blob: 5316b80be548b3604aa636616ac413d3b61b14ef [file] [log] [blame]
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00001#include "llvm/DerivedTypes.h"
2#include "llvm/ExecutionEngine/ExecutionEngine.h"
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00003#include "llvm/ExecutionEngine/JIT.h"
4#include "llvm/LLVMContext.h"
5#include "llvm/Module.h"
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00006#include "llvm/PassManager.h"
7#include "llvm/Analysis/Verifier.h"
Dan Gohmanab7fa082010-11-16 17:28:22 +00008#include "llvm/Analysis/Passes.h"
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00009#include "llvm/Target/TargetData.h"
10#include "llvm/Target/TargetSelect.h"
11#include "llvm/Transforms/Scalar.h"
12#include "llvm/Support/IRBuilder.h"
13#include <cstdio>
14#include <string>
15#include <map>
16#include <vector>
17using namespace llvm;
18
19//===----------------------------------------------------------------------===//
20// Lexer
21//===----------------------------------------------------------------------===//
22
23// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24// of these for known things.
25enum Token {
26 tok_eof = -1,
27
28 // commands
29 tok_def = -2, tok_extern = -3,
30
31 // primary
32 tok_identifier = -4, tok_number = -5,
33
34 // control
35 tok_if = -6, tok_then = -7, tok_else = -8,
36 tok_for = -9, tok_in = -10,
37
38 // operators
39 tok_binary = -11, tok_unary = -12
40};
41
42static std::string IdentifierStr; // Filled in if tok_identifier
43static double NumVal; // Filled in if tok_number
44
45/// gettok - Return the next token from standard input.
46static int gettok() {
47 static int LastChar = ' ';
48
49 // Skip any whitespace.
50 while (isspace(LastChar))
51 LastChar = getchar();
52
53 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
54 IdentifierStr = LastChar;
55 while (isalnum((LastChar = getchar())))
56 IdentifierStr += LastChar;
57
58 if (IdentifierStr == "def") return tok_def;
59 if (IdentifierStr == "extern") return tok_extern;
60 if (IdentifierStr == "if") return tok_if;
61 if (IdentifierStr == "then") return tok_then;
62 if (IdentifierStr == "else") return tok_else;
63 if (IdentifierStr == "for") return tok_for;
64 if (IdentifierStr == "in") return tok_in;
65 if (IdentifierStr == "binary") return tok_binary;
66 if (IdentifierStr == "unary") return tok_unary;
67 return tok_identifier;
68 }
69
70 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
71 std::string NumStr;
72 do {
73 NumStr += LastChar;
74 LastChar = getchar();
75 } while (isdigit(LastChar) || LastChar == '.');
76
77 NumVal = strtod(NumStr.c_str(), 0);
78 return tok_number;
79 }
80
81 if (LastChar == '#') {
82 // Comment until end of line.
83 do LastChar = getchar();
84 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
85
86 if (LastChar != EOF)
87 return gettok();
88 }
89
90 // Check for end of file. Don't eat the EOF.
91 if (LastChar == EOF)
92 return tok_eof;
93
94 // Otherwise, just return the character as its ascii value.
95 int ThisChar = LastChar;
96 LastChar = getchar();
97 return ThisChar;
98}
99
100//===----------------------------------------------------------------------===//
101// Abstract Syntax Tree (aka Parse Tree)
102//===----------------------------------------------------------------------===//
103
104/// ExprAST - Base class for all expression nodes.
105class ExprAST {
106public:
107 virtual ~ExprAST() {}
108 virtual Value *Codegen() = 0;
109};
110
111/// NumberExprAST - Expression class for numeric literals like "1.0".
112class NumberExprAST : public ExprAST {
113 double Val;
114public:
115 NumberExprAST(double val) : Val(val) {}
116 virtual Value *Codegen();
117};
118
119/// VariableExprAST - Expression class for referencing a variable, like "a".
120class VariableExprAST : public ExprAST {
121 std::string Name;
122public:
123 VariableExprAST(const std::string &name) : Name(name) {}
124 virtual Value *Codegen();
125};
126
127/// UnaryExprAST - Expression class for a unary operator.
