 return getUMaxExpr(Ops);
1993}
1994
Dan Gohman0bba49c2009-07-07 17:06:11 +00001995const SCEV *
1996ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001997 assert(!Ops.empty() && "Cannot get empty umax!");
1998 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001999#ifndef NDEBUG
2000 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2001 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2002 getEffectiveSCEVType(Ops[0]->getType()) &&
2003 "SCEVUMaxExpr operand types don't match!");
2004#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002005
2006 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002007 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002008
2009 // If there are any constants, fold them together.
2010 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002011 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002012 ++Idx;
2013 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002014 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002015 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002016 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002017 APIntOps::umax(LHSC->getValue()->getValue(),
2018 RHSC->getValue()->getValue()));
2019 Ops[0] = getConstant(Fold);
2020 Ops.erase(Ops.begin()+1); // Erase the folded element
2021 if (Ops.size() == 1) return Ops[0];
2022 LHSC = cast<SCEVConstant>(Ops[0]);
2023 }
2024
Dan Gohmane5aceed2009-06-24 14:46:22 +00002025 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002026 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2027 Ops.erase(Ops.begin());
2028 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002029 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2030 // If we have an umax with a constant maximum-int, it will always be
2031 // maximum-int.
2032 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002033 }
2034 }
2035
2036 if (Ops.size() == 1) return Ops[0];
2037
2038 // Find the first UMax
2039 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2040 ++Idx;
2041
2042 // Check to see if one of the operands is a UMax. If so, expand its operands
2043 // onto our operand list, and recurse to simplify.
2044 if (Idx < Ops.size()) {
2045 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002046 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002047 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2048 Ops.erase(Ops.begin()+Idx);
2049 DeletedUMax = true;
2050 }
2051
2052 if (DeletedUMax)
2053 return getUMaxExpr(Ops);
2054 }
2055
2056 // Okay, check to see if the same value occurs in the operand list twice. If
2057 // so, delete one. Since we sorted the list, these values are required to
2058 // be adjacent.
2059 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2060 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2061 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2062 --i; --e;
2063 }
2064
2065 if (Ops.size() == 1) return Ops[0];
2066
2067 assert(!Ops.empty() && "Reduced umax down to nothing!");
2068
2069 // Okay, it looks like we really DO need a umax expr. Check to see if we
2070 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002071 FoldingSetNodeID ID;
2072 ID.AddInteger(scUMaxExpr);
2073 ID.AddInteger(Ops.size());
2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2075 ID.AddPointer(Ops[i]);
2076 void *IP = 0;
2077 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2078 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002079 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00002080 UniqueSCEVs.InsertNode(S, IP);
2081 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002082}
2083
Dan Gohman9311ef62009-06-24 14:49:00 +00002084const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2085 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002086 // ~smax(~x, ~y) == smin(x, y).
2087 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2088}
2089
Dan Gohman9311ef62009-06-24 14:49:00 +00002090const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2091 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002092 // ~umax(~x, ~y) == umin(x, y)
2093 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2094}
2095
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002096const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2097 unsigned FieldNo) {
2098 // If we have TargetData we can determine the constant offset.
2099 if (TD) {
2100 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2101 const StructLayout &SL = *TD->getStructLayout(STy);
2102 uint64_t Offset = SL.getElementOffset(FieldNo);
2103 return getIntegerSCEV(Offset, IntPtrTy);
2104 }
2105
2106 // Field 0 is always at offset 0.
2107 if (FieldNo == 0) {
2108 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2109 return getIntegerSCEV(0, Ty);
2110 }
2111
2112 // Okay, it looks like we really DO need an offsetof expr. Check to see if we
2113 // already have one, otherwise create a new one.
2114 FoldingSetNodeID ID;
2115 ID.AddInteger(scFieldOffset);
2116 ID.AddPointer(STy);
2117 ID.AddInteger(FieldNo);
2118 void *IP = 0;
2119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2120 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2121 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2122 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2123 UniqueSCEVs.InsertNode(S, IP);
2124 return S;
2125}
2126
2127const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2128 // If we have TargetData we can determine the constant size.
2129 if (TD && AllocTy->isSized()) {
2130 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2131 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2132 }
2133
2134 // Expand an array size into the element size times the number
2135 // of elements.
2136 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2137 const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2138 return getMulExpr(
2139 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2140 ATy->getNumElements())));
2141 }
2142
2143 // Expand a vector size into the element size times the number
2144 // of elements.
2145 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2146 const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2147 return getMulExpr(
2148 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2149 VTy->getNumElements())));
2150 }
2151
2152 // Okay, it looks like we really DO need a sizeof expr. Check to see if we
2153 // already have one, otherwise create a new one.
2154 FoldingSetNodeID ID;
2155 ID.AddInteger(scAllocSize);
2156 ID.AddPointer(AllocTy);
2157 void *IP = 0;
2158 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2159 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2160 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2161 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2162 UniqueSCEVs.InsertNode(S, IP);
2163 return S;
2164}
2165
Dan Gohman0bba49c2009-07-07 17:06:11 +00002166const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002167 // Don't attempt to do anything other than create a SCEVUnknown object
2168 // here. createSCEV only calls getUnknown after checking for all other
2169 // interesting possibilities, and any other code that calls getUnknown
2170 // is doing so in order to hide a value from SCEV canonicalization.
2171
Dan Gohman1c343752009-06-27 21:21:31 +00002172 FoldingSetNodeID ID;
2173 ID.AddInteger(scUnknown);
2174 ID.AddPointer(V);
2175 void *IP = 0;
2176 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2177 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002178 new (S) SCEVUnknown(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +00002179 UniqueSCEVs.InsertNode(S, IP);
2180 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002181}
2182
Chris Lattner53e677a2004-04-02 20:23:17 +00002183//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002184// Basic SCEV Analysis and PHI Idiom Recognition Code
2185//
2186
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002187/// isSCEVable - Test if values of the given type are analyzable within
2188/// the SCEV framework. This primarily includes integer types, and it
2189/// can optionally include pointer types if the ScalarEvolution class
2190/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002191bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002192 // Integers and pointers are always SCEVable.
2193 return Ty->isInteger() || isa<PointerType>(Ty);
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002194}
2195
2196/// getTypeSizeInBits - Return the size in bits of the specified type,
2197/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002198uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002199 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2200
2201 // If we have a TargetData, use it!
2202 if (TD)
2203 return TD->getTypeSizeInBits(Ty);
2204
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002205 // Integer types have fixed sizes.
2206 if (Ty->isInteger())
2207 return Ty->getPrimitiveSizeInBits();
2208
2209 // The only other support type is pointer. Without TargetData, conservatively
2210 // assume pointers are 64-bit.
2211 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2212 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002213}
2214
2215/// getEffectiveSCEVType - Return a type with the same bitwidth as
2216/// the given type and which represents how SCEV will treat the given
2217/// type, for which isSCEVable must return true. For pointer types,
2218/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002219const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002220 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2221
2222 if (Ty->isInteger())
2223 return Ty;
2224
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002225 // The only other support type is pointer.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002226 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002227 if (TD) return TD->getIntPtrType(getContext());
2228
2229 // Without TargetData, conservatively assume pointers are 64-bit.
2230 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002231}
Chris Lattner53e677a2004-04-02 20:23:17 +00002232
Dan Gohman0bba49c2009-07-07 17:06:11 +00002233const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002234 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002235}
2236
Chris Lattner53e677a2004-04-02 20:23:17 +00002237/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2238/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002239const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002240 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002241
Dan Gohman0bba49c2009-07-07 17:06:11 +00002242 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002243 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002244 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002245 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002246 return S;
2247}
2248
Dan Gohman6bbcba12009-06-24 00:54:57 +00002249/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002250/// specified signed integer value and return a SCEV for the constant.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002251const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002252 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002253 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002254}
2255
2256/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2257///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002258const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002259 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002260 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002261 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002262
2263 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002264 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002265 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002266 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002267}
2268
2269/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002270const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002271 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002272 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002273 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002274
2275 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002276 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002277 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002278 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002279 return getMinusSCEV(AllOnes, V);
2280}
2281
2282/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2283///
Dan Gohman9311ef62009-06-24 14:49:00 +00002284const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2285 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002286 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002287 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002288}
2289
2290/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2291/// input value to the specified type. If the type must be extended, it is zero
2292/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002293const SCEV *
2294ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002295 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002296 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002297 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2298 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002299 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002300 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002301 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002302 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002303 return getTruncateExpr(V, Ty);
2304 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002305}
2306
2307/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2308/// input value to the specified type. If the type must be extended, it is sign
2309/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310const SCEV *
2311ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002312 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002313 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002314 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2315 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002316 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002317 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002318 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002319 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002320 return getTruncateExpr(V, Ty);
2321 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002322}
2323
Dan Gohman467c4302009-05-13 03:46:30 +00002324/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2325/// input value to the specified type. If the type must be extended, it is zero
2326/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002327const SCEV *
2328ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002329 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002330 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2331 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002332 "Cannot noop or zero extend with non-integer arguments!");
2333 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2334 "getNoopOrZeroExtend cannot truncate!");
2335 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2336 return V; // No conversion
2337 return getZeroExtendExpr(V, Ty);
2338}
2339
2340/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2341/// input value to the specified type. If the type must be extended, it is sign
2342/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002343const SCEV *
2344ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002345 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002346 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2347 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002348 "Cannot noop or sign extend with non-integer arguments!");
2349 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2350 "getNoopOrSignExtend cannot truncate!");
2351 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2352 return V; // No conversion
2353 return getSignExtendExpr(V, Ty);
2354}
2355
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002356/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2357/// the input value to the specified type. If the type must be extended,
2358/// it is extended with unspecified bits. The conversion must not be
2359/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002360const SCEV *
2361ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002362 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002363 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2364 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002365 "Cannot noop or any extend with non-integer arguments!");
2366 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2367 "getNoopOrAnyExtend cannot truncate!");
2368 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2369 return V; // No conversion
2370 return getAnyExtendExpr(V, Ty);
2371}
2372
Dan Gohman467c4302009-05-13 03:46:30 +00002373/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2374/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002375const SCEV *
2376ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002377 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002378 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2379 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002380 "Cannot truncate or noop with non-integer arguments!");
2381 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2382 "getTruncateOrNoop cannot extend!");
2383 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2384 return V; // No conversion
2385 return getTruncateExpr(V, Ty);
2386}
2387
Dan Gohmana334aa72009-06-22 00:31:57 +00002388/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2389/// the types using zero-extension, and then perform a umax operation
2390/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002391const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2392 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002393 const SCEV *PromotedLHS = LHS;
2394 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002395
2396 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2397 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2398 else
2399 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2400
2401 return getUMaxExpr(PromotedLHS, PromotedRHS);
2402}
2403
Dan Gohmanc9759e82009-06-22 15:03:27 +00002404/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2405/// the types using zero-extension, and then perform a umin operation
2406/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002407const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2408 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002409 const SCEV *PromotedLHS = LHS;
2410 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002411
2412 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2413 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2414 else
2415 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2416
2417 return getUMinExpr(PromotedLHS, PromotedRHS);
2418}
2419
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002420/// PushDefUseChildren - Push users of the given Instruction
2421/// onto the given Worklist.
2422static void
2423PushDefUseChildren(Instruction *I,
2424 SmallVectorImpl<Instruction *> &Worklist) {
2425 // Push the def-use children onto the Worklist stack.
