blob: 503ac146d27ab30bcd304582eac54363915a63d1 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattner95b2c7d2006-12-19 22:59:26 +000031#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000034#include "llvm/ADT/DepthFirstIterator.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000035#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000036#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000037#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000043#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000048#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000049using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000050
Chris Lattner95b2c7d2006-12-19 22:59:26 +000051STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000053
Chris Lattner95b2c7d2006-12-19 22:59:26 +000054namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000055 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000056 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000057 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000058
Evan Chengbbeeb2a2008-09-22 20:58:04 +000059 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000060 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000061 AU.addPreservedID(MachineLoopInfoID);
62 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000063 MachineFunctionPass::getAnalysisUsage(AU);
64 }
65
Chris Lattnera960d952003-01-13 01:01:59 +000066 virtual bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69
Chris Lattnera960d952003-01-13 01:01:59 +000070 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000071 const TargetInstrInfo *TII; // Machine instruction info.
Evan Cheng32644ac2006-12-01 10:11:51 +000072 MachineBasicBlock *MBB; // Current basic block
73 unsigned Stack[8]; // FP<n> Registers in each stack slot...
74 unsigned RegMap[8]; // Track which stack slot contains each register
75 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +000076
77 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +000078 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +000079 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +000080 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +000081 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +000082 }
David Greenef5c95a62010-01-05 01:29:34 +000083 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +000084 }
85 private:
Chris Lattner447ff682008-03-11 03:23:40 +000086 /// isStackEmpty - Return true if the FP stack is empty.
87 bool isStackEmpty() const {
88 return StackTop == 0;
89 }
90
Chris Lattnera960d952003-01-13 01:01:59 +000091 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +000092 // in.
Chris Lattnera960d952003-01-13 01:01:59 +000093 unsigned getSlot(unsigned RegNo) const {
94 assert(RegNo < 8 && "Regno out of range!");
95 return RegMap[RegNo];
96 }
97
Chris Lattner447ff682008-03-11 03:23:40 +000098 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +000099 unsigned getStackEntry(unsigned STi) const {
100 assert(STi < StackTop && "Access past stack top!");
101 return Stack[StackTop-1-STi];
102 }
103
104 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000105 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000106 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000107 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000108 }
109
Chris Lattner447ff682008-03-11 03:23:40 +0000110 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000111 void pushReg(unsigned Reg) {
112 assert(Reg < 8 && "Register number out of range!");
113 assert(StackTop < 8 && "Stack overflow!");
114 Stack[StackTop] = Reg;
115 RegMap[Reg] = StackTop++;
116 }
117
118 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000119 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000120 MachineInstr *MI = I;
121 DebugLoc dl = MI->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000122 if (isAtTop(RegNo)) return;
123
124 unsigned STReg = getSTReg(RegNo);
125 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000126
Chris Lattner447ff682008-03-11 03:23:40 +0000127 // Swap the slots the regs are in.
128 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000129
Chris Lattner447ff682008-03-11 03:23:40 +0000130 // Swap stack slot contents.
131 assert(RegMap[RegOnTop] < StackTop);
132 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000133
Chris Lattner447ff682008-03-11 03:23:40 +0000134 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000135 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Chris Lattner447ff682008-03-11 03:23:40 +0000136 NumFXCH++;
Chris Lattnera960d952003-01-13 01:01:59 +0000137 }
138
Chris Lattner0526f012004-04-01 04:06:09 +0000139 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000140 DebugLoc dl = I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000141 unsigned STReg = getSTReg(RegNo);
142 pushReg(AsReg); // New register on top of stack
143
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000144 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000145 }
146
147 // popStackAfter - Pop the current value off of the top of the FP stack
148 // after the specified instruction.
149 void popStackAfter(MachineBasicBlock::iterator &I);
150
Chris Lattner0526f012004-04-01 04:06:09 +0000151 // freeStackSlotAfter - Free the specified register from the register stack,
152 // so that it is no longer in a register. If the register is currently at
153 // the top of the stack, we just pop the current instruction, otherwise we
154 // store the current top-of-stack into the specified slot, then pop the top
155 // of stack.
156 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
157
Chris Lattnera960d952003-01-13 01:01:59 +0000158 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
159
160 void handleZeroArgFP(MachineBasicBlock::iterator &I);
161 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000162 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000163 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000164 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000165 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000166 void handleSpecialFP(MachineBasicBlock::iterator &I);
167 };
Devang Patel19974732007-05-03 01:11:54 +0000168 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000169}
170
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000171FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000172
Chris Lattner3cc83842008-01-14 06:41:29 +0000173/// getFPReg - Return the X86::FPx register number for the specified operand.