128class UnaryExprAST : public ExprAST {
129 char Opcode;
130 ExprAST *Operand;
131public:
132 UnaryExprAST(char opcode, ExprAST *operand)
133 : Opcode(opcode), Operand(operand) {}
134 virtual Value *Codegen();
135};
136
137/// BinaryExprAST - Expression class for a binary operator.
138class BinaryExprAST : public ExprAST {
139 char Op;
140 ExprAST *LHS, *RHS;
141public:
142 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
143 : Op(op), LHS(lhs), RHS(rhs) {}
144 virtual Value *Codegen();
145};
146
147/// CallExprAST - Expression class for function calls.
148class CallExprAST : public ExprAST {
149 std::string Callee;
150 std::vector<ExprAST*> Args;
151public:
152 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
153 : Callee(callee), Args(args) {}
154 virtual Value *Codegen();
155};
156
157/// IfExprAST - Expression class for if/then/else.
158class IfExprAST : public ExprAST {
159 ExprAST *Cond, *Then, *Else;
160public:
161 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
162 : Cond(cond), Then(then), Else(_else) {}
163 virtual Value *Codegen();
164};
165
166/// ForExprAST - Expression class for for/in.
167class ForExprAST : public ExprAST {
168 std::string VarName;
169 ExprAST *Start, *End, *Step, *Body;
170public:
171 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
172 ExprAST *step, ExprAST *body)
173 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
174 virtual Value *Codegen();
175};
176
177/// PrototypeAST - This class represents the "prototype" for a function,
178/// which captures its name, and its argument names (thus implicitly the number
179/// of arguments the function takes), as well as if it is an operator.
180class PrototypeAST {
181 std::string Name;
182 std::vector<std::string> Args;
183 bool isOperator;
184 unsigned Precedence; // Precedence if a binary op.
185public:
186 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
187 bool isoperator = false, unsigned prec = 0)
188 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
189
190 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
191 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
192
193 char getOperatorName() const {
194 assert(isUnaryOp() || isBinaryOp());
195 return Name[Name.size()-1];
196 }
197
198 unsigned getBinaryPrecedence() const { return Precedence; }
199
200 Function *Codegen();
201};
202
203/// FunctionAST - This class represents a function definition itself.
204class FunctionAST {
205 PrototypeAST *Proto;
206 ExprAST *Body;
207public:
208 FunctionAST(PrototypeAST *proto, ExprAST *body)
209 : Proto(proto), Body(body) {}
210
211 Function *Codegen();
212};
213
214//===----------------------------------------------------------------------===//
215// Parser
216//===----------------------------------------------------------------------===//
217
218/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
219/// token the parser is looking at. getNextToken reads another token from the
220/// lexer and updates CurTok with its results.
221static int CurTok;
222static int getNextToken() {
223 return CurTok = gettok();
224}
225
226/// BinopPrecedence - This holds the precedence for each binary operator that is
227/// defined.
228static std::map<char, int> BinopPrecedence;
229
230/// GetTokPrecedence - Get the precedence of the pending binary operator token.
231static int GetTokPrecedence() {
232 if (!isascii(CurTok))
233 return -1;
234
235 // Make sure it's a declared binop.
236 int TokPrec = BinopPrecedence[CurTok];
237 if (TokPrec <= 0) return -1;
238 return TokPrec;
239}
240
241/// Error* - These are little helper functions for error handling.
242ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
243PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
244FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
245
246static ExprAST *ParseExpression();
247
248/// identifierexpr
249/// ::= identifier
250/// ::= identifier '(' expression* ')'
251static ExprAST *ParseIdentifierExpr() {
252 std::string IdName = IdentifierStr;
253
254 getNextToken(); // eat identifier.
255
256 if (CurTok != '(') // Simple variable ref.
257 return new VariableExprAST(IdName);
258
259 // Call.
260 getNextToken(); // eat (
261 std::vector<ExprAST*> Args;
262 if (CurTok != ')') {
263 while (1) {
264 ExprAST *Arg = ParseExpression();
265 if (!Arg) return 0;
266 Args.push_back(Arg);
267
268 if (CurTok == ')') break;
269
270 if (CurTok != ',')
271 return Error("Expected ')' or ',' in argument list");
272 getNextToken();
273 }
274 }
275
276 // Eat the ')'.