2426 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2427 UI != UE; ++UI)
2428 Worklist.push_back(cast<Instruction>(UI));
2429}
2430
2431/// ForgetSymbolicValue - This looks up computed SCEV values for all
2432/// instructions that depend on the given instruction and removes them from
2433/// the Scalars map if they reference SymName. This is used during PHI
2434/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002435void
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002436ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2437 SmallVector<Instruction *, 16> Worklist;
2438 PushDefUseChildren(I, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002439
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002440 SmallPtrSet<Instruction *, 8> Visited;
2441 Visited.insert(I);
2442 while (!Worklist.empty()) {
2443 Instruction *I = Worklist.pop_back_val();
2444 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002445
Dan Gohman5d984912009-12-18 01:14:11 +00002446 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002447 Scalars.find(static_cast<Value *>(I));
2448 if (It != Scalars.end()) {
2449 // Short-circuit the def-use traversal if the symbolic name
2450 // ceases to appear in expressions.
2451 if (!It->second->hasOperand(SymName))
2452 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002453
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002454 // SCEVUnknown for a PHI either means that it has an unrecognized
2455 // structure, or it's a PHI that's in the progress of being computed
2456 // by createNodeForPHI. In the former case, additional loop trip
2457 // count information isn't going to change anything. In the later
2458 // case, createNodeForPHI will perform the necessary updates on its
2459 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00002460 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2461 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002462 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002463 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002464 }
2465
2466 PushDefUseChildren(I, Worklist);
2467 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002468}
Chris Lattner53e677a2004-04-02 20:23:17 +00002469
2470/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2471/// a loop header, making it a potential recurrence, or it doesn't.
2472///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002473const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002474 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002475 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002476 if (L->getHeader() == PN->getParent()) {
2477 // If it lives in the loop header, it has two incoming values, one
2478 // from outside the loop, and one from inside.
2479 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2480 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002481
Chris Lattner53e677a2004-04-02 20:23:17 +00002482 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002484 assert(Scalars.find(PN) == Scalars.end() &&
2485 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002486 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002487
2488 // Using this symbolic name for the PHI, analyze the value coming around
2489 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002490 Value *BEValueV = PN->getIncomingValue(BackEdge);
2491 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002492
2493 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2494 // has a special value for the first iteration of the loop.
2495
2496 // If the value coming around the backedge is an add with the symbolic
2497 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002498 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002499 // If there is a single occurrence of the symbolic value, replace it
2500 // with a recurrence.
2501 unsigned FoundIndex = Add->getNumOperands();
2502 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2503 if (Add->getOperand(i) == SymbolicName)
2504 if (FoundIndex == e) {
2505 FoundIndex = i;
2506 break;
2507 }
2508
2509 if (FoundIndex != Add->getNumOperands()) {
2510 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002511 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002512 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2513 if (i != FoundIndex)
2514 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002515 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002516
2517 // This is not a valid addrec if the step amount is varying each
2518 // loop iteration, but is not itself an addrec in this loop.
2519 if (Accum->isLoopInvariant(L) ||
2520 (isa<SCEVAddRecExpr>(Accum) &&
2521 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman64a845e2009-06-24 04:48:43 +00002522 const SCEV *StartVal =
2523 getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmaneb490a72009-07-25 01:22:26 +00002524 const SCEVAddRecExpr *PHISCEV =
2525 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2526
2527 // If the increment doesn't overflow, then neither the addrec nor the
2528 // post-increment will overflow.
2529 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2530 if (OBO->getOperand(0) == PN &&
2531 getSCEV(OBO->getOperand(1)) ==
2532 PHISCEV->getStepRecurrence(*this)) {
2533 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
Dan Gohman5078f842009-08-20 17:11:38 +00002534 if (OBO->hasNoUnsignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002535 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002536 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002537 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002538 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002539 }
Dan Gohman5078f842009-08-20 17:11:38 +00002540 if (OBO->hasNoSignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002541 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002542 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002543 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002544 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002545 }
2546 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002547
2548 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002549 // to be symbolic. We now need to go back and purge all of the
2550 // entries for the scalars that use the symbolic expression.
2551 ForgetSymbolicName(PN, SymbolicName);
2552 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002553 return PHISCEV;
2554 }
2555 }
Dan Gohman622ed672009-05-04 22:02:23 +00002556 } else if (const SCEVAddRecExpr *AddRec =
2557 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002558 // Otherwise, this could be a loop like this:
2559 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2560 // In this case, j = {1,+,1} and BEValue is j.
2561 // Because the other in-value of i (0) fits the evolution of BEValue
2562 // i really is an addrec evolution.
2563 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002564 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Chris Lattner97156e72006-04-26 18:34:07 +00002565
2566 // If StartVal = j.start - j.stride, we can use StartVal as the
2567 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002568 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002569 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002570 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002571 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002572
2573 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002574 // to be symbolic. We now need to go back and purge all of the
2575 // entries for the scalars that use the symbolic expression.
2576 ForgetSymbolicName(PN, SymbolicName);
2577 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002578 return PHISCEV;
2579 }
2580 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002581 }
2582
2583 return SymbolicName;
2584 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002585
Dan Gohmana653fc52009-07-14 14:06:25 +00002586 // It's tempting to recognize PHIs with a unique incoming value, however
2587 // this leads passes like indvars to break LCSSA form. Fortunately, such
2588 // PHIs are rare, as instcombine zaps them.
2589
Chris Lattner53e677a2004-04-02 20:23:17 +00002590 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002591 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002592}
2593
Dan Gohman26466c02009-05-08 20:26:55 +00002594/// createNodeForGEP - Expand GEP instructions into add and multiply
2595/// operations. This allows them to be analyzed by regular SCEV code.
2596///
Dan Gohmand281ed22009-12-18 02:09:29 +00002597const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002598
Dan Gohmand281ed22009-12-18 02:09:29 +00002599 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002600 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002601 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002602 // Don't attempt to analyze GEPs over unsized objects.
2603 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2604 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002605 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002606 gep_type_iterator GTI = gep_type_begin(GEP);
2607 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2608 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002609 I != E; ++I) {
2610 Value *Index = *I;
2611 // Compute the (potentially symbolic) offset in bytes for this index.
2612 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2613 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002614 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002615 TotalOffset = getAddExpr(TotalOffset,
Dan Gohmand281ed22009-12-18 02:09:29 +00002616 getFieldOffsetExpr(STy, FieldNo),
2617 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002618 } else {
2619 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002620 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman26466c02009-05-08 20:26:55 +00002621 if (!isa<PointerType>(LocalOffset->getType()))
2622 // Getelementptr indicies are signed.
Dan Gohman85b05a22009-07-13 21:35:55 +00002623 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002624 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohmand281ed22009-12-18 02:09:29 +00002625 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI),
2626 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2627 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2628 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002629 }
2630 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002631 return getAddExpr(getSCEV(Base), TotalOffset,
2632 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002633}
2634
Nick Lewycky83bb0052007-11-22 07:59:40 +00002635/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2636/// guaranteed to end in (at every loop iteration). It is, at the same time,
2637/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2638/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002639uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002640ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002641 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002642 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002643
Dan Gohman622ed672009-05-04 22:02:23 +00002644 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002645 return std::min(GetMinTrailingZeros(T->getOperand()),
2646 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002647
Dan Gohman622ed672009-05-04 22:02:23 +00002648 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002649 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2650 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2651 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002652 }
2653
Dan Gohman622ed672009-05-04 22:02:23 +00002654 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002655 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2656 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2657 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002658 }
2659
Dan Gohman622ed672009-05-04 22:02:23 +00002660 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002661 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002662 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002663 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002664 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002665 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002666 }
2667
Dan Gohman622ed672009-05-04 22:02:23 +00002668 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002669 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002670 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2671 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002672 for (unsigned i = 1, e = M->getNumOperands();
2673 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002674 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002675 BitWidth);
2676 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002677 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002678
Dan Gohman622ed672009-05-04 22:02:23 +00002679 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002680 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002681 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002682 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002683 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002684 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002685 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002686
Dan Gohman622ed672009-05-04 22:02:23 +00002687 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002688 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002689 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002690 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002691 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002692 return MinOpRes;
2693 }
2694
Dan Gohman622ed672009-05-04 22:02:23 +00002695 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002696 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002697 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002698 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002699 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002700 return MinOpRes;
2701 }
2702
Dan Gohman2c364ad2009-06-19 23:29:04 +00002703 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2704 // For a SCEVUnknown, ask ValueTracking.
2705 unsigned BitWidth = getTypeSizeInBits(U->getType());
2706 APInt Mask = APInt::getAllOnesValue(BitWidth);
2707 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2708 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2709 return Zeros.countTrailingOnes();
2710 }
2711
2712 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002713 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002714}
Chris Lattner53e677a2004-04-02 20:23:17 +00002715
Dan Gohman85b05a22009-07-13 21:35:55 +00002716/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2717///
2718ConstantRange
2719ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002720
2721 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002722 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002723
Dan Gohman85b05a22009-07-13 21:35:55 +00002724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2725 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2726 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2727 X = X.add(getUnsignedRange(Add->getOperand(i)));
2728 return X;
2729 }
2730
2731 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2732 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2733 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2734 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2735 return X;
2736 }
2737
2738 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2739 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2740 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2741 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2742 return X;
2743 }
2744
2745 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2746 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2747 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2748 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2749 return X;
2750 }
2751
2752 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2753 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2754 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2755 return X.udiv(Y);
2756 }
2757
2758 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2759 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2760 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2761 }
2762
2763 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2764 ConstantRange X = getUnsignedRange(SExt->getOperand());
2765 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2766 }
2767
2768 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2769 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2770 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2771 }
2772
2773 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2774
2775 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2776 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2777 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2778 if (!Trip) return FullSet;
2779
2780 // TODO: non-affine addrec
2781 if (AddRec->isAffine()) {
2782 const Type *Ty = AddRec->getType();
2783 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2784 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2785 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2786
2787 const SCEV *Start = AddRec->getStart();
Dan Gohmana16b5762009-07-21 00:42:47 +00002788 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002789 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2790
2791 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002792 // TODO: This is very conservative.
2793 if (!(Step->isOne() &&
2794 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2795 !(Step->isAllOnesValue() &&
2796 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
Dan Gohman85b05a22009-07-13 21:35:55 +00002797 return FullSet;
2798
2799 ConstantRange StartRange = getUnsignedRange(Start);
2800 ConstantRange EndRange = getUnsignedRange(End);
2801 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2802 EndRange.getUnsignedMin());
2803 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2804 EndRange.getUnsignedMax());
2805 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman0d5bae42009-07-20 22:41:51 +00002806 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002807 return ConstantRange(Min, Max+1);
2808 }
2809 }
Dan Gohman2c364ad2009-06-19 23:29:04 +00002810 }
2811
2812 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2813 // For a SCEVUnknown, ask ValueTracking.
2814 unsigned BitWidth = getTypeSizeInBits(U->getType());
2815 APInt Mask = APInt::getAllOnesValue(BitWidth);
2816 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2817 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002818 if (Ones == ~Zeros + 1)
2819 return FullSet;
2820 return ConstantRange(Ones, ~Zeros + 1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002821 }
2822
Dan Gohman85b05a22009-07-13 21:35:55 +00002823 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002824}
2825
Dan Gohman85b05a22009-07-13 21:35:55 +00002826/// getSignedRange - Determine the signed range for a particular SCEV.
