blob: 33f63814bc01c791472db2e80a58149eef61f7b5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "PPC.h"
21#include "PPCSubtarget.h"
22
23namespace llvm {
24 namespace PPCISD {
25 enum NodeType {
26 // Start the numbering where the builtin ops and target ops leave off.
27 FIRST_NUMBER = ISD::BUILTIN_OP_END+PPC::INSTRUCTION_LIST_END,
28
29 /// FSEL - Traditional three-operand fsel node.
30 ///
31 FSEL,
32
33 /// FCFID - The FCFID instruction, taking an f64 operand and producing
34 /// and f64 value containing the FP representation of the integer that
35 /// was temporarily in the f64 operand.
36 FCFID,
37
38 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39 /// operand, producing an f64 value containing the integer representation
40 /// of that FP value.
41 FCTIDZ, FCTIWZ,
42
43 /// STFIWX - The STFIWX instruction. The first operand is an input token
44 /// chain, then an f64 value to store, then an address to store it to,
45 /// then a SRCVALUE for the address.
46 STFIWX,
47
48 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49 // three v4f32 operands and producing a v4f32 result.
50 VMADDFP, VNMSUBFP,
51
52 /// VPERM - The PPC VPERM Instruction.
53 ///
54 VPERM,
55
56 /// Hi/Lo - These represent the high and low 16-bit parts of a global
57 /// address respectively. These nodes have two operands, the first of
58 /// which must be a TargetGlobalAddress, and the second of which must be a
59 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
60 /// though these are usually folded into other nodes.
61 Hi, Lo,
62
63 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65 /// compute an allocation on the stack.
66 DYNALLOC,
67
68 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69 /// at function entry, used for PIC code.
70 GlobalBaseReg,
71
72 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73 /// shift amounts. These nodes are generated by the multi-precision shift
74 /// code.
75 SRL, SRA, SHL,
76
77 /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78 /// registers.
79 EXTSW_32,
80
81 /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82 STD_32,
83
84 /// CALL - A direct function call.
85 CALL_Macho, CALL_ELF,
86
87 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88 /// MTCTR instruction.
89 MTCTR,
90
91 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92 /// BCTRL instruction.
93 BCTRL_Macho, BCTRL_ELF,
94
95 /// Return with a flag operand, matched by 'blr'
96 RET_FLAG,
97
98 /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99 /// This copies the bits corresponding to the specified CRREG into the
100 /// resultant GPR. Bits corresponding to other CR regs are undefined.
101 MFCR,
102
103 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104 /// instructions. For lack of better number, we use the opcode number
105 /// encoding for the OPC field to identify the compare. For example, 838
106 /// is VCMPGTSH.
107 VCMP,
108
109 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110 /// altivec VCMP*o instructions. For lack of better number, we use the
111 /// opcode number encoding for the OPC field to identify the compare. For
112 /// example, 838 is VCMPGTSH.
113 VCMPo,
114
115 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
117 /// condition register to branch on, OPC is the branch opcode to use (e.g.
118 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119 /// an optional input flag argument.
120 COND_BRANCH,
121
122 /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
124 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
125 /// i32.
126 STBRX,
127
128 /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
130 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
131 /// or i32.
132 LBRX
133 };
134 }
135
136 /// Define some predicates that are used for node matching.
137 namespace PPC {
138 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
139 /// VPKUHUM instruction.
140 bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary);
141
142 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
143 /// VPKUWUM instruction.
144 bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary);
145
146 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
147 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
148 bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
149
150 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
151 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
152 bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
153
154 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
155 /// amount, otherwise return -1.
156 int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
157
158 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
159 /// specifies a splat of a single element that is suitable for input to
160 /// VSPLTB/VSPLTH/VSPLTW.
161 bool isSplatShuffleMask(SDNode *N, unsigned EltSize);
162
Evan Chengc5912e32007-07-30 07:51:22 +0000163 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
164 /// are -0.0.