277 getNextToken();
278
279 return new CallExprAST(IdName, Args);
280}
281
282/// numberexpr ::= number
283static ExprAST *ParseNumberExpr() {
284 ExprAST *Result = new NumberExprAST(NumVal);
285 getNextToken(); // consume the number
286 return Result;
287}
288
289/// parenexpr ::= '(' expression ')'
290static ExprAST *ParseParenExpr() {
291 getNextToken(); // eat (.
292 ExprAST *V = ParseExpression();
293 if (!V) return 0;
294
295 if (CurTok != ')')
296 return Error("expected ')'");
297 getNextToken(); // eat ).
298 return V;
299}
300
301/// ifexpr ::= 'if' expression 'then' expression 'else' expression
302static ExprAST *ParseIfExpr() {
303 getNextToken(); // eat the if.
304
305 // condition.
306 ExprAST *Cond = ParseExpression();
307 if (!Cond) return 0;
308
309 if (CurTok != tok_then)
310 return Error("expected then");
311 getNextToken(); // eat the then
312
313 ExprAST *Then = ParseExpression();
314 if (Then == 0) return 0;
315
316 if (CurTok != tok_else)
317 return Error("expected else");
318
319 getNextToken();
320
321 ExprAST *Else = ParseExpression();
322 if (!Else) return 0;
323
324 return new IfExprAST(Cond, Then, Else);
325}
326
327/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
328static ExprAST *ParseForExpr() {
329 getNextToken(); // eat the for.
330
331 if (CurTok != tok_identifier)
332 return Error("expected identifier after for");
333
334 std::string IdName = IdentifierStr;
335 getNextToken(); // eat identifier.
336
337 if (CurTok != '=')
338 return Error("expected '=' after for");
339 getNextToken(); // eat '='.
340
341
342 ExprAST *Start = ParseExpression();
343 if (Start == 0) return 0;
344 if (CurTok != ',')
345 return Error("expected ',' after for start value");
346 getNextToken();
347
348 ExprAST *End = ParseExpression();
349 if (End == 0) return 0;
350
351 // The step value is optional.
352 ExprAST *Step = 0;
353 if (CurTok == ',') {
354 getNextToken();
355 Step = ParseExpression();
356 if (Step == 0) return 0;
357 }
358
359 if (CurTok != tok_in)
360 return Error("expected 'in' after for");
361 getNextToken(); // eat 'in'.
362
363 ExprAST *Body = ParseExpression();
364 if (Body == 0) return 0;
365
366 return new ForExprAST(IdName, Start, End, Step, Body);
367}
368
369/// primary
370/// ::= identifierexpr
371/// ::= numberexpr
372/// ::= parenexpr
373/// ::= ifexpr
374/// ::= forexpr
375static ExprAST *ParsePrimary() {
376 switch (CurTok) {
377 default: return Error("unknown token when expecting an expression");
378 case tok_identifier: return ParseIdentifierExpr();
379 case tok_number: return ParseNumberExpr();
380 case '(': return ParseParenExpr();
381 case tok_if: return ParseIfExpr();
382 case tok_for: return ParseForExpr();
383 }
384}
385
386/// unary
387/// ::= primary
388/// ::= '!' unary
389static ExprAST *ParseUnary() {
390 // If the current token is not an operator, it must be a primary expr.
391 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
392 return ParsePrimary();
393
394 // If this is a unary operator, read it.
395 int Opc = CurTok;
396 getNextToken();
397 if (ExprAST *Operand = ParseUnary())
398 return new UnaryExprAST(Opc, Operand);
399 return 0;
400}
401
402/// binoprhs
403/// ::= ('+' unary)*
404static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
405 // If this is a binop, find its precedence.
406 while (1) {
407 int TokPrec = GetTokPrecedence();
408
409 // If this is a binop that binds at least as tightly as the current binop,
410 // consume it, otherwise we are done.
411 if (TokPrec < ExprPrec)
412 return LHS;
413
414 // Okay, we know this is a binop.
415 int BinOp = CurTok;
416 getNextToken(); // eat binop
417
418 // Parse the unary expression after the binary operator.
419 ExprAST *RHS = ParseUnary();
420 if (!RHS) return 0;
421
422 // If BinOp binds less tightly with RHS than the operator after RHS, let
423 // the pending operator take RHS as its LHS.