2827///
2828ConstantRange
2829ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002830
Dan Gohman85b05a22009-07-13 21:35:55 +00002831 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2832 return ConstantRange(C->getValue()->getValue());
2833
2834 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2835 ConstantRange X = getSignedRange(Add->getOperand(0));
2836 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2837 X = X.add(getSignedRange(Add->getOperand(i)));
2838 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002839 }
2840
Dan Gohman85b05a22009-07-13 21:35:55 +00002841 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2842 ConstantRange X = getSignedRange(Mul->getOperand(0));
2843 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2844 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2845 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002846 }
2847
Dan Gohman85b05a22009-07-13 21:35:55 +00002848 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2849 ConstantRange X = getSignedRange(SMax->getOperand(0));
2850 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2851 X = X.smax(getSignedRange(SMax->getOperand(i)));
2852 return X;
2853 }
Dan Gohman62849c02009-06-24 01:05:09 +00002854
Dan Gohman85b05a22009-07-13 21:35:55 +00002855 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2856 ConstantRange X = getSignedRange(UMax->getOperand(0));
2857 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2858 X = X.umax(getSignedRange(UMax->getOperand(i)));
2859 return X;
2860 }
Dan Gohman62849c02009-06-24 01:05:09 +00002861
Dan Gohman85b05a22009-07-13 21:35:55 +00002862 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2863 ConstantRange X = getSignedRange(UDiv->getLHS());
2864 ConstantRange Y = getSignedRange(UDiv->getRHS());
2865 return X.udiv(Y);
2866 }
Dan Gohman62849c02009-06-24 01:05:09 +00002867
Dan Gohman85b05a22009-07-13 21:35:55 +00002868 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2869 ConstantRange X = getSignedRange(ZExt->getOperand());
2870 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2871 }
2872
2873 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2874 ConstantRange X = getSignedRange(SExt->getOperand());
2875 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2876 }
2877
2878 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2879 ConstantRange X = getSignedRange(Trunc->getOperand());
2880 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2881 }
2882
2883 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2884
2885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2886 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2887 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2888 if (!Trip) return FullSet;
2889
2890 // TODO: non-affine addrec
2891 if (AddRec->isAffine()) {
2892 const Type *Ty = AddRec->getType();
2893 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2894 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2895 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2896
2897 const SCEV *Start = AddRec->getStart();
2898 const SCEV *Step = AddRec->getStepRecurrence(*this);
2899 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2900
2901 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002902 // TODO: This is very conservative.
2903 if (!(Step->isOne() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002904 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
Dan Gohmana16b5762009-07-21 00:42:47 +00002905 !(Step->isAllOnesValue() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002906 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2907 return FullSet;
2908
2909 ConstantRange StartRange = getSignedRange(Start);
2910 ConstantRange EndRange = getSignedRange(End);
2911 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2912 EndRange.getSignedMin());
2913 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2914 EndRange.getSignedMax());
2915 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmanc268e7c2009-07-21 00:37:45 +00002916 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002917 return ConstantRange(Min, Max+1);
Dan Gohman62849c02009-06-24 01:05:09 +00002918 }
Dan Gohman62849c02009-06-24 01:05:09 +00002919 }
Dan Gohman62849c02009-06-24 01:05:09 +00002920 }
2921
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2923 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman85b05a22009-07-13 21:35:55 +00002924 unsigned BitWidth = getTypeSizeInBits(U->getType());
2925 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2926 if (NS == 1)
2927 return FullSet;
2928 return
2929 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2930 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002931 }
2932
Dan Gohman85b05a22009-07-13 21:35:55 +00002933 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002934}
2935
Chris Lattner53e677a2004-04-02 20:23:17 +00002936/// createSCEV - We know that there is no SCEV for the specified value.
2937/// Analyze the expression.
2938///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002939const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002940 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002941 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00002942
Dan Gohman6c459a22008-06-22 19:56:46 +00002943 unsigned Opcode = Instruction::UserOp1;
2944 if (Instruction *I = dyn_cast<Instruction>(V))
2945 Opcode = I->getOpcode();
2946 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2947 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00002948 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2949 return getConstant(CI);
2950 else if (isa<ConstantPointerNull>(V))
2951 return getIntegerSCEV(0, V->getType());
2952 else if (isa<UndefValue>(V))
2953 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00002954 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2955 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00002956 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002957 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00002958
Dan Gohmanca178902009-07-17 20:47:02 +00002959 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00002960 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00002961 case Instruction::Add:
2962 // Don't transfer the NSW and NUW bits from the Add instruction to the
2963 // Add expression, because the Instruction may be guarded by control
2964 // flow and the no-overflow bits may not be valid for the expression in
2965 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002966 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00002967 getSCEV(U->getOperand(1)));
2968 case Instruction::Mul:
2969 // Don't transfer the NSW and NUW bits from the Mul instruction to the
2970 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002971 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00002972 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002973 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002974 return getUDivExpr(getSCEV(U->getOperand(0)),
2975 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002976 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002977 return getMinusSCEV(getSCEV(U->getOperand(0)),
2978 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002979 case Instruction::And:
2980 // For an expression like x&255 that merely masks off the high bits,
2981 // use zext(trunc(x)) as the SCEV expression.
2982 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002983 if (CI->isNullValue())
2984 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00002985 if (CI->isAllOnesValue())
2986 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002987 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002988
2989 // Instcombine's ShrinkDemandedConstant may strip bits out of
2990 // constants, obscuring what would otherwise be a low-bits mask.
2991 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2992 // knew about to reconstruct a low-bits mask value.
2993 unsigned LZ = A.countLeadingZeros();
2994 unsigned BitWidth = A.getBitWidth();
2995 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2996 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2997 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2998
2999 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3000
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003001 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003002 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003003 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003004 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003005 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003006 }
3007 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003008
Dan Gohman6c459a22008-06-22 19:56:46 +00003009 case Instruction::Or:
3010 // If the RHS of the Or is a constant, we may have something like:
3011 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3012 // optimizations will transparently handle this case.
3013 //
3014 // In order for this transformation to be safe, the LHS must be of the
3015 // form X*(2^n) and the Or constant must be less than 2^n.
3016 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003017 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003018 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003019 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003020 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3021 // Build a plain add SCEV.
3022 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3023 // If the LHS of the add was an addrec and it has no-wrap flags,
3024 // transfer the no-wrap flags, since an or won't introduce a wrap.
3025 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3026 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3027 if (OldAR->hasNoUnsignedWrap())
3028 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3029 if (OldAR->hasNoSignedWrap())
3030 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3031 }
3032 return S;
3033 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003034 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003035 break;
3036 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003037 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003038 // If the RHS of the xor is a signbit, then this is just an add.
3039 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003040 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003041 return getAddExpr(getSCEV(U->getOperand(0)),
3042 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003043
3044 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003045 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003046 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003047
3048 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3049 // This is a variant of the check for xor with -1, and it handles
3050 // the case where instcombine has trimmed non-demanded bits out
3051 // of an xor with -1.
3052 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3053 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3054 if (BO->getOpcode() == Instruction::And &&
3055 LCI->getValue() == CI->getValue())
3056 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003057 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003058 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003059 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003060 const Type *Z0Ty = Z0->getType();
3061 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3062
3063 // If C is a low-bits mask, the zero extend is zerving to
3064 // mask off the high bits. Complement the operand and
3065 // re-apply the zext.
3066 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3067 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3068
3069 // If C is a single bit, it may be in the sign-bit position
3070 // before the zero-extend. In this case, represent the xor
3071 // using an add, which is equivalent, and re-apply the zext.
3072 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3073 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3074 Trunc.isSignBit())
3075 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3076 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003077 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003078 }
3079 break;
3080
3081 case Instruction::Shl:
3082 // Turn shift left of a constant amount into a multiply.
3083 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3084 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003085 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003086 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003087 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003088 }
3089 break;
3090
Nick Lewycky01eaf802008-07-07 06:15:49 +00003091 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003092 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003093 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3094 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003095 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003096 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003097 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003098 }
3099 break;
3100
Dan Gohman4ee29af2009-04-21 02:26:00 +00003101 case Instruction::AShr:
3102 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3103 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3104 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3105 if (L->getOpcode() == Instruction::Shl &&
3106 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003107 unsigned BitWidth = getTypeSizeInBits(U->getType());
3108 uint64_t Amt = BitWidth - CI->getZExtValue();
3109 if (Amt == BitWidth)
3110 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3111 if (Amt > BitWidth)
3112 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003113 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003114 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003115 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003116 U->getType());
3117 }
3118 break;
3119
Dan Gohman6c459a22008-06-22 19:56:46 +00003120 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003121 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003122
3123 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003124 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003125
3126 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003127 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003128
3129 case Instruction::BitCast:
3130 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003131 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003132 return getSCEV(U->getOperand(0));
3133 break;
3134
Dan Gohmanf2411742009-07-20 17:43:30 +00003135 // It's tempting to handle inttoptr and ptrtoint, however this can
3136 // lead to pointer expressions which cannot be expanded to GEPs
3137 // (because they may overflow). For now, the only pointer-typed
3138 // expressions we handle are GEPs and address literals.
Dan Gohman2d1be872009-04-16 03:18:22 +00003139
Dan Gohman26466c02009-05-08 20:26:55 +00003140 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003141 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003142
Dan Gohman6c459a22008-06-22 19:56:46 +00003143 case Instruction::PHI:
3144 return createNodeForPHI(cast<PHINode>(U));
3145
3146 case Instruction::Select:
3147 // This could be a smax or umax that was lowered earlier.
3148 // Try to recover it.
3149 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3150 Value *LHS = ICI->getOperand(0);
3151 Value *RHS = ICI->getOperand(1);
3152 switch (ICI->getPredicate()) {
3153 case ICmpInst::ICMP_SLT:
3154 case ICmpInst::ICMP_SLE:
3155 std::swap(LHS, RHS);
3156 // fall through
3157 case ICmpInst::ICMP_SGT:
3158 case ICmpInst::ICMP_SGE:
3159 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003160 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003161 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003162 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003163 break;
3164 case ICmpInst::ICMP_ULT:
3165 case ICmpInst::ICMP_ULE:
3166 std::swap(LHS, RHS);
3167 // fall through
3168 case ICmpInst::ICMP_UGT:
3169 case ICmpInst::ICMP_UGE:
3170 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003171 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003172 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003173 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003174 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003175 case ICmpInst::ICMP_NE:
3176 // n != 0 ? n : 1 -> umax(n, 1)
3177 if (LHS == U->getOperand(1) &&
3178 isa<ConstantInt>(U->getOperand(2)) &&
3179 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3180 isa<ConstantInt>(RHS) &&
3181 cast<ConstantInt>(RHS)->isZero())
3182 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3183 break;
3184 case ICmpInst::ICMP_EQ:
3185 // n == 0 ? 1 : n -> umax(n, 1)
3186 if (LHS == U->getOperand(2) &&
3187 isa<ConstantInt>(U->getOperand(1)) &&
3188 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3189 isa<ConstantInt>(RHS) &&
3190 cast<ConstantInt>(RHS)->isZero())
3191 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3192 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003193 default:
3194 break;
3195 }
3196 }
3197
3198 default: // We cannot analyze this expression.
3199 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003200 }
3201
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003202 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003203}
3204
3205
3206
3207//===----------------------------------------------------------------------===//
3208// Iteration Count Computation Code
3209//
3210
Dan Gohman46bdfb02009-02-24 18:55:53 +00003211/// getBackedgeTakenCount - If the specified loop has a predictable
3212/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3213/// object. The backedge-taken count is the number of times the loop header
3214/// will be branched to from within the loop. This is one less than the
3215/// trip count of the loop, since it doesn't count the first iteration,
3216/// when the header is branched to from outside the loop.