165 bool isAllNegativeZeroVector(SDNode *N);
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
168 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
169 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
170
171 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
172 /// formed by using a vspltis[bhw] instruction of the specified element
173 /// size, return the constant being splatted. The ByteSize field indicates
174 /// the number of bytes of each element [124] -> [bhw].
175 SDOperand get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
176 }
177
178 class PPCTargetLowering : public TargetLowering {
179 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
180 int VarArgsStackOffset; // StackOffset for start of stack
181 // arguments.
182 unsigned VarArgsNumGPR; // Index of the first unused integer
183 // register for parameter passing.
184 unsigned VarArgsNumFPR; // Index of the first unused double
185 // register for parameter passing.
186 int ReturnAddrIndex; // FrameIndex for return slot.
187 const PPCSubtarget &PPCSubTarget;
188 public:
Dan Gohman3a78bbf2007-08-02 21:21:54 +0000189 explicit PPCTargetLowering(PPCTargetMachine &TM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190
191 /// getTargetNodeName() - This method returns the name of a target specific
192 /// DAG node.
193 virtual const char *getTargetNodeName(unsigned Opcode) const;
194
195 /// getPreIndexedAddressParts - returns true by value, base pointer and
196 /// offset pointer and addressing mode by reference if the node's address
197 /// can be legally represented as pre-indexed load / store address.
198 virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
199 SDOperand &Offset,
200 ISD::MemIndexedMode &AM,
201 SelectionDAG &DAG);
202
203 /// SelectAddressRegReg - Given the specified addressed, check to see if it
204 /// can be represented as an indexed [r+r] operation. Returns false if it
205 /// can be more efficiently represented with [r+imm].
206 bool SelectAddressRegReg(SDOperand N, SDOperand &Base, SDOperand &Index,
207 SelectionDAG &DAG);
208
209 /// SelectAddressRegImm - Returns true if the address N can be represented
210 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
211 /// is not better represented as reg+reg.
212 bool SelectAddressRegImm(SDOperand N, SDOperand &Disp, SDOperand &Base,
213 SelectionDAG &DAG);
214
215 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
216 /// represented as an indexed [r+r] operation.
217 bool SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, SDOperand &Index,
218 SelectionDAG &DAG);
219
220 /// SelectAddressRegImmShift - Returns true if the address N can be
221 /// represented by a base register plus a signed 14-bit displacement
222 /// [r+imm*4]. Suitable for use by STD and friends.
223 bool SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base,
224 SelectionDAG &DAG);
225
226
227 /// LowerOperation - Provide custom lowering hooks for some operations.
228 ///
229 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
230
231 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
232
233 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
234 uint64_t Mask,
235 uint64_t &KnownZero,
236 uint64_t &KnownOne,
237 const SelectionDAG &DAG,
238 unsigned Depth = 0) const;
239
240 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
241 MachineBasicBlock *MBB);
242
243 ConstraintType getConstraintType(const std::string &Constraint) const;
244 std::pair<unsigned, const TargetRegisterClass*>
245 getRegForInlineAsmConstraint(const std::string &Constraint,
246 MVT::ValueType VT) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247
Chris Lattnera531abc2007-08-25 00:47:38 +0000248 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
249 /// vector. If it is invalid, don't add anything to Ops.
250 virtual void LowerAsmOperandForConstraint(SDOperand Op,
251 char ConstraintLetter,
252 std::vector<SDOperand> &Ops,
253 SelectionDAG &DAG);
254
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 /// isLegalAddressingMode - Return true if the addressing mode represented
256 /// by AM is legal for this target, for a load/store of the specified type.
257 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
258
259 /// isLegalAddressImmediate - Return true if the integer value can be used
260 /// as the offset of the target addressing mode for load / store of the
261 /// given type.
262 virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
263
264 /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
265 /// the offset of the target addressing mode.
266 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
267
268 SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
269 };
270}
271
272#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H