424 int NextPrec = GetTokPrecedence();
425 if (TokPrec < NextPrec) {
426 RHS = ParseBinOpRHS(TokPrec+1, RHS);
427 if (RHS == 0) return 0;
428 }
429
430 // Merge LHS/RHS.
431 LHS = new BinaryExprAST(BinOp, LHS, RHS);
432 }
433}
434
435/// expression
436/// ::= unary binoprhs
437///
438static ExprAST *ParseExpression() {
439 ExprAST *LHS = ParseUnary();
440 if (!LHS) return 0;
441
442 return ParseBinOpRHS(0, LHS);
443}
444
445/// prototype
446/// ::= id '(' id* ')'
447/// ::= binary LETTER number? (id, id)
448/// ::= unary LETTER (id)
449static PrototypeAST *ParsePrototype() {
450 std::string FnName;
451
452 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
453 unsigned BinaryPrecedence = 30;
454
455 switch (CurTok) {
456 default:
457 return ErrorP("Expected function name in prototype");
458 case tok_identifier:
459 FnName = IdentifierStr;
460 Kind = 0;
461 getNextToken();
462 break;
463 case tok_unary:
464 getNextToken();
465 if (!isascii(CurTok))
466 return ErrorP("Expected unary operator");
467 FnName = "unary";
468 FnName += (char)CurTok;
469 Kind = 1;
470 getNextToken();
471 break;
472 case tok_binary:
473 getNextToken();
474 if (!isascii(CurTok))
475 return ErrorP("Expected binary operator");
476 FnName = "binary";
477 FnName += (char)CurTok;
478 Kind = 2;
479 getNextToken();
480
481 // Read the precedence if present.
482 if (CurTok == tok_number) {
483 if (NumVal < 1 || NumVal > 100)
484 return ErrorP("Invalid precedecnce: must be 1..100");
485 BinaryPrecedence = (unsigned)NumVal;
486 getNextToken();
487 }
488 break;
489 }
490
491 if (CurTok != '(')
492 return ErrorP("Expected '(' in prototype");
493
494 std::vector<std::string> ArgNames;
495 while (getNextToken() == tok_identifier)
496 ArgNames.push_back(IdentifierStr);
497 if (CurTok != ')')
498 return ErrorP("Expected ')' in prototype");
499
500 // success.
501 getNextToken(); // eat ')'.
502
503 // Verify right number of names for operator.
504 if (Kind && ArgNames.size() != Kind)
505 return ErrorP("Invalid number of operands for operator");
506
507 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
508}
509
510/// definition ::= 'def' prototype expression
511static FunctionAST *ParseDefinition() {
512 getNextToken(); // eat def.
513 PrototypeAST *Proto = ParsePrototype();
514 if (Proto == 0) return 0;
515
516 if (ExprAST *E = ParseExpression())
517 return new FunctionAST(Proto, E);
518 return 0;
519}
520
521/// toplevelexpr ::= expression
522static FunctionAST *ParseTopLevelExpr() {
523 if (ExprAST *E = ParseExpression()) {
524 // Make an anonymous proto.
525 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
526 return new FunctionAST(Proto, E);
527 }
528 return 0;
529}
530
531/// external ::= 'extern' prototype
532static PrototypeAST *ParseExtern() {
533 getNextToken(); // eat extern.
534 return ParsePrototype();
535}
536
537//===----------------------------------------------------------------------===//
538// Code Generation
539//===----------------------------------------------------------------------===//
540
541static Module *TheModule;
542static IRBuilder<> Builder(getGlobalContext());
543static std::map<std::string, Value*> NamedValues;
544static FunctionPassManager *TheFPM;
545
546Value *ErrorV(const char *Str) { Error(Str); return 0; }
547
548Value *NumberExprAST::Codegen() {
549 return ConstantFP::get(getGlobalContext(), APFloat(Val));
550}
551
552Value *VariableExprAST::Codegen() {
553 // Look this variable up in the function.