174/// For example, this returns 3 for X86::FP3.
175static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000176 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000177 unsigned Reg = MO.getReg();
178 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
179 return Reg - X86::FP0;
180}
181
182
Chris Lattnera960d952003-01-13 01:01:59 +0000183/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
184/// register references into FP stack references.
185///
186bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000187 // We only need to run this pass if there are any FP registers used in this
188 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000189 bool FPIsUsed = false;
190
191 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
192 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000193 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000194 FPIsUsed = true;
195 break;
196 }
197
198 // Early exit.
199 if (!FPIsUsed) return false;
200
Evan Cheng32644ac2006-12-01 10:11:51 +0000201 TII = MF.getTarget().getInstrInfo();
Chris Lattnera960d952003-01-13 01:01:59 +0000202 StackTop = 0;
203
Chris Lattner847df252004-01-30 22:25:18 +0000204 // Process the function in depth first order so that we process at least one
205 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000206 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000207 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000208
209 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000210 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000211 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
212 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000213 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000214
Chris Lattnerba3598c2009-09-08 04:55:44 +0000215 // Process any unreachable blocks in arbitrary order now.
216 if (MF.size() == Processed.size())
217 return Changed;
218
219 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
220 if (Processed.insert(BB))
221 Changed |= processBasicBlock(MF, *BB);
222
Chris Lattnera960d952003-01-13 01:01:59 +0000223 return Changed;
224}
225
226/// processBasicBlock - Loop over all of the instructions in the basic block,
227/// transforming FP instructions into their stack form.
228///
229bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000230 bool Changed = false;
231 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000232
Chris Lattnera960d952003-01-13 01:01:59 +0000233 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000234 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000235 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattnere12ecf22008-03-11 19:50:13 +0000236
237 unsigned FPInstClass = Flags & X86II::FPTypeMask;
238 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
239 FPInstClass = X86II::SpecialFP;
240
241 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000242 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000243
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000244 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000245 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000246 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000247
248 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000249 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000250
251 // Get dead variables list now because the MI pointer may be deleted as part
252 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000253 SmallVector<unsigned, 8> DeadRegs;
254 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
255 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000256 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000257 DeadRegs.push_back(MO.getReg());
258 }
Chris Lattnera960d952003-01-13 01:01:59 +0000259
Chris Lattnere12ecf22008-03-11 19:50:13 +0000260 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000261 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000262 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000263 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000264 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000265 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000266 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000267 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000268 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000269 }
270
271 // Check to see if any of the values defined by this instruction are dead
272 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000273 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
274 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000275 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000276 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000277 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000278 }
279 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000280
Chris Lattnera960d952003-01-13 01:01:59 +0000281 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000282 DEBUG(
283 MachineBasicBlock::iterator PrevI(PrevMI);
284 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000285 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000286 } else {
287 MachineBasicBlock::iterator Start = I;
288 // Rewind to first instruction newly inserted.
289 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000290 dbgs() << "Inserted instructions:\n\t";
291 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000292 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000293 }
294 dumpStack();
295 );
Chris Lattnera960d952003-01-13 01:01:59 +0000296
297 Changed = true;
298 }
299
Chris Lattner447ff682008-03-11 03:23:40 +0000300 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Chris Lattnera960d952003-01-13 01:01:59 +0000301 return Changed;
302}
303
304//===----------------------------------------------------------------------===//
305// Efficient Lookup Table Support
306//===----------------------------------------------------------------------===//
307
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000308namespace {
309 struct TableEntry {
310 unsigned from;
311 unsigned to;
312 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000313 friend bool operator<(const TableEntry &TE, unsigned V) {
314 return TE.from < V;
315 }
316 friend bool operator<(unsigned V, const TableEntry &TE) {
317 return V < TE.from;
318 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000319 };
320}
Chris Lattnera960d952003-01-13 01:01:59 +0000321
Evan Chenga022bdf2008-07-21 20:02:45 +0000322#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000323static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
324 for (unsigned i = 0; i != NumEntries-1; ++i)
325 if (!(Table[i] < Table[i+1])) return false;
326 return true;
327}
Evan Chenga022bdf2008-07-21 20:02:45 +0000328#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000329
330static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
331 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
332 if (I != Table+N && I->from == Opcode)
333 return I->to;
334 return -1;
335}
336
Chris Lattnera960d952003-01-13 01:01:59 +0000337#ifdef NDEBUG
338#define ASSERT_SORTED(TABLE)
339#else
340#define ASSERT_SORTED(TABLE) \
341 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000342 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000343 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000344 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000345 TABLE##Checked = true; \
346 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000347 }
348#endif
349
Chris Lattner58fe4592005-12-21 07:47:04 +0000350//===----------------------------------------------------------------------===//
351// Register File -> Register Stack Mapping Methods
352//===----------------------------------------------------------------------===//
353
354// OpcodeTable - Sorted map of register instructions to their stack version.