3217///
3218/// Note that it is not valid to call this method on a loop without a
3219/// loop-invariant backedge-taken count (see
3220/// hasLoopInvariantBackedgeTakenCount).
3221///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003222const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003223 return getBackedgeTakenInfo(L).Exact;
3224}
3225
3226/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3227/// return the least SCEV value that is known never to be less than the
3228/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003229const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003230 return getBackedgeTakenInfo(L).Max;
3231}
3232
Dan Gohman59ae6b92009-07-08 19:23:34 +00003233/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3234/// onto the given Worklist.
3235static void
3236PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3237 BasicBlock *Header = L->getHeader();
3238
3239 // Push all Loop-header PHIs onto the Worklist stack.
3240 for (BasicBlock::iterator I = Header->begin();
3241 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3242 Worklist.push_back(PN);
3243}
3244
Dan Gohmana1af7572009-04-30 20:47:05 +00003245const ScalarEvolution::BackedgeTakenInfo &
3246ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003247 // Initially insert a CouldNotCompute for this loop. If the insertion
3248 // succeeds, procede to actually compute a backedge-taken count and
3249 // update the value. The temporary CouldNotCompute value tells SCEV
3250 // code elsewhere that it shouldn't attempt to request a new
3251 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003252 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003253 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3254 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003255 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman1c343752009-06-27 21:21:31 +00003256 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003257 assert(ItCount.Exact->isLoopInvariant(L) &&
3258 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003259 "Computed trip count isn't loop invariant for loop!");
3260 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003261
Dan Gohman01ecca22009-04-27 20:16:15 +00003262 // Update the value in the map.
3263 Pair.first->second = ItCount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003264 } else {
Dan Gohman1c343752009-06-27 21:21:31 +00003265 if (ItCount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003266 // Update the value in the map.
3267 Pair.first->second = ItCount;
3268 if (isa<PHINode>(L->getHeader()->begin()))
3269 // Only count loops that have phi nodes as not being computable.
3270 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003271 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003272
3273 // Now that we know more about the trip count for this loop, forget any
3274 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003275 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003276 // information. This is similar to the code in forgetLoop, except that
3277 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman59ae6b92009-07-08 19:23:34 +00003278 if (ItCount.hasAnyInfo()) {
3279 SmallVector<Instruction *, 16> Worklist;
3280 PushLoopPHIs(L, Worklist);
3281
3282 SmallPtrSet<Instruction *, 8> Visited;
3283 while (!Worklist.empty()) {
3284 Instruction *I = Worklist.pop_back_val();
3285 if (!Visited.insert(I)) continue;
3286
Dan Gohman5d984912009-12-18 01:14:11 +00003287 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003288 Scalars.find(static_cast<Value *>(I));
3289 if (It != Scalars.end()) {
3290 // SCEVUnknown for a PHI either means that it has an unrecognized
3291 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003292 // by createNodeForPHI. In the former case, additional loop trip
3293 // count information isn't going to change anything. In the later
3294 // case, createNodeForPHI will perform the necessary updates on its
3295 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003296 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3297 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003298 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003299 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003300 if (PHINode *PN = dyn_cast<PHINode>(I))
3301 ConstantEvolutionLoopExitValue.erase(PN);
3302 }
3303
3304 PushDefUseChildren(I, Worklist);
3305 }
3306 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003307 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003308 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003309}
3310
Dan Gohman4c7279a2009-10-31 15:04:55 +00003311/// forgetLoop - This method should be called by the client when it has
3312/// changed a loop in a way that may effect ScalarEvolution's ability to
3313/// compute a trip count, or if the loop is deleted.
3314void ScalarEvolution::forgetLoop(const Loop *L) {
3315 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003316 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003317
Dan Gohman4c7279a2009-10-31 15:04:55 +00003318 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003319 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003320 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003321
Dan Gohman59ae6b92009-07-08 19:23:34 +00003322 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003323 while (!Worklist.empty()) {
3324 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003325 if (!Visited.insert(I)) continue;
3326
Dan Gohman5d984912009-12-18 01:14:11 +00003327 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003328 Scalars.find(static_cast<Value *>(I));
3329 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003330 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003331 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003332 if (PHINode *PN = dyn_cast<PHINode>(I))
3333 ConstantEvolutionLoopExitValue.erase(PN);
3334 }
3335
3336 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003337 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003338}
3339
Dan Gohman46bdfb02009-02-24 18:55:53 +00003340/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3341/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003342ScalarEvolution::BackedgeTakenInfo
3343ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003344 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003345 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003346
Dan Gohmana334aa72009-06-22 00:31:57 +00003347 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003348 const SCEV *BECount = getCouldNotCompute();
3349 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003350 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003351 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3352 BackedgeTakenInfo NewBTI =
3353 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003354
Dan Gohman1c343752009-06-27 21:21:31 +00003355 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003356 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003357 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003358 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003359 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003360 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003361 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003362 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003363 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003364 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003365 }
Dan Gohman1c343752009-06-27 21:21:31 +00003366 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003367 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003368 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003369 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003370 }
3371
3372 return BackedgeTakenInfo(BECount, MaxBECount);
3373}
3374
3375/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3376/// of the specified loop will execute if it exits via the specified block.
3377ScalarEvolution::BackedgeTakenInfo
3378ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3379 BasicBlock *ExitingBlock) {
3380
3381 // Okay, we've chosen an exiting block. See what condition causes us to
3382 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003383 //
3384 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003385 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003386 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003387 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003388
Chris Lattner8b0e3602007-01-07 02:24:26 +00003389 // At this point, we know we have a conditional branch that determines whether
3390 // the loop is exited. However, we don't know if the branch is executed each
3391 // time through the loop. If not, then the execution count of the branch will
3392 // not be equal to the trip count of the loop.
3393 //
3394 // Currently we check for this by checking to see if the Exit branch goes to
3395 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003396 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003397 // loop header. This is common for un-rotated loops.
3398 //
3399 // If both of those tests fail, walk up the unique predecessor chain to the
3400 // header, stopping if there is an edge that doesn't exit the loop. If the
3401 // header is reached, the execution count of the branch will be equal to the
3402 // trip count of the loop.
3403 //
3404 // More extensive analysis could be done to handle more cases here.
3405 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003406 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003407 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003408 ExitBr->getParent() != L->getHeader()) {
3409 // The simple checks failed, try climbing the unique predecessor chain
3410 // up to the header.
3411 bool Ok = false;
3412 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3413 BasicBlock *Pred = BB->getUniquePredecessor();
3414 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003415 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003416 TerminatorInst *PredTerm = Pred->getTerminator();
3417 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3418 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3419 if (PredSucc == BB)
3420 continue;
3421 // If the predecessor has a successor that isn't BB and isn't
3422 // outside the loop, assume the worst.
3423 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003424 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003425 }
3426 if (Pred == L->getHeader()) {
3427 Ok = true;
3428 break;
3429 }
3430 BB = Pred;
3431 }
3432 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003433 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003434 }
3435
3436 // Procede to the next level to examine the exit condition expression.
3437 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3438 ExitBr->getSuccessor(0),
3439 ExitBr->getSuccessor(1));
3440}
3441
3442/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3443/// backedge of the specified loop will execute if its exit condition
3444/// were a conditional branch of ExitCond, TBB, and FBB.
3445ScalarEvolution::BackedgeTakenInfo
3446ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3447 Value *ExitCond,
3448 BasicBlock *TBB,
3449 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003450 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003451 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3452 if (BO->getOpcode() == Instruction::And) {
3453 // Recurse on the operands of the and.
3454 BackedgeTakenInfo BTI0 =
3455 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3456 BackedgeTakenInfo BTI1 =
3457 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003458 const SCEV *BECount = getCouldNotCompute();
3459 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003460 if (L->contains(TBB)) {
3461 // Both conditions must be true for the loop to continue executing.
3462 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003463 if (BTI0.Exact == getCouldNotCompute() ||
3464 BTI1.Exact == getCouldNotCompute())
3465 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003466 else
3467 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003468 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003469 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003470 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003471 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003472 else
3473 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003474 } else {
3475 // Both conditions must be true for the loop to exit.
3476 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003477 if (BTI0.Exact != getCouldNotCompute() &&
3478 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003479 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003480 if (BTI0.Max != getCouldNotCompute() &&
3481 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003482 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3483 }
3484
3485 return BackedgeTakenInfo(BECount, MaxBECount);
3486 }
3487 if (BO->getOpcode() == Instruction::Or) {
3488 // Recurse on the operands of the or.
3489 BackedgeTakenInfo BTI0 =
3490 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3491 BackedgeTakenInfo BTI1 =
3492 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003493 const SCEV *BECount = getCouldNotCompute();
3494 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003495 if (L->contains(FBB)) {
3496 // Both conditions must be false for the loop to continue executing.
3497 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003498 if (BTI0.Exact == getCouldNotCompute() ||
3499 BTI1.Exact == getCouldNotCompute())
3500 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003501 else
3502 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003503 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003504 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003505 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003506 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003507 else
3508 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003509 } else {
3510 // Both conditions must be false for the loop to exit.
3511 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003512 if (BTI0.Exact != getCouldNotCompute() &&
3513 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003514 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003515 if (BTI0.Max != getCouldNotCompute() &&
3516 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003517 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3518 }
3519
3520 return BackedgeTakenInfo(BECount, MaxBECount);
3521 }
3522 }
3523
3524 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3525 // Procede to the next level to examine the icmp.
3526 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3527 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003528
Eli Friedman361e54d2009-05-09 12:32:42 +00003529 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003530 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3531}
3532
3533/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3534/// backedge of the specified loop will execute if its exit condition
3535/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3536ScalarEvolution::BackedgeTakenInfo
3537ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3538 ICmpInst *ExitCond,
3539 BasicBlock *TBB,
3540 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003541
Reid Spencere4d87aa2006-12-23 06:05:41 +00003542 // If the condition was exit on true, convert the condition to exit on false
3543 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003544 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003545 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003546 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003547 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003548
3549 // Handle common loops like: for (X = "string"; *X; ++X)
3550 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3551 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003552 const SCEV *ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003553 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmana334aa72009-06-22 00:31:57 +00003554 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3555 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3556 return BackedgeTakenInfo(ItCnt,
3557 isa<SCEVConstant>(ItCnt) ? ItCnt :
3558 getConstant(APInt::getMaxValue(BitWidth)-1));
3559 }
Chris Lattner673e02b2004-10-12 01:49:27 +00003560 }
3561
Dan Gohman0bba49c2009-07-07 17:06:11 +00003562 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3563 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003564
3565 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003566 LHS = getSCEVAtScope(LHS, L);
3567 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003568
Dan Gohman64a845e2009-06-24 04:48:43 +00003569 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003570 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003571 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3572 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003573 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003574 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003575 }
3576
Chris Lattner53e677a2004-04-02 20:23:17 +00003577 // If we have a comparison of a chrec against a constant, try to use value
3578 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003579 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3580 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003581 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003582 // Form the constant range.