554 Value *V = NamedValues[Name];
555 return V ? V : ErrorV("Unknown variable name");
556}
557
558Value *UnaryExprAST::Codegen() {
559 Value *OperandV = Operand->Codegen();
560 if (OperandV == 0) return 0;
561
562 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
563 if (F == 0)
564 return ErrorV("Unknown unary operator");
565
566 return Builder.CreateCall(F, OperandV, "unop");
567}
568
569Value *BinaryExprAST::Codegen() {
570 Value *L = LHS->Codegen();
571 Value *R = RHS->Codegen();
572 if (L == 0 || R == 0) return 0;
573
574 switch (Op) {
Eric Christopher2632bbf2010-06-14 06:03:16 +0000575 case '+': return Builder.CreateFAdd(L, R, "addtmp");
576 case '-': return Builder.CreateFSub(L, R, "subtmp");
577 case '*': return Builder.CreateFMul(L, R, "multmp");
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000578 case '<':
579 L = Builder.CreateFCmpULT(L, R, "cmptmp");
580 // Convert bool 0/1 to double 0.0 or 1.0
581 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
582 "booltmp");
583 default: break;
584 }
585
586 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
587 // a call to it.
588 Function *F = TheModule->getFunction(std::string("binary")+Op);
589 assert(F && "binary operator not found!");
590
591 Value *Ops[] = { L, R };
592 return Builder.CreateCall(F, Ops, Ops+2, "binop");
593}
594
595Value *CallExprAST::Codegen() {
596 // Look up the name in the global module table.
597 Function *CalleeF = TheModule->getFunction(Callee);
598 if (CalleeF == 0)
599 return ErrorV("Unknown function referenced");
600
601 // If argument mismatch error.
602 if (CalleeF->arg_size() != Args.size())
603 return ErrorV("Incorrect # arguments passed");
604
605 std::vector<Value*> ArgsV;
606 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
607 ArgsV.push_back(Args[i]->Codegen());
608 if (ArgsV.back() == 0) return 0;
609 }
610
611 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
612}
613
614Value *IfExprAST::Codegen() {
615 Value *CondV = Cond->Codegen();
616 if (CondV == 0) return 0;
617
618 // Convert condition to a bool by comparing equal to 0.0.
619 CondV = Builder.CreateFCmpONE(CondV,
620 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
621 "ifcond");
622
623 Function *TheFunction = Builder.GetInsertBlock()->getParent();
624
625 // Create blocks for the then and else cases. Insert the 'then' block at the
626 // end of the function.
627 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
628 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
629 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
630
631 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
632
633 // Emit then value.
634 Builder.SetInsertPoint(ThenBB);
635
636 Value *ThenV = Then->Codegen();
637 if (ThenV == 0) return 0;
638
639 Builder.CreateBr(MergeBB);
640 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
641 ThenBB = Builder.GetInsertBlock();
642
643 // Emit else block.
644 TheFunction->getBasicBlockList().push_back(ElseBB);
645 Builder.SetInsertPoint(ElseBB);
646
647 Value *ElseV = Else->Codegen();
648 if (ElseV == 0) return 0;
649
650 Builder.CreateBr(MergeBB);
651 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
652 ElseBB = Builder.GetInsertBlock();
653
654 // Emit merge block.
655 TheFunction->getBasicBlockList().push_back(MergeBB);
656 Builder.SetInsertPoint(MergeBB);
657 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
658 "iftmp");
Jay Foadd8b4fb42011-03-30 11:19:20 +0000659 PN->reserveOperandSpace(2);
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000660
661 PN->addIncoming(ThenV, ThenBB);
662 PN->addIncoming(ElseV, ElseBB);
663 return PN;
664}
665
666Value *ForExprAST::Codegen() {
667 // Output this as:
668 // ...
669 // start = startexpr
670 // goto loop
671 // loop:
672 // variable = phi [start, loopheader], [nextvariable, loopend]
673 // ...
674 // bodyexpr
675 // ...
676 // loopend:
677 // step = stepexpr
678 // nextvariable = variable + step
679 // endcond = endexpr
680 // br endcond, loop, endloop
681 // outloop:
682
683 // Emit the start code first, without 'variable' in scope.
684 Value *StartVal = Start->Codegen();
685 if (StartVal == 0) return 0;
686
687 // Make the new basic block for the loop header, inserting after current
688 // block.
689 Function *TheFunction = Builder.GetInsertBlock()->getParent();
690 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
691 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
692
693 // Insert an explicit fall through from the current block to the LoopBB.
694 Builder.CreateBr(LoopBB);
695
696 // Start insertion in LoopBB.
697 Builder.SetInsertPoint(LoopBB);
698
699 // Start the PHI node with an entry for Start.