355// The first element is an register file pseudo instruction, the second is the
356// concrete X86 instruction which uses the register stack.
357//
358static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000359 { X86::ABS_Fp32 , X86::ABS_F },
360 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000361 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000362 { X86::ADD_Fp32m , X86::ADD_F32m },
363 { X86::ADD_Fp64m , X86::ADD_F64m },
364 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000365 { X86::ADD_Fp80m32 , X86::ADD_F32m },
366 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000367 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
368 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000369 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000370 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
371 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000372 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000373 { X86::CHS_Fp32 , X86::CHS_F },
374 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000375 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000376 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
377 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000378 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000379 { X86::CMOVB_Fp32 , X86::CMOVB_F },
380 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000381 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000382 { X86::CMOVE_Fp32 , X86::CMOVE_F },
383 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000384 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000385 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
386 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000387 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000388 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
389 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000390 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000391 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
392 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000393 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000394 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
395 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000396 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000397 { X86::CMOVP_Fp32 , X86::CMOVP_F },
398 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000399 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000400 { X86::COS_Fp32 , X86::COS_F },
401 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000402 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000403 { X86::DIVR_Fp32m , X86::DIVR_F32m },
404 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000405 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000406 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
407 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000408 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
409 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000410 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000411 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
412 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000413 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000414 { X86::DIV_Fp32m , X86::DIV_F32m },
415 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000416 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000417 { X86::DIV_Fp80m32 , X86::DIV_F32m },
418 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000419 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
420 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000421 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000422 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
423 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000424 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000425 { X86::ILD_Fp16m32 , X86::ILD_F16m },
426 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000427 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000428 { X86::ILD_Fp32m32 , X86::ILD_F32m },
429 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000430 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000431 { X86::ILD_Fp64m32 , X86::ILD_F64m },
432 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000433 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000434 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
435 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000436 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000437 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
438 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000439 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000440 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
441 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000442 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000443 { X86::IST_Fp16m32 , X86::IST_F16m },
444 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000445 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000446 { X86::IST_Fp32m32 , X86::IST_F32m },
447 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000448 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000449 { X86::IST_Fp64m32 , X86::IST_FP64m },
450 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000451 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000452 { X86::LD_Fp032 , X86::LD_F0 },
453 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000454 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000455 { X86::LD_Fp132 , X86::LD_F1 },
456 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000457 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000458 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000459 { X86::LD_Fp32m64 , X86::LD_F32m },
460 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000461 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000462 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000463 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000464 { X86::MUL_Fp32m , X86::MUL_F32m },
465 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000466 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000467 { X86::MUL_Fp80m32 , X86::MUL_F32m },
468 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000469 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
470 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000471 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000472 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
473 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000474 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000475 { X86::SIN_Fp32 , X86::SIN_F },
476 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000477 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000478 { X86::SQRT_Fp32 , X86::SQRT_F },
479 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000480 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000481 { X86::ST_Fp32m , X86::ST_F32m },
482 { X86::ST_Fp64m , X86::ST_F64m },
483 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000484 { X86::ST_Fp80m32 , X86::ST_F32m },
485 { X86::ST_Fp80m64 , X86::ST_F64m },
486 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000487 { X86::SUBR_Fp32m , X86::SUBR_F32m },
488 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000489 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000490 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
491 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000492 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
493 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000494 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000495 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
496 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000497 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000498 { X86::SUB_Fp32m , X86::SUB_F32m },
499 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000500 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000501 { X86::SUB_Fp80m32 , X86::SUB_F32m },
502 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000503 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
504 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000505 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000506 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
507 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000508 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000509 { X86::TST_Fp32 , X86::TST_F },
510 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000511 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000512 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
513 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000514 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000515 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
516 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000517 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000518};
519
520static unsigned getConcreteOpcode(unsigned Opcode) {
521 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000522 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000523 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
524 return Opc;
525}
Chris Lattnera960d952003-01-13 01:01:59 +0000526
527//===----------------------------------------------------------------------===//
528// Helper Methods
529//===----------------------------------------------------------------------===//
530
531// PopTable - Sorted map of instructions to their popping version. The first
532// element is an instruction, the second is the version which pops.