3583 ConstantRange CompRange(
3584 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003585
Dan Gohman0bba49c2009-07-07 17:06:11 +00003586 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003587 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003588 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003589
Chris Lattner53e677a2004-04-02 20:23:17 +00003590 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003591 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003592 // Convert to: while (X-Y != 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003593 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003594 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003595 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003596 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003597 case ICmpInst::ICMP_EQ: { // while (X == Y)
3598 // Convert to: while (X-Y == 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003599 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003600 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003601 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003602 }
3603 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003604 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3605 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003606 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003607 }
3608 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003609 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3610 getNotSCEV(RHS), L, true);
3611 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003612 break;
3613 }
3614 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003615 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3616 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003617 break;
3618 }
3619 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003620 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3621 getNotSCEV(RHS), L, false);
3622 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003623 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003624 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003625 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003626#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003627 errs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003628 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003629 errs() << "[unsigned] ";
3630 errs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003631 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003632 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003633#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003634 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003635 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003636 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003637 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003638}
3639
Chris Lattner673e02b2004-10-12 01:49:27 +00003640static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003641EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3642 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003643 const SCEV *InVal = SE.getConstant(C);
3644 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003645 assert(isa<SCEVConstant>(Val) &&
3646 "Evaluation of SCEV at constant didn't fold correctly?");
3647 return cast<SCEVConstant>(Val)->getValue();
3648}
3649
3650/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3651/// and a GEP expression (missing the pointer index) indexing into it, return
3652/// the addressed element of the initializer or null if the index expression is
3653/// invalid.
3654static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003655GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003656 const std::vector<ConstantInt*> &Indices) {
3657 Constant *Init = GV->getInitializer();
3658 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003659 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003660 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3661 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3662 Init = cast<Constant>(CS->getOperand(Idx));
3663 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3664 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3665 Init = cast<Constant>(CA->getOperand(Idx));
3666 } else if (isa<ConstantAggregateZero>(Init)) {
3667 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3668 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003669 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003670 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3671 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003672 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003673 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003674 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003675 }
3676 return 0;
3677 } else {
3678 return 0; // Unknown initializer type
3679 }
3680 }
3681 return Init;
3682}
3683
Dan Gohman46bdfb02009-02-24 18:55:53 +00003684/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3685/// 'icmp op load X, cst', try to see if we can compute the backedge
3686/// execution count.
Dan Gohman64a845e2009-06-24 04:48:43 +00003687const SCEV *
3688ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3689 LoadInst *LI,
3690 Constant *RHS,
3691 const Loop *L,
3692 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003693 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003694
3695 // Check to see if the loaded pointer is a getelementptr of a global.
3696 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003697 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003698
3699 // Make sure that it is really a constant global we are gepping, with an
3700 // initializer, and make sure the first IDX is really 0.
3701 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003702 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003703 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3704 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003705 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003706
3707 // Okay, we allow one non-constant index into the GEP instruction.
3708 Value *VarIdx = 0;
3709 std::vector<ConstantInt*> Indexes;
3710 unsigned VarIdxNum = 0;
3711 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3712 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3713 Indexes.push_back(CI);
3714 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003715 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003716 VarIdx = GEP->getOperand(i);
3717 VarIdxNum = i-2;
3718 Indexes.push_back(0);
3719 }
3720
3721 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3722 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003723 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003724 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003725
3726 // We can only recognize very limited forms of loop index expressions, in
3727 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003728 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003729 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3730 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3731 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003732 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003733
3734 unsigned MaxSteps = MaxBruteForceIterations;
3735 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003736 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003737 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003738 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003739
3740 // Form the GEP offset.
3741 Indexes[VarIdxNum] = Val;
3742
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003743 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003744 if (Result == 0) break; // Cannot compute!
3745
3746 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003747 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003748 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003749 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003750#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003751 errs() << "\n***\n*** Computed loop count " << *ItCst
3752 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3753 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003754#endif
3755 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003756 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003757 }
3758 }
Dan Gohman1c343752009-06-27 21:21:31 +00003759 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003760}
3761
3762
Chris Lattner3221ad02004-04-17 22:58:41 +00003763/// CanConstantFold - Return true if we can constant fold an instruction of the
3764/// specified type, assuming that all operands were constants.
3765static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00003766 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00003767 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3768 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003769
Chris Lattner3221ad02004-04-17 22:58:41 +00003770 if (const CallInst *CI = dyn_cast<CallInst>(I))
3771 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00003772 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00003773 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00003774}
3775
Chris Lattner3221ad02004-04-17 22:58:41 +00003776/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3777/// in the loop that V is derived from. We allow arbitrary operations along the
3778/// way, but the operands of an operation must either be constants or a value
3779/// derived from a constant PHI. If this expression does not fit with these
3780/// constraints, return null.
3781static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3782 // If this is not an instruction, or if this is an instruction outside of the
3783 // loop, it can't be derived from a loop PHI.
3784 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00003785 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003786
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003787 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003788 if (L->getHeader() == I->getParent())
3789 return PN;
3790 else
3791 // We don't currently keep track of the control flow needed to evaluate
3792 // PHIs, so we cannot handle PHIs inside of loops.
3793 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003794 }
Chris Lattner3221ad02004-04-17 22:58:41 +00003795
3796 // If we won't be able to constant fold this expression even if the operands
3797 // are constants, return early.
3798 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003799
Chris Lattner3221ad02004-04-17 22:58:41 +00003800 // Otherwise, we can evaluate this instruction if all of its operands are
3801 // constant or derived from a PHI node themselves.
3802 PHINode *PHI = 0;
3803 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3804 if (!(isa<Constant>(I->getOperand(Op)) ||
3805 isa<GlobalValue>(I->getOperand(Op)))) {
3806 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3807 if (P == 0) return 0; // Not evolving from PHI
3808 if (PHI == 0)
3809 PHI = P;
3810 else if (PHI != P)
3811 return 0; // Evolving from multiple different PHIs.
3812 }
3813
3814 // This is a expression evolving from a constant PHI!
3815 return PHI;
3816}
3817
3818/// EvaluateExpression - Given an expression that passes the
3819/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3820/// in the loop has the value PHIVal. If we can't fold this expression for some
3821/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003822static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3823 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003824 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00003825 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00003826 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00003827 Instruction *I = cast<Instruction>(V);
3828
3829 std::vector<Constant*> Operands;
3830 Operands.resize(I->getNumOperands());
3831
3832 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003833 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003834 if (Operands[i] == 0) return 0;
3835 }
3836
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003837 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00003838 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003839 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00003840 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003841 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003842}
3843
3844/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3845/// in the header of its containing loop, we know the loop executes a
3846/// constant number of times, and the PHI node is just a recurrence
3847/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00003848Constant *
3849ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00003850 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00003851 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003852 std::map<PHINode*, Constant*>::iterator I =
3853 ConstantEvolutionLoopExitValue.find(PN);
3854 if (I != ConstantEvolutionLoopExitValue.end())
3855 return I->second;
3856
Dan Gohman46bdfb02009-02-24 18:55:53 +00003857 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00003858 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3859
3860 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3861
3862 // Since the loop is canonicalized, the PHI node must have two entries. One
3863 // entry must be a constant (coming in from outside of the loop), and the
3864 // second must be derived from the same PHI.
3865 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3866 Constant *StartCST =
3867 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3868 if (StartCST == 0)
3869 return RetVal = 0; // Must be a constant.
3870
3871 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3872 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3873 if (PN2 != PN)
3874 return RetVal = 0; // Not derived from same PHI.
3875
3876 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003877 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00003878 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00003879
Dan Gohman46bdfb02009-02-24 18:55:53 +00003880 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00003881 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003882 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3883 if (IterationNum == NumIterations)
3884 return RetVal = PHIVal; // Got exit value!
3885
3886 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003887 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003888 if (NextPHI == PHIVal)
3889 return RetVal = NextPHI; // Stopped evolving!
3890 if (NextPHI == 0)
3891 return 0; // Couldn't evaluate!
3892 PHIVal = NextPHI;
3893 }
3894}
3895
Dan Gohman07ad19b2009-07-27 16:09:48 +00003896/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00003897/// constant number of times (the condition evolves only from constants),
3898/// try to evaluate a few iterations of the loop until we get the exit
3899/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00003900/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00003901const SCEV *
3902ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3903 Value *Cond,
3904 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003905 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003906 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00003907
3908 // Since the loop is canonicalized, the PHI node must have two entries. One
3909 // entry must be a constant (coming in from outside of the loop), and the
3910 // second must be derived from the same PHI.
3911 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3912 Constant *StartCST =
3913 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00003914 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00003915
3916 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3917 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003918 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00003919
3920 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3921 // the loop symbolically to determine when the condition gets a value of
3922 // "ExitWhen".
3923 unsigned IterationNum = 0;
3924 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3925 for (Constant *PHIVal = StartCST;
3926 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003927 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003928 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00003929
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003930 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003931 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003932
Reid Spencere8019bb2007-03-01 07:25:48 +00003933 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003934 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00003935 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00003936 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003937
Chris Lattner3221ad02004-04-17 22:58:41 +00003938 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003939 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003940 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00003941 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00003942 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00003943 }
3944
3945 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003946 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003947}
3948
Dan Gohmane7125f42009-09-03 15:00:26 +00003949/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00003950/// at the specified scope in the program. The L value specifies a loop
3951/// nest to evaluate the expression at, where null is the top-level or a
3952/// specified loop is immediately inside of the loop.
3953///
3954/// This method can be used to compute the exit value for a variable defined
3955/// in a loop by querying what the value will hold in the parent loop.
3956///
Dan Gohmand594e6f2009-05-24 23:25:42 +00003957/// In the case that a relevant loop exit value cannot be computed, the
3958/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003959const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00003960 // Check to see if we've folded this expression at this loop before.
3961 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3962 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3963 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3964 if (!Pair.second)
3965 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00003966
Dan Gohman42214892009-08-31 21:15:23 +00003967 // Otherwise compute it.
3968 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00003969 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00003970 return C;
3971}
3972
3973const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003974 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003975
Nick Lewycky3e630762008-02-20 06:48:22 +00003976 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00003977 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00003978 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003979 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003980 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00003981 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3982 if (PHINode *PN = dyn_cast<PHINode>(I))
3983 if (PN->getParent() == LI->getHeader()) {
3984 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00003985 // to see if the loop that contains it has a known backedge-taken
3986 // count. If so, we may be able to force computation of the exit
3987 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003988 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00003989 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003990 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003991 // Okay, we know how many times the containing loop executes. If
3992 // this is a constant evolving PHI node, get the final value at
3993 // the specified iteration number.
3994 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00003995 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00003996 LI);
Dan Gohman09987962009-06-29 21:31:18 +00003997 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00003998 }
3999 }
4000
Reid Spencer09906f32006-12-04 21:33:23 +00004001 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004002 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004003 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004004 // result. This is particularly useful for computing loop exit values.
4005 if (CanConstantFold(I)) {
4006 std::vector<Constant*> Operands;
4007 Operands.reserve(I->getNumOperands());
4008 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4009 Value *Op = I->getOperand(i);
4010 if (Constant *C = dyn_cast<Constant>(Op)) {
4011 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004012 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004013 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004014 // non-integer and non-pointer, don't even try to analyze them
4015 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004016 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004017 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004018
Dan Gohman5d984912009-12-18 01:14:11 +00004019 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004020 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004021 Constant *C = SC->getValue();
4022 if (C->getType() != Op->getType())
4023 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4024 Op->getType(),
4025 false),
4026 C, Op->getType());
4027 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004028 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004029 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4030 if (C->getType() != Op->getType())
4031 C =
4032 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4033 Op->getType(),
4034 false),
4035 C, Op->getType());
4036 Operands.push_back(C);
4037 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004038 return V;
4039 } else {
4040 return V;
4041 }
4042 }
4043 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004044
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004045 Constant *C;
4046 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4047 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004048 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004049 else
4050 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004051 &Operands[0], Operands.size(), TD);
Dan Gohman09987962009-06-29 21:31:18 +00004052 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004053 }
4054 }
4055
4056 // This is some other type of SCEVUnknown, just return it.