700 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
Jay Foadd8b4fb42011-03-30 11:19:20 +0000701 Variable->reserveOperandSpace(2);
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000702 Variable->addIncoming(StartVal, PreheaderBB);
703
704 // Within the loop, the variable is defined equal to the PHI node. If it
705 // shadows an existing variable, we have to restore it, so save it now.
706 Value *OldVal = NamedValues[VarName];
707 NamedValues[VarName] = Variable;
708
709 // Emit the body of the loop. This, like any other expr, can change the
710 // current BB. Note that we ignore the value computed by the body, but don't
711 // allow an error.
712 if (Body->Codegen() == 0)
713 return 0;
714
715 // Emit the step value.
716 Value *StepVal;
717 if (Step) {
718 StepVal = Step->Codegen();
719 if (StepVal == 0) return 0;
720 } else {
721 // If not specified, use 1.0.
722 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
723 }
724
Chris Lattnerb0e9ead2010-06-21 22:51:14 +0000725 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000726
727 // Compute the end condition.
728 Value *EndCond = End->Codegen();
729 if (EndCond == 0) return EndCond;
730
731 // Convert condition to a bool by comparing equal to 0.0.
732 EndCond = Builder.CreateFCmpONE(EndCond,
733 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
734 "loopcond");
735
736 // Create the "after loop" block and insert it.
737 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
738 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
739
740 // Insert the conditional branch into the end of LoopEndBB.
741 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
742
743 // Any new code will be inserted in AfterBB.
744 Builder.SetInsertPoint(AfterBB);
745
746 // Add a new entry to the PHI node for the backedge.
747 Variable->addIncoming(NextVar, LoopEndBB);
748
749 // Restore the unshadowed variable.
750 if (OldVal)
751 NamedValues[VarName] = OldVal;
752 else
753 NamedValues.erase(VarName);
754
755
756 // for expr always returns 0.0.
757 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
758}
759
760Function *PrototypeAST::Codegen() {
761 // Make the function type: double(double,double) etc.
Duncan Sands34727662010-07-12 08:16:59 +0000762 std::vector<const Type*> Doubles(Args.size(),
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000763 Type::getDoubleTy(getGlobalContext()));
764 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
765 Doubles, false);
766
767 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
768
769 // If F conflicted, there was already something named 'Name'. If it has a
770 // body, don't allow redefinition or reextern.
771 if (F->getName() != Name) {
772 // Delete the one we just made and get the existing one.
773 F->eraseFromParent();
774 F = TheModule->getFunction(Name);
775
776 // If F already has a body, reject this.
777 if (!F->empty()) {
778 ErrorF("redefinition of function");
779 return 0;
780 }
781
782 // If F took a different number of args, reject.
783 if (F->arg_size() != Args.size()) {
784 ErrorF("redefinition of function with different # args");
785 return 0;
786 }
787 }
788
789 // Set names for all arguments.
790 unsigned Idx = 0;
791 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
792 ++AI, ++Idx) {
793 AI->setName(Args[Idx]);
794
795 // Add arguments to variable symbol table.
796 NamedValues[Args[Idx]] = AI;
797 }
798
799 return F;
800}
801
802Function *FunctionAST::Codegen() {
803 NamedValues.clear();
804
805 Function *TheFunction = Proto->Codegen();
806 if (TheFunction == 0)
807 return 0;
808
809 // If this is an operator, install it.
810 if (Proto->isBinaryOp())
811 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
812
813 // Create a new basic block to start insertion into.
814 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
815 Builder.SetInsertPoint(BB);
816
817 if (Value *RetVal = Body->Codegen()) {
818 // Finish off the function.
819 Builder.CreateRet(RetVal);
820
821 // Validate the generated code, checking for consistency.
822 verifyFunction(*TheFunction);
823
824 // Optimize the function.
825 TheFPM->run(*TheFunction);
826
827 return TheFunction;
828 }
829
830 // Error reading body, remove function.
831 TheFunction->eraseFromParent();
832
833 if (Proto->isBinaryOp())
834 BinopPrecedence.erase(Proto->getOperatorName());
835 return 0;
836}
837
838//===----------------------------------------------------------------------===//
839// Top-Level parsing and JIT Driver
840//===----------------------------------------------------------------------===//
841
842static ExecutionEngine *TheExecutionEngine;
843
844static void HandleDefinition() {
845 if (FunctionAST *F = ParseDefinition()) {
846 if (Function *LF = F->Codegen()) {
847 fprintf(stderr, "Read function definition:");
848 LF->dump();
849 }
850 } else {
851 // Skip token for error recovery.