533//
534static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000535 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000536
Dale Johannesene377d4d2007-07-04 21:07:47 +0000537 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
538 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000539
Dale Johannesene377d4d2007-07-04 21:07:47 +0000540 { X86::IST_F16m , X86::IST_FP16m },
541 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000542
Dale Johannesene377d4d2007-07-04 21:07:47 +0000543 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000544
Dale Johannesene377d4d2007-07-04 21:07:47 +0000545 { X86::ST_F32m , X86::ST_FP32m },
546 { X86::ST_F64m , X86::ST_FP64m },
547 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000548
Dale Johannesene377d4d2007-07-04 21:07:47 +0000549 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
550 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000551
Dale Johannesene377d4d2007-07-04 21:07:47 +0000552 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000553
Dale Johannesene377d4d2007-07-04 21:07:47 +0000554 { X86::UCOM_FPr , X86::UCOM_FPPr },
555 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000556};
557
558/// popStackAfter - Pop the current value off of the top of the FP stack after
559/// the specified instruction. This attempts to be sneaky and combine the pop
560/// into the instruction itself if possible. The iterator is left pointing to
561/// the last instruction, be it a new pop instruction inserted, or the old
562/// instruction if it was modified in place.
563///
564void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000565 MachineInstr* MI = I;
566 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000567 ASSERT_SORTED(PopTable);
568 assert(StackTop > 0 && "Cannot pop empty stack!");
569 RegMap[Stack[--StackTop]] = ~0; // Update state
570
571 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000572 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000573 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000574 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000575 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000576 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000577 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000578 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000579 }
580}
581
Chris Lattner0526f012004-04-01 04:06:09 +0000582/// freeStackSlotAfter - Free the specified register from the register stack, so
583/// that it is no longer in a register. If the register is currently at the top
584/// of the stack, we just pop the current instruction, otherwise we store the
585/// current top-of-stack into the specified slot, then pop the top of stack.
586void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
587 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
588 popStackAfter(I);
589 return;
590 }
591
592 // Otherwise, store the top of stack into the dead slot, killing the operand
593 // without having to add in an explicit xchg then pop.
594 //
595 unsigned STReg = getSTReg(FPRegNo);
596 unsigned OldSlot = getSlot(FPRegNo);
597 unsigned TopReg = Stack[StackTop-1];
598 Stack[OldSlot] = TopReg;
599 RegMap[TopReg] = OldSlot;
600 RegMap[FPRegNo] = ~0;
601 Stack[--StackTop] = ~0;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000602 MachineInstr *MI = I;
603 DebugLoc dl = MI->getDebugLoc();
604 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
Chris Lattner0526f012004-04-01 04:06:09 +0000605}
606
607
Chris Lattnera960d952003-01-13 01:01:59 +0000608//===----------------------------------------------------------------------===//
609// Instruction transformation implementation
610//===----------------------------------------------------------------------===//
611
612/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000613///
Chris Lattnera960d952003-01-13 01:01:59 +0000614void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000615 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000616 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000617
Chris Lattner58fe4592005-12-21 07:47:04 +0000618 // Change from the pseudo instruction to the concrete instruction.
619 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000620 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000621
622 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000623 pushReg(DestReg);
624}
625
Chris Lattner4a06f352004-02-02 19:23:15 +0000626/// handleOneArgFP - fst <mem>, ST(0)
627///
Chris Lattnera960d952003-01-13 01:01:59 +0000628void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000629 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000630 unsigned NumOps = MI->getDesc().getNumOperands();
Rafael Espindolab449a682009-03-28 17:03:24 +0000631 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000632 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000633
Chris Lattner4a06f352004-02-02 19:23:15 +0000634 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000635 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000636 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000637
Evan Cheng2b152712006-02-18 02:36:28 +0000638 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000639 // If we have one _and_ we don't want to pop the operand, duplicate the value
640 // on the stack instead of moving it. This ensure that popping the value is
641 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000642 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000643 //
Evan Cheng2b152712006-02-18 02:36:28 +0000644 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000645 (MI->getOpcode() == X86::IST_Fp64m32 ||
646 MI->getOpcode() == X86::ISTT_Fp16m32 ||
647 MI->getOpcode() == X86::ISTT_Fp32m32 ||
648 MI->getOpcode() == X86::ISTT_Fp64m32 ||
649 MI->getOpcode() == X86::IST_Fp64m64 ||
650 MI->getOpcode() == X86::ISTT_Fp16m64 ||
651 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000652 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000653 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000654 MI->getOpcode() == X86::ISTT_Fp16m80 ||
655 MI->getOpcode() == X86::ISTT_Fp32m80 ||
656 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000657 MI->getOpcode() == X86::ST_FpP80m)) {
Chris Lattnera960d952003-01-13 01:01:59 +0000658 duplicateToTop(Reg, 7 /*temp register*/, I);
659 } else {
660 moveToTop(Reg, I); // Move to the top of the stack...