4057 return V;
4058 }
4059
Dan Gohman622ed672009-05-04 22:02:23 +00004060 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004061 // Avoid performing the look-up in the common case where the specified
4062 // expression has no loop-variant portions.
4063 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004064 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004065 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004066 // Okay, at least one of these operands is loop variant but might be
4067 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004068 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4069 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004070 NewOps.push_back(OpAtScope);
4071
4072 for (++i; i != e; ++i) {
4073 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004074 NewOps.push_back(OpAtScope);
4075 }
4076 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004077 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004078 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004079 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004080 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004081 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004082 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004083 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004084 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004085 }
4086 }
4087 // If we got here, all operands are loop invariant.
4088 return Comm;
4089 }
4090
Dan Gohman622ed672009-05-04 22:02:23 +00004091 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004092 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4093 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004094 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4095 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004096 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004097 }
4098
4099 // If this is a loop recurrence for a loop that does not contain L, then we
4100 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004101 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004102 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 // To evaluate this recurrence, we need to know how many times the AddRec
4104 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004105 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004106 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004107
Eli Friedmanb42a6262008-08-04 23:49:06 +00004108 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004109 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004110 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004111 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004112 }
4113
Dan Gohman622ed672009-05-04 22:02:23 +00004114 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004115 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004116 if (Op == Cast->getOperand())
4117 return Cast; // must be loop invariant
4118 return getZeroExtendExpr(Op, Cast->getType());
4119 }
4120
Dan Gohman622ed672009-05-04 22:02:23 +00004121 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004122 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004123 if (Op == Cast->getOperand())
4124 return Cast; // must be loop invariant
4125 return getSignExtendExpr(Op, Cast->getType());
4126 }
4127
Dan Gohman622ed672009-05-04 22:02:23 +00004128 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004129 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004130 if (Op == Cast->getOperand())
4131 return Cast; // must be loop invariant
4132 return getTruncateExpr(Op, Cast->getType());
4133 }
4134
Dan Gohmanc40f17b2009-08-18 16:46:41 +00004135 if (isa<SCEVTargetDataConstant>(V))
4136 return V;
4137
Torok Edwinc23197a2009-07-14 16:55:14 +00004138 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004139 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004140}
4141
Dan Gohman66a7e852009-05-08 20:38:54 +00004142/// getSCEVAtScope - This is a convenience function which does
4143/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004144const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004145 return getSCEVAtScope(getSCEV(V), L);
4146}
4147
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004148/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4149/// following equation:
4150///
4151/// A * X = B (mod N)
4152///
4153/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4154/// A and B isn't important.
4155///
4156/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004157static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004158 ScalarEvolution &SE) {
4159 uint32_t BW = A.getBitWidth();
4160 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4161 assert(A != 0 && "A must be non-zero.");
4162
4163 // 1. D = gcd(A, N)
4164 //
4165 // The gcd of A and N may have only one prime factor: 2. The number of
4166 // trailing zeros in A is its multiplicity
4167 uint32_t Mult2 = A.countTrailingZeros();
4168 // D = 2^Mult2
4169
4170 // 2. Check if B is divisible by D.
4171 //
4172 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4173 // is not less than multiplicity of this prime factor for D.
4174 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004175 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004176
4177 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4178 // modulo (N / D).
4179 //
4180 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4181 // bit width during computations.
4182 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4183 APInt Mod(BW + 1, 0);
4184 Mod.set(BW - Mult2); // Mod = N / D
4185 APInt I = AD.multiplicativeInverse(Mod);
4186
4187 // 4. Compute the minimum unsigned root of the equation:
4188 // I * (B / D) mod (N / D)
4189 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4190
4191 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4192 // bits.
4193 return SE.getConstant(Result.trunc(BW));
4194}
Chris Lattner53e677a2004-04-02 20:23:17 +00004195
4196/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4197/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4198/// might be the same) or two SCEVCouldNotCompute objects.
4199///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004200static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004201SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004202 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004203 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4204 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4205 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004206
Chris Lattner53e677a2004-04-02 20:23:17 +00004207 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004208 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004209 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004210 return std::make_pair(CNC, CNC);
4211 }
4212
Reid Spencere8019bb2007-03-01 07:25:48 +00004213 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004214 const APInt &L = LC->getValue()->getValue();
4215 const APInt &M = MC->getValue()->getValue();
4216 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004217 APInt Two(BitWidth, 2);
4218 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004219
Dan Gohman64a845e2009-06-24 04:48:43 +00004220 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004221 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004222 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004223 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4224 // The B coefficient is M-N/2
4225 APInt B(M);
4226 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004227
Reid Spencere8019bb2007-03-01 07:25:48 +00004228 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004229 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004230
Reid Spencere8019bb2007-03-01 07:25:48 +00004231 // Compute the B^2-4ac term.
4232 APInt SqrtTerm(B);
4233 SqrtTerm *= B;
4234 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004235
Reid Spencere8019bb2007-03-01 07:25:48 +00004236 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4237 // integer value or else APInt::sqrt() will assert.
4238 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004239
Dan Gohman64a845e2009-06-24 04:48:43 +00004240 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004241 // The divisions must be performed as signed divisions.
4242 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004243 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004244 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004245 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004246 return std::make_pair(CNC, CNC);
4247 }
4248
Owen Andersone922c022009-07-22 00:24:57 +00004249 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004250
4251 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004252 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004253 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004254 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004255
Dan Gohman64a845e2009-06-24 04:48:43 +00004256 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004257 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004258 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004259}
4260
4261/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004262/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004263const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004264 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004265 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004266 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004267 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004268 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004269 }
4270
Dan Gohman35738ac2009-05-04 22:30:44 +00004271 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004272 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004273 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004274
4275 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004276 // If this is an affine expression, the execution count of this branch is
4277 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004278 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004279 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004280 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004281 // equivalent to:
4282 //
4283 // Step*N = -Start (mod 2^BW)
4284 //
4285 // where BW is the common bit width of Start and Step.
4286
Chris Lattner53e677a2004-04-02 20:23:17 +00004287 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004288 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4289 L->getParentLoop());
4290 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4291 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004292
Dan Gohman622ed672009-05-04 22:02:23 +00004293 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004294 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004295
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004296 // First, handle unitary steps.
4297 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004298 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004299 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4300 return Start; // N = Start (as unsigned)
4301
4302 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004303 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004304 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004305 -StartC->getValue()->getValue(),
4306 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 }
Chris Lattner42a75512007-01-15 02:27:26 +00004308 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4310 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004311 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004312 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004313 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4314 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004315 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004316#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004317 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4318 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004319#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004320 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004321 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004322 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004323 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004324 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004325 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004326
Chris Lattner53e677a2004-04-02 20:23:17 +00004327 // We can only use this value if the chrec ends up with an exact zero
4328 // value at this index. When solving for "X*X != 5", for example, we
4329 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004330 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004331 if (Val->isZero())
4332 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004333 }
4334 }
4335 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004336
Dan Gohman1c343752009-06-27 21:21:31 +00004337 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004338}
4339
4340/// HowFarToNonZero - Return the number of times a backedge checking the
4341/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004342/// CouldNotCompute
Dan Gohman0bba49c2009-07-07 17:06:11 +00004343const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004344 // Loops that look like: while (X == 0) are very strange indeed. We don't
4345 // handle them yet except for the trivial case. This could be expanded in the
4346 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004347
Chris Lattner53e677a2004-04-02 20:23:17 +00004348 // If the value is a constant, check to see if it is known to be non-zero
4349 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004350 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004351 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004352 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004353 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004354 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004355
Chris Lattner53e677a2004-04-02 20:23:17 +00004356 // We could implement others, but I really doubt anyone writes loops like
4357 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004358 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004359}
4360
Dan Gohman859b4822009-05-18 15:36:09 +00004361/// getLoopPredecessor - If the given loop's header has exactly one unique
4362/// predecessor outside the loop, return it. Otherwise return null.
4363///
4364BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4365 BasicBlock *Header = L->getHeader();
4366 BasicBlock *Pred = 0;
4367 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4368 PI != E; ++PI)
4369 if (!L->contains(*PI)) {
4370 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4371 Pred = *PI;
4372 }
4373 return Pred;
4374}
4375
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004376/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4377/// (which may not be an immediate predecessor) which has exactly one
4378/// successor from which BB is reachable, or null if no such block is
4379/// found.
4380///
4381BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004382ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004383 // If the block has a unique predecessor, then there is no path from the
4384 // predecessor to the block that does not go through the direct edge
4385 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004386 if (BasicBlock *Pred = BB->getSinglePredecessor())
4387 return Pred;
4388
4389 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004390 // If the header has a unique predecessor outside the loop, it must be
4391 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004392 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004393 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004394
4395 return 0;
4396}
4397
Dan Gohman763bad12009-06-20 00:35:32 +00004398/// HasSameValue - SCEV structural equivalence is usually sufficient for
4399/// testing whether two expressions are equal, however for the purposes of
4400/// looking for a condition guarding a loop, it can be useful to be a little
4401/// more general, since a front-end may have replicated the controlling
4402/// expression.
4403///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004404static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004405 // Quick check to see if they are the same SCEV.
4406 if (A == B) return true;
4407
4408 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4409 // two different instructions with the same value. Check for this case.
4410 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4411 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4412 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4413 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004414 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004415 return true;
4416
4417 // Otherwise assume they may have a different value.
4418 return false;
4419}
4420
Dan Gohman85b05a22009-07-13 21:35:55 +00004421bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4422 return getSignedRange(S).getSignedMax().isNegative();
4423}
4424
4425bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4426 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4427}
4428
4429bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4430 return !getSignedRange(S).getSignedMin().isNegative();
4431}
4432
4433bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4434 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4435}
4436
4437bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4438 return isKnownNegative(S) || isKnownPositive(S);
4439}
4440
4441bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4442 const SCEV *LHS, const SCEV *RHS) {
4443
4444 if (HasSameValue(LHS, RHS))
4445 return ICmpInst::isTrueWhenEqual(Pred);
4446
4447 switch (Pred) {
4448 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004449 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004450 break;
4451 case ICmpInst::ICMP_SGT:
4452 Pred = ICmpInst::ICMP_SLT;
4453 std::swap(LHS, RHS);
4454 case ICmpInst::ICMP_SLT: {
4455 ConstantRange LHSRange = getSignedRange(LHS);
4456 ConstantRange RHSRange = getSignedRange(RHS);
4457 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4458 return true;
4459 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4460 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004461 break;
4462 }
4463 case ICmpInst::ICMP_SGE:
4464 Pred = ICmpInst::ICMP_SLE;
4465 std::swap(LHS, RHS);
4466 case ICmpInst::ICMP_SLE: {
4467 ConstantRange LHSRange = getSignedRange(LHS);
4468 ConstantRange RHSRange = getSignedRange(RHS);
4469 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4470 return true;
4471 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4472 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004473 break;
4474 }
4475 case ICmpInst::ICMP_UGT:
4476 Pred = ICmpInst::ICMP_ULT;
4477 std::swap(LHS, RHS);
4478 case ICmpInst::ICMP_ULT: {
4479 ConstantRange LHSRange = getUnsignedRange(LHS);
4480 ConstantRange RHSRange = getUnsignedRange(RHS);
4481 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4482 return true;
4483 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4484 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004485 break;
4486 }
4487 case ICmpInst::ICMP_UGE:
4488 Pred = ICmpInst::ICMP_ULE;
4489 std::swap(LHS, RHS);
4490 case ICmpInst::ICMP_ULE: {
4491 ConstantRange LHSRange = getUnsignedRange(LHS);
4492 ConstantRange RHSRange = getUnsignedRange(RHS);
4493 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4494 return true;
4495 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4496 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004497 break;
4498 }
4499 case ICmpInst::ICMP_NE: {
4500 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4501 return true;
4502 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4503 return true;
4504
4505 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4506 if (isKnownNonZero(Diff))
4507 return true;
4508 break;
4509 }
4510 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004511 // The check at the top of the function catches the case where
4512 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004513 break;
4514 }
4515 return false;
4516}
4517
4518/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4519/// protected by a conditional between LHS and RHS. This is used to
4520/// to eliminate casts.