852 getNextToken();
853 }
854}
855
856static void HandleExtern() {
857 if (PrototypeAST *P = ParseExtern()) {
858 if (Function *F = P->Codegen()) {
859 fprintf(stderr, "Read extern: ");
860 F->dump();
861 }
862 } else {
863 // Skip token for error recovery.
864 getNextToken();
865 }
866}
867
868static void HandleTopLevelExpression() {
869 // Evaluate a top-level expression into an anonymous function.
870 if (FunctionAST *F = ParseTopLevelExpr()) {
871 if (Function *LF = F->Codegen()) {
872 // JIT the function, returning a function pointer.
873 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
874
875 // Cast it to the right type (takes no arguments, returns a double) so we
876 // can call it as a native function.
877 double (*FP)() = (double (*)())(intptr_t)FPtr;
878 fprintf(stderr, "Evaluated to %f\n", FP());
879 }
880 } else {
881 // Skip token for error recovery.
882 getNextToken();
883 }
884}
885
886/// top ::= definition | external | expression | ';'
887static void MainLoop() {
888 while (1) {
889 fprintf(stderr, "ready> ");
890 switch (CurTok) {
891 case tok_eof: return;
892 case ';': getNextToken(); break; // ignore top-level semicolons.
893 case tok_def: HandleDefinition(); break;
894 case tok_extern: HandleExtern(); break;
895 default: HandleTopLevelExpression(); break;
896 }
897 }
898}
899
900//===----------------------------------------------------------------------===//
901// "Library" functions that can be "extern'd" from user code.
902//===----------------------------------------------------------------------===//
903
904/// putchard - putchar that takes a double and returns 0.
905extern "C"
906double putchard(double X) {
907 putchar((char)X);
908 return 0;
909}
910
911/// printd - printf that takes a double prints it as "%f\n", returning 0.
912extern "C"
913double printd(double X) {
914 printf("%f\n", X);
915 return 0;
916}
917
918//===----------------------------------------------------------------------===//
919// Main driver code.
920//===----------------------------------------------------------------------===//
921
922int main() {
923 InitializeNativeTarget();
924 LLVMContext &Context = getGlobalContext();
925
926 // Install standard binary operators.
927 // 1 is lowest precedence.
928 BinopPrecedence['<'] = 10;
929 BinopPrecedence['+'] = 20;
930 BinopPrecedence['-'] = 20;
931 BinopPrecedence['*'] = 40; // highest.
932
933 // Prime the first token.
934 fprintf(stderr, "ready> ");
935 getNextToken();
936
937 // Make the module, which holds all the code.
938 TheModule = new Module("my cool jit", Context);
939
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000940 // Create the JIT. This takes ownership of the module.
Jeffrey Yasskin42fc5582010-02-11 19:15:20 +0000941 std::string ErrStr;
942 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
943 if (!TheExecutionEngine) {
944 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
945 exit(1);
946 }
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000947
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000948 FunctionPassManager OurFPM(TheModule);
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000949
950 // Set up the optimizer pipeline. Start with registering info about how the
951 // target lays out data structures.
952 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
Dan Gohmandfa1a792010-11-15 18:41:10 +0000953 // Provide basic AliasAnalysis support for GVN.
954 OurFPM.add(createBasicAliasAnalysisPass());
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000955 // Do simple "peephole" optimizations and bit-twiddling optzns.
956 OurFPM.add(createInstructionCombiningPass());
957 // Reassociate expressions.
958 OurFPM.add(createReassociatePass());
959 // Eliminate Common SubExpressions.
960 OurFPM.add(createGVNPass());
961 // Simplify the control flow graph (deleting unreachable blocks, etc).
962 OurFPM.add(createCFGSimplificationPass());
963
964 OurFPM.doInitialization();
965
966 // Set the global so the code gen can use this.
967 TheFPM = &OurFPM;
968
969 // Run the main "interpreter loop" now.
970 MainLoop();
971
972 TheFPM = 0;
973
974 // Print out all of the generated code.
975 TheModule->dump();
976
977 return 0;
978}