661 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000662
663 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000664 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000665 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000666
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 if (MI->getOpcode() == X86::IST_FP64m ||
668 MI->getOpcode() == X86::ISTT_FP16m ||
669 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000670 MI->getOpcode() == X86::ISTT_FP64m ||
671 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000672 assert(StackTop > 0 && "Stack empty??");
673 --StackTop;
674 } else if (KillsSrc) { // Last use of operand?
675 popStackAfter(I);
676 }
677}
678
Chris Lattner4a06f352004-02-02 19:23:15 +0000679
Chris Lattner4cf15e72004-04-11 20:21:06 +0000680/// handleOneArgFPRW: Handle instructions that read from the top of stack and
681/// replace the value with a newly computed value. These instructions may have
682/// non-fp operands after their FP operands.
683///
684/// Examples:
685/// R1 = fchs R2
686/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000687///
688void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000689 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000690#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000691 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000692 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000693#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000694
695 // Is this the last use of the source register?
696 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000697 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000698
699 if (KillsSrc) {
700 // If this is the last use of the source register, just make sure it's on
701 // the top of the stack.
702 moveToTop(Reg, I);
703 assert(StackTop > 0 && "Stack cannot be empty!");
704 --StackTop;
705 pushReg(getFPReg(MI->getOperand(0)));
706 } else {
707 // If this is not the last use of the source register, _copy_ it to the top
708 // of the stack.
709 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
710 }
711
Chris Lattner58fe4592005-12-21 07:47:04 +0000712 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +0000713 MI->RemoveOperand(1); // Drop the source operand.
714 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +0000715 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +0000716}
717
718
Chris Lattnera960d952003-01-13 01:01:59 +0000719//===----------------------------------------------------------------------===//
720// Define tables of various ways to map pseudo instructions
721//
722
723// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
724static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000725 { X86::ADD_Fp32 , X86::ADD_FST0r },
726 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000727 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000728 { X86::DIV_Fp32 , X86::DIV_FST0r },
729 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000730 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 { X86::MUL_Fp32 , X86::MUL_FST0r },
732 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000733 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::SUB_Fp32 , X86::SUB_FST0r },
735 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000736 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000737};
738
739// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
740static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000741 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
742 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000743 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000744 { X86::DIV_Fp32 , X86::DIVR_FST0r },
745 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000746 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000747 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
748 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000749 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000750 { X86::SUB_Fp32 , X86::SUBR_FST0r },
751 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000752 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000753};
754
755// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
756static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
758 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000759 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000760 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
761 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000762 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000763 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
764 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000765 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000766 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
767 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000768 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000769};
770
771// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
772static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000773 { X86::ADD_Fp32 , X86::ADD_FrST0 },
774 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000775 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000776 { X86::DIV_Fp32 , X86::DIV_FrST0 },
777 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000778 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000779 { X86::MUL_Fp32 , X86::MUL_FrST0 },
780 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000781 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000782 { X86::SUB_Fp32 , X86::SUB_FrST0 },
783 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000784 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000785};
786
787
788/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
789/// instructions which need to be simplified and possibly transformed.
790///
791/// Result: ST(0) = fsub ST(0), ST(i)
792/// ST(i) = fsub ST(0), ST(i)
793/// ST(0) = fsubr ST(0), ST(i)
794/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000795///
Chris Lattnera960d952003-01-13 01:01:59 +0000796void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
797 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
798 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000799 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000800
Chris Lattner749c6f62008-01-07 07:27:27 +0000801 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000802 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +0000803 unsigned Dest = getFPReg(MI->getOperand(0));
804 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
805 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000806 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
807 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000808 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000809
Chris Lattnera960d952003-01-13 01:01:59 +0000810 unsigned TOS = getStackEntry(0);
811
812 // One of our operands must be on the top of the stack. If neither is yet, we
813 // need to move one.