4521bool
4522ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4523 ICmpInst::Predicate Pred,
4524 const SCEV *LHS, const SCEV *RHS) {
4525 // Interpret a null as meaning no loop, where there is obviously no guard
4526 // (interprocedural conditions notwithstanding).
4527 if (!L) return true;
4528
4529 BasicBlock *Latch = L->getLoopLatch();
4530 if (!Latch)
4531 return false;
4532
4533 BranchInst *LoopContinuePredicate =
4534 dyn_cast<BranchInst>(Latch->getTerminator());
4535 if (!LoopContinuePredicate ||
4536 LoopContinuePredicate->isUnconditional())
4537 return false;
4538
Dan Gohman0f4b2852009-07-21 23:03:19 +00004539 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4540 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004541}
4542
4543/// isLoopGuardedByCond - Test whether entry to the loop is protected
4544/// by a conditional between LHS and RHS. This is used to help avoid max
4545/// expressions in loop trip counts, and to eliminate casts.
4546bool
4547ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4548 ICmpInst::Predicate Pred,
4549 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004550 // Interpret a null as meaning no loop, where there is obviously no guard
4551 // (interprocedural conditions notwithstanding).
4552 if (!L) return false;
4553
Dan Gohman859b4822009-05-18 15:36:09 +00004554 BasicBlock *Predecessor = getLoopPredecessor(L);
4555 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004556
Dan Gohman859b4822009-05-18 15:36:09 +00004557 // Starting at the loop predecessor, climb up the predecessor chain, as long
4558 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004559 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004560 for (; Predecessor;
4561 PredecessorDest = Predecessor,
4562 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004563
4564 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004565 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004566 if (!LoopEntryPredicate ||
4567 LoopEntryPredicate->isUnconditional())
4568 continue;
4569
Dan Gohman0f4b2852009-07-21 23:03:19 +00004570 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4571 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004572 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004573 }
4574
Dan Gohman38372182008-08-12 20:17:31 +00004575 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004576}
4577
Dan Gohman0f4b2852009-07-21 23:03:19 +00004578/// isImpliedCond - Test whether the condition described by Pred, LHS,
4579/// and RHS is true whenever the given Cond value evaluates to true.
4580bool ScalarEvolution::isImpliedCond(Value *CondValue,
4581 ICmpInst::Predicate Pred,
4582 const SCEV *LHS, const SCEV *RHS,
4583 bool Inverse) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004584 // Recursivly handle And and Or conditions.
4585 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4586 if (BO->getOpcode() == Instruction::And) {
4587 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004588 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4589 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004590 } else if (BO->getOpcode() == Instruction::Or) {
4591 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004592 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4593 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004594 }
4595 }
4596
4597 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4598 if (!ICI) return false;
4599
Dan Gohman85b05a22009-07-13 21:35:55 +00004600 // Bail if the ICmp's operands' types are wider than the needed type
4601 // before attempting to call getSCEV on them. This avoids infinite
4602 // recursion, since the analysis of widening casts can require loop
4603 // exit condition information for overflow checking, which would
4604 // lead back here.
4605 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004606 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004607 return false;
4608
Dan Gohman0f4b2852009-07-21 23:03:19 +00004609 // Now that we found a conditional branch that dominates the loop, check to
4610 // see if it is the comparison we are looking for.
4611 ICmpInst::Predicate FoundPred;
4612 if (Inverse)
4613 FoundPred = ICI->getInversePredicate();
4614 else
4615 FoundPred = ICI->getPredicate();
4616
4617 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4618 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004619
4620 // Balance the types. The case where FoundLHS' type is wider than
4621 // LHS' type is checked for above.
4622 if (getTypeSizeInBits(LHS->getType()) >
4623 getTypeSizeInBits(FoundLHS->getType())) {
4624 if (CmpInst::isSigned(Pred)) {
4625 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4626 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4627 } else {
4628 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4629 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4630 }
4631 }
4632
Dan Gohman0f4b2852009-07-21 23:03:19 +00004633 // Canonicalize the query to match the way instcombine will have
4634 // canonicalized the comparison.
4635 // First, put a constant operand on the right.
4636 if (isa<SCEVConstant>(LHS)) {
4637 std::swap(LHS, RHS);
4638 Pred = ICmpInst::getSwappedPredicate(Pred);
4639 }
4640 // Then, canonicalize comparisons with boundary cases.
4641 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4642 const APInt &RA = RC->getValue()->getValue();
4643 switch (Pred) {
4644 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4645 case ICmpInst::ICMP_EQ:
4646 case ICmpInst::ICMP_NE:
4647 break;
4648 case ICmpInst::ICMP_UGE:
4649 if ((RA - 1).isMinValue()) {
4650 Pred = ICmpInst::ICMP_NE;
4651 RHS = getConstant(RA - 1);
4652 break;
4653 }
4654 if (RA.isMaxValue()) {
4655 Pred = ICmpInst::ICMP_EQ;
4656 break;
4657 }
4658 if (RA.isMinValue()) return true;
4659 break;
4660 case ICmpInst::ICMP_ULE:
4661 if ((RA + 1).isMaxValue()) {
4662 Pred = ICmpInst::ICMP_NE;
4663 RHS = getConstant(RA + 1);
4664 break;
4665 }
4666 if (RA.isMinValue()) {
4667 Pred = ICmpInst::ICMP_EQ;
4668 break;
4669 }
4670 if (RA.isMaxValue()) return true;
4671 break;
4672 case ICmpInst::ICMP_SGE:
4673 if ((RA - 1).isMinSignedValue()) {
4674 Pred = ICmpInst::ICMP_NE;
4675 RHS = getConstant(RA - 1);
4676 break;
4677 }
4678 if (RA.isMaxSignedValue()) {
4679 Pred = ICmpInst::ICMP_EQ;
4680 break;
4681 }
4682 if (RA.isMinSignedValue()) return true;
4683 break;
4684 case ICmpInst::ICMP_SLE:
4685 if ((RA + 1).isMaxSignedValue()) {
4686 Pred = ICmpInst::ICMP_NE;
4687 RHS = getConstant(RA + 1);
4688 break;
4689 }
4690 if (RA.isMinSignedValue()) {
4691 Pred = ICmpInst::ICMP_EQ;
4692 break;
4693 }
4694 if (RA.isMaxSignedValue()) return true;
4695 break;
4696 case ICmpInst::ICMP_UGT:
4697 if (RA.isMinValue()) {
4698 Pred = ICmpInst::ICMP_NE;
4699 break;
4700 }
4701 if ((RA + 1).isMaxValue()) {
4702 Pred = ICmpInst::ICMP_EQ;
4703 RHS = getConstant(RA + 1);
4704 break;
4705 }
4706 if (RA.isMaxValue()) return false;
4707 break;
4708 case ICmpInst::ICMP_ULT:
4709 if (RA.isMaxValue()) {
4710 Pred = ICmpInst::ICMP_NE;
4711 break;
4712 }
4713 if ((RA - 1).isMinValue()) {
4714 Pred = ICmpInst::ICMP_EQ;
4715 RHS = getConstant(RA - 1);
4716 break;
4717 }
4718 if (RA.isMinValue()) return false;
4719 break;
4720 case ICmpInst::ICMP_SGT:
4721 if (RA.isMinSignedValue()) {
4722 Pred = ICmpInst::ICMP_NE;
4723 break;
4724 }
4725 if ((RA + 1).isMaxSignedValue()) {
4726 Pred = ICmpInst::ICMP_EQ;
4727 RHS = getConstant(RA + 1);
4728 break;
4729 }
4730 if (RA.isMaxSignedValue()) return false;
4731 break;
4732 case ICmpInst::ICMP_SLT:
4733 if (RA.isMaxSignedValue()) {
4734 Pred = ICmpInst::ICMP_NE;
4735 break;
4736 }
4737 if ((RA - 1).isMinSignedValue()) {
4738 Pred = ICmpInst::ICMP_EQ;
4739 RHS = getConstant(RA - 1);
4740 break;
4741 }
4742 if (RA.isMinSignedValue()) return false;
4743 break;
4744 }
4745 }
4746
4747 // Check to see if we can make the LHS or RHS match.
4748 if (LHS == FoundRHS || RHS == FoundLHS) {
4749 if (isa<SCEVConstant>(RHS)) {
4750 std::swap(FoundLHS, FoundRHS);
4751 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4752 } else {
4753 std::swap(LHS, RHS);
4754 Pred = ICmpInst::getSwappedPredicate(Pred);
4755 }
4756 }
4757
4758 // Check whether the found predicate is the same as the desired predicate.
4759 if (FoundPred == Pred)
4760 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4761
4762 // Check whether swapping the found predicate makes it the same as the
4763 // desired predicate.
4764 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4765 if (isa<SCEVConstant>(RHS))
4766 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4767 else
4768 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4769 RHS, LHS, FoundLHS, FoundRHS);
4770 }
4771
4772 // Check whether the actual condition is beyond sufficient.
4773 if (FoundPred == ICmpInst::ICMP_EQ)
4774 if (ICmpInst::isTrueWhenEqual(Pred))
4775 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4776 return true;
4777 if (Pred == ICmpInst::ICMP_NE)
4778 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4779 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4780 return true;
4781
4782 // Otherwise assume the worst.
4783 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004784}
4785
Dan Gohman0f4b2852009-07-21 23:03:19 +00004786/// isImpliedCondOperands - Test whether the condition described by Pred,
4787/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4788/// and FoundRHS is true.
4789bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4790 const SCEV *LHS, const SCEV *RHS,
4791 const SCEV *FoundLHS,
4792 const SCEV *FoundRHS) {
4793 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4794 FoundLHS, FoundRHS) ||
4795 // ~x < ~y --> x > y
4796 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4797 getNotSCEV(FoundRHS),
4798 getNotSCEV(FoundLHS));
4799}
4800
4801/// isImpliedCondOperandsHelper - Test whether the condition described by
4802/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4803/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00004804bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00004805ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4806 const SCEV *LHS, const SCEV *RHS,
4807 const SCEV *FoundLHS,
4808 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004809 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00004810 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4811 case ICmpInst::ICMP_EQ:
4812 case ICmpInst::ICMP_NE:
4813 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4814 return true;
4815 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00004816 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00004817 case ICmpInst::ICMP_SLE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004818 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4819 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4820 return true;
4821 break;
4822 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004823 case ICmpInst::ICMP_SGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004824 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4825 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4826 return true;
4827 break;
4828 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00004829 case ICmpInst::ICMP_ULE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004830 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4831 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4832 return true;
4833 break;
4834 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004835 case ICmpInst::ICMP_UGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004836 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4837 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4838 return true;
4839 break;
4840 }
4841
4842 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004843}
4844
Dan Gohman51f53b72009-06-21 23:46:38 +00004845/// getBECount - Subtract the end and start values and divide by the step,
4846/// rounding up, to get the number of times the backedge is executed. Return
4847/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004848const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00004849 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00004850 const SCEV *Step,
4851 bool NoWrap) {
Dan Gohman51f53b72009-06-21 23:46:38 +00004852 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00004853 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4854 const SCEV *Diff = getMinusSCEV(End, Start);
4855 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00004856
4857 // Add an adjustment to the difference between End and Start so that
4858 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004859 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00004860
Dan Gohman1f96e672009-09-17 18:05:20 +00004861 if (!NoWrap) {
4862 // Check Add for unsigned overflow.