814 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
815 // We can choose to move either operand to the top of the stack. If one of
816 // the operands is killed by this instruction, we want that one so that we
817 // can update right on top of the old version.
818 if (KillsOp0) {
819 moveToTop(Op0, I); // Move dead operand to TOS.
820 TOS = Op0;
821 } else if (KillsOp1) {
822 moveToTop(Op1, I);
823 TOS = Op1;
824 } else {
825 // All of the operands are live after this instruction executes, so we
826 // cannot update on top of any operand. Because of this, we must
827 // duplicate one of the stack elements to the top. It doesn't matter
828 // which one we pick.
829 //
830 duplicateToTop(Op0, Dest, I);
831 Op0 = TOS = Dest;
832 KillsOp0 = true;
833 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000834 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +0000835 // If we DO have one of our operands at the top of the stack, but we don't
836 // have a dead operand, we must duplicate one of the operands to a new slot
837 // on the stack.
838 duplicateToTop(Op0, Dest, I);
839 Op0 = TOS = Dest;
840 KillsOp0 = true;
841 }
842
843 // Now we know that one of our operands is on the top of the stack, and at
844 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000845 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
846 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +0000847
848 // We decide which form to use based on what is on the top of the stack, and
849 // which operand is killed by this instruction.
850 const TableEntry *InstTable;
851 bool isForward = TOS == Op0;
852 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
853 if (updateST0) {
854 if (isForward)
855 InstTable = ForwardST0Table;
856 else
857 InstTable = ReverseST0Table;
858 } else {
859 if (isForward)
860 InstTable = ForwardSTiTable;
861 else
862 InstTable = ReverseSTiTable;
863 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000864
Owen Anderson718cb662007-09-07 04:06:50 +0000865 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
866 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000867 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
868
869 // NotTOS - The register which is not on the top of stack...
870 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
871
872 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000873 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000874 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000875
876 // If both operands are killed, pop one off of the stack in addition to
877 // overwriting the other one.
878 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
879 assert(!updateST0 && "Should have updated other operand!");
880 popStackAfter(I); // Pop the top of stack
881 }
882
Chris Lattnera960d952003-01-13 01:01:59 +0000883 // Update stack information so that we know the destination register is now on
884 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000885 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
886 assert(UpdatedSlot < StackTop && Dest < 7);
887 Stack[UpdatedSlot] = Dest;
888 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000889 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000890}
891
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000892/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000893/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000894///
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000895void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
896 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
897 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
898 MachineInstr *MI = I;
899
Chris Lattner749c6f62008-01-07 07:27:27 +0000900 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000901 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000902 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
903 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000904 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
905 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000906
907 // Make sure the first operand is on the top of stack, the other one can be
908 // anywhere.
909 moveToTop(Op0, I);
910
Chris Lattner58fe4592005-12-21 07:47:04 +0000911 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +0000912 MI->getOperand(0).setReg(getSTReg(Op1));
913 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +0000914 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +0000915
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000916 // If any of the operands are killed by this instruction, free them.
917 if (KillsOp0) freeStackSlotAfter(I, Op0);
918 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000919}
920
Chris Lattnerc1bab322004-03-31 22:02:36 +0000921/// handleCondMovFP - Handle two address conditional move instructions. These
922/// instructions move a st(i) register to st(0) iff a condition is true. These
923/// instructions require that the first operand is at the top of the stack, but
924/// otherwise don't modify the stack at all.
925void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
926 MachineInstr *MI = I;
927
928 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000929 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +0000930 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000931
932 // The first operand *must* be on the top of the stack.
933 moveToTop(Op0, I);
934
935 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +0000936 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +0000937 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000938 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000939 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +0000940 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000941
Chris Lattnerc1bab322004-03-31 22:02:36 +0000942 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +0000943 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +0000944 // Get this value off of the register stack.
945 freeStackSlotAfter(I, Op1);
946 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000947}
948
Chris Lattnera960d952003-01-13 01:01:59 +0000949
950/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000951/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000952/// instructions.
953///
954void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000955 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000956 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000957 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +0000958 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000959 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
960 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
961 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +0000962 assert(StackTop == 0 && "Stack should be empty after a call!");
963 pushReg(getFPReg(MI->getOperand(0)));
964 break;
Chris Lattner24e0a542008-03-21 06:38:26 +0000965 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
966 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
967 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
968 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
969 // The pattern we expect is:
970 // CALL
971 // FP1 = FpGET_ST0
972 // FP4 = FpGET_ST1
973 //
974 // At this point, we've pushed FP1 on the top of stack, so it should be
975 // present if it isn't dead. If it was dead, we already emitted a pop to
976 // remove it from the stack and StackTop = 0.
977
978 // Push FP4 as top of stack next.
979 pushReg(getFPReg(MI->getOperand(0)));
980
981 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
982 // dead. In this case, the ST(1) value is the only thing that is live, so
983 // it should be on the TOS (after the pop that was emitted) and is. Just
984 // continue in this case.
985 if (StackTop == 1)
986 break;
987
988 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
989 // elements so that our accounting is correct.
990 unsigned RegOnTop = getStackEntry(0);
991 unsigned RegNo = getStackEntry(1);
992
993 // Swap the slots the regs are in.
994 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
995
996 // Swap stack slot contents.
997 assert(RegMap[RegOnTop] < StackTop);
998 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
999 break;
1000 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001001 case X86::FpSET_ST0_32:
1002 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001003 case X86::FpSET_ST0_80: {
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001004 unsigned Op0 = getFPReg(MI->getOperand(0));
1005
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001006 // FpSET_ST0_80 is generated by copyRegToReg for both function return
1007 // and inline assembly with the "st" constrain. In the latter case,
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001008 // it is possible for ST(0) to be alive after this instruction.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001009 if (!MI->killsRegister(X86::FP0 + Op0)) {
1010 // Duplicate Op0
Rafael Espindola63de5c32009-06-29 20:29:59 +00001011 duplicateToTop(0, 7 /*temp register*/, I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001012 } else {
1013 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001014 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001015 --StackTop; // "Forget" we have something on the top of stack!
1016 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001017 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001018 case X86::FpSET_ST1_32:
1019 case X86::FpSET_ST1_64:
1020 case X86::FpSET_ST1_80:
1021 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1022 if (StackTop == 1) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001023 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
Evan Chenga0eedac2009-02-09 23:32:07 +00001024 NumFXCH++;
1025 StackTop = 0;
1026 break;
1027 }
1028 assert(StackTop == 2 && "Stack should have two element on it to return!");
Chris Lattnera960d952003-01-13 01:01:59 +00001029 --StackTop; // "Forget" we have something on the top of stack!
1030 break;
Dale Johannesene377d4d2007-07-04 21:07:47 +00001031 case X86::MOV_Fp3232:
1032 case X86::MOV_Fp3264:
1033 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001034 case X86::MOV_Fp6464:
1035 case X86::MOV_Fp3280:
1036 case X86::MOV_Fp6480:
1037 case X86::MOV_Fp8032:
1038 case X86::MOV_Fp8064:
1039 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001040 const MachineOperand &MO1 = MI->getOperand(1);
1041 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001042
Evan Chengfb112882009-03-23 08:01:15 +00001043 const MachineOperand &MO0 = MI->getOperand(0);
1044 // These can be created due to inline asm. Two address pass can introduce
1045 // copies from RFP registers to virtual registers.
1046 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1047 assert(MO1.isKill());
1048 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1049 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1050 assert((StackTop == 1 || StackTop == 2)
1051 && "Stack should have one or two element on it to return!");
1052 --StackTop; // "Forget" we have something on the top of stack!
1053 break;
1054 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1055 assert(MO1.isKill());
1056 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1057 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1058 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1059 if (StackTop == 1) {
1060 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1061 NumFXCH++;
1062 StackTop = 0;
1063 break;
1064 }
1065 assert(StackTop == 2 && "Stack should have two element on it to return!");
1066 --StackTop; // "Forget" we have something on the top of stack!
1067 break;
1068 }
1069
1070 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001071 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001072 // If the input operand is killed, we can just change the owner of the
1073 // incoming stack slot into the result.
1074 unsigned Slot = getSlot(SrcReg);
1075 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1076 Stack[Slot] = DestReg;
1077 RegMap[DestReg] = Slot;
1078
1079 } else {
1080 // For FMOV we just duplicate the specified value to a new stack slot.
1081 // This could be made better, but would require substantial changes.