4863 // TODO: More sophisticated things could be done here.
4864 const Type *WideTy = IntegerType::get(getContext(),
4865 getTypeSizeInBits(Ty) + 1);
4866 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4867 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4868 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4869 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4870 return getCouldNotCompute();
4871 }
Dan Gohman51f53b72009-06-21 23:46:38 +00004872
4873 return getUDivExpr(Add, Step);
4874}
4875
Chris Lattnerdb25de42005-08-15 23:33:51 +00004876/// HowManyLessThans - Return the number of times a backedge containing the
4877/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004878/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00004879ScalarEvolution::BackedgeTakenInfo
4880ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4881 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00004882 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00004883 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004884
Dan Gohman35738ac2009-05-04 22:30:44 +00004885 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004886 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004887 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004888
Dan Gohman1f96e672009-09-17 18:05:20 +00004889 // Check to see if we have a flag which makes analysis easy.
4890 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4891 AddRec->hasNoUnsignedWrap();
4892
Chris Lattnerdb25de42005-08-15 23:33:51 +00004893 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00004894 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00004895 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004896 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004897
4898 // TODO: handle non-constant strides.
4899 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4900 if (!CStep || CStep->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00004901 return getCouldNotCompute();
Dan Gohman70a1fe72009-05-18 15:22:39 +00004902 if (CStep->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004903 // With unit stride, the iteration never steps past the limit value.
4904 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
Dan Gohman1f96e672009-09-17 18:05:20 +00004905 if (NoWrap) {
4906 // We know the iteration won't step past the maximum value for its type.
4907 ;
4908 } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004909 // Test whether a positive iteration iteration can step past the limit
4910 // value and past the maximum value for its type in a single step.
4911 if (isSigned) {
4912 APInt Max = APInt::getSignedMaxValue(BitWidth);
4913 if ((Max - CStep->getValue()->getValue())
4914 .slt(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004915 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004916 } else {
4917 APInt Max = APInt::getMaxValue(BitWidth);
4918 if ((Max - CStep->getValue()->getValue())
4919 .ult(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004920 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004921 }
4922 } else
4923 // TODO: handle non-constant limit values below.
Dan Gohman1c343752009-06-27 21:21:31 +00004924 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004925 } else
4926 // TODO: handle negative strides below.
Dan Gohman1c343752009-06-27 21:21:31 +00004927 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004928
Dan Gohmana1af7572009-04-30 20:47:05 +00004929 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4930 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4931 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00004932 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00004933
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004934 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00004935 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004936
Dan Gohmana1af7572009-04-30 20:47:05 +00004937 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004938 const SCEV *MinStart = getConstant(isSigned ?
4939 getSignedRange(Start).getSignedMin() :
4940 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004941
Dan Gohmana1af7572009-04-30 20:47:05 +00004942 // If we know that the condition is true in order to enter the loop,
4943 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00004944 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4945 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004946 const SCEV *End = RHS;
Dan Gohmana1af7572009-04-30 20:47:05 +00004947 if (!isLoopGuardedByCond(L,
Dan Gohman85b05a22009-07-13 21:35:55 +00004948 isSigned ? ICmpInst::ICMP_SLT :
4949 ICmpInst::ICMP_ULT,
Dan Gohmana1af7572009-04-30 20:47:05 +00004950 getMinusSCEV(Start, Step), RHS))
4951 End = isSigned ? getSMaxExpr(RHS, Start)
4952 : getUMaxExpr(RHS, Start);
4953
4954 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004955 const SCEV *MaxEnd = getConstant(isSigned ?
4956 getSignedRange(End).getSignedMax() :
4957 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00004958
4959 // Finally, we subtract these two values and divide, rounding up, to get
4960 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00004961 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004962
4963 // The maximum backedge count is similar, except using the minimum start
4964 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00004965 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004966
4967 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004968 }
4969
Dan Gohman1c343752009-06-27 21:21:31 +00004970 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004971}
4972
Chris Lattner53e677a2004-04-02 20:23:17 +00004973/// getNumIterationsInRange - Return the number of iterations of this loop that
4974/// produce values in the specified constant range. Another way of looking at
4975/// this is that it returns the first iteration number where the value is not in
4976/// the condition, thus computing the exit count. If the iteration count can't
4977/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004978const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00004979 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00004980 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004981 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004982
4983 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00004984 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00004985 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004986 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00004987 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004988 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00004989 if (const SCEVAddRecExpr *ShiftedAddRec =
4990 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00004991 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00004992 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00004993 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004994 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004995 }
4996
4997 // The only time we can solve this is when we have all constant indices.
4998 // Otherwise, we cannot determine the overflow conditions.
4999 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5000 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005001 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005002
5003
5004 // Okay at this point we know that all elements of the chrec are constants and
5005 // that the start element is zero.
5006
5007 // First check to see if the range contains zero. If not, the first
5008 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005009 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005010 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005011 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005012
Chris Lattner53e677a2004-04-02 20:23:17 +00005013 if (isAffine()) {
5014 // If this is an affine expression then we have this situation:
5015 // Solve {0,+,A} in Range === Ax in Range
5016
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005017 // We know that zero is in the range. If A is positive then we know that
5018 // the upper value of the range must be the first possible exit value.
5019 // If A is negative then the lower of the range is the last possible loop
5020 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005021 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005022 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5023 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005024
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005025 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005026 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005027 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005028
5029 // Evaluate at the exit value. If we really did fall out of the valid
5030 // range, then we computed our trip count, otherwise wrap around or other
5031 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005032 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005033 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005034 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005035
5036 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005037 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005038 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005039 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005040 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005041 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005042 } else if (isQuadratic()) {
5043 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5044 // quadratic equation to solve it. To do this, we must frame our problem in
5045 // terms of figuring out when zero is crossed, instead of when
5046 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005047 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005048 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005049 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005050
5051 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005052 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005053 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005054 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5055 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005056 if (R1) {
5057 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005058 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005059 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005060 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005061 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005062 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005063
Chris Lattner53e677a2004-04-02 20:23:17 +00005064 // Make sure the root is not off by one. The returned iteration should
5065 // not be in the range, but the previous one should be. When solving
5066 // for "X*X < 5", for example, we should not return a root of 2.
5067 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005068 R1->getValue(),
5069 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005070 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005071 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005072 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005073 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005074
Dan Gohman246b2562007-10-22 18:31:58 +00005075 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005076 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005077 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005078 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005079 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005080
Chris Lattner53e677a2004-04-02 20:23:17 +00005081 // If R1 was not in the range, then it is a good return value. Make
5082 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005083 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005084 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005085 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005086 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005087 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005088 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005089 }
5090 }
5091 }
5092
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005093 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005094}
5095
5096
5097
5098//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005099// SCEVCallbackVH Class Implementation
5100//===----------------------------------------------------------------------===//
5101
Dan Gohman1959b752009-05-19 19:22:47 +00005102void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005103 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005104 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5105 SE->ConstantEvolutionLoopExitValue.erase(PN);
5106 SE->Scalars.erase(getValPtr());
5107 // this now dangles!
5108}
5109
Dan Gohman1959b752009-05-19 19:22:47 +00005110void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005111 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005112
5113 // Forget all the expressions associated with users of the old value,
5114 // so that future queries will recompute the expressions using the new
5115 // value.
5116 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005117 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005118 Value *Old = getValPtr();
5119 bool DeleteOld = false;
5120 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5121 UI != UE; ++UI)
5122 Worklist.push_back(*UI);
5123 while (!Worklist.empty()) {
5124 User *U = Worklist.pop_back_val();
5125 // Deleting the Old value will cause this to dangle. Postpone
5126 // that until everything else is done.
5127 if (U == Old) {
5128 DeleteOld = true;
5129 continue;
5130 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005131 if (!Visited.insert(U))
5132 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005133 if (PHINode *PN = dyn_cast<PHINode>(U))
5134 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005135 SE->Scalars.erase(U);
5136 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5137 UI != UE; ++UI)
5138 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005139 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005140 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005141 if (DeleteOld) {
5142 if (PHINode *PN = dyn_cast<PHINode>(Old))
5143 SE->ConstantEvolutionLoopExitValue.erase(PN);
5144 SE->Scalars.erase(Old);
5145 // this now dangles!
5146 }
5147 // this may dangle!
5148}
5149
Dan Gohman1959b752009-05-19 19:22:47 +00005150ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005151 : CallbackVH(V), SE(se) {}
5152
5153//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005154// ScalarEvolution Class Implementation
5155//===----------------------------------------------------------------------===//
5156
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005157ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005158 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005159}
5160
Chris Lattner53e677a2004-04-02 20:23:17 +00005161bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005162 this->F = &F;
5163 LI = &getAnalysis<LoopInfo>();
5164 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005165 return false;
5166}
5167
5168void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005169 Scalars.clear();
5170 BackedgeTakenCounts.clear();
5171 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005172 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005173 UniqueSCEVs.clear();
5174 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005175}
5176
5177void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5178 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005179 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005180}
5181
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005182bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005183 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005184}
5185
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005186static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005187 const Loop *L) {
5188 // Print all inner loops first
5189 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5190 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005191
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005192 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005193
Dan Gohman5d984912009-12-18 01:14:11 +00005194 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005195 L->getExitBlocks(ExitBlocks);
5196 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005197 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005198
Dan Gohman46bdfb02009-02-24 18:55:53 +00005199 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5200 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005201 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005202 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005203 }
5204
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005205 OS << "\n";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005206 OS << "Loop " << L->getHeader()->getName() << ": ";
5207
5208 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5209 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5210 } else {
5211 OS << "Unpredictable max backedge-taken count. ";
5212 }
5213
5214 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005215}
5216
Dan Gohman5d984912009-12-18 01:14:11 +00005217void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005218 // ScalarEvolution's implementaiton of the print method is to print
5219 // out SCEV values of all instructions that are interesting. Doing
5220 // this potentially causes it to create new SCEV objects though,
5221 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005222 // observable from outside the class though, so casting away the
5223 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005224 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005225
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005226 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005227 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005228 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005229 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005230 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005231 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005232 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005233
Dan Gohman0c689c52009-06-19 17:49:54 +00005234 const Loop *L = LI->getLoopFor((*I).getParent());
5235
Dan Gohman0bba49c2009-07-07 17:06:11 +00005236 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005237 if (AtUse != SV) {
5238 OS << " --> ";
5239 AtUse->print(OS);
5240 }
5241
5242 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005243 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005244 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005245 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005246 OS << "<<Unknown>>";
5247 } else {
5248 OS << *ExitValue;
5249 }
5250 }
5251
Chris Lattner53e677a2004-04-02 20:23:17 +00005252 OS << "\n";
5253 }
5254
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005255 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5256 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5257 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005258}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005259