1082 duplicateToTop(SrcReg, DestReg, I);
1083 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001084 }
Chris Lattnera960d952003-01-13 01:01:59 +00001085 break;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001086 case TargetInstrInfo::INLINEASM: {
1087 // The inline asm MachineInstr currently only *uses* FP registers for the
1088 // 'f' constraint. These should be turned into the current ST(x) register
1089 // in the machine instr. Also, any kills should be explicitly popped after
1090 // the inline asm.
1091 unsigned Kills[7];
1092 unsigned NumKills = 0;
1093 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1094 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001095 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001096 continue;
1097 assert(Op.isUse() && "Only handle inline asm uses right now");
1098
1099 unsigned FPReg = getFPReg(Op);
1100 Op.setReg(getSTReg(FPReg));
1101
1102 // If we kill this operand, make sure to pop it from the stack after the
1103 // asm. We just remember it for now, and pop them all off at the end in
1104 // a batch.
1105 if (Op.isKill())
1106 Kills[NumKills++] = FPReg;
1107 }
1108
1109 // If this asm kills any FP registers (is the last use of them) we must
1110 // explicitly emit pop instructions for them. Do this now after the asm has
1111 // executed so that the ST(x) numbers are not off (which would happen if we
1112 // did this inline with operand rewriting).
1113 //
1114 // Note: this might be a non-optimal pop sequence. We might be able to do
1115 // better by trying to pop in stack order or something.
1116 MachineBasicBlock::iterator InsertPt = MI;
1117 while (NumKills)
1118 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1119
1120 // Don't delete the inline asm!
1121 return;
1122 }
1123
Chris Lattner447ff682008-03-11 03:23:40 +00001124 case X86::RET:
1125 case X86::RETI:
1126 // If RET has an FP register use operand, pass the first one in ST(0) and
1127 // the second one in ST(1).
1128 if (isStackEmpty()) return; // Quick check to see if any are possible.
1129
1130 // Find the register operands.
1131 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1132
1133 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1134 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001135 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001136 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001137 // FP Register uses must be kills unless there are two uses of the same
1138 // register, in which case only one will be a kill.
1139 assert(Op.isUse() &&
1140 (Op.isKill() || // Marked kill.
1141 getFPReg(Op) == FirstFPRegOp || // Second instance.
1142 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1143 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001144
1145 if (FirstFPRegOp == ~0U)
1146 FirstFPRegOp = getFPReg(Op);
1147 else {
1148 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1149 SecondFPRegOp = getFPReg(Op);
1150 }
1151
1152 // Remove the operand so that later passes don't see it.
1153 MI->RemoveOperand(i);
1154 --i, --e;
1155 }
1156
1157 // There are only four possibilities here:
1158 // 1) we are returning a single FP value. In this case, it has to be in
1159 // ST(0) already, so just declare success by removing the value from the
1160 // FP Stack.
1161 if (SecondFPRegOp == ~0U) {
1162 // Assert that the top of stack contains the right FP register.
1163 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1164 "Top of stack not the right register for RET!");
1165
1166 // Ok, everything is good, mark the value as not being on the stack
1167 // anymore so that our assertion about the stack being empty at end of
1168 // block doesn't fire.
1169 StackTop = 0;
1170 return;
1171 }
1172
Chris Lattner447ff682008-03-11 03:23:40 +00001173 // Otherwise, we are returning two values:
1174 // 2) If returning the same value for both, we only have one thing in the FP
1175 // stack. Consider: RET FP1, FP1
1176 if (StackTop == 1) {
1177 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1178 "Stack misconfiguration for RET!");
1179
1180 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1181 // register to hold it.
1182 unsigned NewReg = (FirstFPRegOp+1)%7;
1183 duplicateToTop(FirstFPRegOp, NewReg, MI);
1184 FirstFPRegOp = NewReg;
1185 }
1186
1187 /// Okay we know we have two different FPx operands now:
1188 assert(StackTop == 2 && "Must have two values live!");
1189
1190 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1191 /// in ST(1). In this case, emit an fxch.
1192 if (getStackEntry(0) == SecondFPRegOp) {
1193 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1194 moveToTop(FirstFPRegOp, MI);
1195 }
1196
1197 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1198 /// ST(1). Just remove both from our understanding of the stack and return.
1199 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001200 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001201 StackTop = 0;
1202 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001203 }
Chris Lattnera960d952003-01-13 01:01:59 +00001204
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001205 I = MBB->erase(I); // Remove the pseudo instruction
1206 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001207}